1
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
2
|
Zhang K, Tian L, Sun Q, Lv J, Ding R, Yu Y, Li Y, Duan J. Constructing an adverse outcome pathway framework for the impact of maternal exposure to PM 2.5 on liver development and injury in offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104585. [PMID: 39489199 DOI: 10.1016/j.etap.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a significant contributor to air pollution. PM2.5 exposure poses a substantial hazard to public health. In recent years, the adverse effects of maternal PM2.5 exposure on fetal health have gradually gained public attention. As the largest organ in the body, the liver has many metabolic and secretory functions. Liver development, as well as factors that interfere with its growth and function, are of concern. This review utilized the adverse outcome pathway (AOP) framework as the analytical approach to demonstrate the link between maternal PM2.5 exposure and potential neonatal liver injury from the molecular to the population level. The excessive generation of reactive oxygen species (ROS), subsequent endoplasmic reticulum (ER) stress, and oxidative stress were regarded as the essential components in this framework, as they could trigger adverse developmental outcomes in the offspring through DNA damage, autophagy dysfunction, mitochondrial injury, and other pathways. To the best of our knowledge, this is the first article based on an AOP framework that elaborates on the influence of maternal exposure to PM2.5 on liver injury occurrence and adverse effects on liver development in offspring. Therefore, this review offered mechanistic insights into the developmental toxicity of PM2.5 in the liver, which provided a valuable basis for future studies and prevention strategies.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jianong Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Chaiwangyen W, Khantamat O, Pintha K, Kangwan N, Onsa-Ard A, Nuntaboon P, Songkrao A, Thippraphan P, Chaiyasit D, de Sousa FLP. Cleistocalyx nervosum var. paniala mitigates oxidative stress and inflammation induced by PM 10 soluble extract in trophoblast cells via miR-146a-5p. Sci Rep 2024; 14:24265. [PMID: 39414845 PMCID: PMC11484928 DOI: 10.1038/s41598-024-73000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Air pollution poses a significant global concern, notably impacting pregnancy outcomes through mechanisms such as DNA damage, oxidative stress, inflammation, and altered miRNA expression, all of which can adversely affect trophoblast functions. Cleistocalyx nervosum var. paniala, known for its abundance of anthocyanins with diverse biological activities including anti-mutagenic, antioxidant, and anti-inflammatory properties, is the focus of this study examining its effect on Particulate Matter 10 (PM10) soluble extract-induced trophoblast cell dysfunction via miRNA expression. The study involved the extraction of C. nervosum fruit using 70% ethanol, followed by fractionation with hexane, dichloromethane, and ethyl acetate. Subsequent testing for total phenolics, flavonoids, anthocyanins, and antioxidant activity revealed the ethyl acetate fraction (CN-EtOAcF) as possessing the highest phenolic and anthocyanin content along with potent antioxidant activity, prompting its selection for further investigation. In vitro studies on HTR-8/SVneo cells demonstrated that 5-10 µg/mL PM10 soluble extract exposure inhibited cell proliferation, migration, invasion, and induced apoptosis. However, pretreatment with 20-80 µg/mL CN-EtOAcF followed by 5 µg/mL PM10 soluble extract exposure exhibited protective effects against PM10 soluble extract-induced damage, including inflammation inhibition and intracellular ROS suppression. Notably, CN-EtOAcF down-regulated PM10-induced miR-146a-5p expression, with SOX5 identified as a potential target. Overall, CN-EtOAcF demonstrated the potential to protect against PM10-induced harm in trophoblast cells, suggesting its possible application in future therapeutic approaches.
Collapse
Affiliation(s)
- Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Amnart Onsa-Ard
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Angkana Songkrao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dana Chaiyasit
- Clinical Chemistry Laboratory, Chiang Rai Prachanukroh Hospital, Chiang Rai, 57000, Thailand
| | | |
Collapse
|
4
|
Fan Y, Sun N, Lv S, Jiang H, Zhang Z, Wang J, Xie Y, Yue X, Hu B, Ju B, Yu P. Prediction of developmental toxic effects of fine particulate matter (PM 2.5) water-soluble components via machine learning through observation of PM 2.5 from diverse urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174027. [PMID: 38906297 DOI: 10.1016/j.scitotenv.2024.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.
