1
|
Lu H, Han X, Qin D, Sheng L, Du C, Wang B, Zhao H, Lu Y, Liu Y, Hu HY, Liu Y, Zhang D. Tricyclic Benzo[1,3]oxazinyloxazolidinones as Potent Antibacterial Agents against Drug-Resistant Pathogens. J Med Chem 2024; 67:16088-16106. [PMID: 39236219 DOI: 10.1021/acs.jmedchem.3c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we developed a series of benzo[1,3]oxazinyloxazolidinones as potent antibacterial agents. Some of the compounds exhibited potent antibacterial activity against a range of clinical drug-resistant pathogens, including Mtb, MRSA, MRSE, VISA, and VRE. Notably, compound 16d inhibited protein synthesis and displayed potent activity against linezolid-resistant Enterococcus faecalis. Although 16d showed cross-resistance to linezolid-resistant MRSA, the frequency of resistance development of MRSA against 16d was lower compared to that of linezolid. Additionally, 16d exhibited excellent pharmacokinetic properties and superior in vivo efficacy compared to linezolid. Furthermore, compound 16d modulated cytokine levels and ameliorated histopathological changes in major organs of bacterially infected mice. Hoechst-PI double staining and scanning electron microscopy analyses revealed that 16d exhibited some similarities with linezolid in its effects while also demonstrating a distinct mechanism characterized by cell membrane damage. Moreover, 16d significantly disrupted the MRSA biofilms. The antibacterial agent 16d represents a promising candidate for the treatment of serious infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Haijia Lu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiaowan Han
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Chen Du
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Hongyi Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, China
| | - Yishuang Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Tiantan Xili, Beijing 100050, China
| | - Hai-Yu Hu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
2
|
Isobe N, Chuang VTG, Liu X, Enoki Y, Taguchi K, Matsumoto K. The anti-inflammatory effect of tedizolid on carrageenan-induced footpad edema rat model. J Infect Chemother 2023; 29:1088-1090. [PMID: 37453465 DOI: 10.1016/j.jiac.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Tedizolid (TZD) is an oxazolidinone anti-methicillin-resistant Staphylococcus aureus (MRSA) drug. Linezolid (LZD), another oxazolidinone, has been shown to have an anti-inflammatory effect. TZD has been shown to exhibit an anti-inflammatory effect in a murine model of hematogenous pulmonary infection. In this study, we further investigated the anti-inflammatory effect of TZDs using a carrageenan-induced rat footpad edema model. TZD was administered at 0, 10, 20, and 40 mg/kg to the carrageenan-induced rat footpad edema model, and the edema rate was measured over time up to 9 h later. The area under the time curve of the edema rate profile (AUCedema0→9) decreased in a TZD dose-dependent manner. In addition, the correlation between AUCedema0→9 and the area under the time curve of free TZD plasma concentration (fAUCblood) obtained from the pharmacokinetic study of TZD in the carrageenan-induced rat footpad edema model was examined. fAUCblood and AUCedema0→9 showed a good negative correlation. These results indicate that TZD suppresses carrageenan-induced footpad edema and that TZD exerts its anti-inflammatory effects in a plasma concentration-dependent manner.
Collapse
Affiliation(s)
- Natsuko Isobe
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Victor Tuan Giam Chuang
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan; Discipline of Pharmacy, Curtin Medical School, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| | - Xiaoxi Liu
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
3
|
Acharya Y, Taneja KK, Haldar J. Dual functional therapeutics: mitigating bacterial infection and associated inflammation. RSC Med Chem 2023; 14:1410-1428. [PMID: 37593575 PMCID: PMC10429821 DOI: 10.1039/d3md00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/21/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of antimicrobial resistance, coupled with the occurrence of persistent systemic infections, has already complicated clinical therapy efforts. Moreover, infections are also accompanied by strong inflammatory responses, generated by the host's innate and adaptive immune systems. The closely intertwined relationship between bacterial infection and inflammation has multiple implications on the ability of antibacterial therapeutics to tackle infection and inflammation. Particularly, uncontrolled inflammatory responses to infection can lead to sepsis, a life-threatening physiological condition. In this review, we discuss dual-functional antibacterial therapeutics that have potential to be developed for treating inflammation associated with bacterial infections. Immense research is underway that aims to develop new therapeutic agents that, when administered, regulate the excess inflammatory response, i.e. they have immunomodulatory properties along with the desired antibacterial activity. The classes of antibiotics that have immunomodulatory function in addition to antibacterial activity have been reviewed. Host defense peptides and their synthetic mimics are amongst the most sought-after solutions to develop such dual-functional therapeutics. This review also highlights the important classes of peptidomimetics that exhibit both antibacterial and immunomodulatory properties.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Kashish Kumar Taneja
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
4
|
Linezolid-resistance Staphylococcus aureus – Prevalence, Emerging Resistance Mechanisms, Challenges and Perspectives. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus, an opportunistic pathogen, can root several infections viz skin and tissue infections, bacteraemia, food poisoning, pneumonia, and many other clinical conditions with some variations of virulence factors. In treatment of infections, caused by this Gram-positive pathogen, several antibiotics are being used importantly Methicillin and Vancomycin. This pathogen has high capability of antibiotic resistance development and had evolved new strains such as Methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin-resistant Staphylococcus aureus (VRSA). Meta-analysis in Ethiopia showed that pooled prevalence of MRSA in environment, food, animal, and human was 54%, 77%, 15%, and 38% respectively (2022). Risk of MRSA isolates from burn ICU was 55 % higher (2018). In Bangladesh, 37.1% isolates from frozen meat chicken (2021) were identified as MRSA. This problem is being dealt with a novel drug called Linezolid which has been proved effective against both MRSA and VRSA. Exacerbating the situation, this pathogen has shown resistance against this unprecedented drug by means of a number of drug resistance mechanisms. Its prevalence has been reporting since the adoption of the drug, but with a minute ratio at one time/place to the very high percentage at another time/place. This inconsistent prevalence must not be ignored, and its surveillance should be augmented as antibiotic treatment is critical for fighting against microbial infections. This review highlights the worldwide reports in which Staphylococcus aureus of either wildtype or Methicillin or Vancomycin resistance that have shown resistance to Linezolid drug for the past 2 decades. At the same time where incidences of Linezolid Resistant Staphylococcus aureus (LRSA) indications are reporting, there is a call for comprehensive strategies to overcome this challenge of antibiotic resistance.
Collapse
|
5
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1424-1431. [DOI: 10.1093/jac/dkac039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
|
6
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1218-1227. [DOI: 10.1093/jac/dkac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/05/2022] [Indexed: 11/14/2022] Open
|
7
|
Sauer A, Peukert K, Putensen C, Bode C. Antibiotics as immunomodulators: a potential pharmacologic approach for ARDS treatment. Eur Respir Rev 2021; 30:210093. [PMID: 34615700 PMCID: PMC9489085 DOI: 10.1183/16000617.0093-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
First described in the mid-1960s, acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure with an overall mortality rate of approximately 40%. Despite significant advances in the understanding and treatment of ARDS, no substantive pharmacologic therapy has proven to be beneficial, and current management continues to be primarily supportive. Beyond their antibacterial activity, several antibiotics such as macrolides and tetracyclines exert pleiotropic immunomodulatory effects that might be able to rectify the dysregulated inflammatory response present in patients with ARDS. This review aims to provide an overview of preclinical and clinical studies that describe the immunomodulatory effects of antibiotics in ARDS. Moreover, the underlying mechanisms of their immunomodulatory properties will be discussed. Further studies are necessary to investigate their full therapeutic potential and to identify ARDS phenotypes which are most likely to benefit from their immunomodulatory effects.
