1
|
Ortiz-Islas S, Espinosa-Leal CA, González-Rodríguez T, García-Lara S. Enhancing the Antioxidant Activity of Tea ( Camellia sinensis) Through Common Herbal Infusions. Foods 2024; 13:3284. [PMID: 39456346 PMCID: PMC11508276 DOI: 10.3390/foods13203284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Tea is the second most widely consumed beverage globally, after water, and is known for its substantial antioxidant properties, primarily due to its phenolic content. This study quantifies phenolic compounds and assesses antioxidant activity in ten types of tea and selected herbal infusions, individually and in combination. Our findings reveal that free phenolic compounds and their antioxidant activity were twelve times and eight times greater than bound phenolic compounds. Among individual infusions, white tea exhibited the highest antioxidant activity and phenolic content, with 172.51 µmol TE/1000 g and 7.83 mg GAE/1000 g, respectively. In combination, white/linden flower tea showed the highest antioxidant activity (374.44 µmol TE/1000 g), and white/orange tea contained the highest phenolic content (9.24 mg GAE/1000 g). This study identified primarily two phenolic compounds, epigallocatechin gallate and epicatechin gallate, and one alkaloid, caffeine, in tea and herbal combinations. Compared to other combinations, we observed significant variations in catechins and caffeine between white and dark teas. Integrating specific herbal infusions with tea can enhance antioxidant activity up to three-fold compared to tea alone. This research offers valuable insights into optimizing herbal infusions to maximize antioxidant benefits, creating new opportunities to enhance the health benefits of tea-based products.
Collapse
Affiliation(s)
- Sofia Ortiz-Islas
- Escuela de Ingeniería y Ciencias (EIC), Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Claudia A. Espinosa-Leal
- Escuela de Ingeniería y Ciencias (EIC), Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Tzitziki González-Rodríguez
- Escuela de Ingeniería y Ciencias (EIC), Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico
| | - Silverio García-Lara
- Escuela de Ingeniería y Ciencias (EIC), Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey C.P. 64849, Nuevo Leon, Mexico
| |
Collapse
|
2
|
Chowdhury R, Bhuia MS, Wilairatana P, Afroz M, Hasan R, Ferdous J, Rakib AI, Sheikh S, Mubarak MS, Islam MT. An insight into the anticancer potentials of lignan arctiin: A comprehensive review of molecular mechanisms. Heliyon 2024; 10:e32899. [PMID: 38988539 PMCID: PMC11234030 DOI: 10.1016/j.heliyon.2024.e32899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Natural products are being developed as possible treatment options due to the rising prevalence of cancer and the harmful side effects of synthetic medications. Arctiin is a naturally occurring lignan found in numerous plants and exhibits different pharmacological activities, along with cancer. To elucidate the anticancer properties and underlying mechanisms of action, a comprehensive search of various electronic databases was conducted using appropriate keywords to identify relevant publications. The findings suggest that arctiin exhibits anticancer properties against tumor formation and various cancers such as cervical, myeloma, prostate, endothelial, gastric, and colon cancers in several preclinical pharmacological investigations. This naturally occurring compound exerts its anticancer effect through different cellular mechanisms, including mitochondrial dysfunction, cell cycle at different phases (G2/M), inhibition of cell proliferation, apoptotic cell death, and cytotoxic effects, as well as inhibition of migration and invasion of various malignant cells. Moreover, the study also revealed that, among the various cellular pathways, arctiin was shown to be more potent in terms of the PI3K/AKT and JAK/STAT signaling pathways. However, pharmacokinetic investigation indicated the compound's poor oral bioavailability. Because of these findings, arctiin might be considered a promising chemotherapeutic drug candidate.
