1
|
Zhang J, Zhang L, Wang W, Wang L, Liang X, Wei L, Hao Q, Wang L, Liu X. Heterogeneity in extracellular matrix and immune microenvironment of anterior vaginal wall revealed by single-cell sequencing in women with stress urinary incontinence. Exp Cell Res 2024; 442:114280. [PMID: 39395557 DOI: 10.1016/j.yexcr.2024.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Stress urinary incontinence (SUI), characterized by involuntary urine leakage during increased abdominal pressure, remains poorly understood regarding its pathophysiology and treatment. In this study, we utilized single-cell sequencing to analyze the transcriptomic profiles of different cell types in anterior vaginal wall of SUI patients, aiming to explore the heterogeneity of the extracellular matrix (ECM) and immune microenvironment in SUI pathogenesis. Our results identified eleven cell types, including connective tissue cells, immune cells, and glial cells. Specifically, fibroblasts, smooth muscle cells, epithelial cells and T cells displayed transcriptional characteristics highly relevant to SUI pathogenesis. We observed that most cell types participate in ECM metabolism and immune-inflammatory responses, indicating a synergistic role of multiple vaginal cell types in SUI. Furthermore, altered intercellular communication, particularly between fibroblasts and T cells, was noted in SUI. This study provides novel single-cell insights into SUI and identifies potential biomarkers and therapeutic targets for future research.
Collapse
Affiliation(s)
- Jia Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China; Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, 030013, Taiyuan, China
| | - Lina Zhang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Wenzhen Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Lin Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Xiaolei Liang
- Beijing Yanchuang Biomedical Engineering Research Institute, 100010, Beijing, China
| | - Lingyun Wei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Qian Hao
- Taiyuan health school, 030012, Taiyuan, China
| | - Lili Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China; Taiyuan University of Technology, 030024, Taiyuan, China
| | - Xiaochun Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032, Taiyuan, China.
| |
Collapse
|
2
|
Ma C, Sun J, Liu Z, Zhang C. Real-world efficacy of 2% crisaborole ointment on chronic hyperplasia lesions in 49 patients with atopic dermatitis. Int J Dermatol 2024; 63:1375-1382. [PMID: 38546047 DOI: 10.1111/ijd.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 10/24/2024]
Abstract
BACKGROUND Crisaborole, as a phosphodiesterase 4 (PDE4) inhibitor (PDE4i), effectively inhibits inflammatory pathways, showing promising results in atopic dermatitis (AD), particularly in chronic hyperplasia lesions. OBJECTIVES Based on real-world data from China, this study assesses the effectiveness and safety of 2% PDE4i ointment as monotherapy for chronic hyperplastic AD lesions. MATERIALS AND METHODS A total of 49 AD patients aged 12 and above with chronic hyperplastic lesions and Investigator's Static Global Assessment scores of mild or moderate were enrolled. They received 2% PDE4i ointment twice daily until the lesions completely cleared. The effectiveness endpoints comprised the onset time of pruritus and lesion remission and the time of complete lesion clearance. RESULTS PDE4i demonstrated high effectiveness with minimal irritation, notable improvement in hyperpigmentation, and early remission of pruritus and lesions. The response varied across age groups; elderly patients experienced quicker pruritus relief compared to adolescents and adults, while adolescents showed earlier lesion remission by about 3 days. No significant difference was observed across age groups in the time for complete lesion clearance. Additionally, AD duration (less or more than 3 years) did not significantly impact pruritus or lesion remission. CONCLUSIONS PDE4i monotherapy is effective and safe for chronic hyperplasia lesions in AD across all age groups, and its effectiveness appears to be independent of AD duration.
Collapse
Affiliation(s)
- Chuan Ma
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Zilian Liu
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Di Pietro B, Villata S, Dal Monego S, Degasperi M, Ghini V, Guarnieri T, Plaksienko A, Liu Y, Pecchioli V, Manni L, Tenori L, Licastro D, Angelini C, Napione L, Frascella F, Nardini C. Differential Anti-Inflammatory Effects of Electrostimulation in a Standardized Setting. Int J Mol Sci 2024; 25:9808. [PMID: 39337300 PMCID: PMC11432240 DOI: 10.3390/ijms25189808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The therapeutic usage of physical stimuli is framed in a highly heterogeneous research area, with variable levels of maturity and of translatability into clinical application. In particular, electrostimulation is deeply studied for its application on the autonomous nervous system, but less is known about the anti- inflammatory effects of such stimuli beyond the inflammatory reflex. Further, reproducibility and meta-analyses are extremely challenging, owing to the limited rationale on dosage and experimental standardization. It is specifically to address the fundamental question on the anti-inflammatory effects of electricity on biological systems, that we propose a series of controlled experiments on the effects of direct and alternate current delivered on a standardized 3D bioconstruct constituted by fibroblasts and keratinocytes in a collagen matrix, in the presence or absence of TNF-α as conventional inflammation inducer. This selected but systematic exploration, with transcriptomics backed by metabolomics at specific time points allows to obtain the first systemic overview of the biological functions at stake, highlighting the differential anti-inflammatory potential of such approaches, with promising results for 5 V direct current stimuli, correlating with the wound healing process. With our results, we wish to set the base for a rigorous systematic approach to the problem, fundamental towards future elucidations of the detailed mechanisms at stake, highlighting both the healing and damaging potential of such approaches.
Collapse
Affiliation(s)
- Biagio Di Pietro
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| | - Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Simeone Dal Monego
- Area Science Park, Basovizza, 34149 Trieste, Italy; (S.D.M.); (M.D.); (D.L.)
| | | | - Veronica Ghini
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (V.G.); (L.T.)
| | - Tiziana Guarnieri
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BIGEA), University of Bologna, 40100 Bologna, Italy
| | - Anna Plaksienko
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- Oslo Center of Biostatistics and Epidemiology, University of Oslo, 0317 Oslo, Norway
| | - Yuanhua Liu
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Valentina Pecchioli
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Luigi Manni
- Consiglio Nazionale delle Ricerche, Istituto di Farmacologia Traslazionale, 00185 Roma, Italy;
| | - Leonardo Tenori
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (V.G.); (L.T.)