Collapse
Affiliation(s)
- Andrea Sauer
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Konrad Peukert
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Putensen
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Dept of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Sitafloxacin reduces tumor necrosis factor alpha (TNFα) converting enzyme (TACE) phosphorylation and activity to inhibit TNFα release from lipopolysaccharide-stimulated THP-1 cells. Sci Rep 2021; 11:24154. [PMID: 34921186 PMCID: PMC8683466 DOI: 10.1038/s41598-021-03511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a systemic reaction to an infection and resulting in excessive production of inflammatory cytokines and chemokines. It sometimes results in septic shock. The present study aimed to identify quinolone antibiotics that can reduce tumor necrosis factor alpha (TNFα) production and to elucidate mechanisms underlying inhibition of TNFα production. We identified quinolone antibiotics reduced TNFα production in lipopolysaccharide (LPS)-stimulated THP-1 cells. Sitafloxacin (STFX) is a broad-spectrum antibiotic of the quinolone class. STFX effectively suppressed TNFα production in LPS-stimulated THP-1 cells in a dose-dependent manner and increased extracellular signal-regulated kinase (ERK) phosphorylation. The percentage of intracellular TNFα increased in LPS-stimulated cells with STFX compared with that in LPS-stimulated cells. TNFα converting enzyme (TACE) released TNFα from the cells, and STFX suppressed TACE phosphorylation and activity. To conclude, one of the mechanisms underlying inhibition of TNFα production in LPS-stimulated THP-1 cells treated with STFX is the inhibition of TNFα release from cells via the suppression of TACE phosphorylation and activity. STFX may kill bacteria and suppress inflammation. Therefore, it can be effective for sepsis treatment.
Collapse
|
9
|
Cahill C, Cox DJ, O’Connell F, Basdeo SA, Gogan KM, Ó’Maoldomhnaigh C, O’Sullivan J, Keane J, Phelan JJ. The Effect of Tuberculosis Antimicrobials on the Immunometabolic Profiles of Primary Human Macrophages Stimulated with Mycobacterium tuberculosis. Int J Mol Sci 2021; 22:ijms222212189. [PMID: 34830070 PMCID: PMC8624646 DOI: 10.3390/ijms222212189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health challenge. Patients with drug-sensitive and drug-resistant TB undergo long, arduous, and complex treatment regimens, often involving multiple antimicrobials. While these drugs were initially implemented based on their bactericidal effects, some studies show that TB antimicrobials can also directly affect cells of the immune system, altering their immune function. As use of these antimicrobials has been the mainstay of TB therapy for over fifty years now, it is more important than ever to understand how these antimicrobials affect key pathways of the immune system. One such central pathway, which underpins the immune response to a variety of infections, is immunometabolism, namely glycolysis and oxidative phosphorylation (OXPHOS). We hypothesise that in addition to their direct bactericidal effect on Mycobacterium tuberculosis (Mtb), current TB antimicrobials can modulate immunometabolic profiles and alter mitochondrial function in primary human macrophages. Human monocyte-derived macrophages (hMDMs) were differentiated from PBMCs isolated from healthy blood donors, and treated with four first-line and six second-line TB antimicrobials three hours post stimulation with either iH37Rv-Mtb or lipopolysaccharide (LPS). 24 h post stimulation, baseline metabolism and mitochondrial function were determined using the Seahorse Extracellular Flux Analyser. The effect of these antimicrobials on cytokine and chemokine production was also assayed using Meso Scale Discovery Multi-Array technology. We show that some of the TB antimicrobials tested can significantly alter OXPHOS and glycolysis in uninfected, iH37Rv-Mtb, and LPS-stimulated hMDMs. We also demonstrate how these antimicrobial-induced immunometabolic effects are linked with alterations in mitochondrial function. Our results show that TB antimicrobials, specifically clofazimine, can modify host immunometabolism and mitochondrial function. Moreover, clofazimine significantly increased the production of IL-6 in human macrophages that were stimulated with iH37Rv-Mtb. This provides further insight into the use of some of these TB antimicrobials as potential host-directed therapies in patients with early and active disease, which could help to inform TB treatment strategies in the future.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Dónal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Sharee A. Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Karl M. Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Cilian Ó’Maoldomhnaigh
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, Dublin 8, Ireland; (F.O.); (J.O.)
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
| | - James J. Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland; (C.C.); (D.J.C.); (S.A.B.); (K.M.G.); (C.Ó.); (J.K.)
- Correspondence: ; Tel.: +35-318-963-265
| |
Collapse
|
10
|
A mouse air pouch model for evaluating the anti-bacterial efficacy of phage MR-5 in resolving skin and soft tissue infection induced by methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2021; 66:959-972. [PMID: 34255282 DOI: 10.1007/s12223-021-00895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
With the alarming rise in antimicrobial resistance, phage therapy represents a new paradigm for combating antibiotic-resistant infectious diseases that is worth exploring for its clinical success. With this scenario, the present study aimed at evaluating the in vivo potential of phage MR-5 (broad host range Staphylococcus aureus phage) against soft tissue infections induced by methicillin-resistant S. aureus (MRSA). Also, the usefulness of relatively simple murine air pouch as a dual-purpose model (to study both anti-bacterial and anti-inflammatory parameters) in the field of phage therapeutics has been put to test. Murine air pouch model was established with experimental skin infection induced by S. aureus ATCC 43,300 followed by subcutaneous administration of phage alone as well as along with linezolid. Phage MR-5 alone and in combination with linezolid (showing synergy) brought significant reduction in the bacterial load (both extracellular as well as intracellular) that led to faster resolution of pouch infection. The main conclusions surfaced from the present study include the following: (a) murine air pouch model represents a simple useful model (mimicking subcutaneous skin infection) for studying anti-bacterial potencies of drug candidates. Therefore, its use and further adaptations especially in field of phage therapeutics is highly advocated and (b) phage MR-5 proved to be a potential therapeutic candidate against treatment of MRSA-induced skin and soft tissue infections and use of combination therapy is strongly recommended.
Collapse
|
11
|
Evans SJ, Roberts AEL, Morris AC, Simpson AJ, Harris LG, Mack D, Jenkins RE, Wilkinson TS. Contrasting effects of linezolid on healthy and dysfunctional human neutrophils: reducing C5a-induced injury. Sci Rep 2020; 10:16377. [PMID: 33009444 PMCID: PMC7532177 DOI: 10.1038/s41598-020-72454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of ventilator-associated pneumonia (VAP). Patients with VAP have poorly functioning neutrophils, related to increased levels of the complement fragment C5a. The antibiotic linezolid has been useful in controlling MRSA-related VAP infections; however clinical benefit does not always correlate with antimicrobial effect, suggesting the possibility of immunomodulatory properties. Here the effects of linezolid on healthy and dysfunctional neutrophils (modelled by C5a-induced injury) was investigated. Functional assays (killing, phagocytosis, transmigration, and respiratory burst) were used to assess the effects of pre-, co- and post-incubating linezolid (0.4-40 mg/L) with healthy neutrophils relative to those with C5a-induced injury. C5a decreased neutrophil killing, and phagocytosis of MRSA. Furthermore, C5a significantly decreased neutrophil transmigration to IL-8, but did not affect respiratory burst. Co-incubation of linezolid significantly improved killing of MRSA by dysfunctional neutrophils, which was supported by concomitant increases in phagocytosis. Conversely linezolid impaired killing responses in healthy neutrophils. Pre- or post-incubation of linezolid prior or following C5a induced injury had no effect on neutrophil function. This study suggests that linezolid has immunomodulatory properties that protect human neutrophils from injury and provides insight into its mode of action beyond a basic antibiotic.