Collapse
Affiliation(s)
- Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asraful Islam Rakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
3
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
4
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
5
|
Chaudhary P, Meena M, Janmeda P. Microscopic characterization, TLC fingerprinting and optimization of total lipid content from Euphorbia neriifolia (L.) using response surface methodology. Microsc Res Tech 2024; 87:565-590. [PMID: 37971145 DOI: 10.1002/jemt.24456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Euphorbia neriifolia (EN) is a medicinal plant used to treat a variety of ailments in traditional systems. Despite numerous studies on pharmacological activities, no information was available on the microscopic study of this plant. This is the first study that has been attempted to fill this need by performing the light and field emission scanning electron microscopy (FESEM) of leaf, stem, and latex. The powder microscopy of several organs (leaves, stem, and bark) and exudate (latex) of EN was carried out using safranine, fast green, phloroglucinol, and other standard solutions at different magnifications. The chemical fingerprinting of petroleum ether extract was accomplished by using thin layer chromatography. The optimization of total lipid content from the EN leaf under ultrasound-assisted extraction (UAE) and soxhlet extraction (SE) procedure was determined using response surface methodology (RSM). The studied factors that affect the lipid content were: solvent ratio, extraction temperature, and extraction time. Several notable characteristics observed in the leaf of EN are amphistomatic leaves with anticlinical cell walls, anomocytic stomata, spongy mesophyll cells, elongated palisade cells, angular collenchyma, and U-shaped vascular bundle. The plano-convex midrib is covered by polygonal to oval-shaped cuticles and contains anomocytic stomata. The circular petiole has no trichomes and contains laticifers, crystals, and idioblasts. The circular stem was observed with trichomes, hypodermis, collenchyma, parenchymatous cells, central pith, pentagonal stellar region, cambium, and 2-4 times more xylem that of phloem. All of the powdered plant parts and exudate under study contained trichomes, xylem vessels, wood fibers, cork cells, starch grains, calcium oxalate crystals, idioblasts, lignified cork, tannin content, stone cells, and oil globules. The blackish-green colored petroleum ether extract with semi-solid consistency showed the greatest percent (%) yield of 4% in the latex of EN. The thin layer chromatography (TLC) examination of petroleum ether extract of EN leaf produced a maximum 6 spots with Rf values of 0.16, 0.58, 0.62, 0.73, and 0.96 in the mobile phase of petroleum ether-acetone (8:2). In terms of optimization, the dark green colored UAE extract with semi-sticky consistency showed highest % yield of 4.5% whereas the yellowish green colored SE extract of sticky consistency showed the highest % yield of 4.9%. The findings showed that there were not many differences in the total lipid content between UAE (0.16%) and SE (0.11%). However, the best optimum condition for lipid content extraction analysis was obtained as follows: solvent ratio (PE:HE) 50:50, extraction temperature 50°C, extraction time 45 min for UAE, and solvent ratio (PE:HE) 60:40, extraction temperature 45°C, and extraction time of 24 h for SE. Hence, this study signifies the various noteworthy microscopic features along with the presence of different phytocompounds through TLC and best optimized condition for the extraction of lipids from different parts of EN. As no previous study has been reported, the outcomes obtained from the current study prove to be beneficial in the identification of species, quality control, and detection of any adulteration from the laboratory and commercial samples of EN. RESEARCH HIGHLIGHTS: The percent yield was found to be maximum in latex extract (4%). The leaf pet ether extract was separated into 6 bands with different Rf values. The extracted compounds from Euphorbia neriifolia leaves were categorized into non-polar heat tolerant. The highest total lipid yield (0.1119) was obtained at solvent ratios 60:40 of PE:HE (petroleum ether: petroleum hexane).
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Tonk, Rajasthan, India
| |
Collapse
|
6
|
Azami S, Forouzanfar F. Therapeutic potentialities of green tea (Camellia sinensis) in ischemic stroke: biochemical and molecular evidence. Metab Brain Dis 2024; 39:347-357. [PMID: 37721652 DOI: 10.1007/s11011-023-01294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Ischemic stroke is a leading cause of disability and death in patients. Despite considerable recent advances in the treatment of ischemic stroke, only a limited number of effective neuroprotective agents are available for stroke. Green tea (Camellia sinensis) is a popular herbal plant, and numerous studies have indicated its health benefits for several diseases. Green tea is of interest due to its high content of catechin derivatives, including epicatechin, gallocatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate. This review tried to develop a feasible background for the potential effects of green tea and its bioactive derivatives concerning protection against ischemic stroke. Green tea's antioxidants, anti-inflammatory, anti-apoptotic, and neuroprotective effects are believed to be efficacious in stroke treatment. Evidence supports the idea that green tea can be used to assist in treating ischemic stroke.
