1
|
Chadwick M, Swann JR, Gawthrop F, Michelmore R, Scaglione D, Jose-Truco M, Wagstaff C. Mapping taste and flavour traits to genetic markers in lettuce Lactuca sativa. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100215. [PMID: 39281292 PMCID: PMC11399806 DOI: 10.1016/j.fochms.2024.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
Lettuce is the most highly consumed raw leafy vegetable crop eaten worldwide, making it nutritionally important in spite of its comparatively low nutrient density in relation to other vegetables. However, the perception of bitterness caused by high levels of sesquiterpenoid lactones and comparatively low levels of sweet tasting sugars limits palatability. To assess variation in nutritional and taste-related metabolites we assessed 104 members of a Lactuca sativa cv. Salinas x L. serriola (accession UC96US23) mapping population. Plants were grown in three distinct environments, and untargeted NMR and HPLC were used as a rapid chemotyping method, from which 63 unique Quantitative Trait Loci (QTL) were identified. We were able to identify putative regulatory candidate genes underlying the QTL for fructose on linkage group 9, which accounted for up to 36 % of our population variation, and which was stable across all three growing environments; and for 15-p-hydroxyyphenylacetyllactucin-8-sulfate on linkage group 5 which has previously been identified for its low bitterness, while retaining anti-herbivory field effects. We also identified a candidate gene for flavonoid 3',5'- hydroxylase underlying a polyphenol QTL on linkage group 5, and two further candidate genes in sugar biosynthesis on linkage groups 2 and 5. Collectively these candidate genes and their associated markers can inform a route for plant breeders to improve the palatability and nutritional value of lettuce in their breeding programmes.
Collapse
Affiliation(s)
- Martin Chadwick
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| | - Jonathan R Swann
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | | | | | - Davide Scaglione
- IGA Technology Services, Via J. Linussio, 51 Z.I.U.Udine, 33100, Italy
| | - Maria Jose-Truco
- UC Davis Genome Center, 451 Health Sciences Drive, Davis CA 95616, USA
| | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Harry Nursten Building, Whiteknights, Reading RG6 6DZ, UK
| |
Collapse
|
2
|
Chen H, Lai H, Chi H, Fan W, Huang J, Zhang S, Jiang C, Jiang L, Hu Q, Yan X, Chen Y, Zhang J, Yang G, Liao B, Wan J. Multi-modal transcriptomics: integrating machine learning and convolutional neural networks to identify immune biomarkers in atherosclerosis. Front Cardiovasc Med 2024; 11:1397407. [PMID: 39660117 PMCID: PMC11628520 DOI: 10.3389/fcvm.2024.1397407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background Atherosclerosis, a complex chronic vascular disorder with multifactorial etiology, stands as the primary culprit behind consequential cardiovascular events, imposing a substantial societal and economic burden. Nevertheless, our current understanding of its pathogenesis remains imprecise. In this investigation, our objective is to establish computational models elucidating molecular-level markers associated with atherosclerosis. This endeavor involves the integration of advanced machine learning techniques and comprehensive bioinformatics analyses. Materials and methods Our analysis incorporated data from three publicly available the Gene Expression Omnibus (GEO) datasets: GSE100927 (104 samples, 30,558 genes), which includes atherosclerotic lesions and control arteries from carotid, femoral, and infra-popliteal arteries of deceased organ donors; GSE43292 (64 samples, 23,307 genes), consisting of paired carotid endarterectomy samples from 32 hypertensive patients, comparing atheroma plaques and intact tissues; and GSE159677 (30,498 single cells, 33,538 genes), examining single-cell transcriptomes of calcified atherosclerotic core plaques and adjacent carotid artery tissues from patients undergoing carotid endarterectomy. Utilizing single-cell sequencing, highly variable atherosclerotic monocyte subpopulations were systematically identified. We analyzed cellular communication patterns with temporal dynamics. The bioinformatics approach Weighted Gene Co-expression Network Analysis (WGCNA) identified key modules, constructing a Protein-Protein Interaction (PPI) network from module-associated genes. Three machine-learning models derived marker genes, formulated through logistic regression and validated via convolutional neural network(CNN) modeling. Subtypes were clustered based on Gene Set Variation Analysis (GSVA) scores, validated through immunoassays. Results Three pivotal atherosclerosis-associated genes-CD36, S100A10, CSNK1A1-were unveiled, offering valuable clinical insights. Profiling based on these genes delineated two distinct isoforms: C2 demonstrated potent microbicidal activity, while C1 engaged in inflammation regulation, tissue repair, and immune homeostasis. Molecular docking analyses explored therapeutic potential for Estradiol, Zidovudine, Indinavir, and Dronabinol for clinical applications. Conclusion This study introduces three signature genes for atherosclerosis, shaping a novel paradigm for investigating clinical immunological medications. It distinguishes the high biocidal C2 subtype from the inflammation-modulating C1 subtype, utilizing identified signature gene as crucial targets.
