1
|
Zhu L, Huang R, Feng JR, Zhang M, Huang XJ, Chen Z, Wang W, Chen Y. Shexiang Tongxin Dropping Pills attenuate ischemic microvascular dysfunction via suppressing P66Shc-mediated mitochondrial respiration deficits. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119664. [PMID: 40154895 DOI: 10.1016/j.jep.2025.119664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) disrupts mitochondrial energy metabolism, leading to cerebral microvascular dysfunction (CMD). Shexiang Tongxin Dropping Pills (STDP) is a traditional Chinese medicinal formulation that has been clinically used for treating microcirculatory dysfunction. We have previously reported its ability to improve cerebral microcirculatory abnormalities. Nevertheless, the protective effects of STDP on cerebral microvascular mitochondria in the context of energy metabolism repair remain underinvestigated. AIM OF THE STUDY This study aims to investigate the potential mechanisms by which STDP ameliorates IS-induced CMD through the restoration of mitochondrial function. MATERIALS AND METHODS An ischemic stroke/reperfusion model was established by occluding and subsequently reperfusing the middle cerebral artery (MCAO/R) in C57BL/6 J mice. Laser speckle contrast imaging, Y-maze, rotarod tests and TTC staining were employed to evaluate the anti-ischemic stroke effects of STDP. Histological examination of cell adhesion proteins (ICAM 1, VCAM 1) and tight junction proteins (VE-cadherin, occludin) was conducted to assess the effects of STDP on the cerebral microvascular endothelium. In vitro, a bEnd.3 cell model was established through oxygen-glucose deprivation followed by reoxygenation (OGD/R). The cytoprotective capability of STDP was assessed by quantifying endothelial permeability, reactive oxygen species (ROS) levels, and cell viability. Mendelian randomization (MR) analysis and bioinformatic studies were performed to elucidate the causal associations between mitochondrial biological function and IS. Mitochondrial membrane potential (MMP) was assessed using a tetramethylrhodamine ethyl ester perchlorate fluorescent probe, while ATP production was quantified using a commercially available assay kit. Mitochondrial respiration was evaluated by measuring the oxygen consumption rate (OCR). Finally, the verification of important targets in mouse brain slices and bEnd.3 cells was conducted through immunoblotting and immunofluorescence. RESULTS STDP significantly restored cerebral blood flow and neurological function, and reduced infarct volume in MCAO/R mice. Furthermore, STDP markedly alleviated inflammation and hyperpermeability of the cerebral microvascular endothelium in MCAO/R mice, as evidenced by the suppression of ICAM-1 and VCAM-1 expression, along with the upregulation of VE-cadherin and occludin protein levels. Moreover, STDP not only mitigated hyperpermeability and excessive production of ROS induced by OGD/R in bEnd.3 cells but also enhanced the protective effects of the ROS scavenger N-acetylcysteine on bEnd.3 cells. Results of MR analysis and bioinformation studies demonstrated that the disruption of mitochondrial respiration is a critical pathogenic factor in IS-induced CMD. Our data confirmed that STDP effectively restored MMP and ATP production in OGD/R-treated bEnd.3 cells. Furthermore, STDP significantly enhanced basal respiration, maximal OCR, and spare respiratory capacity in bEnd.3 cells compared to the OGD/R group. Mechanistically, STDP markedly increased endothelial cystathionine γ-lyase (CSE)-mediated hydrogen sulfide (H2S) production and S-sulfhydration of P66shc, resulting in reduced protein expression and phosphorylation levels of P66Shc. This inhibition prevented its translocation into mitochondria, thereby restoring mitochondrial respiration. CONCLUSION STDP facilitated CSE expression and promoted H2S production, contributing to the inactivation of P66shc by suppressing its expression and increasing its sulfhydration. This process impeded P66Shc translocation to mitochondria, subsequently restoring mitochondrial respiration and alleviating IS-induced cerebral microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Li Zhu
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Ru Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Jing-Rui Feng
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Miao Zhang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Xiao-Jie Huang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Zeyu Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China
| | - Wei Wang
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China.
| | - Yang Chen
- Science and Technology Innovation Center, NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, China; Chinese Medicine Guangdong Laboratory, Zhuhai, 519031, China.
| |
Collapse
|
2
|
Zhao H, Zhang H, Shi J, Liu Y, Yu J, Yang Y, Weng J, Song Z, Zhou R, Min H, Yao J, Wang M, Zhang Z. Wuwei Shaji powder alleviates OVA-induced allergic asthma by protecting bronchial epithelial cells from ferroptosis via the S-sulfhydration of Keap1. JOURNAL OF ETHNOPHARMACOLOGY 2025:119649. [PMID: 40222689 DOI: 10.1016/j.jep.2025.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic inflammatory airway disease. Current treatments have limited efficacy and often cause severe side effects. Wuwei Shaji Powder (WSP), a traditional Mongolian remedy, is used for treating chronic pulmonary diseases, but its efficacy against asthma and underlying mechanisms are still unclear. AIM OF THE STUDY To investigate the therapeutic effect of WSP on asthma and elucidate its molecular mechanisms. MATERIALS AND METHODS An ovalbumin (OVA)-induced allergic asthma model was established in rats. Ferroptosis or apoptosis was induced in BEAS-2B cells using Erastin or CdCl2. Various techniques including histopathological staining, ELISA, Western blot, flow cytometry, and transmission electron microscopy were employed to assess WSP's effects and mechanisms. RESULTS WSP alleviated OVA-induced allergic asthma in rats without the immunosuppressive side effects observed with dexamethasone. WSP suppressed ferroptosis in bronchial epithelial cells both in vivo and in vitro. It reduced thiol- and sulfonic-based oxidative stress through Keap1 S-sulfhydration, disrupted the Keap1-Nrf2 interaction, and promoted Nrf2 nuclear translocation. Notably, we discovered that CdCl2 can induce ferroptosis in BEAS-2B cells, and WSP prevented both ferroptosis and apoptosis in these cells. CONCLUSION WSP alleviates OVA-induced allergic asthma by protecting bronchial epithelial cells from ferroptosis via S-sulfhydration of Keap1, providing new insights for its clinical application.
Collapse
Affiliation(s)
- Huimei Zhao
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Haiyan Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jianyu Shi
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yanru Liu
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jingao Yu
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yuangui Yang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Jingyu Weng
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zhongxing Song
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rui Zhou
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Hong Min
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shaanxi Institute for Food and Drug Control, Xi'an, China
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Mei Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Wangjing Hospital of China Academy of Traditional Chinese Medicine, Beijing 100102, China.
| | - Zhen Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
3
|
Xu Y, Sui Y, Jiang R, Wang X, Suda M, Niimi M, Mao Z, Zhang Z, Zhang SL, Fan J, Yao J. Sulfhydrated albumin transmits H 2S signaling and ameliorates DOX-induced multiorgan injuries. Redox Biol 2025; 83:103631. [PMID: 40228337 DOI: 10.1016/j.redox.2025.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
Hydrogen sulfide (H2S) is a vital signaling molecule involved in various physiological processes; however, the mechanisms underlying its systemic signaling remain poorly understood. We hypothesized that albumin, the predominant plasma protein and a vital sulfhydryl carrier, mediated systemic H2S signaling, which could potentially treat H2S-deficient diseases. This study aimed to investigate this hypothesis. Our results showed the presence of sulfhydrated proteins in normal mouse serum, with albumin being particularly enriched. The level of sulfhydration was influenced by H2S availability and the redox environment. In vitro incubation of albumin with NaHS resulted in an increased number of sulfhydrated groups. Under reductive conditions, this sulfhydrated albumin (-SSH-Alb) released substantial amounts of H2S. When -SSH-Alb was added to cultured endothelial cells, it activated the cAMP signaling pathway, upregulated cystathionine γ-lyase (CSE) expression, and enhanced intracellular H2S levels. In an in vitro inflammatory model involving macrophages and endothelial cells, -SSH-Alb inhibited macrophage adhesion, reduced LPS-induced expression of adhesion molecules, and suppressed cytokine production and inflammasome activation. These effects correlated with improved cellular redox status. Furthermore, in vivo administration of -SSH-Alb protected mice from doxorubicin (DOX)-induced cardiotoxicity and intestinal damage. It improved mouse mortality, and alleviated ferroptotic cardiac injury and gut barrier dysfunction. These therapeutic benefits were associated with rebalanced local and systemic redox status. In summary, our study reveals that -SSH-Alb reserves, transmits, and amplifies H2S signals and exhibits significant anti-inflammatory and antioxidant properties. This characteristic of -SSH-Alb holds promise for preventing and treating a wide range of diseases.