Collapse
Affiliation(s)
- Stephen J Evans
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Aled E L Roberts
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, School of Clinical Medicine, University of Cambridge, Level 4, Addenbrooke's Hospital, Cambridge Biomedical Campus, Hills Road, Box 93, Cambridge, CB2, 0QQ, UK
| | - A John Simpson
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Llinos G Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Dietrich Mack
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK.,Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH, Konrad-Adenauer-Str. 17, 55218, Ingelheim, Germany
| | - Rowena E Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Floor 1, Room 137, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
12
|
Cahill C, Phelan JJ, Keane J. Understanding and Exploiting the Effect of Tuberculosis Antimicrobials on Host Mitochondrial Function and Bioenergetics. Front Cell Infect Microbiol 2020; 10:493. [PMID: 33042867 PMCID: PMC7522306 DOI: 10.3389/fcimb.2020.00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Almost 140 years after its discovery, tuberculosis remains the leading infectious cause of death globally. For half a century, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials that primarily function through direct bactericidal activity. Long-term utilization of these antimicrobials has been well-characterized and associated with numerous toxic side-effects. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, a more thorough understanding of these antimicrobials is a necessity. In order to progress from the “one size fits all” treatment approach, understanding how these antimicrobials affect mitochondrial function and bioenergetics may provide further insight into how these drugs affect the overall functions of host immune cells during tuberculosis infection. Such insights may help to inform future studies, instigate discussion, and help toward establishing personalized approaches to using such antimicrobials which could help to pave the way for more tailored treatment regimens. While recent research has highlighted the important role mitochondria and bioenergetics play in infected host cells, only a small number of studies have examined how these antimicrobials affect mitochondrial function and immunometabolic processes within these immune cells. This short review highlights how these antimicrobials affect key elements of mitochondrial function, leading to further discussion on how they affect bioenergetic processes, such as glycolysis and oxidative phosphorylation, and how antimicrobial-induced alterations in these processes can be linked to downstream changes in inflammation, autophagy, and altered bactericidal activity.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - James Joseph Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Parikh R, Bates JHT, Poynter ME, Suratt BT, Parsons PE, Kien CL, Heyland DK, Crain KI, Martin J, Garudathri J, Stapleton RD. Pharmacokinetics of omega-3 fatty acids in patients with severe sepsis compared with healthy volunteers: A prospective cohort study. Clin Nutr 2020; 39:958-965. [PMID: 31005335 PMCID: PMC6785383 DOI: 10.1016/j.clnu.2019.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND Pharmacokinetics (PK) of pharmaceuticals and pharmaconutrients are poorly understood in critically ill patients, and dosing is often based on healthy subject data. This might be particularly problematic with enteral medications due to metabolic abnormalities and impaired gastrointestinal tract absorption common in critically ill patients. Utilizing enteral fish oil, this study was undertaken to better understand and define PK of enteral omega-3 fatty acids (eicospentaenoic acid [EPA] and docosahexaenoic acid [DHA]) in critically ill patients with severe sepsis. MATERIALS AND METHODS Healthy volunteers (n = 15) and mechanically ventilated (MV) adults with severe sepsis (n = 10) were recruited and received 9.75 g EPA and 6.75 g DHA daily in two divided enteral doses of fish oil for 7 days. Volunteers continued their normal diet without other sources of fish oil, and sepsis patients received standard enteral feeding. Blood was collected at frequent intervals during the 14-day study period. Peripheral blood mononuclear cells (PMBCs) and neutrophils were isolated and analyzed for membrane fatty acid (FA) content. Mixed linear models and t-tests were used to analyze changes in FA levels over time and FA levels at individual time points, respectively. PK parameters were obtained based on single compartment models of EPA and DHA kinetics. RESULTS Healthy volunteers were 41.1 ± 10.3 years; 67% were women. In patients with severe sepsis (55.6 ± 13.4 years, 50% women), acute physiologic and chronic health evaluation (APACHE) II score was 27.2 ± 8.8 at ICU admission and median MV duration was 10.5 days. Serum EPA and DHA were significantly lower in sepsis vs. healthy subjects over time. PBMC EPA concentrations were generally not different between groups over time, while PBMC DHA was higher in sepsis patients. Neutrophil EPA and DHA concentrations were similar between groups. The half-life of EPA in serum and neutrophils was significantly shorter in sepsis patients, whereas other half-life parameters did not vary significantly between healthy volunteers and sepsis patients. CONCLUSIONS While incorporation of n-3 FAs into PBMC and neutrophil membranes was relatively similar between healthy volunteers and sepsis patients receiving identical high doses of fish oil for one week, serum EPA and DHA were significantly lower in sepsis patients. These findings imply that serum concentrations and EPA and DHA may not be the dominant driver of leukocyte membrane incorporation of EPA and DHA. Furthermore, lower serum EPA and DHA concentrations suggest that either these n-3 FAs were being metabolized rapidly in sepsis patients or that absorption of enteral medications and pharmaconutrients, including fish oil, may be impaired in sepsis patients. If enteral absorption is impaired, doses of enteral medications administered to critically ill patients may be suboptimal.
Collapse
Affiliation(s)
- Radhika Parikh
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jason H T Bates
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew E Poynter
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Benjamin T Suratt
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Polly E Parsons
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - C Lawrence Kien
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | | | - Karen I Crain
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Julie Martin
- Oregon Health & Science University, Portland, OR, USA
| | | | - Renee D Stapleton
- University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
14
|
Wang J, Xia L, Wang R, Cai Y. Linezolid and Its Immunomodulatory Effect: In Vitro and In Vivo Evidence. Front Pharmacol 2019; 10:1389. [PMID: 31849655 PMCID: PMC6894011 DOI: 10.3389/fphar.2019.01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies have explored the effects of some antibacterial agents on various aspects of the immune response to infection in addition to their bactericidal effects. As a synthetic oxazolidinone class of antibacterial agent, linezolid (LZD) exhibits activity against a broad range of Gram-positive bacteria. In the present review, we summarized the effects of LZD on the immune response and new approaches that can exploit such interactions for the treatment of bacterial infections. In vitro and pre-clinical evidence demonstrate that LZD suppresses the phagocytic ability, cytokine synthesis, and secretion of immune cells as well as the expressions of immune-related genes at the mRNA level under the stimulation of endotoxin or pathogens. Immunomodulatory effects of LZD can not only reduce the inflammatory damage induced by exaggerated or prolonged release of pro-inflammatory cytokines during infections but can also be applied to alleviate the symptoms of non-infectious inflammatory conditions. Further research is necessary to explore the molecular mechanisms involved and confirm these findings in clinical practice.
Collapse
Affiliation(s)
- Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Lei Xia
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Radulović NS, Todorovska MM, Zlatković DB, Stojanović NM, Randjelović PJ. Two goitrogenic 1,3-oxazolidine-2-thione derivatives from Brassicales taxa: Challenging identification, occurrence and immunomodulatory effects. Food Chem Toxicol 2017; 110:94-108. [PMID: 29017835 DOI: 10.1016/j.fct.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023]
Abstract
1,3-Oxazolidine-2-thione derivatives are glucosinolate-related food constituents known to impart (thyreo)toxic properties to some cruciferous vegetables. In this work, 5,5-dimethyl-1,3-oxazolidine-2-thione and (-)-(R)-5-phenyl-1,3-oxazolidine-2-thione, known goitrogens, were isolated from Draba lasiocarpa Rochel (Brassicaceae) and Reseda luteola L. (Resedaceae), respectively, and were fully spectrally characterized. Subsequently, the occurrence of the two 1,3-oxazolidine-2-thiones was verified in six additional taxa out of in total 78 screened Serbian Brassicales taxa. The stereochemistry of 5-phenyl-1,3-oxazolidine-2-thione was inferred from nuclear magnetic resonance experiments with a chiral lanthanide-shift reagent, employed in this work for the first time for this type of compounds. Unexpectedly, during gas chromatography, 5-phenyl-1,3-oxazolidine-2-thione underwent an unreported thermal core isomerization (1,3-oxazolidine-2-thione to 1,3-thiazolidine-2-one). These goitrogenic volatile glucosinolate products were tested for their effect on rat macrophage viability (three assays) and nitric oxide production. It was shown that the compounds displayed different levels of cytotoxicity. All tested compounds caused a significant lactate dehydrogenase leakage, but only (R)-5-phenyl-1,3-oxazolidine-2-thione statistically significantly reduced macrophage mitochondrial activity, whereas the racemic 5-phenyl-1,3-oxazolidine-2-thione and 5,5-dimethyl-1,3-oxazolidine-2-thione had little or no effect. Again only (R)-5-phenyl-1,3-oxazolidine-2-thione exerted nitric oxide production-inhibiting properties, suggesting the higher immunomodulatory potential of this enantiomer compared with its antipode and racemic mixture.