Collapse
Affiliation(s)
- Haiqing Chen
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Haotian Lai
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Hao Chi
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Wei Fan
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qingwen Hu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiuben Yan
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yemeng Chen
- New York College of Traditional Chinese Medicine, Mineola, NY, United States
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Bin Liao
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Juyi Wan
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Rashid M, Al Qarni A, Al Mahri S, Mohammad S, Khan A, Abdullah ML, Lehe C, Al Amoudi R, Aldibasi O, Bouchama A. Transcriptome Changes and Metabolic Outcomes After Bariatric Surgery in Adults With Obesity and Type 2 Diabetes. J Endocr Soc 2023; 8:bvad159. [PMID: 38162016 PMCID: PMC10755185 DOI: 10.1210/jendso/bvad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 01/03/2024] Open
Abstract
Context Bariatric surgery has been shown to be effective in inducing complete remission of type 2 diabetes in adults with obesity. However, its efficacy in achieving complete diabetes remission remains variable and difficult to predict before surgery. Objective We aimed to characterize bariatric surgery-induced transcriptome changes associated with diabetes remission and the predictive role of the baseline transcriptome. Methods We performed a whole-genome microarray in peripheral mononuclear cells at baseline (before surgery) and 2 and 12 months after bariatric surgery in a prospective cohort of 26 adults with obesity and type 2 diabetes. We applied machine learning to the baseline transcriptome to identify genes that predict metabolic outcomes. We validated the microarray expression profile using a real-time polymerase chain reaction. Results Sixteen patients entered diabetes remission at 12 months and 10 did not. The gene-expression analysis showed similarities and differences between responders and nonresponders. The difference included the expression of critical genes (SKT4, SIRT1, and TNF superfamily), metabolic and signaling pathways (Hippo, Sirtuin, ARE-mediated messenger RNA degradation, MSP-RON, and Huntington), and predicted biological functions (β-cell growth and proliferation, insulin and glucose metabolism, energy balance, inflammation, and neurodegeneration). Modeling the baseline transcriptome identified 10 genes that could hypothetically predict the metabolic outcome before bariatric surgery. Conclusion The changes in the transcriptome after bariatric surgery distinguish patients in whom diabetes enters complete remission from those who do not. The baseline transcriptome can contribute to the prediction of bariatric surgery-induced diabetes remission preoperatively.