Collapse
Affiliation(s)
- Yijun Xu
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Yang Sui
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Rui Jiang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Xin Wang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Mika Suda
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Manabu Niimi
- Division of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, H2 X 0A9, Montréal, QC, Canada
| | - Jianglin Fan
- Division of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan; Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan.
| |
Collapse
|
4
|
Pushpakumar S, Juin SK, Almarshood H, Gondim DD, Ouseph R, Sen U. Diallyl Trisulfide Attenuates Ischemia-Reperfusion-Induced ER Stress and Kidney Dysfunction in Aged Female Mice. Cells 2025; 14:420. [PMID: 40136669 PMCID: PMC11941362 DOI: 10.3390/cells14060420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in the aging population. Gender studies show that aging is associated with loss of protection from AKI in the female population. While ER stress contributes to IRI-induced AKI in the young, ER regulation during IR in the aged kidney is unclear. Because current evidence suggests hydrogen sulfide (H2S) modulates ER stress, we investigated whether exogenous supplementation of diallyl trisulfide (DATS), an H2S donor, mitigates AKI in aged female kidneys. Wild-type (WT, C57BL/6J) mice aged 75-78 weeks were treated with or without DATS before and after renal IRI. IRI increased ER stress proteins, inflammation, and fibrosis markers in the IRI kidney compared to the control. DATS mitigated ER stress, and reduced inflammation and fibrosis markers in the IRI kidney. Further, IRI kidneys demonstrated reduced blood flow, vascularity, angiogenesis, increased resistive index (RI), and reduced function. DATS treatment upregulated PI3K, AKT, p-mTOR, and pMAPK signaling to stimulate angiogenesis, which improved vascular density, blood flow, and renal function. Together, our results suggest that DATS rescues the aged female kidney IRI by modulating ER stress and upregulation of angiogenesis.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Subir Kumar Juin
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dibson Dibe Gondim
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rosemary Ouseph
- Division of Nephrology & Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Wei X, Ning Q, Che K, Liu Z, Li H, Guo S. Sul-BertGRU: an ensemble deep learning method integrating information entropy-enhanced BERT and directional multi-GRU for S-sulfhydration sites prediction. Bioinformatics 2025; 41:btaf078. [PMID: 39977366 PMCID: PMC11908646 DOI: 10.1093/bioinformatics/btaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025] Open
Abstract
MOTIVATION S-sulfhydration, a crucial post-translational protein modification, is pivotal in cellular recognition, signaling processes, and the development and progression of cardiovascular and neurological disorders, so identifying S-sulfhydration sites is crucial for studies in cell biology. Deep learning shows high efficiency and accuracy in identifying protein sites compared to traditional methods that often lack sensitivity and specificity in accurately locating nonsulfhydration sites. Therefore, we employ deep learning methods to tackle the challenge of pinpointing S-sulfhydration sites. RESULTS In this work, we introduce a deep learning approach called Sul-BertGRU, designed specifically for predicting S-sulfhydration sites in proteins, which integrates multi-directional gated recurrent unit (GRU) and BERT. First, Sul-BertGRU proposes an information entropy-enhanced BERT (IE-BERT) to preprocess protein sequences and extract initial features. Subsequently, confidence learning is employed to eliminate potential S-sulfhydration samples from the nonsulfhydration samples and select reliable negative samples. Then, considering the directional nature of the modification process, protein sequences are categorized into left, right, and full sequences centered on cysteines. We build a multi-directional GRU to enhance the extraction of directional sequence features and model the details of the enzymatic reaction involved in S-sulfhydration. Ultimately, we apply a parallel multi-head self-attention mechanism alongside a convolutional neural network to deeply analyze sequence features that might be missed at a local level. Sul-BertGRU achieves sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, and area under the curve scores of 85.82%, 68.24%, 74.80%, 77.44%, 55.13%, and 77.03%, respectively. Sul-BertGRU demonstrates exceptional performance and proves to be a reliable method for predicting protein S-sulfhydration sites. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/Severus0902/Sul-BertGRU/.
Collapse
Affiliation(s)
- Xirun Wei
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, P.R. China
| | - Qiao Ning
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, P.R. China
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, P.R. China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
- Neutech Group Limited, Dalian 116023, P.R. China
| | - Kuiyang Che
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, P.R. China
| | - Zhaowei Liu
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, P.R. China
| | - Hui Li
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, P.R. China
| | - Shikai Guo
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, P.R. China
- The Dalian Key Laboratory of Artificial Intelligence, Dalian 116026, P.R. China
| |
Collapse
|
6
|
Du X, Hu W, Liu M, Lv J, Gao Y, Wang X, Zhao W, Li J, Li X, Cao X, Liu Z, Xu Y, Liu S. Hydrogen Sulfide Alleviates Schizophrenia-Like Behavior Through Regulating Apoptosis by S-Sulfhydrylation Modification. CNS Neurosci Ther 2025; 31:e70278. [PMID: 39963874 PMCID: PMC11833453 DOI: 10.1111/cns.70278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND We initiated an exploration of the relationship between hydrogen sulfide (H2S) and Schizophrenia (SZ) as well as its mechanism at the three levels of population study, cellular investigation, and animal model. MATERIALS AND METHODS Clinical data and peripheral blood samples from 78 patients with SZ and 83 healthy controls (HC) were collected for the detection of H2S levels (ChiCTR (Chinese Clinical Trial Registry) 900026776). MK801 (Dizocilpine) was used to establish SZ models in cells and rats, with sodium hydrosulfide (NaHS) serving as an exogenous H2S donor. H2S levels in plasma and hippocampal tissue of rats were measured using Enzyme Linked Immunosorbent Assay (ELISA). Terminal dUTP Nick End Labeling (TUNEL) staining was employed to detect apoptosis, enzyme activity was determined to assess apoptotic protease activity, neuron damage was identified by Nissl staining, and the protein S-sulfhydrylation test was utilized to evaluate alterations in apoptosis-associated protein S-sulfhydrylation. RESULTS H2S content significantly decreased in the plasma of SZ patients and in the plasma and hippocampal tissue of SZ model rats. NaHS pretreatment reduced MK801-induced apoptosis in SH-SY5Y cells. SZ model rats exhibited increased behavioral abnormalities, hippocampal apoptosis, and reduced S-sulfhydrylation of an apoptosis-related protein, both restored after NaHS pretreatment. CONCLUSIONS H2S content is significantly reduced in SZ, and supplementation of H2S can alleviate SZ-like behavior by inducing S-sulfhydration of apoptotic proteins.
