1
|
García-García AB, Martínez-Hervás S, Vernia S, Ivorra C, Pulido I, Martín-Escudero JC, Casado M, Carretero J, Real JT, Chaves FJ. A Very Rare Variant in SREBF2, a Possible Cause of Hypercholesterolemia and Increased Glycemic Levels. Biomedicines 2022; 10:biomedicines10051178. [PMID: 35625914 PMCID: PMC9138625 DOI: 10.3390/biomedicines10051178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Patients with high cholesterol and glucose levels are at high risk for cardiovascular disease. The Sterol Regulatory Element Binding Protein (SREBP) system regulates genes involved in lipid, cholesterol and glucose pathways. Autosomal Dominant Hypercholesterolemias (ADHs) are a group of diseases with increased cholesterol levels. They affect 1 out of every 500 individuals. About 20–30% of patients do not present any mutation in the known genes (LDLR, APOB and PCSK9). ADHs constitute a good model to identify the genes involved in the alteration of lipid levels or possible therapeutic targets. In this paper, we studied whether a mutation in the SREBP system could be responsible for ADH and other metabolic alterations present in these patients. Forty-one ADH patients without mutations in the main responsible genes were screened by direct sequencing of SREBP system genes. A luciferase reporter assay of the found mutation and an oral glucose tolerance test in carriers and non-carriers were performed. We found a novel mutation in the SREBF2 gene that increases transcription levels and cosegregates with hypercholesterolemia, and we found increased glucose levels in one family. SREBP2 is known to be involved in cholesterol synthesis, plasma levels and glucose metabolism in humans. The found mutation may involve the SREBF2 gene in hypercholesterolemia combined with hyperglycemia.
Collapse
Affiliation(s)
- Ana-Bárbara García-García
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain; (A.-B.G.-G.); (S.M.-H.); (J.T.R.)
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - Sergio Martínez-Hervás
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain; (A.-B.G.-G.); (S.M.-H.); (J.T.R.)
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Endocrinology Service, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Santiago Vernia
- Biomedical Institute of Valencia (IBV-CSIC), 46010 Valencia, Spain; (S.V.); (M.C.)
| | - Carmen Ivorra
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - Inés Pulido
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Physiology, University of Valencia, 46010 Valencia, Spain;
| | | | - Marta Casado
- Biomedical Institute of Valencia (IBV-CSIC), 46010 Valencia, Spain; (S.V.); (M.C.)
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Julián Carretero
- Department of Physiology, University of Valencia, 46010 Valencia, Spain;
| | - José T. Real
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain; (A.-B.G.-G.); (S.M.-H.); (J.T.R.)
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Endocrinology Service, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Felipe Javier Chaves
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain; (A.-B.G.-G.); (S.M.-H.); (J.T.R.)