Collapse
Affiliation(s)
- Mamoon Rashid
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ali Al Qarni
- Endocrinology and Metabolism, Department of Medicine, King Abdulaziz Hospital, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia
| | - Saeed Al Mahri
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Altaf Khan
- Department of Biostatistics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mashan L Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Cynthia Lehe
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reem Al Amoudi
- Endocrinology and Metabolism, Department of Medicine, King Abdulaziz Hospital, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia
| | - Omar Aldibasi
- Department of Biostatistics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
4
|
Kyrgios I, Giza S, Fragou A, Tzimagiorgis G, Galli-Tsinopoulou A. DNA hypermethylation of PTPN22 gene promoter in children and adolescents with Hashimoto thyroiditis. J Endocrinol Invest 2021; 44:2131-2138. [PMID: 33751486 DOI: 10.1007/s40618-020-01463-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is an inhibitor of T-cell activation, regulating intracellular signal transduction and thereby being implicated in the pathogenesis of autoimmune thyroid disease (AITD). The exact molecular mechanisms have not been fully elucidated. The aim of the present study was to quantitate DNA methylation within the PTPN22 gene promoter in children and adolescents with AITD and healthy controls. METHODS 60 Patients with Hashimoto thyroiditis (HT), 25 patients with HT and type 1 diabetes (HT + T1D), 9 patients with Graves' disease (GD) and 55 healthy controls without any individual or family history of autoimmune disease were enrolled. Whole blood DNA extraction, DNA modification using sodium bisulfate and quantification of DNA methylation in the PTPN22 gene promoter, based on melting curve analysis of the selected DNA fragment using a Real-Time PCR assay, were implemented. RESULTS DNA methylation in the PTPN22 gene promoter was found to be significantly higher in HT patients (39.9 ± 3.1%) in comparison with other study groups (20.3 ± 2.4% for HT + T1D, 32.6 ± 7.8% for GD, 27.1 ± 2.4% for controls, p < 0.001). PTPN22 gene promoter DNA methylation was also associated marginally with thyroid autoimmunity in general (p = 0.059), as well as considerably with thyroid volume (p = 0.004) and the presence of goiter (p = 0.001) but not thyroid function tests. CONCLUSIONS This study demonstrates for the first time that a relationship between autoimmune thyroiditis and PTPN22 gene promoter DNA methylation state is present, thus proposing another possible etiological association between thyroiditis and abnormalities of PTPN22 function. Further expression studies are required to confirm these findings.
Collapse
Affiliation(s)
- I Kyrgios
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - S Giza
- 4th Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Fragou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Tzimagiorgis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Galli-Tsinopoulou
- 2nd Department of Pediatrics, AHEPA General University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kiriakidi 1, Thessaloniki, 54636, Greece.
| |
Collapse
|
5
|
Weighted gene co-expression network analysis to identify key modules and hub genes related to hyperlipidaemia. Nutr Metab (Lond) 2021; 18:24. [PMID: 33663541 PMCID: PMC7934476 DOI: 10.1186/s12986-021-00555-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The purpose of this study was to explore the potential molecular targets of hyperlipidaemia and the related molecular mechanisms. METHODS The microarray dataset of GSE66676 obtained from patients with hyperlipidaemia was downloaded. Weighted gene co-expression network (WGCNA) analysis was used to analyse the gene expression profile, and the royal blue module was considered to have the highest correlation. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were implemented for the identification of genes in the royal blue module using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http://david.abcc.ncifcrf.gov ). A protein-protein interaction (PPI) network was established by using the online STRING tool. Then, several hub genes were identified by the MCODE and cytoHubba plug-ins in Cytoscape software. RESULTS The significant module (royal blue) identified was associated with TC, TG and non-HDL-C. GO and KEGG enrichment analyses revealed that the genes in the royal blue module were associated with carbon metabolism, steroid biosynthesis, fatty acid metabolism and biosynthesis pathways of unsaturated fatty acids. SQLE (degree = 17) was revealed as a key molecule associated with hypercholesterolaemia (HCH), and SCD was revealed as a key molecule associated with hypertriglyceridaemia (HTG). RT-qPCR analysis also confirmed the above results based on our HCH/HTG samples. CONCLUSIONS SQLE and SCD are related to hyperlipidaemia, and SQLE/SCD may be new targets for cholesterol-lowering or triglyceride-lowering therapy, respectively.
