1
|
Zavell M, Chung K, Key P, Pennington P, DeLorenzo M. Interactive effects of Louisiana Sweet Crude (LSC) thin oil sheens and ultraviolet light on mortality and swimming behavior of the larval Eastern oyster, Crassostrea virginica. Curr Res Toxicol 2023; 5:100117. [PMID: 37637491 PMCID: PMC10458706 DOI: 10.1016/j.crtox.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The Eastern oyster (Crassostrea virginica) is an important commercial bivalve species which also has numerous ecological roles including biogeochemical cycling, providing habitat for larval fish and crustaceans, and reducing the impacts of coastal storms. Oil may pose a threat to oyster larvae swimming in the water column, leading to potential negative effects on survival, growth, and development. Oil toxicity may be further enhanced by chemical changes in the presence of sunlight. This study determined the toxicity of thin oil sheens with and without ultraviolet (UV) light, then examined the latent effects of the short term exposure on longer term survival and swimming ability. Larval C. virginica were exposed to four different oil sheen thicknesses for 24 h with either no UV light or 2-h UV light. Following the exposure, larvae were transferred to clean seawater and no UV light for 96 h. The presence of a 2-h UV light exposure significantly increased oyster mortality, indicating photo-enhanced toxicity. The LC50 for a 24-h oil sheen exposure without UV was 7.26 µm (23 µg/L PAH50) while a 2 h-UV exposure lowered the sheen toxicity threshold to 2.67 µm (10 µg/L PAH50). A previous 24-h oil sheen exposure (≥0.5 µm) led to latent effects on larval oyster survival, regardless of previous UV exposure. Sublethal impacts to larval oyster swimming behavior were also observed from the previous oil sheen exposure combined with UV exposure. This study provides new data for the toxicity of thin oil sheens to a sensitive early life stage of estuarine bivalve.
Collapse
Affiliation(s)
- M.D. Zavell
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd, Groton, CT 06340, USA
| | - K.W. Chung
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Sciences, 331 Fort Johnson Rd, Charleston, SC 29412, USA
| | - P.B. Key
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Sciences, 331 Fort Johnson Rd, Charleston, SC 29412, USA
| | - P.L. Pennington
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Sciences, 331 Fort Johnson Rd, Charleston, SC 29412, USA
| | - M.E. DeLorenzo
- National Oceanic and Atmospheric Administration/National Ocean Service/National Centers for Coastal Ocean Sciences, 331 Fort Johnson Rd, Charleston, SC 29412, USA
| |
Collapse
|
2
|
Sharma S, Pandey LM. Biodegradation kinetics of binary mixture of hexadecane and phenanthrene by the bacterial microconsortium. BIORESOURCE TECHNOLOGY 2022; 358:127408. [PMID: 35667530 DOI: 10.1016/j.biortech.2022.127408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Crude oil bioremediation requires a correct selection of potential biodegraders to address the hazard. The present study investigates biodegradation kinetics of single aliphatic (Hexadecane, HEX), aromatic (Phenanthrene, PHE), and binary mixture (HEX + PHE) as co-contaminants by axenic cultures of A. fabrum SLAJ 731, B. subtilis RSL2 and P. aeruginosa P7815 and their consortium. A proposed integrated kinetic model combining first-order exponential decay and the Monod equation is well-fitted to degradation data. Maximum degradations of both the substrates were observed for microcosm, indicating synergistic effects of selected strains. The degradation rate indicated parallel utilization of HEX while serial utilization of PHE by selected strains. Maximum HEX and PHE degradations of 92.4 and 88.7 % were achieved by microconsortium, which increased to 97.2 and 91.9 % for the binary mixture. The biodegradation efficiencies of HEX and PHE were linearly correlated with Alkane hydroxylase and Catechol-2,3-dioxygenase activities, respectively.