Collapse
Affiliation(s)
- Shakiba Azami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Govindasamy K, Sugumar DAS, Kandan NM, Nagaprasad N, Ramaswamy K. Seasonal variations in the phenolic profile, antioxidant activity, and mineral content of south Indian black tea (Camellia sinensis (L.) O. Kuntze). Sci Rep 2023; 13:18700. [PMID: 37907594 PMCID: PMC10618270 DOI: 10.1038/s41598-023-45711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
In the Anamallais region of south India, crop shoots from the UPASI-3, UPASI-9, UPASI-17, Assam seedlings, and TRI-2043 cultivars were examined for seasonal variations in total phenolics, antioxidant activity, and minerals during four harvest seasons: summer (January to March), premonsoon (April and May), monsoon (June to September), and winter (October to December) of two consecutive years. The total phenolics of all cultivars were lower in monsoon period and grew over rest of the seasons and it was greater during summer. Crop shoot antioxidant activity as measured by the DPPH radical scavenging experiment exhibited a similar pattern to total phenolics. Summer was the season with the highest antioxidant activity across all cultivars, followed by premonsoon, winter, and monsoon. On the other hand, the employed cultivars differed noticeably in terms of seasonal change of minerals. These results appear to indicate that the harvest period is hypercritical in deciding the antioxidant potency of tea crop shoots.
Collapse
Affiliation(s)
- Kottur Govindasamy
- Department of Chemistry, P.A. College of Engineering, Pollachi, Coimbatore, Tamilnadu, 642 002, India
| | | | - N Mani Kandan
- Department of Mechanical Engineering, P.A. College of Engineering and Technology, Pollachi, Coimbatore, 642002, India
| | - N Nagaprasad
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology, Madurai, Tamilnadu, 625104, India
| | - Krishnaraj Ramaswamy
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dambi Dollo, Ethiopia.
- Department of Mechanical Engineering, College of Engineering and Technology, Dambi Dollo University, Dambi Dollo, Ethiopia.
| |
Collapse
|
8
|
Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S, Mahmood T, Sydykbayeva S, Ydyrys A, Almarhoon ZM, Sharifi-Rad J, Hano C, Calina D, Cho WC. Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 2023; 162:114687. [PMID: 37062215 DOI: 10.1016/j.biopha.2023.114687] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.
Collapse
Affiliation(s)
- Shumaila Ijaz
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan.
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46300, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Kanwal
- Department of Biology and Environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Sandugash Sydykbayeva
- Higher School of Natural Sciences, Zhetysu University named after I.Zhansugurov, 040009 Taldykorgan, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040, Kazakhstan
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, 45067 Orléans Cedex2, France.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Islam MT, Martorell M, González-Contreras C, Villagran M, Mardones L, Tynybekov B, Docea AO, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. An updated overview of anticancer effects of alternariol and its derivatives: underlying molecular mechanisms. Front Pharmacol 2023; 14:1099380. [PMID: 37033617 PMCID: PMC10076758 DOI: 10.3389/fphar.2023.1099380] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Alternariol is a toxic metabolite of Alternaria fungi and studies have shown multiple potential pharmacological effects. To outline the anticancer effects and mechanisms of alternariol and its derivatives based on database reports, an updated search of PubMed/MedLine, ScienceDirect, Web of Science, and Scopus databases was performed with relevant keywords for published articles. The studies found to suggest that this mycotoxin and/or its derivatives have potential anticancer effects in many pharmacological preclinical test systems. Scientific reports indicate that alternariol and/or its derivatives exhibit anticancer through several pathways, including cytotoxic, reactive oxygen species leading to oxidative stress and mitochondrial dysfunction-linked cytotoxic effect, anti-inflammatory, cell cycle arrest, apoptotic cell death, genotoxic and mutagenic, anti-proliferative, autophagy, and estrogenic and clastogenic mechanisms. In light of these results, alternariol may be one of the hopeful chemotherapeutic agents.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Carlos González-Contreras
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Marcelo Villagran
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Lorena Mardones
- Biomedical Sciences Research Laboratory, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|
10
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|