Collapse
|
6
|
Chen Z, Wu A. Progress and challenge for computational quantification of tissue immune cells. Brief Bioinform 2021; 22:6065002. [PMID: 33401306 DOI: 10.1093/bib/bbaa358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 12/28/2022] Open
Abstract
Tissue immune cells have long been recognized as important regulators for the maintenance of balance in the body system. Quantification of the abundance of different immune cells will provide enhanced understanding of the correlation between immune cells and normal or abnormal situations. Currently, computational methods to predict tissue immune cell compositions from bulk transcriptomes have been largely developed. Therefore, summarizing the advantages and disadvantages is appropriate. In addition, an examination of the challenges and possible solutions for these computational models will assist the development of this field. The common hypothesis of these models is that the expression of signature genes for immune cell types might represent the proportion of immune cells that contribute to the tissue transcriptome. In general, we grouped all reported tools into three groups, including reference-free, reference-based scoring and reference-based deconvolution methods. In this review, a summary of all the currently reported computational immune cell quantification tools and their applications, limitations, and perspectives are presented. Furthermore, some critical problems are found that have limited the performance and application of these models, including inadequate immune cell type, the collinearity problem, the impact of the tissue environment on the immune cell expression level, and the deficiency of standard datasets for model validation. To address these issues, tissue specific training datasets that include all known immune cells, a hierarchical computational framework, and benchmark datasets including both tissue expression profiles and the abundances of all the immune cells are proposed to further promote the development of this field.
Collapse
Affiliation(s)
- Ziyi Chen
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu, Suzhou, China
| | - Aiping Wu
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangsu, Suzhou, China
| |
Collapse
|
7
|
Kanuri B, Fong V, Haller A, Hui DY, Patel SB. Mice lacking global Stap1 expression do not manifest hypercholesterolemia. BMC MEDICAL GENETICS 2020; 21:234. [PMID: 33228548 PMCID: PMC7685646 DOI: 10.1186/s12881-020-01176-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Background Autosomal dominant familial hypercholesterolemia (ADH; MIM#143890) is one of the most common monogenic disorders characterized by elevated circulatory LDL cholesterol. Initial studies in humans with ADH identified a potential relationship with variants of the gene encoding signal transducing adaptor family member protein 1 (STAP1; MIM#604298). However, subsequent studies have been contradictory. In this study, mice lacking global Stap1 expression (Stap1−/−) were characterized under standard chow and a 42% kcal western diet (WD). Methods Mice were studied for changes in different metabolic parameters before and after a 16-week WD regime. Growth curves, body fats, circulatory lipids, parameters of glucose homeostasis, and liver architecture were studied for comparisons. Results Surprisingly, Stap1−/− mice fed the 16-week WD demonstrated no marked differences in any of the metabolic parameters compared to Stap1+/+ mice. Furthermore, hepatic architecture and cholesterol content in FPLC-isolated lipoprotein fractions also remained comparable to wild-type mice. Conclusion These results strongly suggest that STAP1 does not alter lipid levels, that a western diet did not exacerbate a lipid disorder in Stap1 deficient mice and support the contention that it is not causative for hyperlipidemia in ADH patients. These results support other published studies also questioning the role of this locus in human hypercholesterolemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01176-x.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Fong
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - April Haller
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - David Y Hui
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Hu Y, Graff M, Haessler J, Buyske S, Bien SA, Tao R, Highland HM, Nishimura KK, Zubair N, Lu Y, Verbanck M, Hilliard AT, Klarin D, Damrauer SM, Ho YL, Wilson PWF, Chang KM, Tsao PS, Cho K, O’Donnell CJ, Assimes TL, Petty LE, Below JE, Dikilitas O, Schaid DJ, Kosel ML, Kullo IJ, Rasmussen-Torvik LJ, Jarvik GP, Feng Q, Wei WQ, Larson EB, Mentch FD, Almoguera B, Sleiman PM, Raffield LM, Correa A, Martin LW, Daviglus M, Matise TC, Ambite JL, Carlson CS, Do R, Loos RJF, Wilkens LR, Le Marchand L, Haiman C, Stram DO, Hindorff LA, North KE, Kooperberg C, Cheng I, Peters U. Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study. PLoS Genet 2020; 16:e1008684. [PMID: 32226016 PMCID: PMC7145272 DOI: 10.1371/journal.pgen.1008684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/09/2020] [Accepted: 02/19/2020] [Indexed: 11/18/2022] Open