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy;
| | - Danilo Licastro
- Area Science Park, Basovizza, 34149 Trieste, Italy; (S.D.M.); (M.D.); (D.L.)
| | - Claudia Angelini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Turin, Italy; (S.V.); (F.F.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Christine Nardini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, 00185 Roma, Italy; (B.D.P.); (T.G.); (A.P.); (Y.L.); (C.A.)
| |
Collapse
|
4
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
5
|
Duval C, Bourreau E, Warrick E, Bastien P, Nouveau S, Bernerd F. A chronic pro-inflammatory environment contributes to the physiopathology of actinic lentigines. Sci Rep 2024; 14:5256. [PMID: 38438410 PMCID: PMC10912228 DOI: 10.1038/s41598-024-53990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Actinic lentigines (AL) or age spots, are skin hyperpigmented lesions associated with age and chronic sun exposure. To better understand the physiopathology of AL, we have characterized the inflammation response in AL of European and Japanese volunteers. Gene expression profile showed that in both populations, 10% of the modulated genes in AL versus adjacent non lesional skin (NL), i.e. 31 genes, are associated with inflammation/immune process. A pro-inflammatory environment in AL is strongly suggested by the activation of the arachidonic acid cascade and the plasmin pathway leading to prostaglandin production, along with the decrease of anti-inflammatory cytokines and the identification of inflammatory upstream regulators. Furthermore, in line with the over-expression of genes associated with the recruitment and activation of immune cells, immunostaining on skin sections revealed a significant infiltration of CD68+ macrophages and CD4+ T-cells in the dermis of AL. Strikingly, investigation of infiltrated macrophage subsets evidenced a significant increase of pro-inflammatory CD80+/CD68+ M1 macrophages in AL compared to NL. In conclusion, a chronic inflammation, sustained by pro-inflammatory mediators and infiltration of immune cells, particularly pro-inflammatory M1 macrophages, takes place in AL. This pro-inflammatory loop should be thus broken to normalize skin and improve the efficacy of age spot treatment.
Collapse
Affiliation(s)
| | | | - Emilie Warrick
- L'Oréal Research and Innovation, Aulnay Sous Bois, France
| | | | | | | |
Collapse
|
6
|
Jeffreys N, Brockman JM, Zhai Y, Ingber DE, Mooney DJ. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. APPLIED PHYSICS REVIEWS 2024; 11:011304. [PMID: 38434676 PMCID: PMC10848667 DOI: 10.1063/5.0166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Adoptive T cell immunotherapies, including engineered T cell receptor (eTCR) and chimeric antigen receptor (CAR) T cell immunotherapies, have shown efficacy in treating a subset of hematologic malignancies, exhibit promise in solid tumors, and have many other potential applications, such as in fibrosis, autoimmunity, and regenerative medicine. While immunoengineering has focused on designing biomaterials to present biochemical cues to manipulate T cells ex vivo and in vivo, mechanical cues that regulate their biology have been largely underappreciated. This review highlights the contributions of mechanical force to several receptor-ligand interactions critical to T cell function, with central focus on the TCR-peptide-loaded major histocompatibility complex (pMHC). We then emphasize the role of mechanical forces in (i) allosteric strengthening of the TCR-pMHC interaction in amplifying ligand discrimination during T cell antigen recognition prior to activation and (ii) T cell interactions with the extracellular matrix. We then describe approaches to design eTCRs, CARs, and biomaterials to exploit TCR mechanosensitivity in order to potentiate T cell manufacturing and function in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
| | | | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
7
|
Souquette A, Thomas PG. Variation in the basal immune state and implications for disease. eLife 2024; 13:e90091. [PMID: 38275224 PMCID: PMC10817719 DOI: 10.7554/elife.90091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Analysis of pre-existing immunity and its effects on acute infection often focus on memory responses associated with a prior infectious exposure. However, memory responses occur in the context of the overall immune state and leukocytes must interact with their microenvironment and other immune cells. Thus, it is important to also consider non-antigen-specific factors which shape the composite basal state and functional capacity of the immune system, termed here as I0 ('I naught'). In this review, we discuss the determinants of I0. Utilizing influenza virus as a model, we then consider the effect of I0 on susceptibility to infection and disease severity. Lastly, we outline a mathematical framework and demonstrate how researchers can build and tailor models to specific needs. Understanding how diverse factors uniquely and collectively impact immune competence will provide valuable insights into mechanisms of immune variation, aid in screening for high-risk populations, and promote the development of broadly applicable prophylactic and therapeutic treatments.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research HospitalMemphisUnited States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research HospitalMemphisUnited States
| |
Collapse
|
8
|
Du W, Xia X, Hu F, Yu J. Extracellular matrix remodeling in the tumor immunity. Front Immunol 2024; 14:1340634. [PMID: 38332915 PMCID: PMC10850336 DOI: 10.3389/fimmu.2023.1340634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM.
Collapse
Affiliation(s)
- Wei Du
- Department of Targeting Therapy and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayun Yu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Nair DG, Weiskirchen R. Recent Advances in Liver Tissue Engineering as an Alternative and Complementary Approach for Liver Transplantation. Curr Issues Mol Biol 2023; 46:262-278. [PMID: 38248320 PMCID: PMC10814863 DOI: 10.3390/cimb46010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Acute and chronic liver diseases cause significant morbidity and mortality worldwide, affecting millions of people. Liver transplantation is the primary intervention method, replacing a non-functional liver with a functional one. However, the field of liver transplantation faces challenges such as donor shortage, postoperative complications, immune rejection, and ethical problems. Consequently, there is an urgent need for alternative therapies that can complement traditional transplantation or serve as an alternative method. In this review, we explore the potential of liver tissue engineering as a supplementary approach to liver transplantation, offering benefits to patients with severe liver dysfunctions.