- Genomic and Diabetes Unit, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
- Correspondence: ; Tel.: +34-96-38-64100 (ext. 51905)
| |
Collapse
|
2
|
Li D, Yao Y, Rao Y, Huang X, Wei L, You Z, Zheng G, Hou X, Su Y, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. Cholesterol sensor SCAP contributes to sorafenib resistance by regulating autophagy in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:116. [PMID: 35354475 PMCID: PMC8966370 DOI: 10.1186/s13046-022-02306-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the fourth leading cause of cancer-related death worldwide. Sorafenib is currently acknowledged as a standard therapy for advanced HCC. However, acquired resistance substantially limits the clinical efficacy of sorafenib. Therefore, further investigations of the associated risk factors are highly warranted. Methods We analysed a group of 78 HCC patients who received sorafenib treatment after liver resection surgery. The expression of SCAP and its correlation with sorafenib resistance in HCC clinical samples were determined by immunohistochemical analyses. Overexpression and knockdown approaches in vitro were used to characterize the functional roles of SCAP in regulating sorafenib resistance. The effects of SCAP inhibition in HCC cell lines were analysed in proliferation, apoptosis, and colony formation assays. Autophagic regulation by SCAP was assessed by immunoblotting, immunofluorescence and immunoprecipitation assays. The combinatorial effect of a SCAP inhibitor and sorafenib was tested using nude mice. Results Hypercholesterolemia was associated with sorafenib resistance in HCC treatment. The degree of sorafenib resistance was correlated with the expression of the cholesterol sensor SCAP and consequent deposition of cholesterol. SCAP is overexpressed in HCC tissues and hepatocellular carcinoma cell lines with sorafenib resistance, while SCAP inhibition could improve sorafenib sensitivity in sorafenib-resistant HCC cells. Furthermore, we found that SCAP-mediated sorafenib resistance was related to decreased autophagy, which was connected to decreased AMPK activity. A clinically significant finding was that lycorine, a specific SCAP inhibitor, could reverse acquired resistance to sorafenib in vitro and in vivo. Conclusions SCAP contributes to sorafenib resistance through AMPK-mediated autophagic regulation. The combination of sorafenib and SCAP targeted therapy provides a novel personalized treatment to enhance sensitivity in sorafenib-resistant HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02306-4.
Collapse
Affiliation(s)
- Danyang Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yingcheng Yao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yuhan Rao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xinyu Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Zhimei You
- Department of General Medicine, Affiliated Cancer Hospital of Chongqing University, Chongqing, 400016, China
| | - Guo Zheng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoli Hou
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yu Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Zac Varghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - John F Moorhead
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China. .,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK.
| |
Collapse
|
3
|
Schiano C, D'Armiento M, Franzese M, Castaldo R, Saccone G, de Nigris F, Grimaldi V, Soricelli A, D'Armiento FP, Zullo F, Napoli C. DNA Methylation Profile of the SREBF2 Gene in Human Fetal Aortas. J Vasc Res 2021; 59:61-68. [PMID: 34535602 DOI: 10.1159/000518513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that maternal cholesterol represents an important risk factor for atherosclerotic disease in offspring already during pregnancy, although the underlying mechanisms have not yet been elucidated. Eighteen human fetal aorta samples were collected from the spontaneously aborted fetuses of normal cholesterolemic and hypercholesterolemic mothers. Maternal total cholesterol levels were assessed during hospitalization. DNA methylation profiling of the whole SREBF2 gene CpG island was performed (p value <0.05). The Mann-Whitney U test was used for comparison between the 2 groups. For the first time, our study revealed that in fetal aortas obtained from hypercholesterolemic mothers, the SREBF2 gene shows 4 significant differentially hypermethylated sites in the 5'UTR-CpG island. This finding indicates that more effective long-term primary cardiovascular prevention programs need to be designed for the offspring of mothers with hypercholesterolemia. Further studies should be conducted to clarify the epigenetic mechanisms underlying the association between early atherogenesis and maternal hypercholesterolemia during pregnancy.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli,", Naples, Italy