Collapse
Affiliation(s)
- Yang Fan
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nannan Sun
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China
| | - Shenchong Lv
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqing Zhang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjie Wang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyi Xie
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Ju
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China.
| | - Peilin Yu
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
5
|
Kumar S, Chadha P. Toxic Effects of 4-Bromodiphenyl Ether (BDE-3) on Antioxidant Enzymes, Cell Viability, Histology and Biomolecules in Zebrafish Embryo-Larvae. J Appl Toxicol 2024. [PMID: 39367597 DOI: 10.1002/jat.4708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that are being used widely in industrial and consumers products such as plastics, electronics, furniture, textiles and so forth. They can undergo debromination process to form less brominated diphenyl ethers, which are bioaccumulative, more volatile and more toxic in nature. The current study was conducted to reveal the biochemical, apoptotic, histopathological, ultrastructural and biomolecular (ATR-FTIR) toxicity of 4-bromodiphenyl ether (BDE-3) in zebrafish larvae. After the 96-h LC50 determination, the zebrafish embryos were exposed to sublethal concentrations of BDE-3, that is, 0.79 and 1.59 mg/L. The MDA content was found to be significantly increased in BDE-3 exposed larvae whereas the FRAP activity was found to be decreased. The catalase (CAT), glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activity were observed to be significantly increased, and a decreased superoxide dismutase (SOD) activity was reported after the BDE-3 exposure in zebrafish larvae. The cell viability was reported to be decreased in zebrafish larvae after BDE-3 exposure. Histopathological and ultrastructural alterations were also observed in the BDE-3 exposed zebrafish larvae. The changes in the biomolecules such as DNA and protein were also revealed via ATR-FTIR analysis. The present investigation will help to understand the toxic nature of less brominated diphenyl ethers and could be utilised to assess environmental risk.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
6
|
Sun S, Shi F, Zhao G, Zhang H. Multi-faceted potential of sophoridine compound's anti-arrhythmic and antioxidant effects through ROS/CaMKII pathway. Heliyon 2024; 10:e37542. [PMID: 39347430 PMCID: PMC11437953 DOI: 10.1016/j.heliyon.2024.e37542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Cardiac arrhythmias remain a significant cause of mortality and morbidity, for novel antiarrhythmic therapies. This study states that the first report of sophoridine (SPN), a quinolizidine alkaloid derived from traditional Chinese herbs, shows promise as a potential candidate due to its anti-arrhythmic and antioxidant properties. The study found that cell viability in H9C2 rat cardiomyocytes remained stable even when treated with SPN at a higher dosage of 100 μg/ml. This phenomenon was accompanied by increases in mitochondria-derived reactive oxygen species (ROS) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling, at 50 and 100 μg/ml. Glucose fluctuations regulate ventricular arrhythmias caused by SPN by activating the ROS/CaMKII pathway. Experimental models using zebrafish provided additional evidence supporting the regulatory effects of SPN on heart rate. In addition, the administration of SPN resulted in substantial deregulation of crucial genes involved in heart development (nppa, nppb, tnnt2a) at the transcriptional level in zebrafish. These findings provide insight into the various pharmacological properties of SPN and this opens up new possibilities for anti-arrhythmic treatment strategies.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Fangdi Shi
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Gang Zhao
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Hong Zhang
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| |
Collapse
|
7
|
de Castro KR, Almeida GHDR, Matsuda M, de Paula Vieira R, Martins MG, Rici REG, Saldiva PHN, Veras MM. Exposure to urban ambient particles (PM2.5) before pregnancy affects the expression of endometrial receptive markers to embryo implantation in mice: Preliminary results. Tissue Cell 2024; 88:102368. [PMID: 38583225 DOI: 10.1016/j.tice.2024.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.