Collapse
Affiliation(s)
- Niko S Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Milica M Todorovska
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Dragan B Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Nikola M Stojanović
- Faculty of Medicine, University of Niš, Dr Zoran Ðinđić Boulevard 81, 18000 Niš, Serbia
| | - Pavle J Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, Dr Zoran Ðinđić Boulevard 81, 18000 Niš, Serbia
| |
Collapse
|
16
|
Hanai Y, Matsuo K, Kusano A, Tsurumi R, Asano M, Ohashi H, Kimura I, Hirayama S, Kosugi T, Nishizawa K, Yoshio T. Evaluation of the Clinical Course of Methicillin-resistant Staphylococcus Aureus Infections in Consideration of the Efficacy of Linezolid. ACTA ACUST UNITED AC 2017. [DOI: 10.5649/jjphcs.43.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuki Hanai
- Department of Pharmacy, Toho University Omori Medical Center
- Department of Pharmacy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University
| | - Kazuhiro Matsuo
- Department of Pharmacy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University
| | - Ayumu Kusano
- Department of Pharmacy, Toho University Omori Medical Center
| | - Rino Tsurumi
- Department of Pharmacy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University
| | - Megumi Asano
- Department of Pharmacy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University
| | - Hayato Ohashi
- Department of Pharmacy, Toho University Omori Medical Center
| | - Itsuki Kimura
- Department of Pharmacy, Toho University Omori Medical Center
| | | | | | - Kenji Nishizawa
- Department of Pharmacy, Toho University Omori Medical Center
| | - Takashi Yoshio
- Department of Pharmacy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
17
|
Kaku N, Morinaga Y, Takeda K, Kosai K, Uno N, Hasegawa H, Miyazaki T, Izumikawa K, Mukae H, Yanagihara K. Antimicrobial and immunomodulatory effects of tedizolid against methicillin-resistant Staphylococcus aureus in a murine model of hematogenous pulmonary infection. Int J Med Microbiol 2016; 306:421-8. [PMID: 27259840 DOI: 10.1016/j.ijmm.2016.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023] Open
Abstract
Tedizolid (TZD) is a second-generation oxazolidinone and demonstrates potent in-vitro activity against multidrug-resistant Gram-positive bacteria. Phase III studies in patients with acute bacterial skin and skin structure infections (ABSSSI) have demonstrated the non-inferiority of TZD to linezolid (LZD). However, there are only a few studies that show the effect of TZD in pulmonary infections. In this study, we investigated the effect of TZD in a murine model of hematogenous pulmonary infection caused by methicillin-resistant Staphylococcus aureus (MRSA). The mice were treated either twice daily with saline (control), 25mg/kg of vancomycin (low-VAN), 110mg/kg of vancomycin (high-VAN), 120mg/kg of LZD or once daily with 20mg/kg of TZD. As compared to the control, the low- and high-VAN treatment groups, LZD and TZD significantly improved the survival rate, reduced the bacterial count in the lungs. Furthermore, TZD decreased the area of central bacterial colony zone (CBCZ) at 36h post-inoculation, compared with the control. In addition, we investigated the immunomodulatory effect of TZD by evaluating the plasma concentrations of the inflammatory cytokines. Although there were no significant differences in the bacterial count in the lungs amongst the drugs at 26h post-inoculation, TZD and LZD significantly improved the plasma concentrations of TNF-alpha, IL-6 and MIP-2, in comparison with the control. In this study, both TZD and LZD demonstrated antimicrobial and immunomodulatory efficacy in a murine model of hematogenous pulmonary infection caused by MRSA.
Collapse
Affiliation(s)
- Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan.
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan; Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Taiga Miyazaki
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Hiroshi Mukae
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Japan
| |
Collapse
|
18
|
Tanaka R, Suzuki Y, Takumi Y, Iwao M, Sato Y, Hashinaga K, Hiramatsu K, Kadota JI, Itoh H. A Retrospective Analysis of Risk Factors for Linezolid-Associated Hyponatremia in Japanese Patients. Biol Pharm Bull 2016; 39:1968-1973. [DOI: 10.1248/bpb.b16-00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital
| | - Yosuke Suzuki
- Department of Clinical Pharmacy, Oita University Hospital
| | - Yukie Takumi
- Department of Clinical Pharmacy, Oita University Hospital
| | - Motoshi Iwao
- Department of Clinical Pharmacy, Oita University Hospital
| | - Yuhki Sato
- Department of Clinical Pharmacy, Oita University Hospital
| | - Kazuhiko Hashinaga
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University
| | - Kazufumi Hiramatsu
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University
| | - Jun-ichi Kadota
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital
| |
Collapse
|
19
|
Matsumoto K, Obara S, Kuroda Y, Kizu J. Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats. J Infect Chemother 2015; 21:889-91. [DOI: 10.1016/j.jiac.2015.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
|
20
|
Bode C, Muenster S, Diedrich B, Jahnert S, Weisheit C, Steinhagen F, Boehm O, Hoeft A, Meyer R, Baumgarten G. Linezolid, vancomycin and daptomycin modulate cytokine production, Toll-like receptors and phagocytosis in a human in vitro model of sepsis. J Antibiot (Tokyo) 2015; 68:485-90. [PMID: 25735844 PMCID: PMC4579589 DOI: 10.1038/ja.2015.18] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 01/19/2023]
Abstract
Conventional antibiotics exhibit immunomodulatory properties beneficial in the treatment of sepsis. Antibiotic-resistant Gram-positive bacteria have become a problem in sepsis therapy, giving rise to increased use of last-resort antibiotics; for example, linezolid (LIN), vancomycin (VAN) and daptomycin (DAP). As the immunomodulatory properties of these antibiotics in treating sepsis are unknown, this study examined the effect of VAN, LIN and DAP on the immune response under sepsis-like conditions in vitro. Lipopolysaccharide (LPS)-activated THP-1 monocytes were incubated with LIN, VAN or DAP. Gene expression of cytokines (TNFα, IL-1β, IL-6, IL-10) and Toll-like receptors (TLR1, 2, 4, 6, 7 and 9) was monitored and phagocytosis was determined following coincubation with E. coli. The antibiotics differentially modulated the gene expression of the investigated cytokines. While LIN and VAN upregulated the expression of all TLRs, DAP downregulated mRNA levels of TLR1, TLR2 and TLR6, which recognize pathogen-associated molecular patterns from Gram-positive bacteria. In addition, LIN inhibited, whereas VAN promoted the phagocytic activity of monocytes. Our results suggest that LIN and VAN possess pro-inflammatory properties, whereas DAP might reduce the immune response to Gram-positive bacteria in sepsis. Furthermore, VAN might be beneficial in the prevention of Gram-negative infections by increasing the phagocytosis of E. coli.
Collapse
|
21
|
Bhan U, Podsiad AB, Kovach MA, Ballinger MN, Keshamouni V, Standiford TJ. Linezolid has unique immunomodulatory effects in post-influenza community acquired MRSA pneumonia. PLoS One 2015; 10:e0114574. [PMID: 25635685 PMCID: PMC4312022 DOI: 10.1371/journal.pone.0114574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/11/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Post influenza pneumonia is a leading cause of mortality and morbidity, with mortality rates approaching 60% when bacterial infections are secondary to multi-drug resistant (MDR) pathogens. Staphylococcus aureus, in particular community acquired MRSA (cMRSA), has emerged as a leading cause of post influenza pneumonia. Hypothesis Linezolid (LZD) prevents acute lung injury in murine model of post influenza bacterial pneumonia Methods Mice were infected with HINI strain of influenza and then challenged with cMRSA at day 7, treated with antibiotics (LZD or Vanco) or vehicle 6 hours post bacterial challenge and lungs and bronchoalveolar lavage fluid (BAL) harvested at 24 hours for bacterial clearance, inflammatory cell influx, cytokine/chemokine analysis and assessment of lung injury. Results Mice treated with LZD or Vanco had lower bacterial burden in the lung and no systemic dissemination, as compared to the control (no antibiotic) group at 24 hours post bacterial challenge. As compared to animals receiving Vanco, LZD group had significantly lower numbers of neutrophils in the BAL (9×103 vs. 2.3×104, p < 0.01), which was associated with reduced levels of chemotactic chemokines and inflammatory cytokines KC, MIP-2, IFN-γ, TNF-α and IL-1β in the BAL. Interestingly, LZD treatment also protected mice from lung injury, as assessed by albumin concentration in the BAL post treatment with H1N1 and cMRSA when compared to vanco treatment. Moreover, treatment with LZD was associated with significantly lower levels of PVL toxin in lungs. Conclusion Linezolid has unique immunomodulatory effects on host inflammatory response and lung injury in a murine model of post-viral cMRSA pneumonia.
Collapse
Affiliation(s)
- Urvashi Bhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Amy B. Podsiad
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Melissa A. Kovach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Megan N. Ballinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Venkateshwar Keshamouni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
22
|
Yasuda M, Inokuchi R, Ohshima K, Yamamoto M, Tokunaga K, Fukuda T, Nakamura K. Linezolid is a novel and effective treatment for septic pulmonary embolism. Am J Emerg Med 2015; 33:988.e3-4. [PMID: 25630385 DOI: 10.1016/j.ajem.2014.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022] Open
Abstract
Septic pulmonary embolism (SPE) is an uncommon and severe infectious disease that requires early diagnosis and proper antibiotic therapy. We present the case of a healthy 14-year-old girl with a history of atopic dermatitis, who developed SPE caused by Staphylococcus aureus bacteremia. We initially administered intravenous doripenem and vancomycin. Four days after her admission, blood and urine cultures yielded penicillinase nonproducing, methicillin-sensitive S aureus, with a minimum inhibitory concentration less than 0.06 μg/mL. However,the administration of penicillin G aggravated her condition; therefore, treatment was switched to linezolid on day 8. Her condition subsequently resolved, and she was discharged 40 days after admission without any complications. To our knowledge, this is the first report regarding the efficacy of linezolid for SPE that is related to community-acquired methicillin-sensitive S aureus bacteremia. The favorable lung tissue transfer of linezolid may have contributed to its efficacy against the SPE.
