1
|
Castro MS, Guimarães PS, Barbosa FG, Schneck F, Martins CDMG. Impacts of warming and acidification on pesticide toxicity in continental aquatic environments: A scientometric and systematic map. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125384. [PMID: 39586451 DOI: 10.1016/j.envpol.2024.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Carbon dioxide emissions are altering aquatic ecosystems by causing water acidification and temperature increases, and these environments are also facing pesticide contamination. We present a scientometric and systematic map of these impacts in continental aquatic environments, aiming to provide an overview of research investigating the effects of temperature and acidification on pesticide toxicity. Our findings reveal a significant increase in research output on this topic, especially over the past seven years, with the United States leading due to high pesticide use and rigorous environmental monitoring. International collaborations remain low. High-impact journal publications underscore the importance of this topic. The primary focus is on temperature-pesticide interactions, highlighting the need for studies on pesticide-acidification interactions driven by climate change. The most studied class of pesticides is insecticides, particularly chlorpyrifos. Animals such as fish and crustaceans are the most frequently used organisms in ecotoxicological tests, indicating the need for broader assessments of impacts on other aquatic groups. Synergistic effects in interactions were prevalent, stressing the importance of an integrated approach in considering the interplay between temperature, pH, and pesticides. The information presented in this study directs and encourages studies in areas that have not yet addressed this topic.
Collapse
Affiliation(s)
- Muryllo Santos Castro
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Fabiana Gonçalves Barbosa
- MBA em Ciência de Dados, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Fabiana Schneck
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
2
|
Ruthsatz K, Dahlke F, Alter K, Wohlrab S, Eterovick PC, Lyra ML, Gippner S, Cooke SJ, Peck MA. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. GLOBAL CHANGE BIOLOGY 2024; 30:e17318. [PMID: 38771091 DOI: 10.1111/gcb.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Flemming Dahlke
- Ecology of Living Marine Resources, Universität Hamburg, Hamburg, Germany
| | - Katharina Alter
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sylke Wohlrab
- Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mariana L Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Research on Biodiversity Dynamics and Climate Change, State University of São Paulo-UNESP, Rio Claro, Brazil
| | - Sven Gippner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
3
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
4
|
Thoré ESJ, Merckx W. Substrate colour guides turquoise killifish's (Nothobranchius furzeri) choice of preferred spawning habitat. JOURNAL OF FISH BIOLOGY 2023; 102:1434-1441. [PMID: 37009851 DOI: 10.1111/jfb.15392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 06/09/2023]
Abstract
Turquoise killifish (Nothobranchius furzeri) is a promising new model species used in biomedical and ecological laboratory experiments, and should be kept under optimal conditions to ensure fish welfare and the quality of science. While the popularity of this model species is rapidly increasing, we need to improve our understanding of how the species interacts with its environment to optimize its husbandry. Specifically, turquoise killifish are substrate spawners that bury their eggs in the sediment, which can be accommodated under captive conditions, but it is not yet known whether or not turquoise killifish have a preference for a specific sediment colour. Here, we performed a laboratory experiment in which fish could choose between white, orange and black sand for spawning, colours which are relevant in both laboratory and field conditions. We assessed their preference in the context of single breeding pairs, as well as in a social group setting. Additionally, we also assessed the preference of individuals for a white versus black background in a nonmating context. Single breeding pairs deposited over 3.5 times more eggs in black compared to orange or white sand. Similarly, fish in social groups deposited over 3.5 times more eggs in black compared to orange sand, which in turn was over two times higher than that in white sand. Fish showed a slight preference for the black compared to the white zone in a nonmating context, but this did not correlate with substrate choice during the spawning tests. The results suggest that turquoise killifish select their preferred spawning location based on the colour of the substrate. These findings contribute to our understanding of the species' biology and can help to guide good welfare and scientific practice.