Collapse
Affiliation(s)
- Karla Ribeiro de Castro
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | | | - Monique Matsuda
- Division of Ophthalmology and Laboratory of Investigation in Ophthalmology (LIM33), School of Medicine, University of São Paulo, São Paulo State, Brazil
| | - Rodolfo de Paula Vieira
- Human Movement and Rehabilitation Post-Graduation Program, Evangelical University of Goiás -UniEVANGÉLICA, Anápolis, GO, Brazil
| | - Marco Garcia Martins
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of the Veterinary Medicine and Animal Science, University of São Paulo, São Paulo State, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Mariana Matera Veras
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil.
| |
Collapse
|
8
|
Cafora M, Rovelli S, Cattaneo A, Pistocchi A, Ferrari L. Short-term exposure to fine particulate matter exposure impairs innate immune and inflammatory responses to a pathogen stimulus: A functional study in the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123841. [PMID: 38521398 DOI: 10.1016/j.envpol.2024.123841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Short-term exposure to fine particulate matter (PM2.5) is associated with the activation of adverse inflammatory responses, increasing the risk of developing acute respiratory diseases, such as those caused by pathogen infections. However, the functional mechanisms underlying this evidence remain unclear. In the present study, we generated a zebrafish model of short-term exposure to a specific PM2.5, collected in the northern metropolitan area of Milan, Italy. First, we assessed the immunomodulatory effects of short-term PM2.5 exposure and observed that it elicited pro-inflammatory effects by inducing the expression of cytokines and triggering hyper-activation of both neutrophil and macrophage cell populations. Moreover, we examined the impact of a secondary infectious pro-inflammatory stimulus induced through the injection of Pseudomonas aeruginosa lipopolysaccharide (Pa-LPS) molecules after exposure to short-term PM2.5. In this model, we demonstrated that the innate immune response was less responsive to a second pro-inflammatory infectious stimulus. Indeed, larvae exhibited dampened leukocyte activation and impaired production of reactive oxygen species. The obtained results indicate that short-term PM2.5 exposure alters the immune microenvironment and affects the inflammatory processes, thus potentially weakening the resistance to pathogen infections.
Collapse
Affiliation(s)
- Marco Cafora
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sabrina Rovelli
- RAHH LAB, Department of Science and High Technology, University of Insubria, Como, Italy
| | - Andrea Cattaneo
- RAHH LAB, Department of Science and High Technology, University of Insubria, Como, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Unit of Occupational Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.
| |
Collapse
|
9
|
Chen J, Zhang M, Aniagu S, Jiang Y, Chen T. PM 2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104393. [PMID: 38367920 DOI: 10.1016/j.etap.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Recent evidence indicates that PM2.5 poses a risk for congenital heart diseases, but the mechanisms remain unclear. We hypothesized that AHR activated by PM2.5 might cause mitochondrial damage via PGC-1α dysregulation, leading to heart defects. We initially discovered that the PGC-1α activator ZLN005 counteracted cardiac defects in zebrafish larvae exposed to EOM (extractable organic matter) from PM2.5. Moreover, ZLN005 attenuated EOM-induced PGC-1α downregulation, mitochondrial dysfunction/biogenesis, and apoptosis. EOM exposure not only decreased PGC-1α expression levels, but suppressed its activity via deacetylation, and SIRT1 activity is required during both processes. We then found that SIRT1 expression levels and NAD+/NADH ratio were reduced in an AHR-dependent way. We also demonstrated that AHR directly suppressed the transcription of SIRT1 while promoted the transcription of TiPARP which consumed NAD+. In conclusion, our study suggests that PM2.5 induces mitochondrial damage and heart defects via AHR/SIRT1/PGC-1α signal pathway.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin TX, USA
| | - Yan Jiang
- Suzhou medical college, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
10
|
Victoria S, Trine L, Hystad P, Roper C. Indoor and Personal PM 2.5 Samples Differ in Chemical Composition and Alter Zebrafish Behavior Based on Primary Fuel Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21260-21271. [PMID: 38060427 DOI: 10.1021/acs.est.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Fine particulate matter (PM2.5) exposure has been linked to diverse human health impacts. Little is known about the potential heterogeneous impacts of PM2.5 generated from different indoor fuel sources and how exposure differs between personal and indoor environments. Therefore, we used PM2.5 collected by one stationary sampler in a kitchen and personal samplers (female and male participants), in homes (n = 24) in Kheri, India, that used either biomass or liquified petroleum gas (LPG) as primary fuel sources. PM2.5 samples (pooled by fuel type and monitor placement) were analyzed for oxidative potential and chemical composition, including elements and 125 organic compounds. Zebrafish (Danio rerio) embryos were acutely exposed to varying concentrations of PM2.5 and behavioral analyses were conducted. We found relatively high PM2.5 concentrations (5-15 times above World Health Organization daily exposure guidelines) and varied human health-related chemical composition based on fuel type and monitor placement (up to 15% carcinogenic polycyclic aromatic hydrocarbon composition). Altered biological responses, including changes to mortality, morphology, and behavior, were elicited by exposure to all sample types. These findings reveal that although LPG is generally ranked the least harmful compared to biomass fuels, chemical characteristics and biological impacts were still present, highlighting the need for further research in determining the safety of indoor fuel sources.