Collapse
Affiliation(s)
- Xinzhe Du
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Wei Hu
- Basic Medical CollegeShanxi Medical UniversityTaiyuanShanxiChina
| | - Meiqi Liu
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Jinzhi Lv
- Obstetrics and Gynecology DepartmentThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Yao Gao
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xiao Wang
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Wentao Zhao
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Junxia Li
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xinrong Li
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xiaohua Cao
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Zhifen Liu
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yong Xu
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- The Eighth Affiliated HospitalSun yat‐sen UniversityGuangdongChina
| | - Sha Liu
- Department of PsychiatryFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental DisorderFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
7
|
Lv J, Wu T, Xue J, Shen C, Gao W, Chen X, Guo Y, Liu M, Yu J, Huang X, Zheng B. ASB1 engages with ELOB to facilitate SQOR ubiquitination and H 2S homeostasis during spermiogenesis. Redox Biol 2025; 79:103484. [PMID: 39733518 PMCID: PMC11743861 DOI: 10.1016/j.redox.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Male infertility, frequently driven by oxidative stress, impacts half of infertile couples globally. Despite its significance, the precise mechanisms governing this process remain elusive. In this study, we demonstrate that ASB1, the substrate recognition subunit of a ubiquitin ligase, is highly expressed in the mouse testis. Mice lacking the Asb1 gene exhibit severe fertility impairment, characterized by oligoasthenoteratozoospermia. Subsequent investigations unveiled that Asb1 knockout (Asb1-KO) mice encountered excessive oxidative stress and decreased hydrogen sulfide (H2S) levels in their testes, and severe sperm DNA damage. Notably, the compromised fertility and sperm quality in Asb1-KO mice was significantly ameliorated by administering NaHS, a H2S donor. Mechanistically, ASB1 interacts with ELOB to induce the instability of sulfide-quinone oxidoreductase (SQOR) by enhancing its K48-linked ubiquitination on residues K207 and K344, consequently triggering proteasomal degradation. This process is crucial for preserving H2S homeostasis and redox balance. Overall, our findings offer valuable insights into the role of ASB1 during spermiogenesis and propose H2S supplementation as a promising therapeutic approach for oxidative stress-related male infertility.
Collapse
Affiliation(s)
- Jinxing Lv
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China.
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiajia Xue
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xia Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
8
|
Wang M, Zhang S, Tian J, Yang F, Chen H, Bai S, Kang J, Pang K, Huang J, Dong M, Dong S, Tian Z, Fang S, Fan H, Lu F, Yu B, Li S, Zhang W. Impaired Iron-Sulfur Cluster Synthesis Induces Mitochondrial PARthanatos in Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406695. [PMID: 39495652 PMCID: PMC11714204 DOI: 10.1002/advs.202406695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Indexed: 11/06/2024]
Abstract
Diabetic cardiomyopathy (DCM), a severe complication of diabetes, is characterized by mitochondrial dysfunction, oxidative stress, and DNA damage. Despite its severity, the intrinsic factors governing cardiomyocyte damage in DCM remain unclear. It is hypothesized that impaired iron-sulfur (Fe-S) cluster synthesis plays a crucial role in the pathogenesis of DCM. Reduced S-sulfhydration of cysteine desulfurase (NFS1) is a novel mechanism that contributes to mitochondrial dysfunction and PARthanatos in DCM. Mechanistically, hydrogen sulfide (H2S) supplementation restores NFS1 S-sulfhydration at cysteine 383 residue, thereby enhancing Fe-S cluster synthesis, improving mitochondrial function, increasing cardiomyocyte viability, and alleviating cardiac damage. This study provides novel insights into the interplay between Fe-S clusters, mitochondrial dysfunction, and PARthanatos, highlighting a promising therapeutic target for DCM and paving the way for potential clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Mengyi Wang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Heilongjiang Provincial Key Laboratory of Panvascular DiseaseHarbin150000China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Shiwu Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Jinwei Tian
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Heilongjiang Provincial Key Laboratory of Panvascular DiseaseHarbin150000China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| | - Fan Yang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| | - He Chen
- Department of Forensic MedicineHarbin Medical UniversityHarbin150000China
| | - Shuzhi Bai
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Jiaxin Kang
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Kemiao Pang
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Jiayi Huang
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Mingjie Dong
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150000China
| | - Shiyun Dong
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Zhen Tian
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Shaohong Fang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| | - Huitao Fan
- Department of Critical Care MedicineThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
- Department of HematologyThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
- NHC Key Laboratory of Cell TransplantationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
- Key Laboratory of Hepatosplenic Surgery of Ministry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Fanghao Lu
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
| | - Bo Yu
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Harbin150000China
| | - Shuijie Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical UniversityHarbin150000China
- Heilongjiang Province Key Laboratory of Research on Molecular Targeted Anti‐Tumor DrugsHarbin150000China
| | - Weihua Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityNo. 246 Xuefu ROADHarbin150086China
- Heilongjiang Provincial Key Laboratory of Panvascular DiseaseHarbin150000China
- Department of PathophysiologyHarbin Medical UniversityHarbin150000China
- Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150000China
| |
Collapse
|
9
|
Zhu X, Cao Y, Chen S, Liu Q, Chai J, Wang W. Insufficient S-sulfhydration of serum and glucocorticoid-regulated kinase 1 participates in hyperhomocysteinemia-induced liver injury. Free Radic Biol Med 2024; 225:517-527. [PMID: 39427745 DOI: 10.1016/j.freeradbiomed.2024.10.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND & AIMS Previous studies have established that hyperhomocysteinemia (HHcy) significantly contributes to the development of non-alcoholic steatohepatitis (NASH). Conversely, hydrogen sulfide (H2S) has shown potential in mitigating NASH. Despite these findings, it remains uncertain whether H2S can serve as a therapeutic agent against HHcy-induced liver damage. METHODS Mice were fed a high-methionine diet to induce HHcy and HepG2 cells were exposed to homocysteine (Hcy). In both models, we assessed liver injury, H2S concentration, and autophagy levels. For rescue, sodium hydrosulfide (NaHS), an H2S donor, was used to test its potential in reversing hepatic pathological features induced by HHcy. RESULTS 1) Hcy accumulation led to liver damage and increased autophagy. This was linked to insufficient S-sulfhydration of serum and glucocorticoid-regulated kinase 1 (SGK1) at Cys244 and Cys282, a crucial autophagy regulator. The deficiency in S-sulfhydration was resulted from downregulation of cystathionine-γ-lyase (CSE) and subsequent H2S decrease, leading to SGK1 inactivation. 2) Administration of NaHS reduced the liver damage caused by high Hcy levels and restored H2S levels, promoting the S-sulfhydration and activation of SGK1. 3) Pharmacological inhibition of SGK1 induced autosis, a specific type of cell death caused by overactivation of autophagy. Conversely, a constitutively active mutant of SGK1 (SGK1S422D) significantly decreased autophagy and improved cell viability. CONCLUSIONS NaHS supplementation mitigates HHcy-induced liver injury by downregulating hepatic autophagy through the S-sulfhydration and activation of SGK1. This post-translational modification by H2S holds promise as a therapeutic approach for HHcy-induced liver injury.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Cao
- Department of Basic Medical Sciences, Beijing Health Vocational College, Beijing, 101149, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qinchi Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China.