| | - Maria D'Armiento
- Pathology Unit, Department of Public Health, School of Medicine, University of Naples "Federico II,", Naples, Italy
| | | | | | - Gabriele Saccone
- Gynecology and Obstetrics Unit, Department of Neurosciences, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II,", Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania "L. Vanvitelli,", Naples, Italy
| | | | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,Department of Exercise and Wellness Sciences, University of Naples "Parthenope,", Naples, Italy
| | - Francesco Paolo D'Armiento
- Pathology Unit, Department of Public Health, School of Medicine, University of Naples "Federico II,", Naples, Italy
| | - Fulvio Zullo
- Gynecology and Obstetrics Unit, Department of Neurosciences, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II,", Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli,", Naples, Italy.,IRCCS SDN, Naples, Italy.,Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Naples, Italy
| |
Collapse
|
4
|
Srebf2 Locus Overexpression Reduces Body Weight, Total Cholesterol and Glucose Levels in Mice Fed with Two Different Diets. Nutrients 2020; 12:nu12103130. [PMID: 33066385 PMCID: PMC7602228 DOI: 10.3390/nu12103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
Macronutrients represent risk factors for hyperlipidemia or diabetes. Lipid alterations and type 2 diabetes mellitus are global health problems. Overexpression of sterol regulatory element-binding factor (Srebf2) in transgenic animals is linked to elevated cholesterol levels and diabetes development. We investigated the impact of increased Srebf2 locus expression and the effects of control and high-fat, high-sucrose (HFHS) diets on body weight, glucose and lipid metabolisms in transgenic mice (S-mice). Wild type (WT) and S-mice were fed with both diets for 16 weeks. Plasma glucose, insulin and lipids were assessed (n = 25). Immunostainings were performed in liver, pancreas and fat (N = 10). Expression of Ldlr and Hmgcr in liver was performed by RT-PCR (N = 8). Control diet: S-mice showed reduced weight, insulin, total and HDL cholesterol and triglycerides (TG). HFHS diet widened differences in weight, total and HDL cholesterol, insulin and HOMA index but increased TG in S-mice. In S-mice, adipocyte size was lower while HFHS diet produced lower increase, pancreatic β-cell mass was lower with both diets and Srebf2, Ldlr and Hmgcr mRNA levels were higher while HFHS diet produced a rise in Srebf2 and Hmgcr levels. Srebf2 complete gene overexpression seems to have beneficial effects on metabolic parameters and to protect against HFHS diet effects.
Collapse
|
5
|
Interaction between lifestyle behaviors and genetic polymorphism in SCAP gene on blood pressure among Chinese children. Pediatr Res 2019; 86:389-395. [PMID: 31003232 DOI: 10.1038/s41390-019-0402-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUNDS Previous studies had revealed that sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) rs12487736 polymorphism was associated with blood pressure (BP), but whether rs12487736 could interact with lifestyle behaviors on BP is unknown. METHODS A case-control study with 1092 Chinese children was conducted. RESULTS We found an interaction between rs12487736 and high calorie foods intake (fried chips/cakes/cookies) on systolic blood pressure (SBP) (Pinteraction = 0.027), and rs12487736 was associated with SBP in the subgroup having high calorie foods at least once in the last week (b = 2.19, P = 0.025), but not in the subgroup not having high calorie foods. Also, interaction between protein intake (meat/fish/soy beans/egg) and rs12487736 on diastolic BP (DBP) was identified (Pinteraction = 0.049); rs12487736 was associated with DBP in the subgroup consuming protein (meat/fish/soy beans/egg) <twice/day (b = 3.38, P = 0.014), but not in the subgroup ≥twice/day. There is combined effect between rs12487736 and physical activity on DBP. In the subgroup who were inactive (physical activity <1 h/day), rs12487736 was significantly associated with DBP (b = 3.27, P = 0.046), but not in the active group (physical activity ≥1 h/day). Similar combined effect between rs12487736 and soft drink was found. CONCLUSIONS Interactions or combined effects between SCAP and lifestyle behaviors on BP support the importance of promoting a healthy lifestyle in the children genetically predisposed to higher BP.
