1
|
Li S, Cao X, Zou T, Wang Z, Chen X, Chen J, You J. Integrated transcriptomics and untargeted metabolomics reveal bone development and metabolism of newly weaned mice in response to dietary calcium and boron levels. Food Funct 2024; 15:10853-10869. [PMID: 39405052 DOI: 10.1039/d4fo03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological and animal studies have indicated that calcium and boron are essential for bone development and metabolism. However, limited information is available regarding the effects of boron supplementation on bone development and metabolism in newly weaned infants with either calcium deficiency or calcium sufficiency. This study assessed the effects of dietary boron supplementation (0 and 3 mg kg-1) on bone development and metabolism, in a newly weaned mouse model, under both calcium deficiency and sufficiency feeding conditions. The results show that mice fed a calcium sufficient diet exhibited lower fat percentage and final body weight than those fed a calcium deficient diet. Boron supplementation reduced the serum high-density lipoprotein cholesterol level and up-regulated the mRNA levels of FABP3, PPAR-γ, and CaMK in the intestinal mucosa. Importantly, boron supplementation increased the tibial weight in mice on a calcium-sufficient diet and enhanced the tibial volume in those on a calcium-deficient diet. Metabolomic analysis highlighted calcium and boron's impact on metabolites like carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, benzene and substituted derivatives, organonitrogen compounds, organooxygen compounds, and phenols, and were related to lipid metabolism and the neural signaling pathway. Transcriptomic analysis corroborated the role of calcium and boron in modulating bone metabolism via the JAK-STAT, calcium signaling, lipid metabolism, and inflammatory pathways. Multi-omics analysis indicated a strong correlation between calcium signaling pathways, lipid metabolism signaling, and dietary calcium and boron contents. This research provides insights into these complex mechanisms, potentially paving the way for novel interventions against calcium and boron deficiencies and bone metabolism abnormalities in clinical settings.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xuehai Cao
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Tiande Zou
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zirui Wang
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xingping Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jun Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinming You
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Kotan G, Uysal BA. Effects of boric acid combined with injectable platelet rich fibrin on the mineralized nodule formation and the viability of human dental pulp stem cells. Tissue Cell 2024; 90:102508. [PMID: 39128193 DOI: 10.1016/j.tice.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND The present study aimed to evaluate the viability of human dental pulp stem cells (hDPSCs) exposed to boric acid (BA) and injectable platelet-rich fibrin (I-PRF). MATERIALS AND METHODS hDPSCs were isolated from impacted third molars. Nine milliliters of whole blood was transferred to I-PRF tubes and centrifuged at 700 rpm for 3 minutes. A BA solution was prepared by dissolving BA in a 0.1 g/ml stock solution. The cells were divided into four groups: control, I-PRF, BA, and BA + I-PRF. Cell viability was evaluated using flow cytometry. Mineralized calcium nodules were observed using Alizarin Red staining. The data were analyzed using two-way analysis of variance and Tukey's HSD test (p<0.05). RESULTS The highest percentage of viable cells was in the I-PRF group, and the lowest percentage of viable cells was in the BA group at all times. Larger calcium nodules were observed in the BA group compared to the other groups. CONCLUSION The use of I-PRF with or without BA had a positive effect on cell viability. BA and I-PRF affected the formation of mineralized calcium nodules. I-PRF and BA may be used in combination because these substances minimally reduce cell viability and promote mineralized nodule formation.
Collapse
Affiliation(s)
| | - Betul Aycan Uysal
- Health Science University, Hamidiye Faculty of Dentistry, Department of Endodontics, Istanbul, Turkey.
| |
Collapse
|
3
|
Çakır A, Şahin TN, Kahveci Ö. Assessing the efficacy of various irrigation solutions in dissolving organic tissue. Sci Rep 2024; 14:13861. [PMID: 38879635 PMCID: PMC11180171 DOI: 10.1038/s41598-024-64904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/19/2024] Open
Abstract
For successful root canal treatment, adequate chemomechanical instrumentation to eliminate microorganisms and pulp tissue is crucial. This study aims to assess the organic tissue dissolving activity of various irrigation solutions on bovine tooth pulp tissue. 40 extracted bovine mandibular anterior teeth (n = 10) were used for the study. Bovine pulp pieces (25 ± 5 mg) were placed in 1.5 ml Eppendorf tubes. Each tooth pulp sample was then covered with 1.5 ml of different irrigation solutions, dividing them into four groups: Group 1 with freshly prepared 5% Boric acid, Group 2 with 5% NaOCl, Group 3 with Irritrol, and Group 4 with Saline. Samples were left at room temperature for 30 min, then dried and reweighed. The efficacy of tissue dissolution ranked from highest to lowest was found to be NaOCl, Boric Acid, Irritrol, and saline (p < 0.05). It was observed that the decrease in the NaOCl group was greater than the decrease in the Irritrol and saline groups, and the decrease in the Boric acid group was significantly greater than the decrease in the saline group (p < 0.05). It also emphasizes the need for future studies to further investigate the effects of Irritrol and Boric Acid on tissue dissolution.
Collapse
Affiliation(s)
- Asu Çakır
- Pediatric Dentistry Department, Ahmet Kelesoglu Dentistry Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey.
| | - Tuğçe Nur Şahin
- Pediatric Dentistry Department, Ahmet Kelesoglu Dentistry Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Özlem Kahveci
- Pendik Oral and Dental Health Center, İstanbul, Turkey
| |
Collapse
|
4
|
Gundogdu K, Gundogdu G, Demirkaya Miloglu F, Demirci T, Tascı SY, Abd El-Aty AM. Anti-Inflammatory Effects of Boric Acid in Treating Knee Osteoarthritis: Biochemical and Histopathological Evaluation in Rat Model. Biol Trace Elem Res 2024; 202:2744-2754. [PMID: 37770671 DOI: 10.1007/s12011-023-03872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
This study aimed to examine the anti-inflammatory properties of boric acid (BA) in treating knee osteoarthritis (KOA) in rats, evaluating its biochemical and histopathological therapeutic effects. A KOA rat model was induced by injecting monosodium iodoacetate into the knee joint. Random assignment was performed for the experimental groups as follows: group-1(control), group-2(KOA control), group-3 (BA:4 mg/kg, orally), group-4(BA:10 mg/kg, orally), group-5(BA:4 mg/kg, intra-articularly), and group-6(BA:10 mg/kg, intra-articularly). The rats received 100 µL of BA intra-articularly on days 1, 7, 14, and 21 or 1 mL orally once a day (5 days/week) for 4 weeks. Serum levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and activity of matrix metalloproteinase-13 (MMP-13) were measured. Histopathological and immunohistochemical analyses were performed on knee joint samples using specific antibodies for IL-1β, TNF-α, MMP-13, and nitric oxide synthase-2 (NOS-2). Group-2 exhibited higher serum IL-1β and TNF-α levels and MMP-13 activity than group-1 (P < 0.05). However, IL-1β and TNF-α levels and MMP-13 activity were lower in all treatment groups than in group-2, with statistically significant reductions observed in groups-4, 5, and 6. Histopathologically, group-2 displayed joint space narrowing, cartilage degeneration, and deep fissures. Groups-5 and 6 demonstrated significant joint space enlargement, articular cartilage tissue regeneration, and immunostaining patterns similar to those in group-1. Immunohistochemically, group-2 showed significant increases in IL-1β, TNF-α, MMP-13, and NOS-2 expression. However, all treatment groups exhibited reductions in these expression levels compared to group-2, with statistically significant decreases observed in groups-5 and 6 (P < 0.01). BA shows potential efficacy in reducing inflammation in experimental KOA model in rats. It may be a promising therapeutic agent for KOA, warranting further clinical studies for validation.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Fatma Demirkaya Miloglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Tuba Demirci
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Seymanur Yılmaz Tascı
- Department of Physiology, Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
da Costa RR, da Cunha G, Freitas RDS, Weber JBB. Effects of boric acid on alveolar sockets filling after dental extraction in rats. Oral Maxillofac Surg 2024; 28:355-361. [PMID: 37020145 DOI: 10.1007/s10006-023-01151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/26/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE After extraction, dental alveolus filling aims to reduce bone loss and maintain the alveolus volume during patient rehabilitation. Boric acid (BA) is a boron-derived compound with osteogenic properties and an interesting candidate for alveoli filling. This study aims to investigate the osteogenic capacity of the local application of BA in dental socket preservation. METHODS Thirty-two male Wistar rats were submitted to upper right incisor extraction and randomly divided into four groups (n = 8): control group (no intervention), BA (8 mg/kg) socket filling, bone graft (Cerabone®, Botiss, Germany), and BA + bone graft socket filling. Animals were euthanized 28 days after dental extraction. MicroCT and histological analysis were performed to evaluate the newly formed bone on the dental alveolus. RESULTS MicroCT analysis demonstrated that bone volume fraction (BV/TV), bone surface (BS), bone surface/bone volume ratio (BS/BV), bone surface density (BS/TV), trabecular thickness (Tb.Th), total bone porosity (Po-tot), and total volume of pore space (Po.V(tot)) from BA and BA + bone graft rats were significantly different from the control group. Histological evaluation displayed a delayed bone repair in BA rats, with the presence of connective tissue and inflammatory infiltrate. However, the BA + bone graft group demonstrated histological aspects like the bone graft animals, with less organized osteoblasts, suggesting inferior bone repair. CONCLUSION Osteogenic capacity did not depend on the BA local application after 28 days of dental extraction. The presence of inflammation in the BA group can represent toxicity induced by the substance dosage used.