| |
Collapse
|
10
|
Pandey T, Kaundal RS, Pandey V. Biophysical characterization of hydrogen sulfide: A fundamental exploration in understanding significance in cell signaling. Biophys Chem 2024; 314:107317. [PMID: 39236424 DOI: 10.1016/j.bpc.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H₂S) has emerged as a significant signaling molecule involved in various physiological processes, including vasodilation, neurotransmission, and cytoprotection. Its interactions with biomolecules are critical to understand its roles in health and disease. Recent advances in biophysical characterization techniques have shed light on the complex interactions of H₂S with proteins, nucleic acids, and lipids. Proteins are primary targets for H₂S, which can modify cysteine residues through S-sulfhydration, impacting protein function and signaling pathways. Advanced spectroscopic techniques, such as mass spectrometry and NMR, have enabled the identification of specific sulfhydrated sites and provided insights into the structural and functional consequences of these modifications. Nucleic acids also interact with H₂S, although this area is less explored compared to proteins. Recent studies have demonstrated that H₂S can induce modifications in nucleic acids, affecting gene expression and stability. Techniques like gel electrophoresis and fluorescence spectroscopy have been utilized to investigate these interactions, revealing that H₂S can protect DNA from oxidative damage and modulate RNA stability and function. Lipids, being integral components of cell membranes, interact with H₂S, influencing membrane fluidity and signaling. Biophysical techniques such as electron paramagnetic resonance (EPR) and fluorescence microscopy have elucidated the effects of H₂S on lipid membranes. These studies have shown that H₂S can alter lipid packing and dynamics, which may impact membrane-associated signaling pathways and cellular responses to stress. In the current work we have integrated this with key scientific explainations to provide a comprehensive review.
Collapse
Affiliation(s)
- Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajinder Singh Kaundal
- Department of Physics, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
11
|
Yang J, Gao J, E Y, Jiao L, Wu R, Yan Q, Wei Z, Yan G, Liang J, Li H. Hydrogen sulfide inhibits skeletal muscle ageing by up-regulating autophagy through promoting deubiquitination of adenosine 5'-monophosphate (AMP)-activated protein kinase α1 via ubiquitin specific peptidase 5. J Cachexia Sarcopenia Muscle 2024; 15:2118-2133. [PMID: 39189428 PMCID: PMC11446701 DOI: 10.1002/jcsm.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S), the third gasotransmitter discovered, regulates a variety of physiological functions. Whether H2S alleviates skeletal muscle ageing by regulating autophagy has not been reported. METHODS Mice were administered 150 mg/kg/day of D-galactose (D-gal), and C2C12 myotubes were cultured in 20 g/L D-gal to induce ageing. Sodium hydrosulfide (NaHS) was employed as an exogenous donor in the treatment group. The intracellular concentration of H2S was quantified by the 7-azido-4-methylcoumarin fluorescence probe. The proteins involved in the ubiquitin-mediated degradation of AMPKα1 were detected by liquid chromatography tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation (Co-IP). S-sulfhydration of USP5 was tested by a biotin-switch assay. Associated proteins were analysed by western blot. RESULTS NaHS was found to effectively restore the H2S content in both ageing gastrocnemius (+91.89%, P < 0.001) and C2C12 myotubes (+27.55%, P < 0.001). In comparison to the D-gal group, NaHS was observed to increase the mean cross-sectional area of muscle fibres (+44.91%, P < 0.001), to decrease the collagen volume fraction of gastrocnemius (-81.32%, P = 0.001) and to reduce the β-galactosidase-positive area of C2C12 myotubes (-28.74%, P < 0.001). NaHS was also found to reverse the expression of muscle atrophy F box protein (MAFbx), muscle-specific RING finger protein 1 (MuRF1), Cyclin D1 and p21 in the ageing gastrocnemius tissue (MAFbx: -31.73%, P = 0.008; MuRF1: -32.37%, P = 0.003; Cyclin D1: +45.34%, P = 0.010; p21: -25.53%, P = 0.022) and C2C12 myotubes (MAFbx: -16.38%, P < 0.001; MuRF1: -16.45%, P = 0.003; Cyclin D1: +40.23%, P < 0.001; p21: -35.85%, P = 0.026). The AMPKα1-ULK1 pathway was activated and autophagy was up-regulated in NaHS-treated gastrocnemius tissue (p-AMPKα1: +61.61%, P = 0.018; AMPKα1: +30.64%, P = 0.010; p-ULK1/ULK1: +85.87%, P = 0.005; p62: -29.07%, P < 0.001; Beclin1: +24.75%, P = 0.007; light chain 3 II/I [LC3 II/I]: +55.78%, P = 0.004) and C2C12 myotubes (p-AMPKα1: +77.49%, P = 0.018; AMPKα1: +26.18%, P = 0.022; p-ULK1/ULK1: +38.34%, P = 0.012; p62: -9.02%, P = 0.014; Beclin1: +13.36%, P < 0.001; LC3 II/I: +79.38%, P = 0.017; autophagy flux: +24.88%, P = 0.034) compared with the D-gal group. The effects of NaHS on autophagy were comparable to those of acadesine and LYN-1604, and chloroquine could reverse its effects on ageing. LC-MS/MS and Co-IP experiments demonstrated that USP5 is a deubiquitinating enzyme of AMPKα1. Following the knockdown of USP5, the activation of AMPKα1 was decreased (p-AMPKα1: -42.10%, P < 0.001; AMPKα1: -43.93%, P < 0.001), autophagy was inhibited (p-ULK1/ULK1: -27.51, P = 0.001; p62: +36.00, P < 0.001; Beclin1: -22.15%, P < 0.001) and NaHS lost its ability to up-regulate autophagy. NaHS was observed to restore the expression (gastrocnemius: +62.17%, P < 0.001; C2C12 myotubes: +37.51%, P = 0.003) and S-sulfhydration (+53.07%, P = 0.009) of USP5 and reduce the ubiquitination of AMPKα1. CONCLUSIONS H2S promotes the deubiquitination of AMPKα1 by increasing the expression and S-sulfhydration of USP5, thereby up-regulating autophagy and alleviating skeletal muscle ageing.
Collapse
Affiliation(s)
- Jia‐He Yang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Jun Gao
- Department of Emergency MedicineXiangan Hospital of Xiamen UniversityXiamenFujianChina
| | - Ya‐Qi E
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Li‐Jie Jiao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Ren Wu
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Qiu‐Yi Yan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Zi‐Yi Wei
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Guo‐Liang Yan
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| | - Jin‐Long Liang
- Department of General SurgeryXiamen Fifth HospitalXiamenFujianChina
| | - Hong‐Zhu Li
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujianChina
- Department of Pathophysiology, School of MedicineXiamen UniversityXiamenFujianChina
| |
Collapse
|
12
|
Li S, Xu J, Qian Y, Zhang R. Hydrogel in the Treatment of Traumatic Brain Injury. Biomater Res 2024; 28:0085. [PMID: 39328790 PMCID: PMC11425593 DOI: 10.34133/bmr.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The high prevalence of traumatic brain injury (TBI) poses an important global public health challenge. Current treatment modalities for TBI primarily involve pharmaceutical interventions and surgical procedures; however, the efficacy of these approaches remains limited. In the field of regenerative medicine, hydrogels have garnered significant attention and research efforts. This review provides an overview of the existing landscape and pathological manifestations of TBI, with a specific emphasis on delineating the therapeutic potential of hydrogels incorporated with various bioactive agents for TBI management. Particularly, the review delves into the utilization and efficacy of hydrogels based on extracellular matrix (ECM), stem cell-loaded, drug-loaded, self-assembled peptide structures or conductive in the context of TBI treatment. These applications are shown to yield favorable outcomes such as tissue damage mitigation, anti-inflammatory effects, attenuation of oxidative stress, anti-apoptotic properties, promotion of neurogenesis, and facilitation of angiogenesis. Lastly, a comprehensive analysis of the merits and constraints associated with hydrogel utilization in TBI treatment is presented, aiming to steer and advance future research endeavors in this domain.