Collapse
Affiliation(s)
- Maki Yasuda
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan.
| | - Ryota Inokuchi
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan; Department of Emergency and Critical Care Medicine, University Hospital, The University of Tokyo Hospital, 7-3-1 Hongo Bunkyo, Tokyo 113-8655, Japan; Department of Emergency Medicine, JR General Hospital, 2-1-3 Yoyogi, Shibuya-ku, Tokyo 151-8528, Japan
| | - Kazuma Ohshima
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan
| | - Miyuki Yamamoto
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan
| | - Kurato Tokunaga
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan; Department of Emergency and Critical Care Medicine, University Hospital, The University of Tokyo Hospital, 7-3-1 Hongo Bunkyo, Tokyo 113-8655, Japan
| | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, 2-1-1 Jonan Hitachi, Ibaraki 317-0077, Japan; Department of Emergency and Critical Care Medicine, University Hospital, The University of Tokyo Hospital, 7-3-1 Hongo Bunkyo, Tokyo 113-8655, Japan
| |
Collapse
|
23
|
Diep BA, Equils O, Huang DB, Gladue R. Linezolid effects on bacterial toxin production and host immune response: review of the evidence. Curr Ther Res Clin Exp 2014; 73:86-102. [PMID: 24648596 DOI: 10.1016/j.curtheres.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Linezolid is active against a broad range of gram-positive pathogens and has the potential to also affect production of bacterial toxins and host immune function. OBJECTIVE To assess the evidence for direct effects of linezolid on bacterial toxin synthesis and modulation of host immune responses. METHODS Literature searches were performed of the PubMed and OVID databases. Reviews and non-English language articles were excluded. Articles with information on the effect of linezolid on bacterial toxin synthesis and immune responses were selected for further review, and data were summarized. RESULTS Substantial in vitro evidence supports effects of linezolid on bacterial toxin production; however, the strength of the evidence and the nature of the effects are mixed. In the case of Staphylococcus aureus, repeated observations support the inhibition of production of certain staphylococcal toxins (Panton-Valentine leukocidin, protein A, and α- and β-hemolysin) by linezolid, whereas only solitary reports indicate inhibition (toxic shock syndrome toxin-1, coagulase, autolysins, and enterotoxins A and B) or stimulation (phenol-soluble modulins) of toxin production by linezolid. In the case of Streptococcus pyogenes, there are solitary reports of linezolid inhibition (protein M, deoxyribonuclease, and streptococcal pyrogenic exotoxins A, B, and F) or stimulation (immunogenic secreted protein 2 and streptococcal inhibitor of complement-mediated lysis) of toxin production, whereas published evidence for effects on streptolysin O production is conflicting. In vitro data are limited, but suggest that linezolid might also have indirect effects on host cytokine expression through inhibition of bacterial production of toxins. In vivo data from preclinical animal studies and a single clinical study in humans are limited and equivocal insofar as a potential role for linezolid in modulating the host inflammatory response; this is due in part to the difficulty in isolating antimicrobial effects and toxin synthesis inhibitory effects of linezolid from any secondary effects on host inflammatory response. CONCLUSIONS Available evidence supports the possibility that linezolid can inhibit, and in some cases stimulate, toxin production in clinically relevant pathogens. However, more research will be needed to determine the potential clinical relevance of those findings for linezolid.
Collapse
Affiliation(s)
- Binh An Diep
- Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Ozlem Equils
- Medical Division, Pfizer Inc, Collegeville, Pennsylvania
| | - David B Huang
- Medical Division, Pfizer Inc, Collegeville, Pennsylvania
| | - Ron Gladue
- Pfizer Global Biotherapeutic Technologies, Cambridge, Massachusetts
| |
Collapse
|
24
|
Immunomodulatory effect of linezolid on methicillin-resistant Staphylococcus aureus supernatant-induced MUC5AC overexpression in human airway epithelial cells. Antimicrob Agents Chemother 2014; 58:4131-7. [PMID: 24820080 DOI: 10.1128/aac.02811-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Linezolid is the first member of the oxazolidinones and is active against drug-resistant Gram-positive pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Additionally, linezolid shows an immunomodulatory effect, such as inhibition of inflammatory cytokine production. In this study, we examined the effect of linezolid on MRSA-induced MUC5AC overexpression in airway epithelial cells. In this study, an MRSA supernatant was used to avoid the direct effect of linezolid on MRSA. MUC5AC protein production was significantly increased with a 40-fold dilution of MRSA supernatant. At the mRNA level, MUC5AC gene expression was significantly increased 6 and 9 h after stimulation. In an inhibition study, linezolid significantly reduced MRSA-induced MUC5AC protein and mRNA overexpression at concentrations of 5 and 20 μg/ml, which were the same as the trough and peak concentrations in human epithelial lining fluid. In an analysis of cell signaling, among the mitogen-activated protein kinase inhibitors, only the extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor reduced the MUC5AC protein production to the same level as that of the control; on Western blot analysis, only ERK1/2 was phosphorylated by the MRSA supernatant. In addition, the ERK1/2 phosphorylation was inhibited by linezolid. MUC5AC and MUC5B are the major barrier that traps inhaled microbial organisms, particulates, and foreign irritants. However, in patients with chronic respiratory diseases, pathogen-induced MUC5AC overexpression causes many problems, and control of the overexpression is important. Thus, this study revealed that linezolid showed a direct immunomodulatory effect in airway epithelial cells.
Collapse
|
25
|
Caglayan K, Gungor B, Cinar H, Erdogan NY, Koca B. Preventing intraperitoneal adhesions with linezolid and hyaluronic acid/carboxymethylcellulose: a comparative study in cecal abrasion model. Am J Surg 2014; 208:106-11. [PMID: 24814308 DOI: 10.1016/j.amjsurg.2012.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/28/2012] [Accepted: 05/29/2012] [Indexed: 12/08/2022]
Abstract
BACKGROUND We aimed to compare the effectiveness of linezolid in preventing intraperitoneal adhesions with hyaluronic acid + carboxymethylcellulose (Seprafilm). METHODS Thirty rats were divided randomly into 3 groups: Group I (control), untreated; Group II (Seprafilm); and Group III (linezolid). All rats were sacrificed on the 14th day after surgery. Macroscopic adhesion, inflammation, and fibrosis were evaluated. RESULTS The multiple comparisons between groups showed a statistically significant difference for adhesion. There were statistically significant differences between Group I and II and I and III, but no statistically significant difference between Group II and III. The multiple comparisons between the groups showed a statistically significant difference for inflammation and fibrosis. For inflammation and fibrosis, there was a statistically significant difference between Group I and II and I and III, but no statistically significant difference between Group II and III. CONCLUSION The efficiency of linezolid in reducing the formation of intraperitoneal adhesions was statistically significant compared with the control group.
Collapse
Affiliation(s)
- Kasim Caglayan
- Faculty of Medicine, Department of Surgery, Bozok University, Yozgat, Turkey.