Collapse
Affiliation(s)
- Dileep G. Nair
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
10
|
Kalli M, Poskus MD, Stylianopoulos T, Zervantonakis IK. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer 2023; 9:937-954. [PMID: 37558577 PMCID: PMC10592424 DOI: 10.1016/j.trecan.2023.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
During tumor progression, mechanical abnormalities in the tumor microenvironment (TME) trigger signaling pathways in cells that activate cellular programs, resulting in tumor growth and drug resistance. In this review, we describe mechanisms of action for anti-cancer therapies and mechanotransduction programs that regulate cellular processes, including cell proliferation, apoptosis, survival and phenotype switching. We discuss how the therapeutic response is impacted by the three main mechanical TME abnormalities: high extracellular matrix (ECM) composition and stiffness; interstitial fluid pressure (IFP); and elevated mechanical forces. We also review drugs that normalize these abnormalities or block mechanosensors and mechanotransduction pathways. Finally, we discuss current challenges and perspectives for the development of new strategies targeting mechanically induced drug resistance in the clinic.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Matthew D Poskus
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, PA, USA
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | | |
Collapse
|
11
|
Bieber K, Bezdek S, Gupta Y, Vorobyev A, Sezin T, Gross N, Prüssmann J, Sayegh JP, Becker M, Mousavi S, Hdnah A, Künzel S, Ibrahim SM, Ludwig RJ, Gullberg D, Sadik CD. Forward genetics and functional analysis highlight Itga11 as a modulator of murine psoriasiform dermatitis. J Pathol 2023; 261:184-197. [PMID: 37565309 DOI: 10.1002/path.6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 08/12/2023]
Abstract
Psoriasis is a chronic inflammatory skin condition. Repeated epicutaneous application of Aldara® (imiquimod) cream results in psoriasiform dermatitis in mice. The Aldara®-induced psoriasiform dermatitis (AIPD) mouse model has been used to examine the pathogenesis of psoriasis. Here, we used a forward genetics approach in which we compared AIPD that developed in 13 different inbred mouse strains to identify genes and pathways that modulated disease severity. Among our primary results, we found that the severity of AIPD differed substantially between different strains of inbred mice and that these variations were associated with polymorphisms in Itga11. The Itga11 gene encodes the integrin α11 subunit that heterodimerizes with the integrin β1 subunit to form integrin α11β1. Less information is available about the function of ITGA11 in skin inflammation; however, a role in the regulation of cutaneous wound healing, specifically the development of dermal fibrosis, has been described. Experiments performed with Itga11 gene-deleted (Itga11-/- ) mice revealed that the integrin α11 subunit contributes substantially to the clinical phenotype as well as the histopathological and molecular findings associated with skin inflammation characteristic of AIPD. Although the skin transcriptomes of Itga11-/- and WT mice do not differ from one another under physiological conditions, distinct transcriptomes emerge in these strains in response to the induction of AIPD. Most of the differentially expressed genes contributed to extracellular matrix organization, immune system, and metabolism of lipids pathways. Consistent with these findings, we detected a reduced number of fibroblasts and inflammatory cells, including macrophages, T cells, and tissue-resident memory T cells in skin samples from Itga11-/- mice in response to AIPD induction. Collectively, our results reveal that Itga11 plays a critical role in promoting skin inflammation in AIPD and thus might be targeted for the development of novel therapeutics for psoriasiform skin conditions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Katja Bieber
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Siegfried Bezdek
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tanya Sezin
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jasper Prüssmann
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jean-Paul Sayegh
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sadegh Mousavi
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Ashref Hdnah
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Saleh M Ibrahim
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- College of Medicine, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Christian D Sadik
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Harper EI, Weeraratna AT. A Wrinkle in TIME: How Changes in the Aging ECM Drive the Remodeling of the Tumor Immune Microenvironment. Cancer Discov 2023; 13:1973-1981. [PMID: 37671471 PMCID: PMC10654931 DOI: 10.1158/2159-8290.cd-23-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
SUMMARY Cancer is an age-related disease, with the majority of patients receiving their diagnosis after the age of 60 and most mortality from cancer occurring after this age. The tumor microenvironment changes drastically with age, which in turn affects cancer progression and treatment efficacy. Age-related changes to individual components of the microenvironment have received well-deserved attention over the past few decades, but the effects of aging at the interface of two or more microenvironmental components have been vastly understudied. In this perspective, we discuss the relationship between the aging extracellular matrix and the aging immune system, how they affect the tumor microenvironment, and how these multidisciplinary studies may open avenues for new therapeutics. Cancer is a disease of aging. With a rapidly aging population, we need to better understand the age-related changes that drive tumor progression, ranging from secreted changes to biophysical and immune changes.
Collapse
Affiliation(s)
- Elizabeth I. Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 485, Baltimore, MD 21205
| |
Collapse
|
13
|
Xiao P, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Wang J, Zhang Y, Zhou Z, Zhong X, Yan W. Impaired angiogenesis in ageing: the central role of the extracellular matrix. J Transl Med 2023; 21:457. [PMID: 37434156 PMCID: PMC10334673 DOI: 10.1186/s12967-023-04315-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Each step in angiogenesis is regulated by the extracellular matrix (ECM). Accumulating evidence indicates that ageing-related changes in the ECM driven by cellular senescence lead to a reduction in neovascularisation, reduced microvascular density, and an increased risk of tissue ischaemic injury. These changes can lead to health events that have major negative impacts on quality of life and place a significant financial burden on the healthcare system. Elucidating interactions between the ECM and cells during angiogenesis in the context of ageing is neceary to clarify the mechanisms underlying reduced angiogenesis in older adults. In this review, we summarize ageing-related changes in the composition, structure, and function of the ECM and their relevance for angiogenesis. Then, we explore in detail the mechanisms of interaction between the aged ECM and cells during impaired angiogenesis in the older population for the first time, discussing diseases caused by restricted angiogenesis. We also outline several novel pro-angiogenic therapeutic strategies targeting the ECM that can provide new insights into the choice of appropriate treatments for a variety of age-related diseases. Based on the knowledge gathered from recent reports and journal articles, we provide a better understanding of the mechanisms underlying impaired angiogenesis with age and contribute to the development of effective treatments that will enhance quality of life.
Collapse
Affiliation(s)
- Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dehong Yang
- Department of Orthopedics Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jilei Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Naik A, Leask A. Tumor-Associated Fibrosis Impairs the Response to Immunotherapy. Matrix Biol 2023; 119:125-140. [PMID: 37080324 DOI: 10.1016/j.matbio.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Previously, impaired responses to immunotherapy in cancer had been attributed mainly to inherent tumor characteristics (tumor cell intrinsic factors) such as low immunogenicity, (low) mutational burden, weak host immune system, etc. However, mapping the responses of immunotherapeutic regimes in clinical trials for different types of cancer has pointed towards an obvious commonality - that tumors with a rich fibrotic stroma respond poorly or not at all. This has prompted a harder look on tumor cell extrinsic factors such as the surrounding tumor microenvironment (TME), and specifically, the fibrotic stroma as a potential enabler of immunotherapy failure. Indeed, the role of cancer-associated fibrosis in impeding efficacy of immunotherapy is now well-established. In fact, recent studies reveal a complex interconnection between fibrosis and treatment efficacy. Accordingly, in this review we provide a general overview of what a tumor associated fibrotic reaction is and how it interacts with the members of immune system that are frequently seen to be modulated in a failed immunotherapeutic regime.