Abstract
Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven Buyske
- Department of Statistics and Biostatistics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine K. Nishimura
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Niha Zubair
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marie Verbanck
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Austin T. Hilliard
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Derek Klarin
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Boston VA Healthcare System, Boston, Massachusetts, United States of America
| | - Scott M. Damrauer
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, United States of America
- Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuk-Lam Ho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
| | | | - Peter W. F. Wilson
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, United States of America
- Atlanta VA Medical Center, Decatur, Georgia, United States of America
| | - Kyong-Mi Chang
- Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Philip S. Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Christopher J. O’Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Themistocles L. Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Lauren E. Petty
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Jennifer E. Below
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Matthew L. Kosel
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Gail P. Jarvik
- Department of Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Qiping Feng
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wei-Qi Wei
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, United States of America
| | - Frank D. Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Berta Almoguera
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Patrick M. Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adolfo Correa
- Departments of Medicine, Pediatrics, and Population Health Science, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lisa W. Martin
- School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tara C. Matise
- Department of Statistics and Biostatistics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, California, United States of America
| | - Christopher S. Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Chris Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel O. Stram
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lucia A. Hindorff
- Division of Genomic Medicine, NIH National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California, United States of America
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Zeng L, Yang J, Peng S, Zhu J, Zhang B, Suh Y, Tu Z. Transcriptome analysis reveals the difference between "healthy" and "common" aging and their connection with age-related diseases. Aging Cell 2020; 19:e13121. [PMID: 32077223 PMCID: PMC7059150 DOI: 10.1111/acel.13121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
A key goal of aging research was to understand mechanisms underlying healthy aging and develop methods to promote the human healthspan. One approach is to identify gene regulations unique to healthy aging compared with aging in the general population (i.e., "common" aging). Here, we leveraged Genotype-Tissue Expression (GTEx) project data to investigate "healthy" and "common" aging gene expression regulations at a tissue level in humans and their interconnection with diseases. Using GTEx donors' disease annotations, we defined a "healthy" aging cohort for each tissue. We then compared the age-associated genes derived from this cohort with age-associated genes from the "common" aging cohort which included all GTEx donors; we also compared the "healthy" and "common" aging gene expressions with various disease-associated gene expressions to elucidate the relationships among "healthy," "common" aging and disease. Our analyses showed that 1. GTEx "healthy" and "common" aging shared a large number of gene regulations; 2. Despite the substantial commonality, "healthy" and "common" aging genes also showed distinct function enrichment, and "common" aging genes had a higher enrichment for disease genes; 3. Disease-associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with some "healthy" aging gene regulations. In summary, our work highlights several unique features of GTEx "healthy" aging program. This new knowledge could potentially be used to develop interventions to promote the human healthspan.