Collapse
|
6
|
Rafeeq MM, Habib HS, Murad HAS, Gari MA, Gazzaz ZJ. Effect of genetic polymorphisms in SREBF-SCAP pathway on therapeutic response to rosuvastatin in Saudi metabolic syndrome patients. Pharmacogenomics 2018; 19:185-196. [PMID: 29318930 DOI: 10.2217/pgs-2017-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Genetic variants contribute to statins' therapeutic variability. SREBF-SCAP pathway is a key player in lipid homeostasis. Hence, effect of SREBF-SCAP polymorphisms on therapeutic response was studied. PATIENTS & METHODS Metabolic syndrome patients of either sex were prescribed rosuvastatin 10 mg for 24 weeks. Clinical, anthropometric and lipid measurements were done before and after treatment. Genotyping was done by pyrosequencing. RESULTS & CONCLUSION No associations of SCAP and SREBF-1a genotypes with baseline lipids but significant associations with lipid reductions were observed. Significant effect of SCAP (GG; B = -8.16, p = 0.001); SREBF-1a (GG; B = -7.47, p = 0.001) and SREBF-1a (-delG; B = -7.42, p = 0.001) was observed on total cholesterol reduction. Additive trend was found between SCAP genotypes and lipid reductions. A total of 88% responders have SCAP 'G' allele (p = 0.001). Patients carrying SCAP (GG) and SREBF-1a (GG and -delG) have 9.5-, 8.6- and 14.6-times more likelihood of being responders (p < 0.05). 'G' allele in SCAP and SREBF-1a is significant predictor of rosuvastatin response.
Collapse
Affiliation(s)
- Misbahuddin Mohd Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamed Said Habib
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussam Aly Sayed Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia & Faculty of Medicine, Ainshams University, Cairo, Egypt
| | - Mamdouh Abdullah Gari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zohair Jamil Gazzaz
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
8
|
Yang YD, Song JY, Wang S, Liu FH, Zhang YN, Shang XR, Wang HJ, Ma J. Genetic variations in sterol regulatory element binding protein cleavage-activating protein (SCAP) are associated with blood pressure in overweight/obese Chinese children. PLoS One 2017; 12:e0177973. [PMID: 28542467 PMCID: PMC5438183 DOI: 10.1371/journal.pone.0177973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/05/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Previous studies demonstrated a role of variations in sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) in obesity and blood lipids. But the associations between SCAP polymorphisms and blood pressure (BP) are not clear. This study aimed to investigate the relationship between genetic variations in SCAP and BP phenotypes in a Chinese pediatric population. METHODS A case-control study on 702 high blood pressure (HBP) children and 1319 controls was conducted to explore the correlation between single nucleotide polymorphism markers (rs12487736 and rs12490383) of SCAP and BP phenotypes. The associations with continuous and categorical variables were examined by linear regression and logistic regression models under a dominant genetic model for the minor rs12487736 A allele and rs12490383 T allele. RESULTS The rs12487736 polymorphism was significantly associated with systolic BP (SBP) (β = 1.66, P = 0.003) and diastolic BP (DBP) (β = 1.35, P = 0.024) with age, age-squared, sex, study population and body mass index (BMI) adjusted under the dominant genetic model. The rs12490383 polymorphism was significantly associated with SBP (β = 1.71, P = 0.004) and SHBP (OR = 1.39, 95%CI: 1.04-1.86, P = 0.027). When analyzed by BMI categories, in the normal-weight children, no significant association between the SCAP polymorphisms and BP phenotypes was observed (all P > 0.05). However, in the overweight/obese children, rs12487736 was significantly associated with SBP (β = 1.6, P = 0.019) and SHBP (OR = 1.36, 95%CI: 1.02-1.82; P = 0.037), rs12490383 was associated with SBP (β = 2.04, P = 0.004) and SHBP (OR = 1.50, 95%CI: 1.10-2.05; P = 0.01). CONCLUSIONS This study demonstrated that SCAP rs12487736 and rs12490383 were significantly associated with SBP and SHBP in overweight/obese Chinese children. It provided the evidence for association of SCAP with SBP.
