1
|
Ranasinghe T, Seo Y, Park HC, Choe SK, Cha SH. Rotenone exposure causes features of Parkinson`s disease pathology linked with muscle atrophy in developing zebrafish embryo. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136215. [PMID: 39461288 DOI: 10.1016/j.jhazmat.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Parkinson's disease (PD) is associated with both genetic and environmental factors; however, sporadic forms of PD account for > 90 % of cases, and PD prevalence has doubled in the past 25 years. Depending on the importance of the environmental factors, various neurotoxins are used to induce PD both in vivo and in vitro. Unlike other neurodegenerative diseases, PD can be induced in vivo using specific neurotoxic chemicals. However, no chemically induced PD model is available because of the sporadic nature of PD. Rotenone is a pesticide that accelerates the induction of PD and exhibits the highest toxicity in fish, unlike other pesticides. Therefore, in this study, we aimed to establish a model exhibiting PD pathologies such as dysfunction of DArgic neuron, aggregation of ɑ-synuclein, and behavioral abnormalities, which are known features of PD pathology, by rotenone exposure at an environmentally relevant concentration (30 nM) in developing zebrafish embryos. Our results provide direct evidence for the association between PD and muscle degeneration by confirming rotenone-induced muscle atrophy. Therefore, we conclude that the rotenone-induced model presents non-motor and motor defects with extensive studies related to muscle atrophy.
Collapse
Affiliation(s)
- Thilini Ranasinghe
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; Sacopenia Total Solution Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea; Department of Aquatic Life Medicine, Hanseo University, Seosan-si 31962, Republic of Korea; Institute for International Fisheries Science, Hanseo University, Seosan-si 31962, Republic of Korea.
| |
Collapse
|
2
|
Grasse N, Massei R, Seiwert B, Scholz S, Escher BI, Reemtsma T, Fu Q. Impact of Biotransformation on Internal Concentrations and Specificity Classification of Organic Chemicals in the Zebrafish Embryo ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17898-17907. [PMID: 39315645 PMCID: PMC11465767 DOI: 10.1021/acs.est.4c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Internal concentrations (ICs) are crucial for linking exposure to effects in the development of New Approach Methodologies. ICs of chemicals in aquatic organisms are primarily driven by hydrophobicity and modulated by biotransformation and efflux. Comparing the predicted baseline to observed toxicity enables the estimation of effect specificity, but biological processes can lead to overestimating ICs and bias the specificity assessment. To evaluate the prediction of a mass balance model (MBM) and the impact of biotransformation on ICs, experimental ICs of 63 chemicals in zebrafish embryos were compared to predictions with physicochemical properties as input parameters. Experimental ICs of 79% (50 of 63) of the chemicals deviated less than 10-fold from predictions, and the remaining 13 deviated up to a factor of 90. Using experimental ICs changed the classification for 19 chemicals, with ICs 5 to 90 times lower than predicted, showing the bias of specificity classification. Uptake kinetics of pirinixic acid, genistein, dexamethasone, ethoprophos, atorvastatin, and niflumic acid were studied over a 96 h exposure period, and transformation products (TPs) were elucidated using suspect- and nontarget screening with UPLC-HRMS. 35 TPs (5 to 8 TPs per compound) were tentatively identified and semiquantified based on peak areas, suggesting that biotransformation may partly account for the overpredictions of ICs.