Collapse
Affiliation(s)
- Renan R da Costa
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Gabriela da Cunha
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Raquel D S Freitas
- School of Medicine, Post-Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, RS, Brazil
- Nutrition Thinking® Co., Tecnopuc, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João B B Weber
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
6
|
Gundogdu K, Gundogdu G, Miloglu FD, Demirci T, Tascı SY, El-aty AMA. Anti-inflammatory Effects of Boric Acid in Treating Knee Osteoarthritis: Biochemical and Histopathological Evaluation in Rat Models.. [DOI: 10.21203/rs.3.rs-3091978/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Objective: This study aimed to examine the anti-inflammatory properties of boric acid(BA) in treatingknee osteoarthritis(KOA) in rats, evaluating its biochemical and histopathological therapeutic effects.
Methods: The KOA rat model was induced by injecting monosodium iodoacetate into the knee joint. Random assignment was performed for the experimental groups as follows: group-1(control), group-2(KOA control), group-3(BA:4 mg/kg,orally), group-4(BA:10 mg/kg,orally), group-5 (BA:4 mg/kg,intra-articularly), and group-6(BA:10 mg/kg,intra-articularly). The rats received 100 µL of BA intra-articularly on days 1,7,14, and 21 or 1 mL orally once a day (5 days/week) for 4 weeks. Serum levels of interleukin-1β (IL-1β), tumor necrosis factor-α(TNF-α), and matrix metalloproteinase-13(MMP-13) were measured. Histopathological and immunohistochemical analyses were performed on knee joint samples using specific antibodies for IL-1β, TNF-α, MMP13, and nitric oxide synthase-2(NOS-2).
Results. Group-2 exhibited higher serum levels of IL-1β, TNF-α, and MMP-13 than group-1(P<0.05). However, these levels were lower in all treatment groups compared to group-2, with statistically significant reductions observed in groups-4,5, and 6. Histopathologically, group-2 displayed joint space narrowing, cartilage degeneration, and deep fissures. Groups-5 and 6 demonstrated significant joint space enlargement, articular cartilage tissue regeneration, and immunostaining patterns similar to those in group-1. Immunohistochemically, group-2 showed significant increases in IL-1β, TNF-α, MMP-13, and NOS-2 expression. However, all treatment groups exhibited reductions in these expression levelscompared to group-2, with statistically significant decreases observed in groups-5 and 6(P<0.01).
Conclusions. BA shows potential efficacy in reducing inflammation in experimental KOA models in rats. It may be a promising therapeutic agent for KOA, warranting further clinical studies for validation.
Collapse
|
7
|
Erbasar GNH, Kaplan V, Cigerim L, Konarili FN, Sahin M. Effect of combined boric acid and chlorhexidine mouthwashes on postoperative complications and periodontal healing after impacted third molar surgery: a-double blind randomized study. Clin Oral Investig 2023:10.1007/s00784-023-04999-z. [PMID: 37010641 DOI: 10.1007/s00784-023-04999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVES This study aimed to evaluate the effects of different concentrations of boric acid (BA) combined with chlorhexidine (CHX) mouthwash on postoperative complications and periodontal healing following impacted third molar surgery. MATERIALS AND METHODS A total of 80 patients were randomly divided into eight groups. The patients in the study groups received different concentrations of BA ranging from 0.1% to 2.5% combined with CHX or 2% BA mouthwash alone. The control group received CHX mouthwash alone. The scores of self-reported pain and jaw dysfunction, trismus, edema, number of analgesics used, and periodontal parameters were compared between the groups. RESULTS 2.5% BA + CHX group had significantly lower pain and facial swelling values during the follow-up period. 2% BA + CHX group reported significantly lower jaw dysfunction scores on the fourth and fifth postoperative days. The control group showed significantly higher values for pain, jaw dysfunction, and facial swelling than other groups. No significant differences were found between the groups regarding trismus, analgesic use, and periodontal variables. CONCLUSIONS The combination of higher concentrations of BA with CHX was more effective in reducing pain, jaw dysfunction, and swelling following impacted third molar surgery than CHX mouthwash alone. CLINICAL RELEVANCE The combination of BA and CHX showed better results than the gold standard CHX mouthwash in reducing postoperative complications related to surgical removal of impacted third molars without any adverse effects. This new combination can be an effective alternative to traditional mouthwashes after impacted third molar surgery to ensure oral hygiene.
Collapse
Affiliation(s)
- Guzin Neda Hasanoglu Erbasar
- Ankara Yıldırım Beyazıt University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Volkan Kaplan
- Tekirdag Namik Kemal University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Tekirdag, Turkey.
| | - Levent Cigerim
- Van Yuzuncu Yil University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Van, Turkey
| | - Fatma Nur Konarili
- Ankara Yıldırım Beyazıt University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Mukerrem Sahin
- Ankara Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Department of Energy Systems Engineering, Ankara, Turkey
| |
Collapse
|
8
|
Chiacchio MA, Legnani L, Fassi EMA, Roda G, Grazioso G. Development of AMBER Parameters for Molecular Simulations of Selected Boron-Based Covalent Ligands. Molecules 2023; 28:molecules28062866. [PMID: 36985837 PMCID: PMC10057150 DOI: 10.3390/molecules28062866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Boron containing compounds (BCCs) aroused increasing interest in the scientific community due to their wide application as drugs in various fields. In order to design new compounds hopefully endowed with pharmacological activity and also investigate their conformational behavior, the support of computational studies is crucial. Nevertheless, the suitable molecular mechanics parameterization and the force fields needed to perform these simulations are not completely available for this class of molecules. In this paper, Amber force field parameters for phenyl-, benzyl-, benzylamino-, and methylamino-boronates, a group of boron-containing compounds involved in different branches of the medicinal chemistry, were created. The robustness of the obtained data was confirmed through molecular dynamics simulations on ligand/β-lactamases covalent complexes. The ligand torsional angles, populated over the trajectory frames, were confirmed by values found in the ligand geometries, located through optimizations at the DFT/B3LYP/6-31g(d) level, using water as a solvent. In summary, this study successfully provided a library of parameters, opening the possibility to perform molecular dynamics simulations of this class of boron-containing compounds.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
9
|
da Costa RR, Freitas RDS, da Cunha G, de Oliveira SD, Weber JBB. Antimicrobial and bone repair effects of boric acid in a rat model of dry socket (alveolar osteitis) following dental extraction. J Trace Elem Med Biol 2023; 76:127118. [PMID: 36516573 DOI: 10.1016/j.jtemb.2022.127118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alveolitis occurs after dental extraction without blood clot formation, leading to an inflammatory process and bacterial contamination. Boric acid (BA) demonstrates anti-inflammatory, antimicrobial, and osteogenic properties. This study aims to evaluate the possible antimicrobial effects and bone repair of BA in a rat model of alveolitis (dry socket). METHODS 33 male Wistar rats were submitted to the extraction of the upper right incisor and dry socket induction. They were first divided into two groups: dry socket (n = 17) and dry socket + 0.75 % BA (n = 16). Samples for the microbiological analysis were collected immediately after dental extraction, at the detection of clinical alveolitis, 7, and 14 days after BA application. For microCT and histological analysis, samples from euthanized rats were used in 14 and 28 days after alveolitis detection. RESULTS Higher bacterial counts were found in 4-5 days after alveolitis induction, compared to the baseline in both experimental groups, decreasing significantly after 7 and 14 days of treatment with BA (P < 0.05). The microCT evaluation displayed increased bone volume, bone volume fraction, trabecular thickness, and bone mineral density in a time-dependent manner, regardless of BA treatment. On the other hand, the number of trabeculae and total bone porosity decreased over the 28 days of the experiment in the dry-socket group and both groups, respectively (P < 0.05). Histological analysis did not differ on bone repair in both experimental groups. CONCLUSION This was the first report investigating the effects of BA in a rat model of alveolitis regarding microbiological and bone repair aspects. The BA local application decreased the total aerobic and facultative bacteria counts and does not seem to benefit the bone repair after alveolitis development. This study paves the way for more studies involving alveolitis and different BA applications.