Collapse
Affiliation(s)
- Yi-De Yang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Jie-Yun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Shuo Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Fang-Hong Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yi-Ning Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Xiao-Rui Shang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Hai-Jun Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- * E-mail: (JM); (HJW)
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
- * E-mail: (JM); (HJW)
| |
Collapse
|
9
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
10
|
Aberrant de novo cholesterogenesis: Clinical significance and implications. Clin Chim Acta 2015; 450:356-61. [PMID: 26386164 DOI: 10.1016/j.cca.2015.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023]
Abstract
Human cells can acquire cholesterol from the circulation but also have the ability to synthesize it via de novo cholesterogenesis (DC). Cholesterol absorption and de novo cholesterogenesis are the key processes that modulate cholesterol homeostasis in the human body. The endogenous biosynthesis of cholesterol substantially contributes to the whole-body cholesterol pool. Additionally, dysregulation of this pathway is associated with diverse medical conditions. The present review focuses on our current understanding of the cholesterogenic pathway and the various different factors regulating this pathway. It also highlights dysregulation of this pathway in various physiological and pathological conditions including cardiovascular diseases, type II diabetes, obesity and viral infections.
Collapse
|
11
|
Influence of SREBP-2 and SCAP Gene Polymorphisms on Lipid-Lowering Response to Atorvastatin in a Cohort of Chilean Subjects with Amerindian Background. Mol Diagn Ther 2014; 18:435-43. [DOI: 10.1007/s40291-014-0094-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Ye Y, Li K, Liu J, Li M, Wang W, Wang R, Zou J, Xie P, Wei L, Jiao G, Yuan Z. Dysfunctional co-expression network analysis of familial hypercholesterolemia. J Cardiol 2013; 62:58-62. [DOI: 10.1016/j.jjcc.2013.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 10/26/2022]
|
13
|
Trapani L, Segatto M, Pallottini V. Regulation and deregulation of cholesterol homeostasis: The liver as a metabolic "power station". World J Hepatol 2012; 4:184-90. [PMID: 22761969 PMCID: PMC3388116 DOI: 10.4254/wjh.v4.i6.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023] Open
Abstract
Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-rich domains called rafts and caveolae. Cholesterol is also a substrate for steroid hormones. However, too much cholesterol can lead to pathological pictures such as atherosclerosis, which is a consequence of the accumulation of cholesterol into the cells of the artery wall. The liver is considered to be the metabolic power station of mammalians, where cholesterol homeostasis relies on an intricate network of cellular processes whose deregulations can lead to several life-threatening pathologies, such as familial and age-related hypercholesterolemia. Cholesterol homeostasis maintenance is carried out by: biosynthesis, via 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity; uptake, through low density lipoprotein receptors (LDLr); lipoprotein release in the blood; storage by esterification; and degradation and conversion into bile acids. Both HMGR and LDLr are transcribed as a function of cellular sterol amount by a family of transcription factors called sterol regulatory element binding proteins that are responsible for the maintenance of cholesterol homeostasis through an intricate mechanism of regulation. Cholesterol obtained by hepatic de novo synthesis can be esterified and incorporated into apolipoprotein B-100-containing very low density lipoproteins, which are then secreted into the bloodstream for transport to peripheral tissues. Moreover, dietary cholesterol is transferred from the intestine to the liver by high density lipoproteins (HDLs); all HDL particles are internalized in the liver, interacting with the hepatic scavenger receptor (SR-B1). Here we provide an updated overview of liver cholesterol metabolism regulation and deregulation and the causes of cholesterol metabolism-related diseases. Moreover, current pharmacological treatment and novel hypocholesterolemic strategies will also be introduced.