Collapse
Affiliation(s)
- Angha Naik
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran ,grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Amirhesam Babajani
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Radman Mazloomnejad
- grid.411600.2Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151 Iran
| | - Mohammad Reza Hatamnejad
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- grid.19006.3e0000 0000 9632 6718Department of Surgery, University of California Los Angeles, Los Angeles, California USA
| | - Soheyl Bahrami
- grid.454388.60000 0004 6047 9906Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
17
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
18
|
Nardini C, Candelise L, Turrini M, Addimanda O. Semi-automated socio-anthropologic analysis of the medical discourse on rheumatoid arthritis: Potential impact on public health. PLoS One 2022; 17:e0279632. [PMID: 36580470 PMCID: PMC9799325 DOI: 10.1371/journal.pone.0279632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The debilitating effects of noncommunicable diseases (NCDs) and the accompanying chronic inflammation represent a significant obstacle for the sustainability of our development, with efforts spreading worldwide to counteract the diffusion of NCDs, as per the United Nations Sustainable Development Goals (SDG 3). In fact, despite efforts of varied intensity in numerous directions (from innovations in biotechnology to lifestyle modifications), the incidence of NCDs remains pandemic. The present work wants to contribute to addressing this major concern, with a specific focus on the fragmentation of medical approaches, via an interdisciplinary analysis of the medical discourse, i.e. the heterogenous reporting that biomedical scientific literature uses to describe the anti-inflammatory therapeutic landscape in NCDs. The aim is to better capture the roots of this compartmentalization and the power relations existing among three segregated pharmacological, experimental and unstandardized biomedical approaches to ultimately empower collaboration beyond medical specialties and possibly tap into a more ample and effective reservoir of integrated therapeutic opportunities. METHOD Using rheumatoid arthritis (RA) as an exemplar disease, twenty-eight articles were manually translated into a nine-dimensional categorical variable of medical socio-anthropological relevance, relating in particular (but not only) to legitimacy, temporality and spatialization. This digitalized picture (9 x 28 table) of the medical discourse was further analyzed by simple automated learning approaches to identify differences and highlight commonalities among the biomedical categories. RESULTS Interpretation of these results provides original insights, including suggestions to: empower scientific communication between unstandardized approaches and basic biology; promote the repurposing of non-pharmacological therapies to enhance robustness of experimental approaches; and align the spatial representation of diseases and therapies in pharmacology to effectively embrace the systemic approach promoted by modern personalized and preventive medicines. We hope this original work can expand and foster interdisciplinarity among public health stakeholders, ultimately contributing to the achievement of SDG3.
Collapse
Affiliation(s)
- Christine Nardini
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", Roma, Italy
- * E-mail: (CN); (LC); (MT)
| | - Lucia Candelise
- ISS, Istitut Sciences Sociales, Université de Lausanne, Lausanne, Switzerland
- CEPED, Centre Population et Développement, Université de Paris, Paris, France
- * E-mail: (CN); (LC); (MT)
| | - Mauro Turrini
- Institute of Public Goods and Policies (IPP), Spanish National Research Council (CSIC), Madrid, Spain
- * E-mail: (CN); (LC); (MT)
| | - Olga Addimanda
- UOC Medicina Interna ad Indirizzo Reumatologico, Ospedale Maggiore, AUSL Bologna, Bologna, Italy
| |
Collapse
|
19
|
Zhang T, Jia Y, Yu Y, Zhang B, Xu F, Guo H. Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev 2022; 186:114319. [PMID: 35545136 DOI: 10.1016/j.addr.2022.114319] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors has evolved into a new pillar of cancer treatment in clinics, but dealing with treatment resistance (either primary or acquired) is a major challenge. The tumor microenvironment (TME) has a substantial impact on the pathological behaviors and treatment response of many cancers. The biophysical clues in TME have recently been considered as important characteristics of cancer. Furthermore, there is mounting evidence that biophysical cues in TME play important roles in each step of the cascade of cancer immunotherapy that synergistically contribute to immunotherapy resistance. In this review, we summarize five main biophysical cues in TME that affect resistance to immunotherapy: extracellular matrix (ECM) structure, ECM stiffness, tumor interstitial fluid pressure (IFP), solid stress, and vascular shear stress. First, the biophysical factors involved in anti-tumor immunity and therapeutic antibody delivery processes are reviewed. Then, the causes of these five biophysical cues and how they contribute to immunotherapy resistance are discussed. Finally, the latest treatment strategies that aim to improve immunotherapy efficacy by targeting these biophysical cues are shared. This review highlights the biophysical cues that lead to immunotherapy resistance, also supplements their importance in related technologies for studying TME biophysical cues in vitro and therapeutic strategies targeting biophysical cues to improve the effects of immunotherapy.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanbo Jia
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yang Yu
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
20
|
An In-Vitro Study of the Expansion and Transcriptomics of CD4+ and CD8+ Naïve and Memory T Cells Stimulated by IL-2, IL-7 and IL-15. Cells 2022; 11:cells11101701. [PMID: 35626739 PMCID: PMC9139303 DOI: 10.3390/cells11101701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The growth of T cells ex vivo for the purpose of T cell therapies is a rate-limiting step in the overall process for cancer patients to achieve remission. Growing T cells is a fiscally-, time-, and resource-intensive process. Cytokines have been shown to accelerate the growth of T cells, specifically IL-2, IL-7, and IL-15. Here a design of experiments was conducted to optimize the growth rate of different naïve and memory T cell subsets using combinations of cytokines. Mathematical models were developed to study the impact of IL-2, IL-7, and IL-15 on the growth of T cells. The results show that CD4+ and CD8+ naïve T cells grew effectively using moderate IL-2 and IL-7 in combination, and IL-7, respectively. CD4+ and CD8+ memory cells favored moderate IL-2 and IL-15 in combination and moderate IL-7 and IL-15 in combination, respectively. A statistically significant interaction was observed between IL-2 and IL-7 in the growth data of CD4+ naïve T cells, while the interaction between IL-7 and IL-15 was found for CD8+ naïve T cells. The important genes and related signaling pathways and metabolic reactions were identified from the RNA sequencing data for each of the four subsets stimulated by each of the three cytokines. This systematic investigation lays the groundwork for studying other T cell subsets.