Collapse
Affiliation(s)
- Renan R da Costa
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Health and Life Sciences, Post-Graduate Program in Dentistry, Porto Alegre, RS, Brazil
| | - Raquel D S Freitas
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Medicine, Post-Graduate Program in Medicine and Health Sciences, Porto Alegre, RS, Brazil; Nutrition Thinking® Co., Tecnopuc, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela da Cunha
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Health and Life Sciences, Post-Graduate Program in Dentistry, Porto Alegre, RS, Brazil
| | - Sílvia D de Oliveira
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Health and Life Sciences, Post-Graduate Program in Dentistry, Porto Alegre, RS, Brazil
| | - João B B Weber
- Pontifical Catholic University of Rio Grande do Sul, PUCRS, School of Health and Life Sciences, Post-Graduate Program in Dentistry, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Sojan JM, Gundappa MK, Carletti A, Gaspar V, Gavaia P, Maradonna F, Carnevali O. Zebrafish as a Model to Unveil the Pro-Osteogenic Effects of Boron-Vitamin D3 Synergism. Front Nutr 2022; 9:868805. [PMID: 35571926 PMCID: PMC9105455 DOI: 10.3389/fnut.2022.868805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
The micronutrient boron (B) plays a key role during the ossification process as suggested by various in vitro and in vivo studies. To deepen our understanding of the molecular mechanism involved in the osteogenicity of B and its possible interaction with vitamin D3 (VD), wild-type AB zebrafish (Danio rerio) were used for morphometric analysis and transcriptomic analysis in addition to taking advantage of the availability of specific zebrafish osteoblast reporter lines. First, osteoactive concentrations of B, VD, and their combinations were established by morphometric analysis of the opercular bone in alizarin red-stained zebrafish larvae exposed to two selected concentrations of B (10 and 100 ng/ml), one concentration of VD (10 pg/ml), and their respective combinations. Bone formation, as measured by opercular bone growth, was significantly increased in the two combination treatments than VD alone. Subsequently, a transcriptomic approach was adopted to unveil the molecular key regulators involved in the synergy. Clustering of differentially expressed genes revealed enrichment toward bone and skeletal functions in the groups co-treated with B and VD. Downstream analysis confirmed mitogen-activated protein kinase as the most regulated pathway by the synergy groups in addition to transforming growth factor-β signaling, focal adhesion, and calcium signaling. The best-performing synergistic treatment, B at 10 ng/ml and VD at 10 pg/ml, was applied to two zebrafish transgenic lines, Tg(sp7:mCherry) and Tg(bglap:EGFP), at multiple time points to further explore the results of the transcriptomic analysis. The synergistic treatment with B and VD induced enrichment of intermediate (sp7+) osteoblast at 6 and 9 days post fertilization (dpf) and of mature (bglap +) osteoblasts at 15 dpf. The results obtained validate the role of B in VD-dependent control over bone mineralization and can help to widen the spectrum of therapeutic approaches to alleviate pathological conditions caused by VD deficiency by using low concentrations of B as a nutritional additive.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Alessio Carletti
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vasco Gaspar
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Paulo Gavaia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
11
|
Hakki SS, Götz W, Dundar N, Kayis SA, Malkoc S, Hamurcu M, Basoglu A, Nielsen FH. Borate and boric acid supplementation of drinking water alters teeth and bone mineral density and composition differently in rabbits fed a high protein and energy diet. J Trace Elem Med Biol 2021; 67:126799. [PMID: 34082267 DOI: 10.1016/j.jtemb.2021.126799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
The reported beneficial effects of boron on mineralized tissues in animals and humans vary. Thus, a study was performed to assess whether the variability was the result of different forms of boron supplementation, method of supplementation, and increased adiposity of the rabbit experimental model. Thirty-one female New Zealand White rabbits, (aged 8 months, 2-2.5 kg weight) were fed a grain-based high energy diet containing 11.76 MJ/kg (2850 kcal/kg) and 3.88 mg boron/kg. The rabbits were randomly divided into four treatment groups: Control group was not supplemented with boron (n:7; C), and three groups supplemented with 30 mg boron/L in drinking water in the forms of borax decahydrate (Na2O4B7 10H2O, n:10; BD), borax anhydrous (Na2O4B7, n:7; Bah) or boric acid (H2BO3, n:7; BA). Cone beam micro computed tomographic (micro-CT), histological and elemental analysis was used to evaluate the bones/teeth. Results of the experiments demonstrated that boron supplementation had beneficial effects on mineralized tissue but varied with the type of treatment. Mineral density of the femur was increased by the Bah and BA treatments (p < 0.001), but only BA increased mineral density in the tibia (p = 0.015). In incisor teeth, mineral density of dentin was increased by all boron treatments (p < 0.001), and mineral density of enamel was increased by the BD and Bah treatments. Mineral analysis found that all boron treatments increased the boron concentration in tibia and femur. In the tibia, both the BD and Bah treatments decreased the iron concentration, and the BD treatment decreased the magnesium concentration. Sodium and zinc concentrations in the tibia were decreased by the Bah and BA treatments. The boron treatments did not significantly affect the calcium, copper, molybdenum, potassium phosphorus, and sulfur concentrations. The findings show that boron supplementation can have beneficial effects on mineralized tissues in an animal model with increased adiposity, which is a model of increased inflammatory stress. However, this effect varies with the form of boron supplemented, the method of supplementation, and the mineralized tissue examined.
Collapse
Affiliation(s)
- Sema S Hakki
- Selcuk University, Faculty of Dentistry, Department of Periodontology, Konya, 42079, Turkey; Selcuk University, Research Center of Faculty of Dentistry, Konya, Turkey.
| | - Werner Götz
- Bonn University, Medical Faculty, Department of Orthodontics, Oral Biology Lab, Bonn, Germany
| | - Niyazi Dundar
- Selcuk University, Research Center of Faculty of Dentistry, Konya, Turkey
| | - Seyit Ali Kayis
- Bolu Abant İzzet Baysal University, Faculty of Medicine, Department of Biostatistics and Medical İnformatics, Bolu, Turkey
| | - Siddik Malkoc
- Private Practice, Sancakdent Oral Health Center, Istanbul, Turkey
| | - Mehmet Hamurcu
- Selcuk University, Faculty of Agriculture, Soil Science and Plant Nutrition, Konya, Turkey
| | - Abdullah Basoglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Internal Medicine, Konya, Turkey
| | | |
Collapse
|
12
|
Hadidi L, Ge S, Comeau-Gauthier M, Ramirez-Garcia Luna J, Harvey EJ, Merle G. Local Delivery of Therapeutic Boron for Bone Healing Enhancement. J Orthop Trauma 2021; 35:e165-e170. [PMID: 33844665 DOI: 10.1097/bot.0000000000001974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To evaluate if local delivery of boron can accelerate bone healing and examine if the bioactive salt impacts the osteogenic response of bone-derived osteoclasts and osteoblasts by the regulation of the Wnt/β-catenin pathway. METHODS Bilateral femoral cortical defects were created in 32 skeletally mature C57 mice. On the experimental side, boric acid (8 mg/kg concentration) was injected locally, whereas on the control side, saline was used. Mice were euthanized at 7, 14, and 28 days. MicroCT was used to quantify bone regeneration at the defect. Histological staining for alkaline phosphatase and tartrate-resistant acid phosphatase was used to quantify osteoblast and osteoclast activity, respectively. Immunohistochemical antibodies, β-catenin, and CD34 were used to quantify active β-catenin levels and angiogenesis, respectively. RESULTS The boron group exhibited higher bone volume and trabecular thickness at 28 days on microCT. Both alkaline phosphatase activity and β-catenin activity was significantly higher in the boron group at 7 days. In addition, CD34 staining revealed increased angiogenesis at 14 days in boron-treated groups. We found boron to have no association with osteoclast activity. CONCLUSIONS This study shows that local delivery of boron is associated with an increase in osteoblast activity at early phases of healing. The corresponding increase in β-catenin likely supports that boron increases osteoblast activity by the Wnt/β-catenin pathway. Increased angiogenesis at 14 days could be a separate mechanism of increasing bone formation that is independent of Wnt/β-catenin activation.
Collapse
Affiliation(s)
- Lina Hadidi
- McGill University Division of Orthopedic Surgery, Montreal General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada ; and
| | - Susan Ge
- McGill University Division of Orthopedic Surgery, Montreal General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada ; and
| | - Marianne Comeau-Gauthier
- McGill University Division of Orthopedic Surgery, Montreal General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada ; and
| | - Jose Ramirez-Garcia Luna
- McGill University Division of Orthopedic Surgery, Montreal General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada ; and
| | - Edward J Harvey
- McGill University Division of Orthopedic Surgery, Montreal General Hospital, Montreal, QC, Canada
- Department of Experimental Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada ; and
| | - Geraldine Merle
- Chemical Engineering Department, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| |
Collapse
|
13
|
Hakki SS, Bozkurt SB, Hakki EE, Nielsen FH. Boron as Boric Acid Induces mRNA Expression of the Differentiation Factor Tuftelin in Pre-Osteoblastic MC3T3-E1 Cells. Biol Trace Elem Res 2021; 199:1534-1543. [PMID: 32594357 DOI: 10.1007/s12011-020-02257-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023]
Abstract
The effects of boron on the formation and maintenance of mineralized structures at the molecular level are still not clearly defined. Thus, a study was conducted using MC3T3-E1 cells to determine whether boron affected mRNA expressions of genes associated with bone/alveolar bone formation around the teethMC3T3-E1 (clone 4) cells were cultured in media treated with boric acid at concentrations of 0, 0.1, 10, 100, or 1000 ng/ml. Total RNAs of each group were isolated on day 3. Gene expression profiles were determined by using RT2 Profiler PCR micro-array that included 84 genes associated with osteogenic differentiation. Tuftelin1 mRNA expression was upregulated by all boron treatments. The upregulation was confirmed by quantitative RT-PCR using the tuftelin probe. While 100 ng/ml had no effect on the integrin-α2 (Itga2) transcript and 1 ng/ml boric acid induced Itga2 mRNA expression (2.1-fold), 0.1, 10, and 1000 ng/ml boric acid downregulated the integrin-α2 gene transcript 2.2-, 1.5-, and 2.1-fold respectively. While 0.1 ng/ml boric acid induced BMP6, increased BMP1r mRNA expression (1.5 fold) was observed in 1000 ng/ml boric acid treatment. The findings suggest that boron affects the regulation of the tuftelin1 gene in osteoblastic cells. Further studies are needed to establish that the beneficial actions of boron on alveolar bone and tooth formation and maintenance include an effect on the expression of the tuftelin1 gene.