Collapse
Affiliation(s)
- Shanhe Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiajun Xu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqing Qian
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
13
|
Tang SM, Lu GZ, Lei XY, Yang XY, Tang GT, Yu J, Xie ZZ. Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide? Nitric Oxide 2024; 149:67-74. [PMID: 38897561 DOI: 10.1016/j.niox.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Collapse
Affiliation(s)
- Si-Miao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Zhong Lu
- 922th Hospital of Hengyang, Hunan, 421001, China
| | - Xiao-Yong Lei
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Yan Yang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Tao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhi-Zhong Xie
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
14
|
Shi J, Tian F, Ren J, Li R, Yang M, Li W. Diesel exhaust particulate matter induces GC-1 spg cells oxidative stress by KEAP1-NRF2 pathway and inhibition of ATP5α1 S-sulfhydration. Food Chem Toxicol 2024; 189:114746. [PMID: 38768936 DOI: 10.1016/j.fct.2024.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Diesel exhaust particle (DEP) exposure induces a variety of toxicological effects through oxidative stress and inflammation responses. This research investigated the mechanisms underlying DEP-induced GC-1spg cells oxidative stress by examining ROS accumulation, antioxidant defense systems activation, mitochondrial dysfunction, and the Nrf2/Keap1/HO-1 pathway response. Subsequently, we further evaluated the ATP levels, ATP5α synthase activity and ATP5α synthase S-sulfhydrated modification in DEP-exposed GC-1 spg cells. The results showed that DEP exposure significantly inhibited cell proliferation and viability, increased intracellular ROS production, decreased MMP, down-regulated antioxidant capacity, activated the Nrf2/Keap1/HO-1 pathway. However, DEP-induced oxidative stress was partially alleviated by GSH and exogenous H2S. In addition, DEP exposure induced ATP depletion and ATP5α synthase inactivity in GC-1 spg cells, accompanied by ATP5α synthase S-sulfhydrated modification. In conclusion, our research showed that DEP may incapacitate mitochondria through oxidative stress injury, leading to GC-1 spg cells oxidative stress. This process may be associated with the reduction of ATP5α1 S-sulfhydrated modification. It provides a new perspective for the research of the mechanism related to male reproductive toxicity due to air pollution.
Collapse
Affiliation(s)
- Jiayi Shi
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Fang Tian
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jianke Ren
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Runsheng Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Mingjun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
15
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
16
|
Zhang H, Pan J, Huang S, Chen X, Chang ACY, Wang C, Zhang J, Zhang H. Hydrogen sulfide protects cardiomyocytes from doxorubicin-induced ferroptosis through the SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2 activation. Redox Biol 2024; 70:103066. [PMID: 38359744 PMCID: PMC10877437 DOI: 10.1016/j.redox.2024.103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Recent studies have demonstrated that ferroptosis, a novel form of nonapoptotic regulated cell death plays an important role in doxorubicin (DOX)-induced cardiotoxicity (DoIC). Hydrogen sulfide (H2S) is emerging as the third important gaseous mediator in cardiovascular system. However, whether H2S has an effect on DOX-induced ferroptosis remains unknown. Here, we found that DOX not only triggered cardiomyocyte ferroptosis but also significantly inhibited the synthesis of endogenous H2S in the murine model of chronic DoIC. Application of NaHS, an H2S donor obviously activated the SLC7A11/GSH/GPx4 antioxidant pathway and thus alleviated DOX-induced ferroptosis and cardiac injury in mice. In contrast, cardiac-specific knockout of cystathionine γ-lyase gene (Cse) in mice (Csef/f/Cre+) to abolish the cardiac synthesis of endogenous H2S evidently exacerbated DOX-induced ferroptosis and cardiac dysfunction. A further suppression of SLC7A11/GSH/GPx4 pathway was obtained in Csef/f/Cre+ mice with DoIC, as compared to Csef/f/Cre- mice with DoIC. The aggravation caused by cardiac-specific Cse deficiency was remarkably rescued by exogenous supplementation of NaHS. Moreover, in DOX-stimulated H9c2 cardiomyocytes, pretreatment with NaHS dose-dependently enhanced the activity of SLC7A11/GSH/GPx4 pathway and subsequently mitigated ferroptosis and mitochondrial impairment. On the contrary, transfection with Cse siRNA in DOX-stimulated H9c2 cardiomyocytes markedly inhibited SLC7A11/GSH/GPx4 pathway, thus leading to aggravated ferroptosis and more damage to mitochondrial structure and function. In addition, the protective effect of NaHS on DOX-induced ferroptosis was closely related to the S-sulfhydrated Keap1, which in turn promoted nuclear translocation of Nrf2 and the transcription of SLC7A11 and GPx4. In conclusion, our findings suggest that H2S may exert protective effect on DoIC by inhibiting DOX-induced ferroptosis via Keap1/Nrf2-dependent SLC7A11/GSH/GPx4 antioxidant pathway.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huili Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
18
|
Pang PP, Zhang HY, Zhang DC, Tang JX, Gong Y, Guo YC, Zheng CB. Investigating the impact of protein S-sulfhydration modification on vascular diseases: A comprehensive review. Eur J Pharmacol 2024; 966:176345. [PMID: 38244760 DOI: 10.1016/j.ejphar.2024.176345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
The post-translational modification of cysteine through redox reactions, especially S-sulfhydration, plays a critical role in regulating protein activity, interactions, and spatial arrangement. This review focuses on the impact of protein S-sulfhydration on vascular function and its implications in vascular diseases. Dysregulated S-sulfhydration has been linked to the development of vascular pathologies, including aortic aneurysms and dissections, atherosclerosis, and thrombotic diseases. The H2S signaling pathway and the enzyme cystathionine γ-lyase (CSE), which is responsible for H2S generation, are identified as key regulators of vascular function. Additionally, potential therapeutic targets for the treatment of vascular diseases, such as the H2S donor GYY4137 and the HDAC inhibitor entinostat, are discussed. The review also emphasizes the antithrombotic effects of H2S in regulating platelet aggregation and thrombosis. The aim of this review is to enhance our understanding of the function and mechanism of protein S-sulfhydration modification in vascular diseases, and to provide new insights into the clinical application of this modification.
Collapse
Affiliation(s)
- Pan-Pan Pang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Hong-Ye Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Ding-Cheng Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Jia-Xiang Tang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Yu Gong
- Yunnan Provincial Hospital of Infection Disease/ Yunnan AIDS Care Center/ Yunnan Mental Health Center, Kunming, 650301, China
| | - Yu-Chen Guo
- University of Sydney Pharmacy School, Sydney, 2006, Australia
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China; College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China; Yunnan Vaccine Laboratory, Kunming, 650500, China.
| |
Collapse
|
19
|
Zhu Y, Hu Z, Liu Y, Yan T, Liu L, Wang Y, Bai B. AChE activity self-breathing control mechanisms regulated by H 2S n and GSH: Persulfidation and glutathionylation on sulfhydryl after disulfide bonds cleavage. Int J Biol Macromol 2024; 259:129117. [PMID: 38211930 DOI: 10.1016/j.ijbiomac.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Hydrogen sulfide (H2S), or dihydrogen sulfane (H2Sn), acts as a signal molecule through the beneficial mechanism of persulfidation, known as the post-translational transformation of cysteine residues to persulfides. We previously reported that Glutathione (GSH) could regulate enzyme activity through S-desulfurization or glutathionylation of residues to generate protein-SG or protein-SSG, releasing H2S. However, little is known about the mechanisms by which H2Sn and GSH affect the disulfide bonds. In this study, we provide direct evidences that H2Sn and GSH modify the sulfhydryl group on Cys272, which forms disulfide bonds in acetylcholinesterase (AChE), to generate Cys-SSH and Cys-SSG, respectively. Glutathionylation of disulfide is a two-step reaction based on nucleophilic substitution, in which the first CS bond is broken, then the SS bond is broken to release H2S. H2Sn and GSH controlled self-breathing motion in enzyme catalysis by disconnecting specific disulfide bonds and modifying cysteine residues, thereby regulating AChE activity. Here, we elucidated H2Sn and GSH mechanisms on disulfide in the AChE system and proposed a self-breathing control theory induced by H2Sn and GSH. These theoretical findings shed light on the biological functions of H2Sn and GSH on sulfhydryl and disulfide bonds and enrich the theory of enzyme activity regulation.