Collapse
Affiliation(s)
- Laura Trapani
- Laura Trapani, Marco Segatto, Valentina Pallottini, Department of Biology, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | | | | |
Collapse
|
14
|
Xu ZE, Chen Y, Huang A, Varghese Z, Moorhead JF, Yan F, Powis SH, Li Q, Ruan XZ. Inflammatory stress exacerbates lipid-mediated renal injury in ApoE/CD36/SRA triple knockout mice. Am J Physiol Renal Physiol 2011; 301:F713-22. [PMID: 21795641 DOI: 10.1152/ajprenal.00341.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both lipids and inflammation play important roles in the progression of kidney disease. This study was designed to investigate whether inflammation exacerbates lipid accumulation via LDL receptors (LDLr), thereby causing renal injury in C57BL/6J mice, apolipoprotein E (ApoE) knockout (KO) mice, and ApoE/CD36/scavenger receptor A triple KO mice. The mice were given a subcutaneous casein injection to induce inflammatory stress. After 14 wk, terminal blood samples were taken for renal function, lipid profiles, amyloid A (SAA), and IL-6 assays. Lipid accumulation in kidneys was visualized by oil red O staining. Fibrogenic molecule expression in kidneys was examined. There was a significant increase in serum SAA and IL-6 in the all casein-injected mice compared with respective controls. Casein injection reduced serum total cholesterol, LDL cholesterol, and HDL cholesterol and caused lipid accumulation in kidneys from three types of mice. The expression of LDLr and its regulatory proteins sterol-responsive element-binding protein (SREBP) 2 and SREBP cleavage-activating protein (SCAP) were upregulated in inflamed mice compared with controls. Casein injection induced renal fibrosis accompanied by increased expression of fibrogenic molecules in the triple KO mice. These data imply that inflammation exacerbates lipid accumulation in the kidney by diverting lipid from the plasma to the kidney via the SCAP-SREBP2-LDLr pathway and causing renal injury. Low blood cholesterol levels, resulting from inflammation, may be associated with high risk for chronic renal fibrosis.
Collapse
Affiliation(s)
- Zhen E Xu
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Soutar AK. Regulation of the LDL receptor in familial hypercholesterolemia. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Polymorphism of the sterol regulatory element-binding protein-2 gene and its association with serum lipid levels in the Guangxi Hei Yi Zhuang and Han populations. Am J Med Sci 2009; 337:14-22. [PMID: 19263511 DOI: 10.1097/maj.0b013e3181753b98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Information about the association of sterol regulatory element-binding protein-2 (SREBP-2) gene polymorphism at the 1784G>C locus and serum lipid parameters is limited and contradictory. The present study was undertaken to compare the difference in the SREBP-2 gene polymorphism and its association with serum lipid levels between the Guangxi Hei Yi Zhuang and Han populations. METHODS Genotyping of the SREBP-2 gene in 768 subjects of Hei Yi Zhuang and 798 participants of Han Chinese aged 15 to 89 was performed by polymerase chain reaction and restriction fragment length polymorphism. RESULTS The frequency of G allele was 88.9% in Hei Yi Zhuang and 84.7% in Han (P < 0.001). The frequencies of GG, GC, and CC genotypes were 78.9%, 20.1%, and 1.0% in Hei Yi Zhuang, and 70.4%, 28.6%, and 1.0% in Han (P < 0.001), respectively. The frequencies of G allele and GG genotype in Han, but not in Hei Yi Zhuang, were higher in males than in females, or in high total cholesterol (TC >5.18 mmol/L) subgroup than in normal TC subgroup (P < 0.01 for all). In high TC subgroup, TC, triglycerides, low-density lipoprotein cholesterol, and apolipoprotein B levels in Han were lower in GG genotype than in GC/CC genotype (P < 0.05-0.01). CONCLUSIONS There were significant differences in the genotypic and allelic frequencies of the SREBP-2 gene polymorphism at the 1784G>C locus between the Hei Yi Zhuang and Han populations. The individuals carrying the G allele have more favorable lipid profiles than those carrying the C allele in Han but not in Hei Yi Zhuang.