Collapse
Affiliation(s)
- Sema S Hakki
- Department of Periodontology, Faculty of Dentistry, Selcuk University, 42079, Konya, Turkey.
- Faculty of Dentistry, Research Center, Selcuk University, Konya, Turkey.
| | - Serife Buket Bozkurt
- Faculty of Dentistry, Research Center, Selcuk University, Konya, Turkey
- Faculty of Dentistry, Research Lab of Dental Faculty, Hacettepe University, Ankara, Turkey
| | - Erdogan E Hakki
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Molecular Genetics & Biotechnology Laboratories, Selcuk University, Konya, Turkey
| | - Forrest H Nielsen
- Research Nutritionist Consultant, 3000 Belmont Road, Grand Forks, ND, USA
| |
Collapse
|
14
|
Rondanelli M, Faliva MA, Peroni G, Infantino V, Gasparri C, Iannello G, Perna S, Riva A, Petrangolini G, Tartara A. Pivotal role of boron supplementation on bone health: A narrative review. J Trace Elem Med Biol 2020; 62:126577. [PMID: 32540741 DOI: 10.1016/j.jtemb.2020.126577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Boron is a trace element that plays an important role in numerous biological functions, including calcium metabolism, growth and maintenance of bone tissue. However, there are still no precise indications regarding a possible role of boron supplementation, and its amount of supplementation, to maintain bone health. So the aim of this narrative review was to consider the state of the art on the effectiveness of boron supplementation (alone or with other micronutrients) on growth and maintenance of bone in humans through control of calcium, vitamin D and sex steroid hormone metabolism in order to suggest a daily dosage of boron supplementation. MAIN FINDINGS This review included 11 eligible studies: 7 regarding the supplementation with boron alone and 4 regarding supplementation with boron and other nutrients. Despite the number of studies considered being low, the number of subjects studied is high (594) and the results are interesting. CONCLUSIONS The studies considered in this narrative review have evaluated the positive effectiveness on bone, in humans, through control of calcium, vitamin D and sex steroid hormone metabolism, considering a dietary supplementation of 3 mg/day of boron (alone or with other nutrients); this supplementation is demonstrably useful to support bone health (in order to prevent and maintain adequate bone mineral density), also considering the daily dose of 3 mg is much lower than the Upper Level indicated by EFSA in the daily dose of 10 mg.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, 27100, Italy; Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia, 27100, Italy.
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy.
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy.
| | - Vittoria Infantino
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia, 27100, Italy.
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy.
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita'', Pavia, 27100, Italy.
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, 32038 Sakhir, Bahrain.
| | | | | | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
15
|
Xu H, Hashimoto K, Maeda M, Azimi MD, Fayaz SH, Chen W, Hamajima N, Kato M. High levels of boron promote anchorage-independent growth of nontumorigenic cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115094. [PMID: 32659568 DOI: 10.1016/j.envpol.2020.115094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 05/14/2023]
Abstract
WHO has presented a health-based guideline value for boron in drinking water. That fact indicates that a high level of boron is toxic for humans. However, there is no direct evidence of boron-mediated malignant transformation. In this study, human lung epithelial nontumorigenic BEAS-2B cells and tumorigenic A549 cells were used to investigate the tumorigenic toxicity of boron in vitro. Anchorage-independent growth, a hallmark of malignant transformation, was increased by boron at concentrations of 50, 250 and 500 μM in BEAS-2B cells, though the same concentrations of boron had no influence on anchorage-independent growth of A549 cells. Moreover, boron at concentrations of 250 and 500 μM activated the c-SRC/PI3K/AKT pathway of BEAS-2B cells. The results of our in vitro study suggest that exposure to high levels of boron promotes transforming activity of nontumorigenic cells.
Collapse
Affiliation(s)
- Huadong Xu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Masao Maeda
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | | | - Said Hafizullah Fayaz
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Administrative Office of the President, Deputy Public Relations and Outreach, Kabul, Afghanistan
| | - Wei Chen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan; Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Matsumoto-cho, Kasugai-shi, Aichi, Japan.
| |
Collapse
|
16
|
Su Z, Li J, Bai X, Tay FR, Zhang M, Liang K, He L, Yuan H, Li J. Borate bioactive glass prevents zoledronate-induced osteonecrosis of the jaw by restoring osteogenesis and angiogenesis. Oral Dis 2020; 26:1706-1717. [PMID: 32436640 DOI: 10.1111/odi.13436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/11/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a severe complication of systemic nitrogen-containing bisphosphonate (N-BP) administration, which leads to osteonecrosis, pain, and infection. Despite much effort, effective remedies are yet to be established. This study aimed to investigate potential recovery effect of borate bioactive glass (BBG) in vitro and in vivo. METHODS The effect of BBG on zoledronate-treated bone marrow mesenchymal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) was explored by cell counting kit-8, EdU assay, flow cytometry, alkaline phosphatase staining, alizarin red staining, angiogenesis experiment, and real-time quantitative polymerase chain reaction. The preventive effect of BBG on zoledronate-induced osteonecrosis of the jaw in rat model was examined by micro-CT, HE staining, and immunohistochemistry. RESULTS Exposure of BBG to BMSCs and HUVECs increased cell proliferation and restored their osteogenesis and angiogenesis potential in vitro. The BRONJ lesions were satisfactorily repaired and bone mineral density, bone volume/tissue volume, trabecula number, OCN-positive cells, and CD31-positive cells were increased in the BBG-treated groups compared with saline-treated groups. CONCLUSIONS Exposure of BMSCs and HUVECs to BBG restores osteogenesis and angiogenesis inhibited by zoledronate. BBG successfully restores extraction socket healing of BRONJ in rat model.
Collapse
Affiliation(s)
- Zhifei Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiehang Li
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Franklin R Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Min Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - He Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Design and discovery of boronic acid drugs. Eur J Med Chem 2020; 195:112270. [DOI: 10.1016/j.ejmech.2020.112270] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
|
18
|
Yin C, Jia X, Zhao Q, Zhao Z, Wang J, Zhang Y, Li Z, Sun H, Li Z. Transcription factor 7-like 2 promotes osteogenic differentiation and boron-induced bone repair via lipocalin 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110671. [PMID: 32204099 DOI: 10.1016/j.msec.2020.110671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/07/2023]
Abstract
Boron-containing mesoporous bioactive glass (B-MBG) scaffolds could be capable of promoting osteogenesis by activating Wnt/β-catenin signaling pathway during the process of bone defect repair. Despite this, more involving molecular controls are still largely unclear. In the present study, we identified that the downstream of Wnt/β-catenin signaling pathway named transcription factor 7-like 2 (TCF7L2) served as a key effector to promote boron-induced bone regeneration and osteogenesis through lipocalin 2 (LCN2). TCF7L2 was highly expressed in osteoblasts when treated with B-MBG scaffold extraction than MBG. LCN2, as a secreted bone factor, positively affected osteogenic differentiation of MC3T3-E1 and osteogenesis in vivo, which could be induced by TCF7L2. In addition, interference of TCF7L2 decreased the osteogenic differentiation of osteoblasts. Finally, we identified that rLCN2 could rescue the poor ability of osteogenic differentiation of MC3T3-E1 whose Tcf7l2 gene was knocked down by lentiviral transfection of shRNA. Our findings provide some new insights into the molecular controls of boron-associated bone regeneration and potential therapeutic targets for the treatment of bone defects.
Collapse
Affiliation(s)
- Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Xiaoshi Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jinyang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hongchen Sun
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China.
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
19
|
N Rosalez M, Estevez-Fregoso E, Alatorre A, Abad-García A, A Soriano-Ursúa M. 2-Aminoethyldiphenyl Borinate: A Multitarget Compound with Potential as a Drug Precursor. Curr Mol Pharmacol 2020; 13:57-75. [PMID: 31654521 DOI: 10.2174/1874467212666191025145429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Boron is considered a trace element that induces various effects in systems of the human body. However, each boron-containing compound exerts different effects. OBJECTIVE To review the effects of 2-Aminoethyldiphenyl borinate (2-APB), an organoboron compound, on the human body, but also, its effects in animal models of human disease. METHODS In this review, the information to showcase the expansion of these reported effects through interactions with several ion channels and other receptors has been reported. These effects are relevant in the biomedical and chemical fields due to the application of the reported data in developing therapeutic tools to modulate the functions of the immune, cardiovascular, gastrointestinal and nervous systems. RESULTS Accordingly, 2-APB acts as a modulator of adaptive and innate immunity, including the production of cytokines and the migration of leukocytes. Additionally, reports show that 2-APB exerts effects on neurons, smooth muscle cells and cardiomyocytes, and it provides a cytoprotective effect by the modulation and attenuation of reactive oxygen species. CONCLUSION The molecular pharmacology of 2-APB supports both its potential to act as a drug and the desirable inclusion of its moieties in new drug development. Research evaluating its efficacy in treating pain and specific maladies, such as immune, cardiovascular, gastrointestinal and neurodegenerative disorders, is scarce but interesting.