Collapse
Affiliation(s)
- Yanwen Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoliang Hu
- Department of Surgical Oncology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanqun Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
20
|
Zhou K, Luo W, Gui DD, Ren Z, Wei DH, Liu LS, Li GH, Tang ZH, Xiong WH, Hu HJ, Jiang ZS. Hydrogen sulfide attenuates atherosclerosis induced by low shear stress by sulfhydrylating endothelium NFIL3 to restrain MEST mediated endothelial mesenchymal transformation. Nitric Oxide 2024; 142:47-57. [PMID: 38049061 DOI: 10.1016/j.niox.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.
Collapse
Affiliation(s)
- Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wen Luo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China; Department of Basic Medicine, Changsha Health Vocational College, Changsha, 410699, China.
| | - Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Guo-Hua Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, China.
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
21
|
Fu S, Yang B, Gao Y, Qiu Y, Sun N, Li Z, Feng S, Xu Y, Zhang J, Luo Z, Han X, Miao J. A critical role for host-derived cystathionine-β-synthase in Staphylococcus aureus-induced udder infection. Free Radic Biol Med 2024; 210:13-24. [PMID: 37951283 DOI: 10.1016/j.freeradbiomed.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Cystathionine-β-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.
Collapse
Affiliation(s)
- Shaodong Fu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yabin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyuan Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Zhang S, Wang M, Li H, Li Q, Liu N, Dong S, Zhao Y, Pang K, Huang J, Ren C, Wang Y, Tian Z, Lu F, Zhang W. Exogenous H 2 S promotes ubiquitin-mediated degradation of SREBP1 to alleviate diabetic cardiomyopathy via SYVN1 S-sulfhydration. J Cachexia Sarcopenia Muscle 2023; 14:2719-2732. [PMID: 37899701 PMCID: PMC10751422 DOI: 10.1002/jcsm.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy, a distinctive complication of diabetes mellitus, has been correlated with the presence of intracellular lipid deposits. However, the intricate molecular mechanisms governing the aberrant accumulation of lipid droplets within cardiomyocytes remain to be comprehensively elucidated. METHODS Both obese diabetic (db/db) mice and HL-1 cells treated with 200 μmol/L palmitate and 200 μmol/L oleate were used to simulate type 2 diabetes conditions. Transmission electron microscopy is employed to assess the size and quantity of lipid droplets in the mouse hearts. Transcriptomics analysis was utilized to interrogate mRNA levels. Lipidomics and ubiquitinomics were employed to explore the lipid composition alterations and proteins participating in ubiquitin-mediated degradation in mice. Clinical data were collected from patients with diabetes-associated cardiomyopathy and healthy controls. Western blot analysis was conducted to assess the levels of proteins linked to lipid metabolism, and the biotin-switch assay was employed to quantify protein cysteine S-sulfhydration levels. RESULTS The administration of H2 S donor, NaHS, effectively restored hydrogen sulfide levels in both the cardiac tissue and plasma of db/db mice (+7%, P < 0.001; +5%, P < 0.001). Both db/db mice (+210%, P < 0.001) and diabetic patients (+83%, P = 0.22, n = 5) exhibit elevated plasma triglyceride levels. Treatment with GYY4137 effectively lowers triglyceride levels in db/db mice (-43%, P = 0.007). The expression of cystathionine gamma-lyase and HMG-CoA reductase degradation protein 1 (SYVN1) was decreased in db/db mice compared with the wild-type mice (cystathionine gamma-lyase: -31%, P = 0.0240; SYVN1: -35%, P = 0.01), and NaHS-treated mice (SYVN1: -31%, P = 0.03). Conversely, the expression of sterol regulatory element-binding protein 1 (SREBP1) was elevated (+91%, P = 0.007; +51%, P = 0.03 compared with control and NaHS-treated mice, respectively), along with diacylglycerol O-acyltransferase 1 (DGAT1) (+95%, P = 0.001; +35%, P = 0.02) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3) (+88%, P = 0.01; +22%, P = 0.32). Exogenous H2 S led to a reduction in lipid droplet formation (-48%, P < 0.001), restoration of SYVN1 expression, modification of SYVN1's S-sulfhydration status and enhancement of SREBP1 ubiquitination. Overexpression of SYVN1 mutated at Cys115 decreased SREBP1 ubiquitination and increased the number of lipid droplets. CONCLUSIONS Exogenous H2 S enhances ubiquitin-proteasome degradation of SREBP1 and reduces its nuclear translocation by modulating SYVN1's cysteine S-sulfhydration. This pathway limits lipid droplet buildup in cardiac myocytes, ameliorating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Mengyi Wang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Hongxia Li
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Qianzhu Li
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Ning Liu
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Shiyun Dong
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Yajun Zhao
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Kemiao Pang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Jiayi Huang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Cheng Ren
- Department of Urologic SurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yan Wang
- Department of Urologic SurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhen Tian
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Fanghao Lu
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| | - Weihua Zhang
- Department of PathophysiologyHarbin Medical UniversityHarbinChina
| |
Collapse
|
23
|
Rodkin S, Nwosu C, Raevskaya M, Khanukaev M, Bekova K, Vasilieva I, Vishnyak D, Tolmacheva A, Efremova E, Gasanov M, Tyurin A. The Role of Hydrogen Sulfide in the Localization and Expression of p53 and Cell Death in the Nervous Tissue in Traumatic Brain Injury and Axotomy. Int J Mol Sci 2023; 24:15708. [PMID: 37958692 PMCID: PMC10650615 DOI: 10.3390/ijms242115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide. It is characterized by various molecular-cellular events, with the main ones being apoptosis and damage to axons. To date, there are no clinically effective neuroprotective drugs. In this study, we examined the role of hydrogen sulfide (H2S) in the localization and expression of the key pro-apoptotic protein p53, as well as cell death in the nervous tissue in TBI and axotomy. We used a fast donor (sodium sulphide, Na2S) H2S and a classic inhibitor (aminooxyacetic acid, AOAA) of cystathionine β-synthase (CBS), which is a key enzyme in H2S synthesis. These studies were carried out on three models of neurotrauma in vertebrates and invertebrates. As a result, it was found that Na2S exhibits a pronounced neuroprotective effect that reduces the number of TUNEL-positive neurons and glial cells in TBI and apoptotic glia in axotomy. This effect could be realized through the Na2S-dependent decrease in the level of p53 in the cells of the nervous tissue of vertebrates and invertebrates, which we observed in our study. We also observed the opposite effect when using AOAA, which indicates the important role of CBS in the regulation of p53 expression and death of neurons and glial cells in TBI and axotomy.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Maxim Khanukaev
- Department of Instrumentation and Biomedical Engineering, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Khava Bekova
- Department of Nervous Diseases and Neurosurgery, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- Department of Polyclinic Therapy, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Diana Vishnyak
- Department of Internal Diseases, Surgut State University, Lenina, 1, Nephrology Department, Surgut District Clinical Hospital, Energetikov, 24/3, 628400 Surgut, Russia
| | - Anastasia Tolmacheva
- Department of Faculty Therapy Named after Professor G.D. Zalessky, Novosibirsk State Medical University, Krasny Prospekt, 52, Department of Medical Rehabilitation, Novosibirsk Regional Clinical Hospital of War Veterans No. 3, Demyan the Poor, 71, 630005 Novosibirsk, Russia