Collapse
Affiliation(s)
- Swati Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Durier G, Nadalini JB, Saint-Louis R, Genard B, Comeau LA, Tremblay R. Sensitivity to oil dispersants: Effects on the valve movements of the blue mussel Mytilus edulis and the giant scallop Placopecten magellanicus, in sub-arctic conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105797. [PMID: 33721721 DOI: 10.1016/j.aquatox.2021.105797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
In response to accidental oil spills at sea, chemical oil dispersants are utilized to limit negative impacts on nearby littoral zones. However, current evidence suggests that such dispersants may be toxic to aquatic organisms. Blue mussels (Mytilus edulis) and giant scallops (Placopecten magellanicus) were exposed to different environmentally relevant concentrations of oil dispersant and their behavioural responses were closely monitored using high frequency (10Hz) valvometry. Behavioural valve responses included rapid closures when oil dispersant was added to the experimental tanks. At higher concentrations, the mussels remained closed throughout the exposure period. The giant scallop displayed escape behaviours (clapping) prior to mortality, suggesting toxicity of the oil dispersant. Relationships between different behavioural indicators and oil dispersant concentrations were observed for both species, but with different trends. While scallops demonstrated positive correlations between gaping behaviours and dispersant concentration, mussels exhibited a concentration threshold beyond which the gaping behaviour was characteristic of longer closure periods. This study highlights behavioural response differences consistent with bivalve-specific biological traits: the continuous valve closure of an intertidal species, M. edulis, firmly attached to the substrate, and the escapement behaviours of a semi-mobile subtidal species, P. magellanicus. From these observations, it appears that valvometry could be used as a tool for environmental assessments.
Collapse
Affiliation(s)
- Guillaume Durier
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Jean-Bruno Nadalini
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| | - Richard Saint-Louis
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| | - Bertrand Genard
- Les laboratoires Iso-BioKem Inc., 367, rue Gratien-Gélinas, Rimouski, Québec, Canada.
| | - Luc A Comeau
- Fisheries and Oceans Canada, Gulf Region, Moncton, New Brunswick, Canada.
| | - Réjean Tremblay
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| |
Collapse
|
4
|
Pathak A, Stothard P, Chauhan A. Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster ( Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column. Microorganisms 2021; 9:490. [PMID: 33673397 PMCID: PMC7996774 DOI: 10.3390/microorganisms9030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because of their immense metabolic and ecological potential. To obtain a comprehensive understanding on this aspect, we previously reported on the isolation and preliminary genomic characterization of three Pseudomonas species isolated from minced oyster tissue (P. alcaligenes strain OT69); oyster mantle fluid (P. stutzeri strain MF28) and the water collected from top of the oyster reef (P. aeruginosa strain WC55), respectively. In this comparative genomic analysis study conducted on these three targeted pseudomonads, native to the eastern oyster and its surrounding environment, provided further insights into their unique functional traits, conserved gene pools between the selected pseudomonads, as well as genes that render unique characteristics in context to metabolic traits recruited during their evolutionary history via horizontal gene transfer events as well as phage-mediated incorporation of genes. Moreover, the strains also supported extensively developed resistomes, which suggests that environmental microorganisms native to relatively pristine environments, such as Apalachicola Bay, Florida, have also recruited an arsenal of antibiotic resistant gene determinants, thus posing an emerging public health concern.