Collapse
Affiliation(s)
- Melvin N Rosalez
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Elizabeth Estevez-Fregoso
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Alberto Alatorre
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Antonio Abad-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City, 11340, Mexico
| |
Collapse
|
20
|
Gorustovich AA, Nielsen FH. Effects of Nutritional Deficiency of Boron on the Bones of the Appendicular Skeleton of Mice. Biol Trace Elem Res 2019; 188:221-229. [PMID: 30182352 DOI: 10.1007/s12011-018-1499-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/20/2023]
Abstract
Scientific evidence has shown the nutritional importance of boron (B) in the remodeling and repair of cancellous bone tissue. However, the effects of the nutritional deficiency of B on the cortical bone tissue of the appendicular skeleton have not yet been described. Thus, a study was performed to histomorphometrically evaluate the density of osteocyte lacunae of cortical bone of mouse femora under conditions of nutritional deficiency of B and to analyze the effects of the deficiency on the biomechanical properties of mouse tibiae. Weaning, 21-day-old male Swiss mice were assigned to the following two groups: controls (B+; n = 10) and experimental (B-; n = 10). Control mice were fed a basal diet containing 3 mg B/kg, whereas experimental mice were fed a B-deficient diet containing 0.07 mg B/kg for 9 weeks. The histological and histomorphometric evaluations of the mice fed a B-deficient diet showed a decrease in the density of osteocyte lacunae in the femoral cortical bone tissue and the evaluation of biomechanical properties showed lower bone rigidity in the tibia.
Collapse
Affiliation(s)
- Alejandro A Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD, Salta, Argentina.
| | | |
Collapse
|
21
|
Khaliq H, Juming Z, Ke-Mei P. The Physiological Role of Boron on Health. Biol Trace Elem Res 2018; 186:31-51. [PMID: 29546541 DOI: 10.1007/s12011-018-1284-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.
Collapse
Affiliation(s)
- Haseeb Khaliq
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhong Juming
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Peng Ke-Mei
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Effects of boric acid on bone formation after maxillary sinus floor augmentation in rabbits. Oral Maxillofac Surg 2018; 22:443-450. [PMID: 30345483 DOI: 10.1007/s10006-018-0729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Augmentation of the maxillary sinus floor with bone grafting is commonly used for successful treatment of edentulous posterior maxilla with dental implants, and it is essential to maintain good bone volume and quality for long-term success of dental implants. The aim of this experimental study was to investigate the local and systemic effects of boric acid on new bone formation after maxillary sinus floor augmentation (MSFA). MATERIALS AND METHODS Twenty-four male, New Zealand rabbits were randomly divided into three groups with eight rabbits each, and bilateral MSFA was performed in each animal. An autogenous bone/xenograft mixture was used to augment the maxillary sinuses in each group. Group 1 was determined as control with no additional materials, whereas 3 mg/kg boric acid (BA) was added to the mixture in group 2, and 3 mg/kg boric acid solution added to drinking water daily in group 3. RESULTS The animals were sacrificed and also histologic, histomorphometric, and immunnohistochemical analyses were performed at weeks 4 and 8. At week 4, bone regeneration was better in the local BA group than in the control and systemic BA groups (p < 0.05). However, no significant difference was found among the groups in terms of bone regeneration at the end of week 8 (p > 0.05). CONCLUSION Significant higher new bone formation was revealed by BA at early healing especially with local application. BA may be a therapeutic option for improving the bone regeneration.
Collapse
|
23
|
Bello M, Guadarrama-García C, Velasco-Silveyra LM, Farfán-García ED, Soriano-Ursúa MA. Several effects of boron are induced by uncoupling steroid hormones from their transporters in blood. Med Hypotheses 2018; 118:78-83. [PMID: 30037620 DOI: 10.1016/j.mehy.2018.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
Abstract
Boron is increasingly added to food supplements due to multiple effects that have been reported in mammals after boric acid administration. Among these effects are inflammatory process control, bone and muscle strength enhancement, protein expression regulation, and a decreased risk of developing some pathologies in which these processes are key, such as osteoporosis, dermatological inflammatory non-infectious maladies and diseases affecting the central nervous system. Experimental data have suggested that steroid hormone levels in plasma change after boric acid administration, but a clear mechanism behind these variations has not been established. We analyzed possibilities for these changes and hypothesized that boric acid disrupts the interactions between steroid hormones and several carriers in plasma. In particular, we proposed that there is an uncoupling of the interactions between sex hormone binding globulin (SHBG) and estrogens and testosterone and that there are alterations in the binding of hydrophobic ligands by other carrier proteins in plasma. Further experimental and computational studies are required to support the hypothesis that boric acid and probably other boron-containing compounds can displace steroid hormones from their plasma carriers. If such phenomena are confirmed, boron administration with a clear mechanism could be employed as a therapeutic agent in several diseases or physiological events that require modulation of steroid hormone levels in plasma.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Concepción Guadarrama-García
- Laboratorio de Modelado Molecular y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico; Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Luz M Velasco-Silveyra
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Eunice D Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 México City, Mexico.
| |
Collapse
|
24
|
Montalvany-Antonucci CC, Zicker MC, Oliveira MC, Macari S, Madeira MFM, Andrade I, Ferreira AVM, Silva TA. Diet versus jaw bones: Lessons from experimental models and potential clinical implications. Nutrition 2017; 45:59-67. [PMID: 29129238 DOI: 10.1016/j.nut.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022]
Abstract
The consumption of different types of diets influences not only body health but the bone remodeling process as well. Nutritional components can directly affect maxillary and mandibular alveolar bone microarchitecture. In this review, we focus on the current knowledge regarding the influence of diets and dietary supplementation on alveolar bone. Accumulating evidence from experimental models suggests that carbohydrate- and fat-rich diets are detrimental for alveolar bone, whereas protective effects are associated with consumption of calcium, ω-3, and bioactive compounds. Little is known about the effects of protein-free and protein-rich diets, boron, vitamin C, vitamin E, zinc, and caffeine on alveolar bone remodeling. Adipokines and direct effects of nutritional components on bone cells are proposed mechanisms linking diet and bone. Results from animal models substantiate the role of nutritional components on alveolar bone. It is a well-built starting point for clinical studies on nutritional monitoring and intervention for patients with alveolar bone disorders, especially those who are treatment refractory.
Collapse
Affiliation(s)
| | - Marina C Zicker
- Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mila Fernandes M Madeira
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ildeu Andrade
- Department of Orthodontics, Faculty of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene Versiani M Ferreira
- Department of Nutrition, Nursing School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcilia A Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Singhal S, Pradeep AR, Kanoriya D, Garg S, Garg V. Boric acid gel as local drug delivery in the treatment of class
II
furcation defects in chronic periodontitis: a randomized, controlled clinical trial. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/jicd.12279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandeep Singhal
- Department of PeriodontologyGovernment Dental College and Research Institute Bangalore India
| | - Avani Raju Pradeep
- Department of PeriodontologyGovernment Dental College and Research Institute Bangalore India
| | - Dharmendra Kanoriya
- Department of PeriodontologyGovernment Dental College and Research Institute Bangalore India
| | - Shruti Garg
- Department of PeriodontologyGovernment Dental College and Research Institute Bangalore India
| | - Vibhuti Garg
- Department of PeriodontologyGovernment Dental College and Research Institute Bangalore India
| |
Collapse
|
26
|
Abstract
Osteoporosis is a major public health problem affects many millions of people around the world. It is a metabolic bone disease characterized by loss of bone mass and strength, resulting in increased risk of fractures. Several lifestyle factors are considered to be important determinants of it and nutrition can potentially have a positive impact on bone health, in the development and maintenance of bone mass and in the prevention of osteoporosis. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients. In the last decade, epidemiological studies and clinical trials showed micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Consequently, optimizing micronutrients intake might represent an effective and low-cost preventive measure against osteoporosis.
Collapse
Affiliation(s)
- Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, "Federico II" University, Napoli, Italy
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
27
|
Dessordi R, Spirlandeli AL, Zamarioli A, Volpon JB, Navarro AM. Boron supplementation improves bone health of non-obese diabetic mice. J Trace Elem Med Biol 2017; 39:169-175. [PMID: 27908411 DOI: 10.1016/j.jtemb.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 09/08/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Diabetes Mellitus is a condition that predisposes a higher risk for the development of osteoporosis. The objective of this study was to investigate the influence of boron supplementation on bone microstructure and strength in control and non-obese diabetic mice for 30days. The animals were supplemented with 40μg/0,5ml of boron solution and controls received 0,5ml of distilled water daily. We evaluated the biochemical parameters: total calcium, phosphorus, magnesium and boron; bone analysis: bone computed microtomography, and biomechanical assay with a three point test on the femur. This study consisted of 28 animals divided into four groups: Group water control - Ctrl (n=10), Group boron control - Ctrl±B (n=8), Group diabetic water - Diab (n=5) and Group diabetic boron - Diab±B (n=5). The results showed that cortical bone volume and the trabecular bone volume fraction were higher for Diab±B and Ctrl±B compared to the Diab and Ctrl groups (p≤0,05). The trabecular specific bone surface was greater for the Diab±B group, and the trabecular thickness and structure model index had the worst values for the Diab group. The boron serum concentrations were higher for the Diab±B group compared to non-supplemented groups. The magnesium concentration was lower for Diab and Diab±B compared with controls. The biomechanical test on the femur revealed maintenance of parameters of the bone strength in animals Diab±B compared to the Diab group and controls. The results suggest that boron supplementation improves parameters related to bone strength and microstructure of cortical and trabecular bone in diabetic animals and the controls that were supplemented.