Collapse
Affiliation(s)
- Shayla Victoria
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Lisandra Trine
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
11
|
Gonzalez-Ramos S, Wang J, Cho JM, Zhu E, Park SK, In JG, Reddy ST, Castillo EF, Campen MJ, Hsiai TK. Integrating 4-D light-sheet fluorescence microscopy and genetic zebrafish system to investigate ambient pollutants-mediated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165947. [PMID: 37543337 PMCID: PMC10659062 DOI: 10.1016/j.scitotenv.2023.165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
Collapse
Affiliation(s)
- Sheila Gonzalez-Ramos
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jing Wang
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Julie G In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Eliseo F Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA; Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA.
| |
Collapse
|
12
|
Vaccarella E, Piacentini D, Falasca G, Canepari S, Massimi L. In-vivo exposure of a plant model organism for the assessment of the ability of PM samples to induce oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165694. [PMID: 37516174 DOI: 10.1016/j.scitotenv.2023.165694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
This study aims to propose an innovative, simple, rapid, and cost-effective method to study oxidative stress induced by PM through in-vivo exposure of the plant model organism Arabidopsis thaliana. A. thaliana seedlings were exposed to urban dust certified for its elemental content and to PM2.5 samples collected in an urban-industrial area of Northern Italy. An innovative technique for the detachment and suspension in water of the whole intact dust from membrane filters was applied to expose the model organism to both the soluble and insoluble fractions of PM2.5, which were analyzed for 34 elements by ICP-MS. Oxidative stress induced by PM on A. thaliana was assessed by light microscopic localization and UV-Vis spectrophotometric determination of superoxide anion (O2-) content on the exposed seedlings by using the nitro blue tetrazole (NBT) assay. The results showed a good efficiency and sensitivity of the method for PM mass concentrations >20 μg m-3 and an increase in O2- content in all exposed seedlings, which mainly depends on the concentration, chemical composition, and sources of the PM administered to the model organism. Particles released by biomass burning appeared to contribute more to the overall toxicity of PM. This method was found to be cost-effective and easy to apply to PM collected on membrane filters in intensive monitoring campaigns in order to obtain valuable information on the ability of PM to generate oxidative stress in living organisms.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy.