Collapse
Affiliation(s)
- Ashish Pathak
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada;
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
5
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Hu Y, Zhou C, Liu G. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138852. [PMID: 32570313 DOI: 10.1016/j.scitotenv.2020.138852] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Both the frequent occurrence of accidental petroleum spills and the ubiquitous presence of microplastics (MPs) in the sea may pose severe threats to marine species. However, the immunotoxic impacts of these two types of pollutants and the underlying toxication mechanisms still remain largely unknown in sessile filter-feeding bivalve mollusks. Therefore, the impacts of exposure to petroleum hydrocarbons and MPs alone or in combination on the total count, cell type composition, and phagocytic activity of hemocytes were investigated in the blood clam, Tegillarca granosa. In addition, the intracellular ROS content, cell viability, degree of DNA damage, and expression levels of genes from immune-, apoptosis-, and immunotoxicity-related pathways were analyzed to reveal the potential toxication mechanisms. The results demonstrated that exposure to petroleum hydrocarbons and MPs alone or in combination at environmentally realistic concentrations could exert significant immunotoxic impacts on the blood clam, which may be caused by alterations in a series of physiological and molecular processes. In addition, the immunotoxicity of petroleum hydrocarbons could be significantly aggravated by the copresence of MPs, which suggests that coexposure to these two pollutants deserves closer attention.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
6
|
Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8080547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sea cucumber (Apostichopus japonicus) is mainly cultured in the coastal zone, where it is easily threatened by accidental oil spills. Chemical dispersant is one of the efficient oil spill responses for mitigating the overall environmental damage of oil spills. However, the impact of crude oil and chemical dispersants on sea cucumber is less well known. Hence, the present study focused on exploring the antioxidant response and oxidative stress in the respiratory tree of sea cucumber following exposure to GM-2 chemical dispersant (DISP), water-accommodated fractions (WAF), and chemically enhanced WAF (CEWAF) of Oman crude oil for 24 h. Results manifested that WAF exposure caused a significant increase in the reactive oxygen species (ROS) level (5.29 ± 0.30 AU·mgprot−1), and the effect was much more obvious in CEWAF treatment (5.73 ± 0.16 AU·mgprot−1). Total antioxidant capacity (T-AOC), as an important biomarker of the antioxidant defense capacity, showed an increasing trend following WAF exposure (0.95 ± 0.12 U·mgprot−1) while a significant reduction in T-AOC was observed following CEWAF exposure (0.23 ± 0.13 U·mgprot−1). Moreover, we also evaluated the oxidative damage of the macromolecules (DNA, protein, and lipid), and our results revealed that the presence of chemical dispersant enhanced oxidative damage caused by crude oil to sea cucumber.
Collapse
|
7
|
Häder DP, Banaszak AT, Villafañe VE, Narvarte MA, González RA, Helbling EW. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136586. [PMID: 31955090 DOI: 10.1016/j.scitotenv.2020.136586] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 04/15/2023]
Abstract
Aquatic ecosystems cover over two thirds of our planet and play a pivotal role in stabilizing the global climate as well as providing a large array of services for a fast-growing human population. However, anthropogenic activities increasingly provoke deleterious impacts in aquatic ecosystems. In this paper we discuss five sources of anthropogenic pollution that affect marine and freshwater ecosystems: sewage, nutrients and terrigenous materials, crude oil, heavy metals and plastics. Using specific locations as examples, we show that land-based anthropogenic activities have repercussions in freshwater and marine environments, and we detail the direct and indirect effects that these pollutants have on a range of aquatic organisms, even when the pollutant source is distant from the sink. While the issues covered here do focus on specific locations, they exemplify emerging problems that are increasingly common around the world. All these issues are in dire need of stricter environmental policies and legislations particularly for pollution at industrial levels, as well as solutions to mitigate the effects of anthropogenic pollutants and restore the important services provided by aquatic ecosystems for future generations.
Collapse
Affiliation(s)
- Donat-P Häder
- Friedrich-Alexander Universität, Dept. Biology, Neue Str. 9, D-91096 Möhrendorf, Germany.
| | - Anastazia T Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Virginia E Villafañe
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Estación de Fotobiología Playa Unión, Casilla de Correos N° 15, 9103 Rawson, Chubut, Argentina
| | - Maite A Narvarte
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, 8520 San Antonio Oeste, Río Negro, Argentina
| | - Raúl A González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, 8520 San Antonio Oeste, Río Negro, Argentina
| | - E Walter Helbling
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Estación de Fotobiología Playa Unión, Casilla de Correos N° 15, 9103 Rawson, Chubut, Argentina
| |
Collapse
|
8
|
Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1229-1252. [PMID: 31513312 DOI: 10.1002/wer.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This review covers selected 2018 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appear in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Mathew Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| |
Collapse
|