| | - Bulent Gungor
- Faculty of Medicine, Department of Surgery, Ondokuz Mayis University, Samsun, Turkey
| | - Hamza Cinar
- Department of Surgery, Siirt Kurtalan State Hospital, Siirt, Turkey
| | - Nilsen Y Erdogan
- Department of Pathology, Taksim Training and Education Hospital, Istanbul, Turkey
| | - Bulent Koca
- Faculty of Medicine, Department of Surgery, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
26
|
Breslow-Deckman JM, Mattingly CM, Birket SE, Hoskins SN, Ho TN, Garvy BA, Feola DJ. Linezolid decreases susceptibility to secondary bacterial pneumonia postinfluenza infection in mice through its effects on IFN-γ. THE JOURNAL OF IMMUNOLOGY 2013; 191:1792-9. [PMID: 23833238 DOI: 10.4049/jimmunol.1300180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Influenza infection predisposes patients to secondary bacterial pneumonia that contributes significantly to morbidity and mortality. Although this association is well documented, the mechanisms that govern this synergism are poorly understood. A window of hyporesponsiveness following influenza infection has been associated with a substantial increase in local and systemic IFN-γ concentrations. Recent data suggest that the oxazolidinone antibiotic linezolid decreases IFN-γ and TNF-α production in vitro from stimulated PBMCs. We therefore sought to determine whether linezolid would reverse immune hyporesponsiveness after influenza infection in mice through its effects on IFN-γ. In vivo dose-response studies demonstrated that oral linezolid administration sufficiently decreased bronchoalveolar lavage fluid levels of IFN-γ at day 7 postinfluenza infection in a dose-dependent manner. The drug also decreased morbidity as measured by weight loss compared with vehicle-treated controls. When mice were challenged intranasally with Streptococcus pneumoniae 7 d postinfection with influenza, linezolid pretreatment led to decreased IFN-γ and TNF-α production, decreased weight loss, and lower bacterial burdens at 24 h postbacterial infection in comparison with vehicle-treated controls. To determine whether these effects were due to suppression of IFN-γ, linezolid-treated animals were given intranasal instillations of rIFN-γ before challenge with S. pneumoniae. This partially reversed the protective effects observed in the linezolid-treated mice, suggesting that the modulatory effects of linezolid are mediated partially by its ability to blunt IFN-γ production. These results suggest that IFN-γ, and potentially TNF-α, may be useful drug targets for prophylaxis against secondary bacterial pneumonia following influenza infection.
Collapse
Affiliation(s)
- Jessica M Breslow-Deckman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Chen J, Feng G, Song Y, Wardenburg JB, Lin S, Inoshima I, Otto M, Wunderink RG. Linezolid Exerts Greater Bacterial Clearance but No Modification of Host Lung Gene Expression Profiling: A Mouse MRSA Pneumonia Model. PLoS One 2013; 8:e67994. [PMID: 23826353 PMCID: PMC3694879 DOI: 10.1371/journal.pone.0067994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Background Linezolid (LZD) is beneficial to patients with MRSA pneumonia, but whether and how LZD influences global host lung immune responses at the mRNA level during MRSA-mediated pneumonia is still unknown. Methods A lethal mouse model of MRSA pneumonia mediated by USA300 was employed to study the influence of LZD on survival, while the sublethal mouse model was used to examine the effect of LZD on bacterial clearance and lung gene expression during MRSA pneumonia. LZD (100mg/kg/day, IP) was given to C57Bl6 mice for three days. On Day 1 and Day 3 post infection, bronchoalveolar lavage fluid (BALF) protein concentration and levels of cytokines including IL6, TNFα, IL1β, Interferon-γ and IL17 were measured. In the sublethal model, left lungs were used to determine bacterial clearance and right lungs for whole-genome transcriptional profiling of lung immune responses. Results LZD therapy significantly improved survival and bacterial clearance. It also significantly decreased BALF protein concentration and levels of cytokines including IL6, IL1β, Interferon-γ and IL17. No significant gene expression changes in the mouse lungs were associated with LZD therapy. Conclusion LZD is beneficial to MRSA pneumonia, but it does not modulate host lung immune responses at the transcriptional level.
Collapse
Affiliation(s)
- Jiwang Chen
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Section of Pulmonary, Critical Care Medicine, Allergy and Sleep, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Gang Feng
- Northwestern University Biomedical Informatics Center, Chicago, Illinois, United States of America
| | - Yang Song
- Microbiology Group, School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Juliane B. Wardenburg
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States of America
| | - Simon Lin
- Northwestern University Biomedical Informatics Center, Chicago, Illinois, United States of America
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Ichiro Inoshima
- Department of Pediatrics, University of Chicago, Chicago, Illinois, United States of America
| | - Michael Otto
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Richard G. Wunderink
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
28
|
Sharma-Kuinkel BK, Zhang Y, Yan Q, Ahn SH, Fowler VG. Host gene expression profiling and in vivo cytokine studies to characterize the role of linezolid and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) murine sepsis model. PLoS One 2013; 8:e60463. [PMID: 23565251 PMCID: PMC3614971 DOI: 10.1371/journal.pone.0060463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/26/2013] [Indexed: 01/11/2023] Open
Abstract
Linezolid (L), a potent antibiotic for Methicillin Resistant Staphylococcus aureus (MRSA), inhibits bacterial protein synthesis. By contrast, vancomycin (V) is a cell wall active agent. Here, we used a murine sepsis model to test the hypothesis that L treatment is associated with differences in bacterial and host characteristics as compared to V. Mice were injected with S. aureus USA300, and then intravenously treated with 25 mg/kg of either L or V at 2 hours post infection (hpi). In vivo alpha-hemolysin production was reduced in both L and V-treated mice compared to untreated mice but the reduction did not reach the statistical significance [P = 0.12 for L; P = 0.70 for V). PVL was significantly reduced in L-treated mice compared to untreated mice (P = 0.02). However the reduction of in vivo PVL did not reach the statistical significance in V- treated mice compared to untreated mice (P = 0.27). Both antibiotics significantly reduced IL-1β production [P = 0.001 for L; P = 0.006 for V]. IL-6 was significantly reduced with L but not V antibiotic treatment [P<0.001 for L; P = 0.11 for V]. Neither treatment significantly reduced production of TNF-α. Whole-blood gene expression profiling showed no significant effect of L and V on uninfected mice. In S. aureus-infected mice, L altered the expression of a greater number of genes than V (95 vs. 42; P = 0.001). Pathway analysis for the differentially expressed genes identified toll-like receptor signaling pathway to be common to each S. aureus-infected comparison. Expression of immunomodulatory genes like Cxcl9, Cxcl10, Il1r2, Cd14 and Nfkbia was different among the treatment groups. Glycerolipid metabolism pathway was uniquely associated with L treatment in S. aureus infection. This study demonstrates that, as compared to V, treatment with L is associated with reduced levels of toxin production, differences in host inflammatory response, and distinct host gene expression characteristics in MRSA sepsis.
Collapse
Affiliation(s)
- Batu K. Sharma-Kuinkel
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (BKSK); (SHA)
| | - Yurong Zhang
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Qin Yan
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sun Hee Ahn
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (BKSK); (SHA)
| | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| |
Collapse
|
29
|
Liu X, He Y, Xiao K, White JR, Fusco DN, Papanicolaou GA. Effect of linezolid on clinical severity and pulmonary cytokines in a murine model of influenza A and Staphylococcus aureus coinfection. PLoS One 2013; 8:e57483. [PMID: 23478252 PMCID: PMC3589409 DOI: 10.1371/journal.pone.0057483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/24/2013] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Excessive inflammation contributes to the severity of post influenza pneumonia caused by methicillin resistant S.aureus (MRSA). Linezolid, vancomycin, and clindamycin are antibiotics used for MRSA infections. Linezolid has immunomodulatory properties. We report on the effects of the three antibiotics on microbial clearance, pulmonary cytokines and clinical course in a murine model of influenza and MRSA coinfection. METHODS B6 mice were infected with influenza A virus and 3 days later with MRSA, both intranasally. Treatment with placebo, linezolid, vancomycin or clindamycin started immediately after MRSA infection and continued for 72 hours. Bacterial and viral titers as well as cytokine concentrations in the lungs were assessed 4 and 24 hours after MRSA coinfection. Mice were weighted daily for 13 days. RESULTS Coinfected mice had increased pulmonary IL-1β, TNF-α and mKC at 4 and 24 hours, IL-6, IL-10 and IL-12 at 4 hours and IFN-γ at 24 hours after MRSA coinfection (all P<0.05). Compared to placebo, coinfected mice treated with linezolid, vancomycin or clindamycin had decreased pulmonary IL-6 and mKC at 4 hours and IFN-γ at 24 hours after MRSA coinfection (all P<0.05). IL-1β, TNF-α and IL-12 were similar in antibiotic-treated and placebo groups. All antibiotics similarly reduced MRSA without effect on influenza titers. Linezolid-treated mice had less weight loss on days 4-6 after influenza infection compared to placebo (all P<0.05). On all other days weight change was similar among all groups. CONCLUSIONS This is the first report comparing the effects of antibiotics on cytokines and clinical outcome in a murine model of influenza and MRSA coinfection. Compared to placebo, antibiotic treatment reduced maximum concentration of IL-6, mKC and IFN-γ in the lungs without any difference among antibiotics. During treatment, only linezolid delayed weight loss compared to placebo.