Collapse
Affiliation(s)
- Nico Grasse
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Riccardo Massei
- Department
of Ecotoxicology, Helmholtz-Centre for Environmental
Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Department
of Ecotoxicology, Helmholtz-Centre for Environmental
Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Thorsten Reemtsma
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute
for Analytical Chemistry, University of
Leipzig, Linnestrasse
3, 04103 Leipzig, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, Helmholtz-Centre
for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Kämmer N, Reimann T, Braunbeck T. Neurotoxic pesticides change respiratory parameters in early gill-breathing, but not in skin-breathing life-stages of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106831. [PMID: 38244448 DOI: 10.1016/j.aquatox.2024.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Neurotoxic compounds can interfere with active gill ventilation in fish, which might lead to premature death in adult fish, but not in skin-breathing embryos of zebrafish, since these exclusively rely on passive diffusion across the skin. Regarding lethality, this respiratory failure syndrome (RFS) has been discussed as one of the main reasons for the higher sensitivity of adult fish in the acute fish toxicity test (AFT), if compared to embryos in the fish embryo toxicity test (FET). To further elucidate the relationship between the onset of gill respiration and death by a neurotoxic mode of action, a comparative study into oxygen consumption (MO2), breathing frequency (fv) and amplitude (fampl) was performed with 4 d old skin-breathing and 12 d old early gill-breathing zebrafish. Neurotoxic model substances with an LC50 FET/AFT ratio of > 10 were used: chlorpyrifos, permethrin, aldicarb, ziram, and fluoxetine. Exposure to hypoxia served as a positive control, whereas aniline was tested as an example of a narcotic substance interfering non-specifically with gill membranes. In 12 d old larvae, all substances caused an increase in MO2, fv and partly fampl, whereas effects were minor in 4 d old embryos. An increase of fv in 4 d old embryos following exposure to chlorpyrifos, aldicarb and hypoxia could not be correlated with an increased MO2 and might be attributed either to (1) to the successfully postponed decrease of arterial partial pressure of oxygen (PO2) through support of skin respiration by increased fv, (2) to an unspecific stimulation of the sphincter muscles at the base of the gill filaments, or (3) to the establishment of oxygen sensing for later stages. In gill-breathing 12 d old zebrafish, a concentration-dependent increase of fv was detected for aniline and chlorpyrifos, whereas for aldicarb, fluoxetine and permethrin, a decline of fv at higher substance concentrations was measured, most likely due to the onset of paralysis and/or fatigue of the gill filament sphincter muscles. Since alterations of fv serve to postpone the decrease in arterial PO2 and MO2 increased with decreasing fv, the respiratory failure syndrome could clearly be demonstrated in 12 d old zebrafish larvae. Passive respiration across the skin in zebrafish embryos could thus be confirmed as a probable reason for the lower sensitivity of early life-stages to neurotoxicants. Integration of respiratory markers into existing testing protocols with non-protected developmental stages such as embryos might help to not underestimate the toxicity of early life-stages of fish.
Collapse
Affiliation(s)
- Nadine Kämmer
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany.
| | - Tanja Reimann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69210, Heidelberg, Germany.
| |
Collapse
|
4
|
Chelcea I, Vogs C, Hamers T, Koekkoek J, Legradi J, Sapounidou M, Örn S, Andersson PL. Physiology-informed toxicokinetic model for the zebrafish embryo test developed for bisphenols. CHEMOSPHERE 2023; 345:140399. [PMID: 37839743 DOI: 10.1016/j.chemosphere.2023.140399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Zebrafish embryos (ZFE) is a widely used model organism, employed in various research fields including toxicology to assess e.g., developmental toxicity and endocrine disruption. Variation in effects between chemicals are difficult to compare using nominal dose as toxicokinetic properties may vary. Toxicokinetic (TK) modeling is a means to estimate internal exposure concentration or dose at target and to enable extrapolation between experimental conditions and species, thereby improving hazard assessment of potential pollutants. In this study we advance currently existing TK models for ZFE with physiological ZFE parameters and novel experimental bisphenol data, a class of chemicals with suspected endocrine activity. We developed a five-compartment model consisting of water, plastic, chorion, yolk sack and embryo in which surface area and volume changes as well as the processes of biotransformation and blood circulation influence mass fluxes. For model training and validation, we measured internal concentrations in ZFE exposed individually to BPA, bisphenol AF (BPAF) and Z (BPZ). Bayesian inference was applied for parameter calibration based on the training data set of BPZ. The calibrated TK model predicted internal ZFE concentrations of the majority of external test data within a 5-fold error and half of the data within a 2-fold error for bisphenols A, AF, F, and tetrabromo bisphenol A (TBBPA). We used the developed model to rank the hazard of seven bisphenols based on predicted internal concentrations and measured in vitro estrogenicity. This ranking indicated a higher hazard for BPAF, BPZ, bisphenol B and C (BPB, BPC) than for BPA.
Collapse
Affiliation(s)
- Ioana Chelcea
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-75007, Uppsala, Sweden; Institute of Environmental Medicine, Karolinska Institutet, SE-171 65, Solna, Sweden
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, 1081, HV Amsterdam, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, 1081, HV Amsterdam, the Netherlands
| | - Jessica Legradi
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, 1081, HV Amsterdam, the Netherlands
| | - Maria Sapounidou
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-75007, Uppsala, Sweden
| | | |
Collapse
|
5
|
Gonzalez-Ramos S, Wang J, Cho JM, Zhu E, Park SK, In JG, Reddy ST, Castillo EF, Campen MJ, Hsiai TK. Integrating 4-D light-sheet fluorescence microscopy and genetic zebrafish system to investigate ambient pollutants-mediated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165947. [PMID: 37543337 PMCID: PMC10659062 DOI: 10.1016/j.scitotenv.2023.165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
Collapse
Affiliation(s)
- Sheila Gonzalez-Ramos
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jing Wang
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Julie G In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Eliseo F Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA; Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA.