Collapse
|
17
|
Fan YM, Karhunen PJ, Levula M, Ilveskoski E, Mikkelsson J, Kajander OA, Järvinen O, Oksala N, Thusberg J, Vihinen M, Salenius JP, Kytömäki L, Soini JT, Laaksonen R, Lehtimäki T. Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Thromb J 2008; 6:17. [PMID: 19116028 PMCID: PMC2645360 DOI: 10.1186/1477-9560-6-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 12/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background Disturbed cellular cholesterol homeostasis may lead to accumulation of cholesterol in human atheroma plaques. Cellular cholesterol homeostasis is controlled by the sterol regulatory element-binding transcription factor 2 (SREBF-2) and the SREBF cleavage-activating protein (SCAP). We investigated whole genome expression in a series of human atherosclerotic samples from different vascular territories and studied whether the non-synonymous coding variants in the interacting domains of two genes, SREBF-2 1784G>C (rs2228314) and SCAP 2386A>G, are related to the progression of coronary atherosclerosis and the risk of pre-hospital sudden cardiac death (SCD). Methods Whole genome expression profiling was completed in twenty vascular samples from carotid, aortic and femoral atherosclerotic plaques and six control samples from internal mammary arteries. Three hundred sudden pre-hospital deaths of middle-aged (33–69 years) Caucasian Finnish men were subjected to detailed autopsy in the Helsinki Sudden Death Study. Coronary narrowing and areas of coronary wall covered with fatty streaks or fibrotic, calcified or complicated lesions were measured and related to the SREBF-2 and SCAP genotypes. Results Whole genome expression profiling showed a significant (p = 0.02) down-regulation of SREBF-2 in atherosclerotic carotid plaques (types IV-V), but not in the aorta or femoral arteries (p = NS for both), as compared with the histologically confirmed non-atherosclerotic tissues. In logistic regression analysis, a significant interaction between the SREBF-2 1784G>C and the SCAP 2386A>G genotype was observed on the risk of SCD (p = 0.046). Men with the SREBF-2 C allele and the SCAP G allele had a significantly increased risk of SCD (OR 2.68, 95% CI 1.07–6.71), compared to SCAP AA homologous subjects carrying the SREBF-2 C allele. Furthermore, similar trends for having complicated lesions and for the occurrence of thrombosis were found, although the results were not statistically significant. Conclusion The results suggest that the allelic variants (SREBF-2 1784G>C and SCAP 2386A>G) in the cholesterol homeostasis regulating SREBF-SCAP pathway may contribute to SCD in early middle-aged men.
Collapse
Affiliation(s)
- Yue-Mei Fan
- Laboratory of Atherosclerosis Genetics, Department of Clinical Chemistry, Centre for Laboratory Medicine, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Arazi SS, Genvigir FDV, Willrich MAV, Hirata MH, Dorea EL, Bernik M, Hirata RDC. Atorvastatin effects on SREBF1a and SCAP gene expression in mononuclear cells and its relation with lowering-lipids response. Clin Chim Acta 2008; 393:119-24. [PMID: 18435918 DOI: 10.1016/j.cca.2008.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 01/29/2023]
Abstract
BACKGROUND The transcription factors SREBP1 and SCAP are involved in intracellular cholesterol homeostasis. Polymorphisms of these genes have been associated with variations on serum lipid levels and response to statins that are potent cholesterol-lowering drugs. We evaluated the effects of atorvastatin on SREBF1a and SCAP mRNA expression in peripheral blood mononuclear cells (PBMC) and a possible association with gene polymorphisms and lowering-cholesterol response. METHODS Fifty-nine hypercholesterolemic patients were treated with atorvastatin (10 mg/day for 4 weeks). Serum lipid profile and mRNA expression in PBMC were assessed before and after the treatment. Gene expression was quantified by real-time PCR using GAPD as endogenous reference and mRNA expression in HepG2 cells as calibrator. SREBF1 -36delG and SCAP A2386G polymorphisms were detected by PCR-RFLP. RESULTS Our results showed that transcription of SREBF1a and SCAP was coordinately regulated by atorvastatin (r=0.595, p<0.001), and that reduction in SCAP transcription was associated with the 2386AA genotype (p=0.019). Individuals who responded to atorvastatin with a downregulation of SCAP had also a lower triglyceride compared to those who responded to atorvastatin with an upregulation of SCAP. CONCLUSION Atorvastatin has differential effects on SREBF1a and SCAP mRNA expression in PBMC that are associated with baseline transcription levels, triglycerides response to atorvastatin and SCAP A2386G polymorphism.