Collapse
Affiliation(s)
- Eli S J Thoré
- TRANSfarm - Science, Engineering & Technology Group, Leuven, Belgium
- Laboratory of Animal Ecology, Global Change and Sustainable Development, Leuven, Belgium
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Wouter Merckx
- TRANSfarm - Science, Engineering & Technology Group, Leuven, Belgium
| |
Collapse
|
5
|
Součková K, Jasík M, Sovadinová I, Sember A, Sychrová E, Konieczna A, Bystrý V, Dyková I, Blažek R, Lukšíková K, Pavlica T, Jankásek M, Altmanová M, Žák J, Zbončáková A, Reichard M, Slabý O. From fish to cells: Establishment of continuous cell lines from embryos of annual killifish Nothobranchius furzeri and N. kadleci. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106517. [PMID: 37087860 DOI: 10.1016/j.aquatox.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
There is a growing need of alternative experimental models that avoid or minimize the use of animals due to ethical, economical, and scientific reasons. Surprisingly, the stable embryonic cell lines representing Nothobranchius spp., emerging vertebrate models in aging research, regenerative medicine, ecotoxicology, or genomics, have been not derived so far. This paper reports establishment and deep characterization of ten continuous cell lines from annual killifish embryos of N. furzeri and N. kadleci. The established cell lines exhibited mostly fibroblast- and epithelial-like morphology and steady growth rates with cell doubling time ranging from 27 to 40 h. All cell lines retained very similar characteristics even after continuous subcultivation (more than 100 passages) and extended storage in liquid nitrogen (∼3 years). The cytogenetic analysis of the cell lines revealed a diploid chromosome number mostly equal to 38 elements (i.e., the native chromosome count for both killifish species), with minor but diverse line/passage-specific karyotype changes compared to the patterns observed in non-cultured N. furzeri and N. kadleci somatic cells. Based on transcriptional analysis of marker genes, the cell lines displayed features of an undifferentiated state without signs of senescence even in advanced passages. We confirmed that the cell lines are transfectable and can form viable 3-D spheroids. The applicability of the cell lines for (eco)toxicological surveys was confirmed by assessing the effect of cytotoxic and growth inhibitory agents. Properties of established Nothobranchius embryonic cell lines open new possibilities for the application of this model in various fields of life sciences including molecular mechanisms of aging, karyotype (in)stability or differences in lifespan.
Collapse
Affiliation(s)
- Kamila Součková
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Matej Jasík
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
| | - Anna Konieczna
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Bystrý
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Radim Blažek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Jakub Žák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Adriana Zbončáková
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Martin Reichard
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 603 00, Czech Republic; Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź 90-237, Poland
| | - Ondřej Slabý
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
6
|
Philippe C, Thoré ESJ, Verbesselt S, Grégoir AF, Brendonck L, Pinceel T. Combined effects of global warming and chlorpyrifos exposure on the annual fish Nothobranchius furzeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114290. [PMID: 36403300 DOI: 10.1016/j.ecoenv.2022.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Global warming and environmental pollution threaten aquatic ecosystems. While interactive effects between both stressors can have more than additive consequences, these remain poorly studied for most taxa. Especially chronic exposure trials with vertebrates are scarce due to the high time- and monetary costs of such studies. We use the recently-established fish model Nothobranchius furzeri to assess the separate and combined effects of exposure to the pesticide chlorpyrifos (at 2 µg/L and 4 µg/L) and a 2 °C temperature increase. We performed a full life-cycle assessment to evaluate fitness-related endpoints including survival, total body length, maturation time, fecundity, critical thermal maximum (CTmax) and locomotor activity. Exposure to 4 µg/L chlorpyrifos slowed down male maturation, reduced fecundity and impaired growth of the fish. While the temperature increase did not affect any of the measured endpoints on its own, the combination of exposure to 2 µg/L CPF with an increase of 2 °C reduced growth and severely reduced fecundity, with almost no offspring production. Together, these findings suggest that climate change may exacerbate the impact of environmental pollution, and that interactive effects of chronic exposure to multiple stressors should be considered to predict how populations will be affected by ongoing global change.