| | - Elena Efremova
- Department of Therapy and Occupational Diseases, Ulyanovsk State University, Lev Tolstoy Street 42, 432017 Ulyanovsk, Russia;
| | - Mitkhat Gasanov
- Internal Medicine Department, Institute of Medical Education, The Yaroslav-the-Wise Novgorod State University, Derzhavina St. 6, 173020 Veliky Novgorod, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
24
|
Ghaiad HR, A Abd-Elmawla M, Gad ES, A Ahmed K, Abdelmonem M. Modulating miR-146a Expression by Hydrogen Sulfide Ameliorates Motor Dysfunction and Axonal Demyelination in Cuprizone-Induced Multiple Sclerosis. ACS Chem Neurosci 2023; 14:3047-3058. [PMID: 37585620 DOI: 10.1021/acschemneuro.3c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neuro-inflammatory and neuro-autoimmune disease. Although hydrogen sulfide has recently shown potential therapeutic impacts in different neurological diseases, its effects on MS are still obscure. MiR-146a is considered a vital target for different therapeutic approaches in treating MS. The present study is directed to explore the therapeutic effects of NaHS (hydrogen sulfide donor) on cuprizone-induced MS and to explore whether NaHS can mediate its effects via regulating miR-146a expression. A total of 28 male C57Bl/6 mice were divided into 4 groups; control, cuprizone-intoxicated, NaHS control (100 μmol/kg/day, i.p), and NaHS-treated groups. Intriguingly, NaHS treatment managed to improve locomotor coordination and curb neuronal inflammation and demyelination as evidenced by hematoxylin & eosin, and Luxol fast blue staining and the increased myelin basic protein (MBP) content. Additionally, NaHS reduced interleukin-1 receptor-associated kinase-1 (IRAK-1), nuclear transcription factor kappa B (NF-κB), interleukin (IL)-17, and IL-1β brain levels along with downregulation of miR-146a expression compared with the untreated cuprizone-intoxicated group. Furthermore, NaHS-treated animals revealed much less oxidative stress compared to the untreated animals as evidenced by elevated glutathione and reduced malondialdehyde contents. Altogether, the current work reported that NaHS could improve motor dysfunction and reduce axonal demyelination, oxidative stress, as well as neuro-inflammation in mice with MS. Thus, using H2S-releasing compounds could be a promising approach in MS treatment strategies. The mechanism of these beneficial effects may involve the regulation of miR-146a/NF-κB/IL-1β axis.
Collapse
Affiliation(s)
- Heba R Ghaiad
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Enas S Gad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Ismailia 45511, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
25
|
Dogaru BG, Munteanu C. The Role of Hydrogen Sulfide (H 2S) in Epigenetic Regulation of Neurodegenerative Diseases: A Systematic Review. Int J Mol Sci 2023; 24:12555. [PMID: 37628735 PMCID: PMC10454626 DOI: 10.3390/ijms241612555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the emerging role of hydrogen sulfide (H2S) in modulating epigenetic mechanisms involved in neurodegenerative diseases. Accumulating evidence has begun to elucidate the multifaceted ways in which H2S influences the epigenetic landscape and, subsequently, the progression of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. H2S can modulate key components of the epigenetic machinery, such as DNA methylation, histone modifications, and non-coding RNAs, impacting gene expression and cellular functions relevant to neuronal survival, inflammation, and synaptic plasticity. We synthesize recent research that positions H2S as an essential player within this intricate network, with the potential to open new therapeutic avenues for these currently incurable conditions. Despite significant progress, there remains a considerable gap in our understanding of the precise molecular mechanisms and the potential therapeutic implications of modulating H2S levels or its downstream targets. We conclude by identifying future directions for research aimed at exploiting the therapeutic potential of H2S in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bombonica Gabriela Dogaru
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Clinical Rehabilitation Hospital, 400437 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| |
Collapse
|
26
|
Wang H, Bai Q, Ma G. The biological functions of protein S-sulfhydration in eukaryotes and the ever-increasing understanding of its effects on bacteria. Microbiol Res 2023; 271:127366. [PMID: 36989759 DOI: 10.1016/j.micres.2023.127366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
As a critical endogenous signaling molecule, hydrogen sulfide may induce reversible post-translational modifications on cysteine residues of proteins, generating a persulfide bond known as S-sulfhydration. A systemic overview of the biofunctions of S-sulfhydration will equip us better to characterize its regulatory roles in antioxidant defense, inflammatory response, and cell fate, as well as its pathological mechanisms related to cardiovascular, neurological, and multiple organ diseases, etc. Nevertheless, the understanding of S-sulfhydration is mostly built on mammalian cells and animal models. We subsequently summarized the mediation effects of this specific post-transcriptional modification on physiological processes and virulence in bacteria. The high-sensitivity and high-throughput detection technologies are required for studying the signal transduction mechanism of H2S and protein S-sulfhydration modification. Herein, we reviewed the establishment and development of different approaches to assess S-sulfhydration, including the biotin-switch method, modified biotin-switch method, alkylation-based cysteine-labelled assay, and Tag-switch method. Finally, we discussed the limitations of the impacts of S-sulfhydration in pathogens-host interactions and envisaged the challenges to design drugs and antibiotics targeting the S-sulfhydrated proteins in the host or pathogens.
Collapse
|
27
|
Liu F, Yuan L, Li L, Yang J, Liu J, Chen Y, Zhang J, Lu Y, Yuan Y, Cheng J. S-sulfhydration of SIRT3 combats BMSC senescence and ameliorates osteoporosis via stabilizing heterochromatic and mitochondrial homeostasis. Pharmacol Res 2023; 192:106788. [PMID: 37146925 DOI: 10.1016/j.phrs.2023.106788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Senescence of bone marrow mesenchymal stem cells (BMSCs) is one of the leading causes of osteoporosis. SIRT3, an essential NAD-dependent histone deacetylase, is highly correlated with BMSC senescence-mediated bone degradation and mitochondrial/heterochromatic disturbance. S-sulfhydration of cysteine residues favorably enhances SIRT3 activity by forming persulfides. Nevertheless, the underlying molecular mechanism of SIRT3 S-sulfhydration on mitochondrial/heterochromatic homeostasis involved in BMSC senescence remains unknown. Here, we demonstrated that CBS and CSE, endogenous hydrogen sulfide synthases, are downregulated with BMSC senescence. Exogenous H2S donor NaHS-mediated SIRT3 augmentation rescued the senescent phenotypes of BMSCs. Conversely, SIRT3 deletion accelerated oxidative stress-induced BMSC senescence through mitochondrial dysfunction and the detachment of the heterochromatic protein H3K9me3 from the nuclear envelope protein Lamin B1. H2S-mediated SIRT3 S-sulfhydration modification rescued the disorganized heterochromatin and fragmented mitochondria induced by the S-sulfhydration inhibitor dithiothreitol, thus leading to elevated osteogenic capacity and preventing BMSC senescence. The antisenescence effect of S-sulfhydration modification on BMSCs was abolished when the CXXC sites of the SIRT3 zinc finger motif were mutated. In vivo, aged mice-derived BMSCs pretreated with NaHS were orthotopically transplanted to the ovariectomy-induced osteoporotic mice, and we proved that SIRT3 ameliorates bone loss by inhibiting BMSC senescence. Overall, our study for the first time indicates a novel role of SIRT3 S-sulfhydration in stabilizing heterochromatin and mitochondrial homeostasis in counteracting BMSC senescence, providing a potential target for the treatment of degenerative bone diseases.