| |
Collapse
|
13
|
Aghaei-Zarch SM, Nia AHS, Nouri M, Mousavinasab F, Najafi S, Bagheri-Mohammadi S, Aghaei-Zarch F, Toolabi A, Rasoulzadeh H, Ghanavi J, Moghadam MN, Talebi M. The impact of particulate matters on apoptosis in various organs: Mechanistic and therapeutic perspectives. Biomed Pharmacother 2023; 165:115054. [PMID: 37379642 DOI: 10.1016/j.biopha.2023.115054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ecological air contamination is the non-homogenous suspension of insoluble particles into gas or/and liquid fluids known as particulate matter (PM). It has been discovered that exposure to PM can cause serious cellular defects, followed by tissue damage known as cellular stress. Apoptosis is a homeostatic and regulated phenomenon associated with distinguished physiological actions inclusive of organ and tissue generation, aging, and development. Moreover, it has been proposed that the deregulation of apoptotic performs an active role in the occurrence of many disorders, such as autoimmune disease, neurodegenerative, and malignant, in the human population. Recent studies have shown that PMs mainly modulate multiple signaling pathways involved in apoptosis, including MAPK, PI3K/Akt, JAK/STAT, NFκB, Endoplasmic Stress, and ATM/P53, leading to apoptosis dysregulation and apoptosis-related pathological conditions. Here, the recently published data concerning the effect of PM on the apoptosis of various organs, with a particular focus on the importance of apoptosis as a component in PM-induced toxicity and human disease development, is carefully discussed. Moreover, the review also highlighted the various therapeutic approaches, including small molecules, miRNA replacement therapy, vitamins, and PDRN, for treating diseases caused by PM toxicity. Notably, researchers have considered medicinal herbs a potential treatment for PM-induced toxicity due to their fewer side effects. So, in the final section, we analyzed the performance of some natural products for inhibition and intervention of apoptosis arising from PM-induced toxicity.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Sanjari Nia
- Division of Animal Sciences, Department of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Morteza Nouri
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Mousavinasab
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Toolabi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Rasoulzadeh
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran.
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
14
|
Kim J, Kim Y, Howard KJ, Lee SJ. Smartphone-based holographic measurement of polydisperse suspended particulate matter with various mass concentration ratios. Sci Rep 2022; 12:22609. [PMID: 36585469 PMCID: PMC9803653 DOI: 10.1038/s41598-022-27215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Real-time monitoring of suspended particulate matter (PM) has become essential in daily life due to the adverse effects of long-term exposure to PMs on human health and ecosystems. However, conventional techniques for measuring micro-scale particulates commonly require expensive instruments. In this study, a smartphone-based device is developed for real-time monitoring of suspended PMs by integrating a smartphone-based digital holographic microscopy (S-DHM) and deep learning algorithms. The proposed S-DHM-based PM monitoring device is composed of affordable commercial optical components and a smartphone. Overall procedures including digital image processing, deep learning training, and correction process are optimized to minimize the prediction error and computational cost. The proposed device can rapidly measure the mass concentrations of coarse and fine PMs from holographic speckle patterns of suspended polydisperse PMs in water with measurement errors of 22.8 ± 18.1% and 13.5 ± 9.8%, respectively. With further advances in data acquisition and deep learning training, this study would contribute to the development of hand-held devices for monitoring polydisperse non-spherical pollutants suspended in various media.
Collapse
Affiliation(s)
- Jihwan Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Youngdo Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Kyler J. Howard
- grid.47894.360000 0004 1936 8083School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80521 USA
| | - Sang Joon Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| |
Collapse
|
15
|
Castro TFD, Carneiro WF, Reichel T, Fabem SL, Machado MRF, de Souza KKC, Resende LV, Murgas LDS. The toxicological effects of Eryngium foetidum extracts on zebrafish embryos and larvae depend on the type of extract, dose, and exposure time. Toxicol Res (Camb) 2022; 11:891-899. [PMID: 36337237 PMCID: PMC9618102 DOI: 10.1093/toxres/tfac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/08/2022] [Accepted: 09/10/2022] [Indexed: 07/30/2023] Open
Abstract
Eryngium foetidum is a herbaceous plant found in tropical and subtropical regions. In vivo pharmacological parameters show that leaf extracts of this plant have antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities due to their bioactive compounds such as flavonoids and phenols. Despite the evidence for several bioactivities of E. foetidum, information on its safety and tolerability is limited. The objective of this study was to assess the effect and concentration of different extracts of E. foetidum on the development of zebrafish (Danio rerio) embryos. To study the impact of aqueous (AE), ethanolic (EE), and methanolic (ME) extracts, the embryos were exposed to 0.625, 1.25, 2.5, 5, and 10 mg mL-1 for up to 120-h postfertilization to assess embryonic developmental toxicity and then to 0.039, 0.078, 0.156, 0.312, and 0.625 mg mL-1 to assess the antioxidant responses of the enzymes superoxide dismutase catalase, glutathione S-transferase (GST), and cell apoptosis. The results showed that, depending on the extraction solvent, concentration used, and exposure time, E. foetidum extracts caused mortality, altered the hatching time, and promoted changes in enzymatic activities. Delays in development and increased GST activity were found in all treatments. Apoptosis was not observed in any of the treatments. In conclusion, AE, EE, and ME concentrations above 0.625 mg mL-1 can cause adverse effects on the early stages of zebrafish development.