Collapse
Affiliation(s)
- Simone Sorkin Arazi
- School of Pharmaceutical Sciences - University of Sao Paulo, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Friedlander Y, Schwartz SM, Durst R, Meiner V, Robertson AS, Erez G, Leitersdorf E, Siscovick DS. SREBP-2 and SCAP isoforms and risk of early onset myocardial infarction. Atherosclerosis 2008; 196:896-904. [PMID: 17383658 DOI: 10.1016/j.atherosclerosis.2007.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/09/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cholesterol metabolism is mediated, in part, by the sterol-regulatory element binding proteins (SREBPs) that are activated by a SREBP cleavage-activating protein (SCAP). We examined whether coding variations in the interacting domains of both genes, are related to early-onset MI risk in a population-based case-control study from western Washington State. METHODS Cases were 257 women, aged 18-59 years, and 320 men, aged 18-49 years, with first acute non-fatal MI; controls were 353 women and 311 men, similar in age, identified from the community who had no history of clinical CHD or stroke. Genotyping of the SREBF-2 G1784C polymorphism (SREBP-2-595A/G isoforms), and the SCAP A2386G polymorphism (SCAP-796I/V isoforms), were performed. RESULTS After adjustment for age and race, the SREBP-2-595A isoform was associated with increased MI risk among men (OR=1.63, 95% CI=1.26-2.12). In contrast, there was little evidence for an association among women in a multiplicative model. However, compared to SREBP-2-595G homozygotes, homozygote women for the SREBP-2-595A isoform were at nearly two-fold increased risk (OR=1.95, 95% CI=1.07-3.54). Overall, SCAP genotypes were neither associated with MI in men nor in women. However, in men, SCAP genotypes were found to modify the association between SREBF-2 and MI (p-value for interaction=0.01). CONCLUSION The SREBP-2-595A isoform was associated with an increased risk of early-onset MI in U.S. men. The SCAP polymorphism appeared to modify the associations of SREBF-2 genotype with MI risk among men. These novel findings require confirmation in other populations.
Collapse
Affiliation(s)
- Yechiel Friedlander
- Unit of Epidemiology, Hebrew University-Hadassah School of Public Health, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. ACTA ACUST UNITED AC 2007; 4:214-25. [PMID: 17380167 DOI: 10.1038/ncpcardio0836] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/20/2006] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is characterized by raised serum LDL cholesterol levels, which result in excess deposition of cholesterol in tissues, leading to accelerated atherosclerosis and increased risk of premature coronary heart disease. FH results from defects in the hepatic uptake and degradation of LDL via the LDL-receptor pathway, commonly caused by a loss-of-function mutation in the LDL-receptor gene (LDLR) or by a mutation in the gene encoding apolipoprotein B (APOB). FH is primarily an autosomal dominant disorder with a gene-dosage effect. An autosomal recessive form of FH caused by loss-of-function mutations in LDLRAP1, which encodes a protein required for clathrin-mediated internalization of the LDL receptor by liver cells, has also been documented. The most recent addition to the database of genes in which defects cause FH is one encoding a member of the proprotein convertase family, PCSK9. Rare dominant gain-of-function mutations in PCSK9 cosegregate with hypercholesterolemia, and one mutation is associated with a particularly severe FH phenotype. Expression of PCSK9 normally downregulates the LDL-receptor pathway by indirectly causing degradation of LDL-receptor protein, and loss-of-function mutations in PCSK9 result in low plasma LDL levels. Thus, PCSK9 is an attractive target for new drugs aimed at lowering serum LDL cholesterol, which should have additive lipid-lowering effects to the statins currently used.
Collapse
Affiliation(s)
- Anne K Soutar
- Lipoprotein Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| | | |
Collapse
|