| |
Collapse
|
6
|
Santos N, Oliveira M, Domingues I. Influence of exposure scenario on the sensitivity to caffeine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122808-122821. [PMID: 37978123 PMCID: PMC10724325 DOI: 10.1007/s11356-023-30945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The chorion acts as a protective barrier, restricting some chemical absorption into the embryo and the surrounding fluids. In this sense, larvae may only have direct contact with some chemicals after dechorionation. This study aimed to evaluate the effects of caffeine (CAF) (0, 13, 20, 44, 67, and 100 mg.L-1) under different exposure scenarios (embryos with chorion or embryos/larvae already hatched) and rank the stage sensitivity. Thus, three scenarios were investigated: from 2 to 120 hours post fertilization (hpf) (5 days of exposure- 5dE), from 72 to 120 hpf (2dE), and from 96 to 120 hpf (1dE). Heart rate (48 hpf) and energy reserves (120 hpf) were measured in the 5dE scenario, and behavior and acetylcholinesterase (AChE) activity were evaluated at 120 hpf in all scenarios (5dE, 2dE, and 1dE). At 120 hpf, some of the fish was transferred to clean medium for a 10 days depuration period (10dPE). Behavior and AChE activity were assessed after this period. In the 5dE scenario, CAF increased heartbeat (13, 20, and 30 mg.L-1) and reduced carbohydrates (67, and 100 mg.L-1), while inhibiting AChE activity (100 mg.L-1) in the 5dE, 2dE, and 1dE scenarios. CAF reduced the total distance moved in the 5dE (67, and 100 mg.L-1), 2dE (20, 30, 44, 67, and 100 mg.L-1), and 1dE fish (67, and 100 mg.L-1) and increased erratic movements. Based on the lowest observed effect concentration (LOEC) for total distance moved (20 mg.L-1) and higher inhibition of AChE activity (100 mg.L-1) (65%), 2dE fish appear to be more sensitive to CAF. After 10dPE, a recovery in behavior was detected in all scenarios (5dE, 2dE, and 1dE). AChE activity remained inhibited in the 2dE scenario while increasing in the 1dE scenario. This study demonstrated that the presence of the chorion is an important factor for the analysis of CAF toxicity. After the loss of the chorion, organisms show greater sensitivity to CAF and can be used to evaluate the toxicity of various substances, including nanomaterials or chemicals with low capacity to cross the chorion. Therefore, the use of hatched embryos in toxicity tests is suggested, as they allow a shorter and less expensive exposure scenario that provides similar outcome as the conventional scenario.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Fries F, Kany AM, Rasheed S, Hirsch AKH, Müller R, Herrmann J. Impact of Drug Administration Routes on the In Vivo Efficacy of the Natural Product Sorangicin a Using a Staphylococcus aureus Infection Model in Zebrafish Embryos. Int J Mol Sci 2023; 24:12791. [PMID: 37628971 PMCID: PMC10454396 DOI: 10.3390/ijms241612791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus aureus causes a wide range of infections, and it is one of the leading pathogens responsible for deaths associated with antimicrobial resistance, the rapid spread of which among S. aureus urges the discovery of new antibiotics. The evaluation of in vivo efficacy of novel drug candidates is usually performed using animal models. Recently, zebrafish (Danio rerio) embryos have become increasingly attractive in early drug discovery. Herein, we established a zebrafish embryo model of S. aureus infection for evaluation of in vivo efficacy of novel potential antimicrobials. A local infection was induced by microinjecting mCherry-expressing S. aureus Newman followed by treatment with reference antibiotics via microinjection into different injection sites as well as via waterborne exposure to study the impact of the administration route on efficacy. We successfully used the developed model to evaluate the in vivo activity of the natural product sorangicin A, for which common mouse models were not successful due to fast degradation in plasma. In conclusion, we present a novel screening platform for assessing in vivo activity at the antibiotic discovery stage. Furthermore, this work provides consideration for the choice of an appropriate administration route based on the physicochemical properties of tested drugs.