Collapse
Affiliation(s)
- Tassia Flavia Dias Castro
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| | - William Franco Carneiro
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| | - Tharyn Reichel
- School of Agricultural Sciences, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brasil
| | - Sarah Lacerda Fabem
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| | | | | | - Luciane Vilela Resende
- School of Agricultural Sciences, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brasil
| | - Luis David Solis Murgas
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| |
Collapse
|
16
|
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y, Chen T. Synergistic protective effects of folic acid and resveratrol against fine particulate matter-induced heart malformations in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113825. [PMID: 36068752 DOI: 10.1016/j.ecoenv.2022.113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a major environmental health problem worldwide, and recent studies indicate that maternal PM2.5 exposure is closely associated with congenital heart diseases (CHDs) in offspring. We previously found that supplementation with folic acid (FA) or Resveratrol (RSV) could protect against heart defects in zebrafish embryos exposed to extractable organic matter (EOM) from PM2.5 by targeting aryl hydrocarbon receptor (AHR) signaling and reactive oxygen species (ROS) production respectively. Thus, we hypothesized that FA combined with RSV may have a synergistic protective effect against PM2.5-induced heart defects. To test our hypothesis, we treated zebrafish embryos with EOM in the presence or absence of FA, RSV or a combination of both. We found that RSV and FA showed a clear synergistic protection against EOM-induced heart defects in zebrafish embryos. Further studies showed that FA and RSV suppressed EOM-induced AHR activity and ROS generation respectively. Although only RSV inhibited EOM-induced apoptosis, FA enhanced the inhibitory effect of RSV. Moreover, vitamin C (VC), a typical antioxidant, also exhibits a synergistic inhibitory effect with FA on EOM-induced apoptosis and heart defects. In conclusion, supplementation with FA and RSV have a synergistic protective effect against PM2.5-induced heart defects in zebrafish embryos by targeting AHR activity and ROS production respectively. Our results indicate that, in the presence of antioxidants, FA even at a low concentration level could protect against the high risk of CHDs caused by air pollution.
Collapse
Affiliation(s)
- Jin Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Mingxuan Zhang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Zou
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Smoot J, Padilla S, Farraj AK. The utility of alternative models in particulate matter air pollution toxicology. Curr Res Toxicol 2022; 3:100077. [PMID: 35676914 PMCID: PMC9168130 DOI: 10.1016/j.crtox.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Countless unique particulate matter (PM) samples with limited or no toxicity information. Alternative in vivo models offer greater throughput than traditional mammalian models. Use of zebrafish, fruit flies, and nematodes in PM toxicology lacks systematic review. Their utility in PM toxicity and mechanistic research and as screening tools is reviewed.
Exposure to particulate matter (PM) air pollution increases risk of adverse human health effects. As more attention is brought to bear on the problem of PM, traditional mammalian in vivo models struggle to keep up with the risk assessment challenges posed by the countless number of unique PM samples across air sheds with limited or no toxicity information. This review examines the utility of three higher throughput, alternative, in vivo animal models in PM toxicity research: Danio rerio (zebrafish), Caenorhabditis elegans (nematode), and Drosophila melanogaster (fruit fly). These model organisms vary in basic biology, ease of handling, methods of exposure to PM, number and types of available assays, and the degree to which they mirror human biology and responsiveness, among other differences. The use of these models in PM research dates back over a decade, with assessments of the toxicity of various PM sources including traffic-related combustion emissions, wildland fire smoke, and coal fly ash. This article reviews the use of these alternative model organisms in PM toxicity studies, their biology, the various assays developed, endpoints measured, their strengths and limitations, as well as their potential role in PM toxicity assessment and mechanistic research going forward.
Collapse
Affiliation(s)
- Jacob Smoot
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Stephanie Padilla
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, US EPA, RTP, NC, United States
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC, United States
- Corresponding author.
| |
Collapse
|