Collapse
Affiliation(s)
- Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Sebastiaan Verbesselt
- Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92 box 1 9820 Merelbeke, Belgium
| | - Arnout F Grégoir
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium; Centre for Environmental Management, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; PMC Coasts Rivers and Cities, Witteveen + Bos, Posthoflei 5, B-2600 Berchem, Belgium
| |
Collapse
|
7
|
De Castro BD, Lanés LEK, Godoy RS, Maltchik L, Oliveira GT. Development stage-dependent oxidative stress responses to the exposure to roundup original© in a neotropical annual killifish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103976. [PMID: 36100139 DOI: 10.1016/j.etap.2022.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/13/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are the most commonly applied pesticides in Brazil, specifically those based on glyphosate, and are used for different crops, near the habitats of annual killifish. Annual killifish presents a short life cycle with generally restricted geographic distribution. In this context, we evaluated the effect of the Roundup Original© (65, 130 and 260 µg. L-1 of glyphosate) herbicide on different development stages (adult-young and senile) of the annual killifish (Cynopoecilus sp.). We quantified the oxidative balance markers (superoxide dismutase, catalase, glutathione S-transferase, lipid peroxidation levels, and total proteins). We observed that the senile individuals presented 2-fold higher lipid peroxidation levels associated with the maintenance of superoxide dismutase and catalase activity levels even after exposure to the herbicide. However, senile subjects were negatively impacted by the exposure to formulations containing glyphosate, and this was related to a loss of glutathione S-transferase activity. Our research demonstrated that the established physiological markers and this species look promising for toxicology studies.
Collapse
Affiliation(s)
- Bruna Dutra De Castro
- PUCRS, Pontifical Catholic University of Rio Grande do Sul, School of Health and Life Sciences, Conservation Physiology Laboratory, Conservation Physiology Laboratory, Porto Alegre, RS, Brazil
| | | | - Robson Souza Godoy
- UNISINOS, Universidade do Vale do Rio dos Sinos, Centro de Ciências, Programa de Pós-Graduação de Biologia, Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, São Leopoldo, RS, Brazil
| | - Leonardo Maltchik
- FURG, Federal University of Rio Grande, Rectory, Pro-Rectory of Research and Graduate Studies, University of Rio Grande Foundation, Rio Grande, RS, Brazil
| | - Guendalina Turcato Oliveira
- PUCRS, Pontifical Catholic University of Rio Grande do Sul, School of Health and Life Sciences, Conservation Physiology Laboratory, Conservation Physiology Laboratory, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Kafula YA, Philippe C, Pinceel T, Munishi LK, Moyo F, Vanschoenwinkel B, Brendonck L, Thoré ESJ. Pesticide sensitivity of Nothobranchius neumanni, a temporary pond predator with a non-generic life-history. CHEMOSPHERE 2022; 291:132823. [PMID: 34767842 DOI: 10.1016/j.chemosphere.2021.132823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are crucial to improve agricultural productivity, but often adversely affect surrounding aquatic systems and their fauna. To determine the environmental risk of pesticides, routine ecotoxicological tests are performed on several organisms, including standard fish models. However, these typically do not include fish species from variable habitats and with non-generic life-histories. In particular, inhabitants from temporary ponds such as annual killifish are conventionally understood to be resilient to natural stressors which could translate to higher pesticide resistance or, alternatively, trade-off with their resistance to pesticides and render them more sensitive than classic fish models. Using standard exposure tests, we assessed short-term toxicity effects of two commonly used pesticides, Roundup and cypermethrin, on the annual killifish Nothobranchius neumanni, and compared its sensitivity with that of classic fish models. For Roundup, we found a 72 h-LC50 of 1.79 ± 0.11 mg/L, which is lower than the values reported for zebrafish, medaka, fathead minnow and rainbow trout, suggesting that N. neumanni is more sensitive to the compound. The opposite was true for cypermethrin, with a 72 h-LC50 of 0.27 ± 0.03 mg/L. However, these LC50-values do not deviate strongly from those reported for other fish species, supporting earlier findings in the congeneric N. furzeri that the sensitivity of annual killifish to pollutants is similar to that of classic fish models despite their assumed robustness to environmental stress.