Collapse
Affiliation(s)
- Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas M. Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (F.F.); (A.M.K.); (S.R.); (A.K.H.H.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
8
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. Microbial Diversity and Enzyme Activity as Indicators of Permethrin-Exposed Soil Health. Molecules 2023; 28:4756. [PMID: 37375310 DOI: 10.3390/molecules28124756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), β-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
9
|
von Hellfeld R, Gade C, Baumann L, Leist M, Braunbeck T. The sensitivity of the zebrafish embryo coiling assay for the detection of neurotoxicity by compounds with diverse modes of action. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27662-2. [PMID: 37213015 DOI: 10.1007/s11356-023-27662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In the aim to determine neurotoxicity, new methods are being validated, including tests and test batteries comprising in vitro and in vivo approaches. Alternative test models such as the zebrafish (Danio rerio) embryo have received increasing attention, with minor modifications of the fish embryo toxicity test (FET; OECD TG 236) as a tool to assess behavioral endpoints related to neurotoxicity during early developmental stages. The spontaneous tail movement assay, also known as coiling assay, assesses the development of random movement into complex behavioral patterns and has proven sensitive to acetylcholine esterase inhibitors at sublethal concentrations. The present study explored the sensitivity of the assay to neurotoxicants with other modes of action (MoAs). Here, five compounds with diverse MoAs were tested at sublethal concentrations: acrylamide, carbaryl, hexachlorophene, ibuprofen, and rotenone. While carbaryl, hexachlorophene, and rotenone consistently induced severe behavioral alterations by ~ 30 h post fertilization (hpf), acrylamide and ibuprofen expressed time- and/or concentration-dependent effects. At 37-38 hpf, additional observations revealed behavioral changes during dark phases with a strict concentration-dependency. The study documented the applicability of the coiling assay to MoA-dependent behavioral alterations at sublethal concentrations, underlining its potential as a component of a neurotoxicity test battery.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UK, UK.
- National Decommissioning Centre, Main Street, Ellon, AB41 6AA, UK.
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Christoph Gade
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UK, UK
- National Decommissioning Centre, Main Street, Ellon, AB41 6AA, UK
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
- Faculty of Science, Environmental Health & Toxicology, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amersterdam, Netherlands
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitätsstraße 10, 78464, Constance, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Kämmer N, Reimann T, Ovcharova V, Braunbeck T. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106493. [PMID: 36963131 DOI: 10.1016/j.aquatox.2023.106493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Stress responses of fish to disruption of oxygen homeostasis include adjusted oxygen consumption rate (MO2) as well as the hyperventilation consisting of changes in breathing frequency (fv) and amplitude (fampl). However, studying the HVR in very small organisms such as zebrafish (Danio rerio) embryos and larvae is challenging, and breathing movements (i.e., fv) are usually manually counted, which is time- and human resource-intense, error-prone and does not provide information on the amplitude of breathing movements of the response, the breathing amplitude (fampl). Hence, in the present study, a new automated method was developed to simultaneously measure fv and fampl in small zebrafish embryos and larvae with the computer software DanioScope™. To compare HVR strategies at different life-stages of zebrafish and the physiologically linked MO2, hatched 4 d old embryos and early gill-breathing 12 d old larvae were treated with the HVR-inducing neurotoxic compound lindane (γ-hexachlorocyclohexane; γ-HCH) as a model substance. Comparison of manually counted fv with fv data measured by DanioScope™ at both life-stages showed high to moderate agreement between the two methods with respect to fv in control fish and in fish treated with lower lindane concentrations (3 - 18% deviation at 25 µg/L γ-HCH). With increasing lindane concentrations (100 and 400 µg/L γ-HCH), however, manual counts showed an average underestimation of fv by up to 30%, mainly due to very fast, rapidly successive, and indistinct movements of the fish, which cannot be properly detected by manual counts. Automated measurement thus proved significantly more sensitive, although several pre- and post-processing steps are needed. The improved automated detection of fv and the first reliable estimation of fampl in small fish embryos and larvae, as well as the inclusion of MO2, may provide new insights into different respiratory strategies and may, thus, represent a tool to lower the detection limit for reactions of different life-stages of fish to environmental stressors. In the present study, this became evident, as early gill-breathing 12 d old zebrafish larvae showed symptoms of respiratory failure (i.e., increase in fv, fampl and MO2, followed by subsequent lethargy) after exposure to lindane, whereas skin-breathing in 4 d old embryos proved mainly insensitive to the paralytic effects of lindane.
Collapse
Affiliation(s)
- Nadine Kämmer
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69210, Germany.
| | - Tanja Reimann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69210, Germany
| | - Viktoriia Ovcharova
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69210, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69210, Germany.
| |
Collapse
|