Collapse
Affiliation(s)
- Xinyan Liu
- Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | | | | | | | | |
Collapse
|
30
|
Tanaka M, Mroz P, Dai T, Huang L, Morimoto Y, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hamblin MR. Linezolid and vancomycin decrease the therapeutic effect of methylene blue-photodynamic therapy in a mouse model of MRSA bacterial arthritis. Photochem Photobiol 2013; 89:679-82. [PMID: 23311407 DOI: 10.1111/php.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/19/2012] [Indexed: 02/04/2023]
Abstract
We previously reported that photodynamic therapy (PDT) using intra-articular methylene blue (MB) could be used to treat arthritis in mice caused by bioluminescent methicillin-resistant Staphylococcus aureus (MRSA) either in a therapeutic or in a preventative mode. PDT accumulated neutrophils into the mouse knee via activation of chemoattractants such as inflammatory cytokines or chemokines. In this study, we asked whether PDT combined with antibiotics used for MRSA could provide added benefit in controlling the infection. We compared MB-PDT alone, systemic administration of either linezolid (LZD) alone or vancomycin (VCM) alone or the combination of PDT with either LZD or VCM. Real-time noninvasive imaging was used to serially follow the progress of the infection. PDT alone was the most effective, whereas LZD alone was ineffective and VCM alone showed some benefit. Surprisingly the addition of LZD or VCM reduced the therapeutic effect of PDT alone (P < 0.05). Considering that PDT in this mouse model stimulates neutrophils to be antibacterial rather than actively killing the bacteria, we propose that LZD and VCM might inhibit the activation of inflammatory cytokines without eradicating the bacteria, and thereby reduce the therapeutic effect of PDT.
Collapse
Affiliation(s)
- Masamitsu Tanaka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Franks Z, Campbell RA, Vieira de Abreu A, Holloway JT, Marvin JE, Kraemer BF, Zimmerman GA, Weyrich AS, Rondina MT. Methicillin-resistant Staphylococcus aureus-induced thrombo-inflammatory response is reduced with timely antibiotic administration. Thromb Haemost 2013; 109:684-95. [PMID: 23348831 DOI: 10.1160/th12-08-0543] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 12/15/2012] [Indexed: 11/05/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) induces a pro-thrombotic and pro-inflammatory milieu. Although timely antibiotic administration in MRSAsepsis may improve outcomes by arresting bacterial growth, the effects of antibiotics on mitigating injurious thrombo-inflammatory cellular responses remains unexplored. Using a newly developed human whole blood model and an in vivo mouse model of MRSAinfection, we examined how antibiotics inhibit MRSAinduced thrombo-inflammatory pathways. Human whole blood was inoculated with MRSA. Thrombin generation and inflammatory cytokine synthesis was measured in the presence or absence of linezolid and vancomycin. C57BL/6 mice were injected with MRSA and the effect of vancomycin administration was examined. MRSAaccelerated thrombin generation in a time- and concentration-dependent manner andinduced the release of cytokines, including interleukin (IL)-6, IL-8, and monocyte chemotactic protein (MCP)-1. The increase in thrombin generation and inflammatory responses was mediated through the synthesis of tissue factor and cytokines, respectively, and the release of microparticles. The early administration of antibiotics restored normal thrombin generation patterns and significantly reduced the synthesis of cytokines. In contrast, when antibiotic administration was delayed, thrombin generation and cytokine synthesis were not significantly reduced. In mice infected with MRSA, early antibiotic administration reduced thrombin anti-thrombin complexes and cytokine synthesis, whereas delayed antibiotic administration did not. These data provide novel mechanistic evidence of the importance of prompt antibiotic administration in infectious syndromes.
Collapse
Affiliation(s)
- Zechariah Franks
- University of Utah, Department of Internal Medicine, 50 North Medical Drive, Room 4B120, SLC, Utah 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Attia AS, Schroeder KA, Seeley EH, Wilson KJ, Hammer ND, Colvin DC, Manier ML, Nicklay JJ, Rose KL, Gore JC, Caprioli RM, Skaar EP. Monitoring the inflammatory response to infection through the integration of MALDI IMS and MRI. Cell Host Microbe 2012; 11:664-73. [PMID: 22704626 DOI: 10.1016/j.chom.2012.04.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/30/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
Systemic bacterial infection is characterized by a robust whole-organism inflammatory response. Analysis of the immune response to infection involves technologies that typically focus on single organ systems and lack spatial information. Additionally, the analysis of individual inflammatory proteins requires antibodies specific to the protein of interest, limiting the panel of proteins that can be analyzed. Herein we describe the application of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) to mice systemically infected with Staphylococcus aureus to identify inflammatory protein masses that respond to infection throughout an entire infected animal. Integrating the resolution afforded by magnetic resonance imaging (MRI) with the sensitivity of MALDI IMS provides three-dimensional spatially resolved information regarding the distribution of innate immune proteins during systemic infection, allowing comparisons to in vivo structural information and soft-tissue contrast via MRI. Thus, integrating MALDI IMS with MRI provides a systems-biology approach to study inflammation during infection.
Collapse
Affiliation(s)
- Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Virulence-suppressing effects of linezolid on methicillin-resistant Staphylococcus aureus: possible contribution to early defervescence. Antimicrob Agents Chemother 2012; 56:1744-8. [PMID: 22290944 DOI: 10.1128/aac.05430-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the present study, immunomodulatory effects of linezolid (LZD) on methicillin-resistance Staphylococcus aureus (MRSA) infections were evaluated. We have retrospectively reviewed treatment effects of LZD on 52 patients with severe MRSA infections. Sixty-four percent of the febrile patients demonstrated significant defervescence within 3 days, despite the presence of positive culture results. We speculated that this finding might be due to early anti-inflammatory effects of LZD, and to investigate this further we initiated in vivo experiments using mice MRSA pneumonia models. Mice were treated with either LZD or vancomycin (VCM) immediately after intranasal administration of MRSA. Bacterial numbers and levels of inflammatory cytokines in the lungs were determined. Although the bacterial burden in the lungs was not apparently different between the two groups, LZD but not VCM treatment significantly reduced induction of inflammatory cytokines in the lungs (P < 0.05). To evaluate whether this anti-inflammatory response was due to suppression of virulence factor expression, filter-sterilized supernatants of MRSA incubated in broth overnight with sub-MICs of LZD were subcutaneously administered to mice. To clarify whether LZD possesses direct host-modulating activity, cytokine responses to the supernatants were examined in mice pretreated with LZD. Interestingly, MRSA solutions prepared in the presence of sub-MICs of LZD revealed significant suppression of interleukin 6 (IL-6) in a dose-dependent manner (P < 0.05), but pretreatment of mice with LZD revealed no changes in cytokines. These findings suggest that sub-MICs of LZD might suppress virulence factors of MRSA, which may be associated with a reduction in endogenous pyrogens. These data may explain at least in part early defervescence observed in LZD-treated individuals.
Collapse
|
34
|
Pichereau S, Moran JJM, Hayney MS, Shukla SK, Sakoulas G, Rose WE. Concentration-dependent effects of antimicrobials on Staphylococcus aureus toxin-mediated cytokine production from peripheral blood mononuclear cells. J Antimicrob Chemother 2011; 67:123-9. [PMID: 21980070 DOI: 10.1093/jac/dkr417] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Toxins contribute to the pathogenicity of Staphylococcus aureus infections by inducing a dysregulated inflammatory response. This study evaluated the impact of anti-staphylococcal antibiotic exposures over an increasing concentration range on cytokine production from peripheral blood mononuclear cells (PBMCs) after S. aureus toxin exposures. METHODS Human PBMCs were suspended in complete Roswell Park Memorial Institute (RPMI) 1640 medium with 10% fetal bovine serum at 10(6) cells/mL with 100 ng/mL S. aureus toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxin A (SEA), α-toxin or Panton-Valentine leucocidin (PVL). Vancomycin, trimethoprim/sulfamethoxazole, tigecycline, daptomycin, linezolid, clindamycin and azithromycin were added at a concentration range of 0.5-100 mg/L. Cytokine [interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α)] concentrations were measured in duplicate by ELISA following exposure and were compared with response with toxin alone. RESULTS At concentrations approximating serum C(max), tigecycline decreased IL-6 by 52%-57% and IFN-γ production by 43%-53% compared with toxin alone (P ≤ 0.05) and linezolid inhibited TNF-α by 12%-35% and IL-8 by 25%-42% (P ≤ 0.02). However, trimethoprim/sulfamethoxazole increased TNF-α and IL-8 production (P = 0.002). Clindamycin, daptomycin, vancomycin and azithromycin had no consistent significant effect at approximate serum C(max) concentrations. All antibiotics had a concentration-dependent effect on cytokine production, with tigecycline, clindamycin and trimethoprim/sulfamethoxazole being the most potent inhibitors of cytokine production at concentrations exceeding 25 mg/L. CONCLUSIONS S. aureus toxins stimulate production of inflammatory cytokines in PBMCs. Antimicrobials with high tissue penetration, including tigecycline, clindamycin, trimethoprim/sulfamethoxazole and linezolid, reduced cytokine production, which, along with their antimicrobial effects, may have importance in the therapeutic outcome of severe infections.