Collapse
Affiliation(s)
- Renata Dessordi
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences, State University of São Paulo-UNESP, Brazil.
| | - Adriano Levi Spirlandeli
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo-FMRP/USP, Brazil
| | - Ariane Zamarioli
- Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - José Batista Volpon
- Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Anderson Marliere Navarro
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo-FMRP/USP, Brazil
| |
Collapse
|
28
|
In vitro biocompatibility of titanium after plasma surface alloying with boron. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1240-7. [DOI: 10.1016/j.msec.2016.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/26/2016] [Accepted: 08/02/2016] [Indexed: 01/11/2023]
|
29
|
Lu X, Li K, Xie Y, Huang L, Zheng X. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:166. [PMID: 27663224 DOI: 10.1007/s10856-016-5781-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
In recent years, CaSiO3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO3 ceramic (Ca11Si4B2O22, B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca11Si4B2O22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.
Collapse
Affiliation(s)
- Xiang Lu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China.
| |
Collapse
|
30
|
Huang Q, Elkhooly TA, Liu X, Zhang R, Yang X, Shen Z, Feng Q. SaOS-2 cell response to macro-porous boron-incorporated TiO 2 coating prepared by micro-arc oxidation on titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:195-204. [DOI: 10.1016/j.msec.2016.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 01/13/2023]
|
31
|
Güzel Y, Golge UH, Goksel F, Vural A, Akcay M, Elmas S, Turkon H, Unver A. The Efficacy of Boric Acid Used to Treat Experimental Osteomyelitis Caused by Methicillin-Resistant Staphylococcus aureus: an In Vivo Study. Biol Trace Elem Res 2016; 173:384-9. [PMID: 26961291 DOI: 10.1007/s12011-016-0662-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
We explored the ability of local and systemic applications of boric acid (BA) to reduce the numbers of methicillin-resistant Staphylococcus aureus (MRSA) in a rat model of tibial osteomyelitis (OM), and compared boric acid with vancomycin (V). Implant-associated osteomyelitis was established in 35 rats. After 4 weeks, at which time OM was evident both radiologically and serologically in all animals, the rats were divided into five groups of equal number: group 1, control group (no local application of BA or other medication); group 2, V group; group 3, local BA + V group; group 4, local BA group; and group 5, local + systemic BA group. Serum total antioxidant status, and the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6, were measured. Pathological changes attributable to bone OM were evaluated using a grading system. Bacterial colony-forming units (CFUs) per gram of bone were counted. The lowest bacterial numbers were evident in group 3, and the bacterial numbers were significantly lower than that of the control group in all four test groups (p < 0.001). Group 3 also had the least severe bone infection (OM score 1.7 ± 1.1, p < 0.05). Upon histological and microbiological evaluation, no significant difference was evident between groups 2 and 3. Total antioxidant levels were significantly different in all treatment groups compared to the control group. Microbiological and histopathological evaluation showed that systemic or local application of BA was effective to treat OM, although supplementary V increased the effectiveness of BA.
Collapse
|
32
|
O'Connell K, Pierlot C, O'Shea H, Beaudry D, Chagnon M, Assad M, Boyd D. Host responses to a strontium releasing high boron glass using a rabbit bilateral femoral defect model. J Biomed Mater Res B Appl Biomater 2016; 105:1818-1827. [PMID: 27219680 DOI: 10.1002/jbm.b.33694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
Borate glasses have shown promising potential as bioactive materials. With recent research demonstrating that glass properties may be modulated by appropriate compositional design. This may provide for indication specific material characteristics and controlled release of therapeutic inorganic ions (i.e., strontium); controlling such release is critical in order to harness the therapeutic potential. Within this sub-chronic pilot study, a rabbit long-bone model was utilized to explore the safety and efficacy of a high borate glass (LB102: 70B2 O3 -20SrO-6Na2 O-4La2 O3 ) particulate (90 - 710 μm) for bone regeneration. Six bilateral full-thickness defects (Ø = 3.5 mm; L = 8 mm) were created in three white New Zealand rabbits. Longitudinal non-decalcified sections of each defect site were produced and stained with Goldner's Trichrome. Histopathological examination revealed that LB102 demonstrated osteoconductive and osseointegrative properties with greater new bone being formed within and surrounding LB102 particles, when compared to the sham control. The inflammatory cell infiltration was observed to be slightly higher in the control when compared to LB102 defect sites, while no significant difference in fibrosis and neovascularization was determined, indicating that healing was occurring in a normal fashion. These data further suggest the possible utility of high borate glasses with appropriate compositional design for medical applications, such as bone augmentation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1818-1827, 2017.
Collapse
Affiliation(s)
- Kathleen O'Connell
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Caitlin Pierlot
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, Canada
| | - Helen O'Shea
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Diane Beaudry
- Orthopedics and Biomaterials Lab, AccelLAB Inc., Boisbriand, QC, Canada
| | - Madeleine Chagnon
- Orthopedics and Biomaterials Lab, AccelLAB Inc., Boisbriand, QC, Canada
| | - Michel Assad
- Orthopedics and Biomaterials Lab, AccelLAB Inc., Boisbriand, QC, Canada
| | - Daniel Boyd
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
33
|
Gölge UH, Kaymaz B, Arpaci R, Kömürcü E, Göksel F, Güven M, Güzel Y, Cevizci S. Effects of Boric Acid on Fracture Healing: An Experimental Study. Biol Trace Elem Res 2015; 167:264-71. [PMID: 25846213 DOI: 10.1007/s12011-015-0326-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Boric acid (BA) has positive effects on bone tissue. In this study, the effects of BA on fracture healing were evaluated in an animal model. Standard closed femoral shaft fractures were created in 40 male Sprague-Dawley rats under general anesthesia. The rats were allocated into five groups (n = 8 each): group 1, control with no BA; groups 2 and 3, oral BA at doses of 4 and 8 mg/kg/day, respectively; group 4, local BA (8 mg/kg); and group 5, both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally). After closed fracture creation, the fracture line was opened with a mini-incision, and BA was locally administered to the fracture area in groups 4 and 5. In groups 2, 3, and 5, BA was administered by gastric gavage daily until sacrifice. The rats were evaluated by clinical, radiological, and histological examinations. The control group (group 1) significantly differed from the local BA-exposed groups (groups 4 and 5) in the clinical evaluation. Front-rear and lateral radiographs revealed significant differences between the local BA-exposed groups and the control and other groups (p < 0.05). Clinical and radiological evaluations demonstrated adequate agreement between observers. The average histological scores significantly differed across groups (p = 0.007) and were significantly higher in groups 4 and 5 which were the local BA (8 mg/kg) and both oral and local BA (8 mg/kg/day orally and 8 mg/kg locally), respectively, compared to the controls. This study suggests that BA may be useful in fracture healing. Further research is required to demonstrate the most effective local dosage and possible use of BA-coated implants.
Collapse
Affiliation(s)
- Umut Hatay Gölge
- Department of Orthopaedics and Traumatology, School of Medicine, Çanakkale Onsekiz Mart University, 17000, Çanakkale, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 2015; 32:86-106. [PMID: 26302917 DOI: 10.1016/j.jtemb.2015.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized.
Collapse
Affiliation(s)
- Michael Dermience
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Georges Lognay
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Françoise Mathieu
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium.
| | - Philippe Goyens
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium; Department and Laboratory of Pediatric, Free Universities of Brussels, Brussels, Belgium.
| |
Collapse
|
35
|
Kömürcü E, Özyalvaçlı G, Kaymaz B, Gölge UH, Göksel F, Cevizci S, Adam G, Ozden R. Effects of Local Administration of Boric Acid on Posterolateral Spinal Fusion with Autogenous Bone Grafting in a Rodent Model. Biol Trace Elem Res 2015; 167:77-83. [PMID: 25728510 DOI: 10.1007/s12011-015-0274-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 11/29/2022]
Abstract
Spinal fusion is among the most frequently applied spinal surgical procedures. The goal of the present study was to evaluate whether the local administration of boric acid (BA) improves spinal fusion in an experimental spinal fusion model in rats. Currently, there is no published data that evaluates the possible positive effects if the local administration of BA on posterolateral spinal fusion. Thirty-two rats were randomly divided into four independent groups: no material was added at the fusion area for group 1; an autogenous morselized corticocancellous bone graft was used for group 2; an autogenous morselized corticocancellous bone graft with boric acid (8.7 mg/kg) for group 3; and only boric acid was placed into the fusion area for group 4. The L4-L6 spinal segments were collected at week 6, and the assessments included radiography, manual palpation, and histomorphometry. A statistically significant difference was determined between the groups with regard to the mean histopathological scores (p = 0.002), and a paired comparison was made with the Mann-Whitney U test to detect the group/groups from which the difference originated. It was determined that only the graft + BA practice increased the histopathological score significantly with regard to the control group (p = 0.002). Whereas, there was no statistically significant difference between the groups in terms of the manual assessment of fusion and radiographic analysis (respectively p = 0.328 and p = 0.196). This preliminary study suggests that BA may clearly be useful as a therapeutic agent in spinal fusion. However, further research is required to show the most effective dosage of BA on spinal fusion, and should indicate whether BA effects spinal fusion in the human body.