Collapse
|
21
|
Popov VN, Syromyatnikov MY, Franceschi C, Moskalev AA, Krutovsky KV, Krutovsky KV. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res Rev 2022; 77:101601. [PMID: 35278719 DOI: 10.1016/j.arr.2022.101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 12/18/2022]
Abstract
Plants hold all records in longevity. Their aging is a complex process. In the presented review, we analyzed published data on various aspects of plant aging with focus on any inferences that could shed a light on aging in animals and help to fight it in human. Plant aging can be caused by many factors, such as telomere depletion, genomic instability, loss of proteostasis, changes in intercellular interaction, desynchronosis, autophagy misregulation, epigenetic changes and others. Plants have developed a number of mechanisms to increase lifespan. Among these mechanisms are gene duplication ("genetic backup"), the active work of telomerases, abundance of meristematic cells, capacity of maintaining the meristems permanently active and continuous activity of phytohormones. Plant aging usually occurs throughout the whole perennial life, but could be also seasonal senescence. Study of causes for seasonal aging can also help to uncover the mechanisms of plant longevity. The influence of different factors such as microbiome communities, glycation, alternative oxidase activity, mitochondrial dysfunction on plant longevity was also reviewed. Adaptive mechanisms of long-lived plants are considered. Further comparative study of the mechanisms underlying longevity of plants is necessary. This will allow us to reach a potentially new level of understanding of the aging process of plants.
Collapse
|
22
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
23
|
Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing. Cells 2022; 11:359. [PMID: 35159168 PMCID: PMC8834134 DOI: 10.3390/cells11030359] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acute inflammation is a physiological response to injury or infection, with a cascade of steps that ultimately lead to the recruitment of immune cells to clear invading pathogens and heal wounds. However, chronic inflammation arising from the continued presence of the initial trigger, or the dysfunction of signalling and/or effector pathways, is harmful to health. While successful ageing in older adults, including centenarians, is associated with low levels of inflammation, elevated inflammation increases the risk of poor health and death. Hence inflammation has been described as one of seven pillars of ageing. Age-associated sterile, chronic, and low-grade inflammation is commonly termed inflammageing-it is not simply a consequence of increasing chronological age, but is also a marker of biological ageing, multimorbidity, and mortality risk. While inflammageing was initially thought to be caused by "continuous antigenic load and stress", reports from the last two decades describe a much more complex phenomenon also involving cellular senescence and the ageing of the immune system. In this review, we explore some of the main sources and consequences of inflammageing in the context of immunosenescence and highlight potential interventions. In particular, we assess the contribution of cellular senescence to age-associated inflammation, identify patterns of pro- and anti-inflammatory markers characteristic of inflammageing, describe alterations in the ageing immune system that lead to elevated inflammation, and finally assess the ways that diet, exercise, and pharmacological interventions can reduce inflammageing and thus, improve later life health.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000 Lille, France;
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| |
Collapse
|
24
|
Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev 2021; 70:101393. [PMID: 34139337 DOI: 10.1016/j.arr.2021.101393] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Ageing is a multifactorial biological process leading to a progressive decline of physiological functions. The process of ageing includes numerous changes in the cells and the interactions between cell-cell and cell-microenvironment remaining as a critical risk factor for the development of chronic degenerative diseases. Systemic inflammation, known as inflammageing, increases as a consequence of ageing contributing to age-related morbidities. But also, persistent and uncontrolled activation of fibrotic pathways, with excessive accumulation of extracellular matrix (ECM) and organ dysfunction is markedly more frequent in the elderly. In this context, we introduce here the concept of Fibroageing, that is, the propensity to develop tissue fibrosis associated with ageing, and propose that ECM is a key player underlying this process. During ageing, molecules of the ECM become damaged through many modifications including glycation, crosslinking, and accumulation, leading to matrix stiffness which intensifies ageing-associated alterations. We provide a framework with some mechanistic hypotheses proposing that stiff ECM, in addition to the well-known activation of fibrotic positive feedback loops, affect several of the hallmarks of ageing, such as cell senescence and mitochondrial dysfunction, and in this context, is a key mechanism and a driver thread of Fibroageing.
Collapse
|
25
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
26
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
27
|
Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the Skin. J Invest Dermatol 2021; 141:1087-1095. [DOI: 10.1016/j.jid.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
|
28
|
Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res Rev 2021; 65:101231. [PMID: 33248315 DOI: 10.1016/j.arr.2020.101231] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Aging is generally characterized as a gradual increase in tissue damage, which is associated with senescence and chronic systemic inflammation and is evident in a variety of age-related diseases. The extent to which such tissue damage is a result of a gradual decline in immune regulation, which consequently compromises the capacity of the body to repair damages, has not been fully explored. Whereas CD4 T lymphocytes play a critical role in the orchestration of immunity, thymus involution initiates gradual changes in the CD4 T-cell landscape, which may significantly compromise tissue repair. In this review, we describe the lifespan accumulation of specific dysregulated CD4 T-cell subsets and their coevolution with systemic inflammation in the process of declined immunity and tissue repair capacity with age. Then, we discuss the process of thymus involution-which appears to be most pronounced around puberty-as a possible driver of the aging T-cell landscape. Finally, we identify individualized T cell-based early diagnostic biomarkers and therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
29
|
Marino GE, Weeraratna AT. A glitch in the matrix: Age-dependent changes in the extracellular matrix facilitate common sites of metastasis. AGING AND CANCER 2020; 1:19-29. [PMID: 35694033 PMCID: PMC9187055 DOI: 10.1002/aac2.12013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
People over 55 years old represent the majority of cancer patients and suffer from increased metastatic burden compared to the younger patient population. As the aging population increases globally, it is prudent to understand how the intrinsic aging process contributes to cancer progression. As we age, we incur aberrant changes in the extracellular matrix (ECM) of our organs, which contribute to numerous pathologies, including cancer. Notably, the lung, liver, and bone represent the most common sites of distal metastasis for all cancer types. In this review, we describe how age-dependent changes in the ECM of these organs influence cancer progression. Further, we outline how these alterations prime the premetastatic niche and why these may help explain the disparity in outcome for older cancer patients.