Collapse
Affiliation(s)
- Yusuph A Kafula
- Department of Aquatic Sciences, College of Aquatic Sciences and Fisheries, Mwalimu Julius K. Nyerere University of Agriculture and Technology, P. O Box 976, Musoma, Tanzania; Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania; Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Charlotte Philippe
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium
| | - Tom Pinceel
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa
| | - Linus K Munishi
- Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania
| | - Francis Moyo
- Department of Sustainable Agriculture, Biodiversity and Ecosystem Management, School of Life Sciences and Bio-Engineering, Nelson Mandela - African Institution of Science and Technology, P. O Box 447, Arusha, Tanzania
| | - Bram Vanschoenwinkel
- Community Ecology Laboratory, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences, And Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Eli S J Thoré
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
9
|
Soloperto S, Aroua S, Jozet-Alves C, Minier C, Halm-Lemeille MP. Development of an exposure protocol for toxicity test (FEET) for a marine species: the European sea bass (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15777-15790. [PMID: 34636016 DOI: 10.1007/s11356-021-16785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Regulatory assessment of the effects of chemicals requires the availability of validated tests representing different environments and organisms. In this context, developing new tests is particularly needed for marine species from temperate environments. It is also important to evaluate effects that are generally poorly characterized and seldom included in regulatory tests. In this study, we designed an exposure protocol using European sea bass (Dicentrarchus labrax) larvae. We examined classical toxicological values (LCx) as well as behavioral responses. By comparing different hatching and breeding strategies, we defined the optimal conditions of exposure as non-agitated conditions in 24- or 48-well microplates. Our exposure protocol was then tested with 3,4-dichloroaniline (3,4-DCA), a recommended reference molecule. Based on our results, the 96 h LC50 for 3,4-DCA corresponded to 2.04 mg/L while the 168 h LC50 to 0.79 mg/L. Behavioral analyses showed no effect of 3,4-DCA at low concentration (0.25 mg/L). In conclusion, the present work established the basis for a new test which includes behavioral analysis and shows that the use of sea bass is suitable to early-life stage toxicity tests.
Collapse
Affiliation(s)
- Sofia Soloperto
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre, 25, Rue Philippe Lebon, 76600, Le Havre, France.
| | - Salima Aroua
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre, 25, Rue Philippe Lebon, 76600, Le Havre, France
| | - Christelle Jozet-Alves
- Unicaen, CNRS, Normandie Univ, 14000, Caen, France
- EthoS (Éthologie animale et humaine) - UMR 6552, Univ Rennes, CNRS, F-35000, Rennes, France
| | - Christophe Minier
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre, 25, Rue Philippe Lebon, 76600, Le Havre, France
| | | |
Collapse
|
10
|
Monteiro DA, Kalinin AL, Rantin FT, McKenzie DJ. Use of complex physiological traits as ecotoxicological biomarkers in tropical freshwater fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2021; 335:745-760. [PMID: 34529366 DOI: 10.1002/jez.2540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
We review the use of complex physiological traits, of tolerance and performance, as biomarkers of the toxicological effects of contaminants in subtropical and tropical freshwater fishes. Such traits are growing in relevance due to climate change, as exposure to contaminants may influence the capacity of fishes to tolerate and perform in an increasingly stressful environment. We review the evidence that the critical oxygen level, a measure of hypoxia tolerance, provides a valuable biomarker of impacts of diverse classes of contaminants. When coupled with measures of cardiorespiratory variables, it can provide insight into mechanisms of toxicity. The critical thermal maximum, a simple measure of tolerance of acute warming, also provides a valuable biomarker despite a lack of understanding of its mechanistic basis. Its relative ease of application renders it useful in the rapid evaluation of multiple species, and in understanding how the severity of contaminant impacts depends upon prevailing environmental temperature. The critical swimming speed is a measure of exercise performance that is widely used as a biomarker in temperate species but very few studies have been performed on subtropical or tropical fishes. Overall, the review serves to highlight a critical lack of knowledge for subtropical and tropical freshwater fishes. There is a real need to expand the knowledge base and to use physiological biomarkers in support of decision making to manage tropical freshwater fish populations and their habitats, which sustain rich biodiversity but are under relentless anthropogenic pressure.