Collapse
Affiliation(s)
- Erkam Kömürcü
- Faculty of Medicine, Department of Orthopaedics and Traumatology, Çanakkale Onsekiz Mart University, Çanakkale, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gümüşderelioğlu M, Tunçay EÖ, Kaynak G, Demirtaş TT, Aydın ST, Hakkı SS. Encapsulated boron as an osteoinductive agent for bone scaffolds. J Trace Elem Med Biol 2015; 31:120-8. [PMID: 26004902 DOI: 10.1016/j.jtemb.2015.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/17/2015] [Accepted: 03/26/2015] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.
Collapse
Affiliation(s)
| | - Ekin Ö Tunçay
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Gökçe Kaynak
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Tolga T Demirtaş
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Seda Tığlı Aydın
- Bülent Ecevit University, Department of Biomedical Engineering, Zonguldak, Turkey
| | - Sema S Hakkı
- Selcuk University, Faculty of Dentistry, Department of Periodontology, Konya, Turkey
| |
Collapse
|
37
|
Hakki SS, Dundar N, Kayis SA, Hakki EE, Hamurcu M, Baspinar N, Basoglu A, Nielsen FH, Götz W. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet. J Trace Elem Med Biol 2015; 29:208-15. [PMID: 25468191 DOI: 10.1016/j.jtemb.2014.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/15/2023]
Abstract
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.
Collapse
|
38
|
Doğan A, Demirci S, Cağlayan AB, Kılıç E, Günal MY, Uslu U, Cumbul A, Sahin F. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res 2014; 162:72-9. [PMID: 25129136 DOI: 10.1007/s12011-014-0104-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022]
Abstract
After a disruption of skin integrity, the body produces an immediate response followed by a functional and comparable regeneration period, referred to as wound healing. Although normal wounds do not need much attention during the healing period, chronic (non-healing) wounds are the major challenge of current dermatological applications. Therefore, developing new, safe, and effective wound healing drugs has always been an attractive area of international research. In the current study, sodium pentaborate pentahydrate (NaB), pluronics (Plu; F68 and F127), and their combinations were investigated for their wound healing activities, using in vitro and in vivo approaches. The results revealed that NaB significantly increased migration capacity and superoxide dismutase activity in primary human fibroblasts. Combinations of optimized concentrations for pluronic block co-polymers further increased cell migration, and the messenger RNA (mRNA) expression levels of important growth factor and cytokines (vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β), and tumor necrosis factor alpha (TNF-α)). NaB containing hydrogel co-formulated with pluronics was also investigated for their wound healing activities using a full thickness wound model in rats. Macroscopic and histopathological analysis confirmed that wounds in combination gel-treated groups healed faster than those of control groups. NaB/Plu gel application was found to increase wound contraction and collagen deposition in the wound area. Therefore, our results suggest that NaB, and its pluronics combination, could be used in dermatological clinics and be a future solution for chronic wounds. However, further studies should be conducted to explore its exact action of mechanism and effects of this formulation on chronic wounds.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University Kayisdagi, Istanbul, Turkey, 34755
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In vitro, animal, and human experiments have shown that boron is a bioactive element in nutritional amounts that beneficially affects bone growth and central nervous system function, alleviates arthritic symptoms, facilitates hormone action and is associated with a reduced risk for some types of cancer. The diverse effects of boron suggest that it influences the formation and/or activity of substances that are involved in numerous biochemical processes. Several findings suggest that this influence is through the formation of boroesters in biomolecules containing cis-hydroxyl groups. These biomolecules include those that contain ribose (e.g., S-adenosylmethionine, diadenosine phosphates, and nicotinamide adenine dinucleotide). In addition, boron may form boroester complexes with phosphoinositides, glycoproteins, and glycolipids that affect cell membrane integrity and function. Both animal and human data indicate that an intake of less than 1.0mg/day inhibits the health benefits of boron. Dietary surveys indicate such an intake is not rare. Thus, increasing boron intake by consuming a diet rich in fruits, vegetables, nuts and pulses should be recognized as a reasonable dietary recommendation to enhance health and well-being.
Collapse
Affiliation(s)
- Forrest H Nielsen
- U.S. Department of Agriculture, Agricultural Research Service,(1) Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA.
| |
Collapse
|
40
|
Haro Durand LA, Góngora A, Porto López JM, Boccaccini AR, Zago MP, Baldi A, Gorustovich A. In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system. J Mater Chem B 2014; 2:7620-7630. [DOI: 10.1039/c4tb01043d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As it has been established that boron (B) may perform functions in angiogenesis and osteogenesis, the controlled and localized release of B ions from bioactive glasses (BGs) is expected to provide a promising therapeutic alternative for regenerative medicine of vascularized tissues, such as bone.
Collapse
Affiliation(s)
- Luis A. Haro Durand
- Interdisciplinary Materials Group-IESIING-UCASAL
- INTECIN UBA-CONICET
- Salta, Argentina
- Department of Pathology and Molecular Pharmacology
- IByME-CONICET
| | - Adrián Góngora
- Department of Pathology and Molecular Pharmacology
- IByME-CONICET
- Buenos Aires, Argentina
| | - José M. Porto López
- Research Institute for Materials Science and Technology
- INTEMA-CONICET
- Mar del Plata, Argentina
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen, Germany
| | - M. Paola Zago
- Institute of Experimental Pathology
- IPE-CONICET
- Salta, Argentina
| | - Alberto Baldi
- Department of Pathology and Molecular Pharmacology
- IByME-CONICET
- Buenos Aires, Argentina
| | | |
Collapse
|
41
|
Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol 2013; 31:594-605. [PMID: 24012308 PMCID: PMC3825404 DOI: 10.1016/j.tibtech.2013.06.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
General trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, they have recently become the target of scrutiny over safety. The importance of trace elements in natural bone health is well documented. Ions, for example, lithium, zinc, magnesium, manganese, silicon, strontium, etc., have been shown to increase osteogenesis and neovascularization. Incorporation of dopants (trace metal ions) into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights the use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
| | | | | | | |
Collapse
|
42
|
Hakki SS, Dundar N, Kayis SA, Hakki EE, Hamurcu M, Kerimoglu U, Baspinar N, Basoglu A, Nielsen FH. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J Trace Elem Med Biol 2013; 27:148-53. [PMID: 22944583 DOI: 10.1016/j.jtemb.2012.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 05/02/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022]
Abstract
An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet.
Collapse
Affiliation(s)
- Sema S Hakki
- Selcuk University, Faculty of Dentistry, Department of Periodontology, Konya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater 2012; 1:2. [PMID: 29470743 PMCID: PMC5120665 DOI: 10.1186/2194-0517-1-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/19/2012] [Indexed: 01/17/2023] Open
Abstract
Driven by the increasing economic burden associated with bone injury and disease, biomaterial development for bone repair represents the most active research area in the field of tissue engineering. This article provides an update on recent advances in the development of bioactive biomaterials for bone regeneration. Special attention is paid to the recent developments of sintered Na-containing bioactive glasses, borate-based bioactive glasses, those doped with trace elements (such as Cu, Zn, and Sr), and novel elastomeric composites. Although bioactive glasses are not new to bone tissue engineering, their tunable mechanical properties, biodegradation rates, and ability to support bone and vascular tissue regeneration, as well as osteoblast differentiation from stem and progenitor cells, are superior to other bioceramics. Recent progresses on the development of borate bioactive glasses and trace element-doped bioactive glasses expand the repertoire of bioactive glasses. Although boride and other trace elements have beneficial effects on bone remodeling and/or associated angiogenesis, the risk of toxicity at high levels must be highly regarded in the design of new composition of bioactive biomaterials so that the release of these elements must be satisfactorily lower than their biologically safe levels. Elastomeric composites are superior to the more commonly used thermoplastic-matrix composites, owing to the well-defined elastic properties of elastomers which are ideal for the replacement of collagen, a key elastic protein within the bone tissue. Artificial bone matrix made from elastomeric composites can, therefore, offer both sound mechanical integrity and flexibility in the dynamic environment of injured bone.
Collapse
Affiliation(s)
- Qizhi Chen
- Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
| | - Chenghao Zhu
- Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
| | - George A Thouas
- Department of Zoology, The University of Melbourne, Parkville, Victoria 3010 Australia
| |
Collapse
|
44
|
Ghanizadeh G, Babaei M, Naghii MR, Mofid M, Torkaman G, Hedayati M. The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat. Toxicol Ind Health 2012; 30:211-7. [DOI: 10.1177/0748233712452775] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evidence indicates that optimal nutrition plays a role in bone formation and maintenance. Besides major components of mineralization such as calcium, phosphorus, and vitamin D, other nutrients like boron and fluoride have beneficial role, too. In this study, 34 male Wistar rats were divided into five groups: control diet, fluoride, fluoride + boron, fluoride + calcium + vitamin D, and flouride + boron + calcium + vitamin D. Boron equal to 1.23 mg, calcium and vitamin D equal to 210 mg + 55 IU and fluoride equal to 0.7 mg/rat/day was added to their drinking water for 8 weeks. Plasma blood samples and bones were collected. Findings are evidence that fluoride + boron intake revealed significant positive effects on bone mechanical properties and bone metabolic hormones. These findings suggest that combined intake of these two elements has beneficial effects on bone stiffness and breaking strength comparing to even calcium + vitamin D supplementation. This evidence dealing with health problems related to bone and skeletal system in humans should justify further investigation of the role of boron and fluoride with other elements in relation to bone.