Collapse
Affiliation(s)
- Gloria E. Marino
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashani T. Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1011] [Impact Index Per Article: 252.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
31
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
32
|
Maturo MG, Soligo M, Gibson G, Manni L, Nardini C. The greater inflammatory pathway-high clinical potential by innovative predictive, preventive, and personalized medical approach. EPMA J 2020; 11:1-16. [PMID: 32140182 PMCID: PMC7028895 DOI: 10.1007/s13167-019-00195-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND LIMITATIONS Impaired wound healing (WH) and chronic inflammation are hallmarks of non-communicable diseases (NCDs). However, despite WH being a recognized player in NCDs, mainstream therapies focus on (un)targeted damping of the inflammatory response, leaving WH largely unaddressed, owing to three main factors. The first is the complexity of the pathway that links inflammation and wound healing; the second is the dual nature, local and systemic, of WH; and the third is the limited acknowledgement of genetic and contingent causes that disrupt physiologic progression of WH. PROPOSED APPROACH Here, in the frame of Predictive, Preventive, and Personalized Medicine (PPPM), we integrate and revisit current literature to offer a novel systemic view on the cues that can impact on the fate (acute or chronic inflammation) of WH, beyond the compartmentalization of medical disciplines and with the support of advanced computational biology. CONCLUSIONS This shall open to a broader understanding of the causes for WH going awry, offering new operational criteria for patients' stratification (prediction and personalization). While this may also offer improved options for targeted prevention, we will envisage new therapeutic strategies to reboot and/or boost WH, to enable its progression across its physiological phases, the first of which is a transient acute inflammatory response versus the chronic low-grade inflammation characteristic of NCDs.
Collapse
Affiliation(s)
- Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Tech, Atlanta, GA USA
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Christine Nardini
- IAC Institute for Applied Computing, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
- Bio Unit, Scientific and Medical Direction, SOL Group, Monza, Italy
| |
Collapse
|
33
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
34
|
Bich L, Pradeu T, Moreau JF. Understanding Multicellularity: The Functional Organization of the Intercellular Space. Front Physiol 2019; 10:1170. [PMID: 31620013 PMCID: PMC6759637 DOI: 10.3389/fphys.2019.01170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of this paper is to provide a theoretical framework to understand how multicellular systems realize functionally integrated physiological entities by organizing their intercellular space. From a perspective centered on physiology and integration, biological systems are often characterized as organized in such a way that they realize metabolic self-production and self-maintenance. The existence and activity of their components rely on the network they realize and on the continuous management of the exchange of matter and energy with their environment. One of the virtues of the organismic approach focused on organization is that it can provide an understanding of how biological systems are functionally integrated into coherent wholes. Organismic frameworks have been primarily developed by focusing on unicellular life. Multicellularity, however, presents additional challenges to our understanding of biological systems, related to how cells are capable to live together in higher-order entities, in such a way that some of their features and behaviors are constrained and controlled by the system they realize. Whereas most accounts of multicellularity focus on cell differentiation and increase in size as the main elements to understand biological systems at this level of organization, we argue that these factors are insufficient to provide an understanding of how cells are physically and functionally integrated in a coherent system. In this paper, we provide a new theoretical framework to understand multicellularity, capable to overcome these issues. Our thesis is that one of the fundamental theoretical principles to understand multicellularity, which is missing or underdeveloped in current accounts, is the functional organization of the intercellular space. In our view, the capability to be organized in space plays a central role in this context, as it enables (and allows to exploit all the implications of) cell differentiation and increase in size, and even specialized functions such as immunity. We argue that the extracellular matrix plays a crucial active role in this respect, as an evolutionary ancient and specific (non-cellular) control subsystem that contributes as a key actor to the functional specification of the multicellular space and to modulate cell fate and behavior. We also analyze how multicellular systems exert control upon internal movement and communication. Finally, we show how the organization of space is involved in some of the failures of multicellular organization, such as aging and cancer.
Collapse
Affiliation(s)
- Leonardo Bich
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Thomas Pradeu
- ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
- CNRS UMR8590, Institut d’Histoire et de Philosophie des Sciences et des Techniques, Pantheon-Sorbonne University, Paris, France
| | - Jean-François Moreau
- ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| |
Collapse
|
35
|
Terlecki-Zaniewicz L, Pils V, Bobbili MR, Lämmermann I, Perrotta I, Grillenberger T, Schwestka J, Weiß K, Pum D, Arcalis E, Schwingenschuh S, Birngruber T, Brandstetter M, Heuser T, Schosserer M, Morizot F, Mildner M, Stöger E, Tschachler E, Weinmüllner R, Gruber F, Grillari J. Extracellular Vesicles in Human Skin: Cross-Talk from Senescent Fibroblasts to Keratinocytes by miRNAs. J Invest Dermatol 2019; 139:2425-2436.e5. [PMID: 31220456 DOI: 10.1016/j.jid.2019.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
Extracellular vesicles (EVs) and their miRNA cargo are intercellular communicators transmitting their pleiotropic messages between different cell types, tissues, and body fluids. Recently, they have been reported to contribute to skin homeostasis and were identified as members of the senescence-associated secretory phenotype of human dermal fibroblasts. However, the role of EV-miRNAs in paracrine signaling during skin aging is yet unclear. Here we provide evidence for the existence of small EVs in the human skin and dermal interstitial fluid using dermal open flow microperfusion and show that EVs and miRNAs are transferred from dermal fibroblasts to epidermal keratinocytes in 2D cell culture and in human skin equivalents. We further show that the transient presence of senescent fibroblast derived small EVs accelerates scratch closure of epidermal keratinocytes, whereas long-term incubation impairs keratinocyte differentiation in vitro. Finally, we identify vesicular miR-23a-3p, highly secreted by senescent fibroblasts, as one contributor of the EV-mediated effect on keratinocytes in in vitro wound healing assays. To summarize, our findings support the current view that EVs and their miRNA cargo are members of the senescence-associated secretory phenotype and, thus, regulators of human skin homeostasis during aging.