Collapse
Affiliation(s)
- Fei Liu
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Endocrinology & Metabolism and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Longhui Yuan
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Li
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingchao Yang
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Endocrinology & Metabolism and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu P.R. China
| | - Yanrong Lu
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujia Yuan
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jingqiu Cheng
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Endocrinology & Metabolism and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
29
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
30
|
Hong T, Cheng S, Zhong X, Zuo Y, Dong Y, Shi Z, Zhao Z. Novel fluorescent probe based on dicoumarin for detection of hydrogen sulfide in real samples. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Tong Hong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Song Cheng
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Xuefang Zhong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Yiwei Zuo
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Yiming Dong
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
| | - Zhichuan Shi
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission Southwest Minzu University Chengdu PR China
| | - Zhigang Zhao
- School of Chemistry and Environment Southwest Minzu University Chengdu PR China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission Southwest Minzu University Chengdu PR China
| |
Collapse
|
31
|
Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023; 59:102601. [PMID: 36630819 PMCID: PMC9841368 DOI: 10.1016/j.redox.2023.102601] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in colorectal cancer (CRC). It is produced in the colon by the catalytic synthesis of the colonocytes' enzymatic systems and the release of intestinal microbes, and is oxidatively metabolized in the colonocytes' mitochondria. Both endogenous H2S in colonic epithelial cells and exogenous H2S in intestinal lumen contribute to the onset and progression of CRC. The up-regulation of endogenous synthetases is thought to be the cause of the elevated H2S levels in CRC cells. Different diagnostic probes and combination therapies, as well as tumor treatment approaches through H2S modulation, have been developed in recent years and have become active area of investigation for the diagnosis and treatment of CRC. In this review, we focus on the specific mechanisms of H2S production and oxidative metabolism as well as the function of H2S in the occurrence, progression, diagnosis, and treatment of CRC. We also discuss the present challenges and provide insights into the future research of this burgeoning field.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Luming Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, China.
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, And Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China.
| |
Collapse
|
32
|
Hydrogen Sulfide Attenuates Lipopolysaccharide-Induced Inflammation via the P-glycoprotein and NF-κB Pathway in Astrocytes. Neurochem Res 2022; 48:1424-1437. [PMID: 36482035 PMCID: PMC10066098 DOI: 10.1007/s11064-022-03840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
AbstractAstrocyte activation is key in neurodegenerative diseases. Hydrogen sulfide (H2S) exhibits neuroprotective effects on astrocytes, although the underlying molecular mechanism remains unclear. Here, we explored the effects of H2S on lipopolysaccharide (LPS)-induced astrocyte activation and astrocyte-mediated neuroinflammation. After inducing primary astrocytes via LPS exposure, H2S levels were altered. The generation and secretion of inflammatory mediators by astrocytes and their interrelation with P-glycoprotein (P-gp), an important transporter belonging to the ABC transporter family, were assessed. Activated astrocytes showed upregulated glial fibrillary acidic protein (GFAP) mRNA expression, and significantly increased proinflammatory factor mRNA/protein expression and release. The secretory capacity of astrocytes was reduced, with significantly decreased proinflammatory factor levels in culture supernatant after P-gp inhibitor verapamil pretreatment. The increase in the intracellular H2S level inhibited LPS-induced GFAP expression and P65 nuclear entry in astrocytes. mRNA expression and release of proinflammatory factors were reduced significantly, with no significant changes in cytoplasmic protein expression. S-sulfhydration levels increased significantly with the increased concentration of sodium hydrosulfide or S-adenosyl-l-methionine addition, with only moderate changes in astrocyte P-gp expression. H2S regulates NF-κB activation, leads to S-sulfhydration of P-gp, and inhibits the biosynthesis and secretion of proinflammatory factors by astrocytes. The regulatory effects of H2S on astrocytes may have clinical value for exploring new therapeutic strategies against neurodegenerative diseases.
Collapse
|
33
|
Surface-fill H 2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomater 2022; 154:259-274. [PMID: 36402296 DOI: 10.1016/j.actbio.2022.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) remains the major cause of disability and mortality worldwide due to the persistent neuroinflammation and neuronal death induced by TBI. Among them, pyroptosis, a specific type of programmed cell death (PCD) triggered by inflammatory signals, plays a significant part in the pathological process after TBI. Inhibition of neuroinflammation and pyroptosis is considered a possible strategy for the treatment of TBI. In our previous study, exogenous hydrogen sulfide(H2S) exerted a neuroprotective effect after TBI. Here, we developed a surface-fill H2S-releasing silk fibroin (SF) hydrogel (H2S@SF hydrogel) to achieve small-dose local administration and avoid volatile and toxic side effects. We used a controlled cortical impact (CCI) to establish a mild TBI model in mice to examine the effect of H2S@SF hydrogel on TBI-induced pyroptosis. We found that H2S@SF hydrogel inhibited the expression of H2S synthase in neurons after TBI and significantly inhibited TBI-induced neuronal pyroptosis. In addition, immunofluorescence staining results showed that the necroptosis protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1) partially colocalized with the pyroptosis protein Gasdermin D (GSDMD) in the same cells. H2S@SF hydrogel can also inhibit the expression of the necroptosis protein. Moreover, H2S@SF hydrogel also alleviates brain edema and the degree of neurodegeneration in the acute phase of TBI. The neuroprotective effect of H2S@SF hydrogel was further confirmed by wire-grip test, open field test, Morris water maze, beam balance test, radial arm maze, tail suspension, and forced swimming test. Lastly, we also measured spared tissue volume, reactive astrocytes and activated microglia to demonstrate H2S@SF hydrogel impacts on long-term prognosis in TBI. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) hydrogel controls the release of hydrogen sulfide (H2S) to inhibit neuronal pyroptosis and neuroinflammation in injured brain tissue. In this study, we synthesized a surface-fill H2S-releasing silk fibroin hydrogel, which could slowly release H2S to reshape the homeostasis of endogenous H2S in injured neurons and inhibit neuronal pyroptosis in a mouse model of traumatic brain injury. Meanwhile, H2S@SF hydrogel could alleviate brain edema and the degree of neurodegeneration, improve motor dysfunction, anxious behavior and memory impairment caused by TBI, reduce tissue loss and ameliorate neuroinflammation. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel.
Collapse
|
34
|
The role of adipose tissue-derived hydrogen sulfide in inhibiting atherosclerosis. Nitric Oxide 2022; 127:18-25. [PMID: 35839994 DOI: 10.1016/j.niox.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in the body after NO and CO and plays an important organismal protective role in various diseases. Within adipose tissue, related catalytic enzymes (cystathionine-β-synthetase, cystathionine-γ-lyase, and 3-mercaptopyruvate transsulfuration enzyme) can produce and release endogenous H2S. Atherosclerosis (As) is a pathological change in arterial vessels that is closely related to abnormal glucose and lipid metabolism and a chronic inflammatory response. Previous studies have shown that H2S can act on the cardiovascular system, exerting effects such as improving disorders of glycolipid metabolism, alleviating insulin resistance, protecting the function of vascular endothelial cells, inhibiting vascular smooth muscle cell proliferation and migration, regulating vascular tone, inhibiting the inflammatory response, and antagonizing the occurrence and development of As.
Collapse
|