Collapse
Affiliation(s)
- Solen Pichereau
- Pharmacy Practice Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
35
|
Does linezolid modulate lung innate immunity in a murine model of methicillin-resistant Staphylococcus aureus pneumonia? Crit Care Med 2011; 39:1944-52. [PMID: 21532475 DOI: 10.1097/ccm.0b013e31821bd79e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Methicillin-resistant Staphylococcus aureus is an important cause of mortality among nosocomial infections. Recent investigations suggest that linezolid is superior to vancomycin in achieving clinical cure in patients with nosocomial pneumonia. We hypothesized that linezolid may exhibit anti-inflammatory properties in vivo model of pneumonia. DESIGN Prospective interventional study. SETTING University affiliated laboratory. SUBJECTS BALB/c mice. INTERVENTIONS Three groups of BALB/c mice were inoculated with methicillin-resistant S. aureus American Type Culture Collection 33,591 to induce pneumonia. Each group (n = 6) underwent bronchoalveolar lavage at 24 hrs, 48 hrs, and 72 hrs after inoculation after treatment with vancomycin, linezolid, or no antibiotic. Bronchoalveolar lavage fluid levels of monocyte chemotactic protein-5 and interleukin-6 were quantified using cytometric bead array. Metalloproteinase-9 was detected by enzyme-linked immunosorbent assay and gelatin zymography. Neutrophil apoptosis in bronchoalveolar lavage was assessed by annexin V and 7-aminoactinomycin D staining. Neutrophil activity was determined by myeloperoxidase enzyme activity. Phagocytosis of apoptotic neutrophils by linezolid- vs. vancomycin treated-alveolar macrophages was examined in vitro. MEASUREMENTS AND MAIN RESULTS Infected mice had a significant reduction in lung bacterial titers compared with controls (p < .05) after treatment with linezolid or vancomycin. There was no difference in bronchoalveolar lavage levels of monocyte chemotactic protein-5 or interleukin-6 between vancomycin- and linezolid-treated groups. Both antimicrobials were comparable in modulating the expression of matrix metalloproteinase-9 in bronchoalveolar lavage. Neutrophil apoptosis was comparable in both vancomycin- and linezolid-treated groups at all three time points. Vancomycin showed lower myeloperoxidase activity compared with linezolid in the first 24 hrs after inoculation (p = .03), but the difference was undetectable at 48 hrs and 72 hrs. Neither compound had an impact on the process of removal of apoptotic neutrophils by alveolar macrophages. CONCLUSIONS Linezolid did not display an advantage over vancomycin in modulating pulmonary innate immune response in a murine model of methicillin-resistant S. aureus pneumonia.
Collapse
|
36
|
Abstract
Multi-antibiotic resistant Gram-positive cocci, which include Staphylococcus aureus, the coagulase-negative staphylococcal group, Enterococcus faecalis and Enterococcus faecium, and other streptococci, represent emerging pathogens especially in the setting of the immunocompromised, hospitalized patients, in particular when surgery, invasive procedures, or prosthetic implants are of concern, patients are admitted in intensive care units, or underlying chronic disorders and immunodeficiency are of concern, and broad-spectrum antibiotics or immunosuppressive drugs are widely administered. During the recent years, the phenomenon of multiresistant Gram-positive cocci is spreading to the community, where the retrieval of such microorganism is progressively increasing. The spectrum of available antimicrobial compounds for an effective management of these relevant infections is significantly impaired in selection and clinical efficacy by the emerging and spread of methicillin-resistant and more recently glycopeptide-resistant Gram-positive microbial strains. The first oxazolidinone derivative linezolid, together with the recently licensed quinupristin–dalfopristin, daptomycin, and tigecycline, followed by a number of glycopeptides, fluoroquinolones, and other experimental compounds on the pipeline, represent an effective response to the great majority of these concerns, due to their innovative mechanisms of action, their maintained or enhanced activity against multiresistant pathogens, their effective pharmacokinetic/pharmacodynamic properties, their frequent possibility of synergistic activity with other compounds effective against Gram-positive pathogens, and a diffuse potential for a safe and easy administration, also when compromised patients are of concern. The main problems related to the epidemiological and clinical features of multiresistant Gram-positive infection, the potential clinical indications of all recently available compounds compared with the standard of care of treatment of resistant Gram-positive infections, and updated data on efficacy and tolerability of linezolid as the golden standard compound for vancomycin-resistant Gram-positive cocci in multiple clinical situations, are outlined and updated on the ground of an extensive review of all the available, recent evidences coming from the international literature.
Collapse
Affiliation(s)
- Roberto Manfredi
- Department of Clinical and Experimental Medicine, Division of Infectious Diseases, "Alma Mater Studiorum" University of Bologna, S. Orsola-Malpighi Hospital Bologna, Italy
| |
Collapse
|
37
|
Takahashi G, Sato N, Yaegashi Y, Kojika M, Matsumoto N, Kikkawa T, Shozushima T, Akitomi S, Aoki K, Ito N, Hoshikawa K, Suzuki Y, Inoue Y, Wakabayashi G, Endo S. Effect of linezolid on cytokine production capacity and plasma endotoxin levels in response to lipopolysaccharide stimulation of whole blood. J Infect Chemother 2010; 16:94-9. [PMID: 20094752 DOI: 10.1007/s10156-009-0012-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/19/2009] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to assess lipopolysaccharide (LPS)-stimulated cytokine production in the presence of linezolid (LZD) in comparison with the drug effect on the plasma endotoxin level. Peripheral venous whole-blood samples collected from five healthy subjects were stimulated with 10 microg/ml of LPS. LZD was then added to the LPS-stimulated blood samples at concentrations of 0, 2, 4, and 15 microg/ml , followed by incubation for 24 h at 37 degrees C in a 5% CO(2)-95% air atmosphere. Supernatants of the resultant cultures were assayed to determine the levels of tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-10, monocyte chemoattractant protein (MCP)-1, and endotoxin. Significant decreases in the levels of TNF-alpha and IFN-gamma were observed in the LZD 2, 4, and 15 microg/ml groups as compared with that in the 0 microg/ml group (Dunnett's procedure; P < 0.05). The level of IL-10 tended to increase irrespective of the LZD concentration; however, no significant intergroup differences were observed [analysis of variance (ANOVA); P = 0.68]. No significant decrease of the endotoxin level was observed in the LZD 2, 4, or 15 microg/ml groups as compared with that in the 0 microg/ml group, with no significant intergroup differences (ANOVA; P = 0.83). No change in the MCP-1 levels was observed irrespective of the LZD concentration (ANOVA; P = 0.82). To conclude: (1) it appears possible that LZD inhibits the production of INF-gamma and TNF-alpha to a limited extent; (2) LZD did not exert any inhibitory effect on endotoxin production by bacteria, while suppressing cytokine production. The results indicate that LZD may have a significant role in saving the lives of patients with sepsis.
Collapse
Affiliation(s)
- Gaku Takahashi
- Department of Critical Care Medicine, Iwate Medical University, School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Luna CM, Bruno DA, García-Morato J, Mann KC, Risso Patrón J, Sagardía J, Absi R, García Bottino M, Marchetti D, Famiglietti A, Baleztena M, Biancolini C. Effect of Linezolid Compared With Glycopeptides in Methicillin-Resistant Staphylococcus aureus Severe Pneumonia in Piglets. Chest 2009; 135:1564-1571. [DOI: 10.1378/chest.08-2169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
39
|
Traunmüller F, Thallinger C, Hausdorfer J, Lambers C, Tzaneva S, Kampitsch T, Endler G, Joukhadar C. Tigecycline has no effect on cytokine release in an ex vivo endotoxin model of human whole blood. Int J Antimicrob Agents 2009; 33:583-6. [DOI: 10.1016/j.ijantimicag.2008.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 11/04/2008] [Accepted: 11/05/2008] [Indexed: 11/26/2022]
|