Collapse
Affiliation(s)
- Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Vera Pils
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Ingo Lämmermann
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | - Tonja Grillenberger
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jennifer Schwestka
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Katrin Weiß
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Pum
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Simon Schwingenschuh
- HEALTH - Institut für Biomedizin und Gesundheitswissenschaften, Joanneum Research, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institut für Biomedizin und Gesundheitswissenschaften, Joanneum Research, Graz, Austria
| | | | - Thomas Heuser
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Regina Weinmüllner
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| |
Collapse
|
36
|
Puttur F, Denney L, Gregory LG, Vuononvirta J, Oliver R, Entwistle LJ, Walker SA, Headley MB, McGhee EJ, Pease JE, Krummel MF, Carlin LM, Lloyd CM. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Sci Immunol 2019; 4:eaav7638. [PMID: 31175176 PMCID: PMC6744282 DOI: 10.1126/sciimmunol.aav7638] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are enriched in mucosal tissues (e.g., lung) and respond to epithelial cell-derived cytokines initiating type 2 inflammation. During inflammation, ILC2 numbers are increased in the lung. However, the mechanisms controlling ILC2 trafficking and motility within inflamed lungs remain unclear and are crucial for understanding ILC2 function in pulmonary immunity. Using several approaches, including lung intravital microscopy, we demonstrate that pulmonary ILC2s are highly dynamic, exhibit amoeboid-like movement, and aggregate in the lung peribronchial and perivascular spaces. They express distinct chemokine receptors, including CCR8, and actively home to CCL8 deposits located around the airway epithelium. Within lung tissue, ILC2s were particularly motile in extracellular matrix-enriched regions. We show that collagen-I drives ILC2 to markedly change their morphology by remodeling their actin cytoskeleton to promote environmental exploration critical for regulating eosinophilic inflammation. Our study provides previously unappreciated insights into ILC2 migratory patterns during inflammation and highlights the importance of environmental guidance cues in the lung in controlling ILC2 dynamics.
Collapse
Affiliation(s)
- Franz Puttur
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Laura Denney
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Lisa G Gregory
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Juho Vuononvirta
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Oliver
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Lewis J Entwistle
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark B Headley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
| | - James E Pease
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA, USA
| | - Leo M Carlin
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
37
|
Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, Nisticò P. 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:117. [PMID: 30898166 PMCID: PMC6429763 DOI: 10.1186/s13046-019-1086-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitor therapy has changed clinical practice for patients with different cancers, since these agents have demonstrated a significant improvement of overall survival and are effective in many patients. However, an intrinsic or acquired resistance frequently occur and biomarkers predictive of responsiveness should help in patient selection and in defining the adequate treatment options. A deep analysis of the complexity of the tumor microenvironment is likely to further advance the field and hopefully identify more effective combined immunotherapeutic strategies. Here we review the current knowledge on tumor microenvironment, focusing on T cells, cancer associated fibroblasts and extracellular matrix. The use of 3D cell culture models to resemble tumor microenvironment landscape and to screen immunomodulatory drugs is also reviewed.
Collapse
Affiliation(s)
- Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| | - Cristina Colosi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Trono
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Antonacci
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
38
|
Kaur A, Ecker BL, Douglass SM, Kugel CH, Webster MR, Almeida FV, Somasundaram R, Hayden J, Ban E, Ahmadzadeh H, Franco-Barraza J, Shah N, Mellis IA, Keeney F, Kossenkov A, Tang HY, Yin X, Liu Q, Xu X, Fane M, Brafford P, Herlyn M, Speicher DW, Wargo JA, Tetzlaff MT, Haydu LE, Raj A, Shenoy V, Cukierman E, Weeraratna AT. Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov 2019; 9:64-81. [PMID: 30279173 PMCID: PMC6328333 DOI: 10.1158/2159-8290.cd-18-0193] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
Abstract
Physical changes in skin are among the most visible signs of aging. We found that young dermal fibroblasts secrete high levels of extracellular matrix (ECM) constituents, including proteoglycans, glycoproteins, and cartilage-linking proteins. The most abundantly secreted was HAPLN1, a hyaluronic and proteoglycan link protein. HAPLN1 was lost in aged fibroblasts, resulting in a more aligned ECM that promoted metastasis of melanoma cells. Reconstituting HAPLN1 inhibited metastasis in an aged microenvironment, in 3-D skin reconstruction models, and in vivo. Intriguingly, aged fibroblast-derived matrices had the opposite effect on the migration of T cells, inhibiting their motility. HAPLN1 treatment of aged fibroblasts restored motility of mononuclear immune cells, while impeding that of polymorphonuclear immune cells, which in turn affected regulatory T-cell recruitment. These data suggest that although age-related physical changes in the ECM can promote tumor cell motility, they may adversely affect the motility of some immune cells, resulting in an overall change in the immune microenvironment. Understanding the physical changes in aging skin may provide avenues for more effective therapy for older patients with melanoma. SIGNIFICANCE: These data shed light on the mechanochemical interactions that occur between aged skin, tumor, and immune cell populations, which may affect tumor metastasis and immune cell infiltration, with implications for the efficacy of current therapies for melanoma.See related commentary by Marie and Merlino, p. 19.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania
- The Wistar Institute, Philadelphia, Pennsylvania
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | - James Hayden
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Ehsan Ban
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hossein Ahmadzadeh
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Neelima Shah
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ian A Mellis
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Xiangfan Yin
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Jennifer A Wargo
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Lauren E Haydu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arjun Raj
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek Shenoy
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
39
|
Rodriguez-Garcia M, Fortier JM, Barr FD, Wira CR. Aging impacts CD103 + CD8 + T cell presence and induction by dendritic cells in the genital tract. Aging Cell 2018; 17:e12733. [PMID: 29455474 PMCID: PMC5946085 DOI: 10.1111/acel.12733] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 12/20/2022] Open
Abstract
As women age, susceptibility to systemic and genital infections increases. Tissue-resident memory T cells (TRMs) are CD103+ CD8+ long-lived lymphocytes that provide critical mucosal immune protection. Mucosal dendritic cells (DCs) are known to induce CD103 expression on CD8+ T cells. While CD103+ CD8+ T cells are found throughout the female reproductive tract (FRT), the extent to which aging impacts their presence and induction by DCs remains unknown. Using hysterectomy tissues, we found that endometrial CD103+ CD8+ T cells were increased in postmenopausal compared to premenopausal women. Endometrial DCs from postmenopausal women were significantly more effective at inducing CD103 expression on allogeneic naïve CD8+ T cells than DCs from premenopausal women; CD103 upregulation was mediated through membrane-bound TGFβ signaling. In contrast, cervical CD103+ T cells and DC numbers declined in postmenopausal women with age. Decreases in DCs correlated with decreased CD103+ T cells in endocervix, but not ectocervix. Our findings demonstrate a previously unrecognized compartmentalization of TRMs in the FRT of postmenopausal women, with loss of TRMs and DCs in the cervix with aging, and increased TRMs and DC induction capacity in the endometrium. These findings are relevant to understanding immune protection in the FRT and to the design of vaccines for women of all ages.