Collapse
Affiliation(s)
- G Ghanizadeh
- Environmental Health Group, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - M Babaei
- Nutrition Group, Health School, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Reza Naghii
- Nutrition Group, Health School, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - M Mofid
- Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - G Torkaman
- Department of Physical Therapy, Biomechanical Research Laboratory, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - M Hedayati
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
45
|
Hunt CD. Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Med Biol 2012; 26:157-60. [PMID: 22658717 DOI: 10.1016/j.jtemb.2012.03.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/11/2012] [Indexed: 11/20/2022]
Abstract
This review summarizes the progress made in establishing essential roles for boron in human physiology and assesses that progress in view of criteria for essentiality of elements. The evidence to date suggests that humans and at least some higher animals may use boron to support normal biological functions. These include roles in calcium metabolism, bone growth and maintenance, insulin metabolism, and completion of the life cycle. The biochemical mechanisms responsible for these effects are poorly understood but the nature of boron biochemistry suggests further characterization of the cell signaling molecules capable of complexing with boron. Such characterization may provide insights into the biochemical function(s) of boron in humans.
Collapse
|
46
|
Ying X, Cheng S, Wang W, Lin Z, Chen Q, Zhang W, Kou D, Shen Y, Cheng X, Rompis FA, Peng L, Zhu Lu C. Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res 2011; 144:306-15. [PMID: 21625915 DOI: 10.1007/s12011-011-9094-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/19/2011] [Indexed: 01/09/2023]
Abstract
Bone marrow stromal cells (BMSCs) have been well established as an ideal source of cell-based therapy for bone tissue engineering applications. Boron (B) is a notable trace element in humans; so far, the effects of boron on the osteogenic differentiation of BMSCs have not been reported. The aim of this study was to evaluate the effects of boron (0, 1, 10,100, and 1,000 ng/ml) on osteogenic differentiation of human BMSCs. In this study, BMSCs proliferation was analyzed by cell counting kit-8 (CCK8) assay, and cell osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity assay, Von Kossa staining, and real-time PCR. The results indicated that the proliferation of BMSCs was no different from the control group when added with B at the concentration of 1, 10, and 100 ng/ml respectively (P > 0.05); in contrast, 1,000 ng/ml B inhibited the proliferation of BMSCs at days 4, 7, and 14 (P < 0.05). By ALP staining, we discovered that BMSCs treated with 10 and 100 ng/ml B presented a higher ALP activity compared with control (P < 0.05). By real-time PCR, we detected the messenger RNA expression of ALP, osteocalcin, collagen type I, and bone morphogenetic proteins 7 were also increased in 10 and 100 ng/ml B treatment groups (P < 0.05). The calcium depositions were increased in 1 and 10 ng/ml B treatment groups (P < 0.05). Taken all together, it was the first time to report that B could increase osteogenic effect by stimulating osteogenic differentiation-related marker gene synthesis during the proliferation and differentiation phase in human BMSCs and could be a promising approach for enhancing osteogenic capacity of cell-based construction in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaozhou Ying
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Wenzhou Medical College, 109 Xue Yuan Xi Road, Wenzhou, 325000, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nielsen FH, Meacham SL. Growing Evidence for Human Health Benefits of Boron. J Evid Based Complementary Altern Med 2011. [DOI: 10.1177/2156587211407638] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence from a variety of experimental models shows that boron is a bioactive and beneficial (perhaps essential) element for humans. Reported beneficial actions of boron include arthritis alleviation or risk reduction, bone growth and maintenance, central nervous system function, cancer risk reduction, hormone facilitation, and immune response, inflammation, and oxidative stress modulation. The diverse effects of boron indicate that it influences the formation and/or activity of an entity that is involved in many biochemical processes. Formation of boroesters with the ribose moiety of compounds involved in numerous reactions, such as S-adenosylmethionine and oxidized nicotinamide adenine dinucleotide (NAD+) might be the reason for boron bioactivity. Both animal and human data suggest that boron intakes should be >1.0 mg/d. Many people consume less than this amount. Thus, a low boron intake should be considered a health concern, which can be prevented by diets rich in fruits, vegetables, nuts, and pulses.
Collapse
Affiliation(s)
- Forrest H. Nielsen
- USDA, ARS, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | | |
Collapse
|
48
|
Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011; 32:2757-74. [PMID: 21292319 DOI: 10.1016/j.biomaterials.2011.01.004] [Citation(s) in RCA: 1310] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 01/08/2023]
Abstract
Several inorganic materials such as special compositions of silicate glasses, glass-ceramics and calcium phosphates have been shown to be bioactive and resorbable and to exhibit appropriate mechanical properties which make them suitable for bone tissue engineering applications. However, the exact mechanism of interaction between the ionic dissolution products of such inorganic materials and human cells are not fully understood, which has prompted considerable research work in the biomaterials community during the last decade. This review comprehensively covers literature reports which have investigated specifically the effect of dissolution products of silicate bioactive glasses and glass-ceramics in relation to osteogenesis and angiogenesis. Particularly, recent advances made in fabricating dense biomaterials and scaffolds doped with trace elements (e.g. Zn, Sr, Mg, and Cu) and investigations on the effect of these elements on the scaffold biological performance are summarized and discussed in detail. Clearly, the biological response to artificial materials depends on many parameters such as chemical composition, topography, porosity and grain size. This review, however, focuses only on the ion release kinetics of the materials and the specific effect of the released ionic dissolution products on human cell behaviour, providing also a scope for future investigations and identifying specific research needs to advance the field. The biological performance of pure and doped silicate glasses, phosphate based glasses with novel specific compositions as well as several other silicate based compounds are discussed in detail. Cells investigated in the reviewed articles include human osteoblastic and osteoclastic cells as well as endothelial cells and stem cells.
Collapse
Affiliation(s)
- Alexander Hoppe
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | | | | |
Collapse
|
49
|
Hakki SS, Bozkurt BS, Hakki EE. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 2010; 24:243-50. [PMID: 20685097 DOI: 10.1016/j.jtemb.2010.03.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/31/2022]
Abstract
The aim of this study was to determine the effects of boron (B) on the cell-survival, proliferation, mineralization and mRNA expression of mineralized tissue-associated proteins. Additionally, determination of the effects of B on the BMP-4, -6 and -7 protein levels of pre-osteoblastic cells (MC3T3-E1) was also intended. The effects of B (pH 7.0) concentrations (0, 0.1, 1, 10, 100, 1000, 2000, 4000, 8000 and 10,000 ng/ml) on the survival of the cells were evaluated at 24 and 96 hrs with MTT assay. To evaluate the proliferation in long term, MC3T3-E1 cells were treated with different concentrations of B (0, 0.1, 1, 10, 100 and 1000 ng/ml) and were counted on days 2, 5, and 14. While in short term, decreased cell survival rate was observed at 1000 ng/ml and above, at long term no statistically significant difference was detected in different B concentrations applied. Slight decreases at the proliferation of the B-treated groups were determined on days 5 and 14 but one-way analysis of variance revealed that the difference was statistically insignificant. In mineralization assay, increased mineralized nodules were apparently observed in B treatment (1 and 10 ng/ml concentrations) groups. Based on quantitative RT-PCR results, remarkable regulation in favor of osteoblastic function for Collagen type I (COL I), Osteopontin (OPN), Bone Sialoprotein (BSP), Osteocalcin (OCN) and RunX2 mRNA expressions were observed in B treatment groups in comparison with untreated control groups. Increased BMP-4, -6 and -7 protein levels were detected at 0.1, 1, 10 and 100 ng/ml B concentrations. Results of the study suggest that at the molecular level B displays important roles on bone metabolism and may find novel usages at the regenerative medicine.
Collapse
Affiliation(s)
- Sema S Hakki
- Selcuk University, Faculty of Dentistry, Department of Periodontology, Konya, Turkey.
| | | | | |
Collapse
|
50
|
Haro Durand LA, Mesones RV, Nielsen FH, Gorustovich AA. Histomorphometric and microchemical characterization of maturing dental enamel in rats fed a boron-deficient diet. Biol Trace Elem Res 2010; 135:242-52. [PMID: 19756402 DOI: 10.1007/s12011-009-8512-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Few reports are available in the literature on enamel formation under nutritional deficiencies. Thus, we performed a study to determine the effects of boron (B) deficiency on the maturing dental enamel, employing the rat continuously erupting incisor as the experimental model. Male Wistar rats, 21 days old, were used throughout. They were divided into two groups, each containing ten animals: +B (adequate; 3-mg B/kg diet) and -B (boron deficient; 0.07-mg B/kg diet). The animals were maintained on their respective diets for 14 days and then euthanized. The mandibles were resected, fixed, and processed for embedding in paraffin and/or methyl methacrylate. Oriented histological sections of the continuously erupting incisor were obtained at the level of the mesial root of the first molar, allowing access to the maturation zone of the developing enamel. Dietary treatment did not affect food intake and body weight. Histomorphometric evaluation using undecalcified sections showed a reduction in enamel thickness (hypoplasia), whereas microchemical characterization by energy-dispersive X-ray spectrometry did not reveal alterations in enamel mineralization.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Research Laboratory, National Atomic Energy Commission CNEA-Regional Noroeste, Argentina National Research Council CONICET, A4408FTV, Salta C1033AAJ, Argentina
| | | | | | | |
Collapse
|