Collapse
Affiliation(s)
- Diana A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Ana L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - F Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - David J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
- UMR Marbec, Univ. Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| |
Collapse
|
11
|
Thoré ESJ, Philippe C, Brendonck L, Pinceel T. Towards improved fish tests in ecotoxicology - Efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. CHEMOSPHERE 2021; 273:129697. [PMID: 33517116 DOI: 10.1016/j.chemosphere.2021.129697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
As many freshwaters are chemically polluted, one of the challenges for policy makers is to determine the potential impact of these pollutants on ecosystems and to define safe concentrations. Common practice is the use of ecotoxicological assays to assess the response of model organisms from different trophic levels such as algae, invertebrates and fish during exposure to dilutions of a specific compound. Ideally, ecotoxicological assessments of (pseudo-)persistent chemicals should be performed across the life-cycle or even multiple generations for an accurate risk assessment. Multigenerational tests with fish are, however, impractical and costly given the long lifespan and generation time of classic model species. Here, we suggest a framework for more relevant, time- and cost-efficient fish-based testing in ecotoxicology and align it with accredited test guidelines. Next, we introduce an upcoming fish model, the turquoise killifish Nothobranchius furzeri, and show how it facilitates such research agendas due to a short lifespan and generation time. Through a review of fish-based exposure studies with a set of reference toxicants, we position N. furzeri as a sensitive species, suitable for screening effects of different pollutant types. Ultimately, we perform a cost-benefit analysis and propose a plan of action for the introduction of N. furzeri into accredited test guidelines.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
12
|
Reproductive Toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese Medaka ( Oryziasjavanicus, Bleeker 1854). Animals (Basel) 2021; 11:ani11030798. [PMID: 33809309 PMCID: PMC8000808 DOI: 10.3390/ani11030798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Compound 3,4-dichloroaniline (3,4-DCA) is a metabolite of several urea herbicides and intermediate chemical of several industrial products. Moreover, 3,4-DCA has been frequently detected in aquatic ecosystems around the world. This aniline is more toxic than the parent chemicals, and it affects non-target organisms. This study evaluated a 21-day reproductive response of an emerging aquatic vertebrate model, Javanese medaka (Oryzias javanicus), exposed to 3,4-DCA. Fecundity and gonads histopathology were observed. The spawning rate and fertilisation reduced significantly in the highest exposed-group (250 µg/L). Gonadosomatic index (GSI) was significantly low in females exposed to 250 µg/L. No substantial structural alteration of male gonads. However, oocyte development and ovarian cell structure were disrupted in 250 µg/L exposed females. The gonadal developmental was not affected in the males; however, a significant reduction in the developmental of female gonads was observed at 250 µg/L. These results show that 3,4-DCA interfere with the reproduction of Javanese medaka through fecundity and alteration of gonadal tissues.