Collapse
Affiliation(s)
- Marta Rodriguez-Garcia
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| | - Jared M. Fortier
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| | - Fiona D. Barr
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon NH USA
| |
Collapse
|
40
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
41
|
Owyong M, Efe G, Owyong M, Abbasi AJ, Sitarama V, Plaks V. Overcoming Barriers of Age to Enhance Efficacy of Cancer Immunotherapy: The Clout of the Extracellular Matrix. Front Cell Dev Biol 2018; 6:19. [PMID: 29546043 PMCID: PMC5837988 DOI: 10.3389/fcell.2018.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
There is a growing list of cancer immunotherapeutics approved for use in a population with an increasing number of aged individuals. Cancer immunotherapy (CIT) mediates tumor destruction by activating anti-tumor immune responses that have been silenced through the oncogenic process. However, in an aging individual, immune deregulation is positively correlated with age. In this context, it is vital to examine the age-related changes in the tumor microenvironment (TME) and specifically, those directly affecting critical players to ensure CIT efficacy. Effector T cells, regulatory T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and tumor-associated neutrophils play important roles in promoting or inhibiting the inflammatory response, while cancer-associated fibroblasts are key mediators of the extracellular matrix (ECM). Immune checkpoint inhibitors function optimally in inflamed tumors heavily invaded by CD4 and CD8 T cells. However, immunosenescence curtails the effector T cell response within the TME and causes ECM deregulation, creating a biophysical barrier impeding both effective drug delivery and pro-inflammatory responses. The ability of the chimeric antigen receptor T (CAR-T) cell to artificially induce an adaptive immune response can be modified to degrade essential components of the ECM and alleviate the age-related changes to the TME. This review will focus on the age-related alterations in ECM and immune-stroma interactions within the TME. We will discuss strategies to overcome the barriers of immunosenescence and matrix deregulation to ameliorate the efficacy of CIT in aged subjects.
Collapse
Affiliation(s)
- Mark Owyong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Gizem Efe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Michael Owyong
- University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aamna J Abbasi
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Vaishnavi Sitarama
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Vicki Plaks
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
42
|
Grebenciucova E, Berger JR. Immunosenescence: the Role of Aging in the Predisposition to Neuro-Infectious Complications Arising from the Treatment of Multiple Sclerosis. Curr Neurol Neurosci Rep 2018; 17:61. [PMID: 28669032 DOI: 10.1007/s11910-017-0771-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review highlights some of the important changes in the immune system that occur in the process of normal aging. Immunosenescence as a concept is directly relevant to the world of neuro-inflammation, as it may be a contributing factor to the risks associated with some of the current immunosuppressive and immunomodulatory therapies used in treating multiple sclerosis (MS) and other inflammatory disorders. RECENT FINDINGS Profound qualitative and quantitative changes occur in the adaptive and innate immunity compartments during aging. These changes may explain why patients of older age are at an increased risk of infections and infection-associated mortality. Immunosenescence-associated changes may be additive or synergistic with the effects produced by immunomodulatory and immunosuppressive medications. Clinicians should exercise a high level of vigilance in monitoring the risk of infections in older patients on these treatments.
Collapse
Affiliation(s)
- Elena Grebenciucova
- Multiple Sclerosis Division, The Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| | - Joseph R Berger
- Multiple Sclerosis Division, The Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
43
|
Ford AJ, Rajagopalan P. Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1503. [PMID: 29171177 DOI: 10.1002/wnan.1503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) plays a critical role in regulating cell behavior during tissue homeostasis and in disease progression. Through a combination of adhesion, contraction, alignment of ECM proteins and subsequent degradation, cells change the chemical, mechanical, and physical properties of their surrounding matrix. Other contributing factors to matrix remodeling are the de novo synthesis of ECM proteins, post-translational modifications and receptor-mediated internalization. In this review, we highlight how each of these processes contributes to the maintenance of homeostasis and in disease conditions such as cancer and liver fibrosis. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Andrew J Ford
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA.,ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
44
|
Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 2017; 165:147-155. [DOI: 10.1016/j.mad.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/04/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
45
|
Souquette A, Frere J, Smithey M, Sauce D, Thomas PG. A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. GeroScience 2017. [PMID: 28647907 DOI: 10.1007/s11357-017-9982-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of individuals aged 6-49 years in the United States are infected with cytomegalovirus (CMV), with seroprevalence increasing with age, reaching 85-90% by 75-80 years according to Bate et al. (Clin Infect Dis 50 (11): 1439-1447, 2010) and Pawelec et al. (Curr Opin Immunol 24:507-511, 2012). Following primary infection, CMV establishes lifelong latency with periodic reactivation. Immunocompetent hosts experience largely asymptomatic infection, but CMV can cause serious illness in immunocompromised populations, such as transplant patients and the elderly. Control of CMV requires constant immune surveillance, and recent discoveries suggest this demand alters general features of the immune system in infected individuals. Here, we review recent advances in the understanding of the immune response to CMV and the role of CMV in immune aging and fitness, while highlighting the importance of potential confounding factors that influence CMV studies. Understanding how CMV contributes to shaping "baseline" immunity has important implications for a host's ability to mount effective responses to diverse infections and vaccination.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Frere
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France.,Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Megan Smithey
- Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|