Collapse
|
13
|
Thoré ESJ, Van Hooreweghe F, Philippe C, Brendonck L, Pinceel T. Generation-specific and interactive effects of pesticide and antidepressant exposure in a fish model call for multi-stressor and multigenerational testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105743. [PMID: 33460950 DOI: 10.1016/j.aquatox.2021.105743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Ecological risks of a pollutant are typically assessed via short-term exposure of model organisms to that single compound. Such tests are informative, but cannot ascertain effects of long-term and multigenerational mixed-stressor exposure with which organisms are often confronted in their natural environment. Therefore, full life-cycle and multigenerational tests are needed. Yet, these are hampered due to long lifespans and generation times of many standard laboratory species, in particular for vertebrates such as fish. With a typical lifespan of 6 months and a generation time of about 3 months, the turquoise killifish (Nothobranchius furzeri) may be an ideal model for multigenerational testing. In this study, we assessed the impact of full life-cycle exposure to the emerging pollutant fluoxetine (0, 0.5 μg/L) in combination with chronic exposure during adulthood to the pesticide 3,4-dichloroaniline (0, 50, 100 μg/L) over two successive generations of N. furzeri. Overall, both life-history and behaviour were affected by exposure to fluoxetine and 3,4-DCA. Inhibitory effects of single chemical exposure on growth and fecundity were generation-dependent, while enhanced swimming acceleration and feeding in response to fluoxetine were dependent on the presence of 3,4-DCA. Together, these findings show the relevance of a multi-stressor approach across successive generations. Although full life-cycle and multigenerational tests are typically assumed to be impractical and costly for fish, we deliver an effective demonstration that such studies are possible within a timespan of less than 6 months with the killifish N. furzeri as a model organism.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Floor Van Hooreweghe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, 2520, Potchefstroom, South Africa.
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, 9300, Bloemfontein, South Africa.
| |
Collapse
|
14
|
Thoré ESJ, Brendonck L, Pinceel T. Conspecific density and environmental complexity impact behaviour of turquoise killifish (Nothobranchius furzeri). JOURNAL OF FISH BIOLOGY 2020; 97:1448-1461. [PMID: 32845514 DOI: 10.1111/jfb.14512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Fish models are essential for research in many biological and medical disciplines. With a typical lifespan of only 6 months, the Turquoise killifish (Nothobranchius furzeri) was recently established as a time- and cost-efficient model to facilitate whole-life and multigenerational studies in several research fields, including behavioural ecotoxicology. Essential information on the behavioural norm and on how laboratory conditions affect behaviour, however, is deficient. In the current study, we examined the impact of the social and structural environment on a broad spectrum of behavioural endpoints in N. furzeri. While structural enrichment affected only fish boldness and exploratory behaviour, fish rearing density affected the total body length, locomotor activity, boldness, aggressiveness and feeding behaviour of N. furzeri individuals. Overall, these results contribute to compiling a behavioural baseline for N. furzeri that increases the applicability of this new model species. Furthermore, our findings will fuel the development of improved husbandry protocols to maximize the welfare of N. furzeri in a laboratory setting.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
15
|
Thoré ESJ, Philippe C, Brendonck L, Pinceel T. Antidepressant exposure reduces body size, increases fecundity and alters social behavior in the short-lived killifish Nothobranchius furzeri. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115068. [PMID: 32806394 DOI: 10.1016/j.envpol.2020.115068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Social and mating behavior are fundamental fitness determinants in fish. Although fish are increasingly exposed to pharmaceutical compounds that may alter expression of such behavior, potential effects are understudied. Here, we examine the impact of lifelong exposure to two concentrations (0.7 and 5.3 μg/L) of the antidepressant fluoxetine on fecundity and social behavior (i.e. sociability and male-male aggression) in the turquoise killifish, Nothobranchius furzeri. When exposed to the highest concentration of fluoxetine (5.3 μg/L), fish were smaller at maturation but they more frequently engaged in mating. In addition, in both fluoxetine treatments females roughly doubled their overall fecundity while egg fertilization rates were the same for exposed and unexposed fish. Although aggression of male fish was not impacted by fluoxetine exposure, exposed male fish (5.3 μg/L) spent more time in the proximity of a group of conspecifics, which implies an increased sociability in these individuals. Overall, the results of this study indicate that exposure to fluoxetine may result in disrupted male sociability, increased mating frequency and an increased reproductive output in fish populations.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
16
|
Embryonic toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese medaka ( Oryzias javanicus Bleeker, 1854). Toxicol Rep 2020; 7:1039-1045. [PMID: 32913717 PMCID: PMC7472802 DOI: 10.1016/j.toxrep.2020.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/01/2023] Open
Abstract
The 96 h LC50 of 3,4-dichloroaniline in Javanese medaka embryo is 32.87 mg.L−1. 3,4-DCA lowers heart rate of developing Javanese medaka embryos. The sublethal concentration of 3,4-DCA delays hatching in Javanese medaka embryo. The LOEC for deformities in embryos of Javanese medaka was 0.5 mg.L−1.
Early-life exposure to toxic chemicals causes irreversible morphological and physiological abnormalities that may last for a lifetime. The present study aimed to determine the toxicity effect of 3,4-Dichloroaniline (3,4-DCA) on Javanese medaka (Oryzias javanicus) embryos. Healthy embryos were exposed to various 3,4-DCA concentrations for acute toxicity (5, 10, 25, 50, and 100 mg.L−1) and sublethal toxicity (0.10, 0.50, 1.25, 2.50, and 5.00 mg.L−1) for 96 h and 20 days respectively. Acute toxicity test revealed that the median lethal concentration (96h-LC50) was 32.87 mg.L−1 (95 % CI = 27.90–38.74, R2 = 0.95). Sublethal exposure revealed that 1.25 mg.L-1 at 3 days post-exposure (3 dpe) has a significant lower heartrate (120 ± 12.3 beats/min., p < 0.01), while at 7 dpe those exposed to 5 mg.L−1 (141.8 ± 8.3 beats/min) had significantly (p < 0.01) lower heart rate compared to other treatments. Likewise, at 13 dpe, 5.00 mg.L−1 (110.4 ± 17.3 beats/min) and 2.5 mg.L-1 (130.4 ± 8.3 beats/min) were significantly lower (p < 0.001) compared to control. None of the embryos in 5.00 mg.L−1 and 2.50 mg.L-1 treatment groups survived at the end of the experiment. The results indicated a concentration-dependent response. The lowest observed effect concentration (LOEC) that exerted developmental deformities was 0.5 mg.L−1. Javanese medaka embryo have low sensitivity to acute toxicity of 3,4-DCA, but developmental abnormalities at sublethal concentrations were observed.
Collapse
|
17
|
Zebral YD, da Silva Fonseca J, Roza M, Costa PG, Robaldo RB, Bianchini A. Combining elevated temperature with waterborne copper: Impacts on the energy metabolism of the killifish Poecilia vivipara. CHEMOSPHERE 2020; 253:126631. [PMID: 32302917 DOI: 10.1016/j.chemosphere.2020.126631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
We have previously demonstrated in a companion work that acclimation to 28 °C potentiated waterborne copper (Cu) toxic effects in Poecilia vivipara through oxidative stress-related processes. In the present study, we hypothesized that these results were related to kinetic metabolic adjustments in enzymes from aerobic and anaerobic pathways. To test this, P. vivipara was acclimated to two temperatures (22 °C or 28 °C) for three weeks and then exposed to Cu (control, 9 or 20 μg/L) for 96 h. The activity of enzymes from glycolysis (pyruvate kinase [PK] and lactate dehydrogenase [LDH]), Krebs cycle (citrate synthase [CS]) and the electron transport chain system (ETS) were assessed in gills, liver and muscle. Interactive effects were only seen for hepatic LDH activity, as both metal exposure and heat stress, combined or not, inhibited this enzyme, showing a suppression in anaerobic pathways. Conversely, a Cu main effect was present in the liver, expressed as an elevation in ETS activity, showing an enhancement in hepatic aerobic metabolism likely related with the very energy-demanding process of metal detoxification. Moreover, this study shows that P. vivipara has a remarkable ability to compensate heat stress in terms of energy metabolism, as we could not observe acclimation temperature effects for most of the cases. Nonetheless, a tissue-dependent effect of elevated temperature was observed, as we could observe an inhibition in muscular CS activity. Finally, it is concluded that kinetic adjustments in terms of the energy metabolism are not related with the temperature-dependent elevation of Cu toxicity in P. vivipara as we previously hypothesized.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Mauricio Roza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|