Collapse
Affiliation(s)
- Lu Zeng
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jialiang Yang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Shouneng Peng
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jun Zhu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Yousin Suh
- Department of GeneticsAlbert Einstein College of MedicineNew YorkNew York
| | - Zhidong Tu
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
10
|
Veshkini A, Mohammadi-Sangcheshmeh A, Alamouti AA, Kouhkan F, Salehi A. Maternal supplementation with fish oil modulates inflammation-related MicroRNAs and genes in suckling lambs. Trop Anim Health Prod 2019; 52:1561-1572. [PMID: 31820306 DOI: 10.1007/s11250-019-02157-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Dietary n-3 long-chain fatty acids (n-3 LCFA) have been shown to modify lipid metabolism and immune function. The objective of this study was to evaluate the effect of periparturient fish oil (FO) supplementation on the inflammation and metabolic health of ewes and their lambs at a molecular level. Prepartum ewes were fed control diet (CON, n = 12) or CON supplemented with 2% DM of calcium soap of FO (n = 12) from 28 days before until 21 days after parturition. The ewes were evaluated for plasma metabolites and milk composition. The experiment was followed by analyzing the relative transcript abundance of circulating microRNAs (miRNAs) in plasma and targeted miRNA/mRNA expression in peripheral blood mononuclear cells (PBMCs) in both ewes and lambs. FO treatment decreased prepartum feed intake (1812 ± 35 vs 1674 ± 33 g/day, P < 0.01), whereas the influence on plasma metabolites was negligible. Dietary FO supplementation decreased milk fat percentage (8.82 ± 0.49 vs 7.03 ± 0.45, P = 0.02) and reduced milk n-6/n-3 (P < 0.05). Also, it altered the expression of plasma-circulating miRNAs in both ewe and lamb (P < 0.05). Furthermore, maternal nutrition of FO downregulated the relative expression of miR-33a and miR-146b and transcript abundance of genes IL-1β (0.41-fold) and NF-κB (0.25-fold) in lambs' PBMC. In conclusion, results showed that FO supplementation starting antepartum affects milk composition and circulating miRNA in dams and the inflammatory markers in lambs delivered by the supplemented ewes. These may provide a strategy to maintain immune balance during gestation and develop the immune system in lambs.
Collapse
Affiliation(s)
- Arash Veshkini
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran
| | - Abdollah Mohammadi-Sangcheshmeh
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran
| | - Ali A Alamouti
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran.
| | - Fatemeh Kouhkan
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Abdolreza Salehi
- Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, P.O. Box 3391653755, Pakdasht, Tehran, Iran
| |
Collapse
|
11
|
Genes Potentially Associated with Familial Hypercholesterolemia. Biomolecules 2019; 9:biom9120807. [PMID: 31795497 PMCID: PMC6995538 DOI: 10.3390/biom9120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
This review addresses the contribution of some genes to the phenotype of familial hypercholesterolemia. At present, it is known that the pathogenesis of this disease involves not only a pathological variant of low-density lipoprotein receptor and its ligands (apolipoprotein B, proprotein convertase subtilisin/kexin type 9 or low-density lipoprotein receptor adaptor protein 1), but also lipids, including sphingolipids, fatty acids, and sterols. The genetic cause of familial hypercholesterolemia is unknown in 20%–40% of the cases. The genes STAP1 (signal transducing adaptor family member 1), CYP7A1 (cytochrome P450 family 7 subfamily A member 1), LIPA (lipase A, lysosomal acid type), ABCG5 (ATP binding cassette subfamily G member 5), ABCG8 (ATP binding cassette subfamily G member 8), and PNPLA5 (patatin like phospholipase domain containing 5), which can cause aberrations of lipid metabolism, are being evaluated as new targets for the diagnosis and personalized management of familial hypercholesterolemia.
Collapse
|
12
|
Tanaka S, Diallo D, Delbosc S, Genève C, Zappella N, Yong-Sang J, Patche J, Harrois A, Hamada S, Denamur E, Montravers P, Duranteau J, Meilhac O. High-density lipoprotein (HDL) particle size and concentration changes in septic shock patients. Ann Intensive Care 2019; 9:68. [PMID: 31197574 PMCID: PMC6565796 DOI: 10.1186/s13613-019-0541-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sepsis is associated with systemic inflammation that may impact lipoprotein function. In particular, high-density lipoproteins (HDLs) that display pleiotropic protective roles may be dysfunctional in septic conditions. The aim of this study was to evaluate the HDL profile and the inflammatory context in septic shock patients admitted to our intensive care unit (ICU). METHODS In this study, 20 septic shock patients and 20 controls (ICU patients without septic shock) were included. Plasma samples were collected on days 1, 2 and 7. Total cholesterol and lipoprotein concentrations were determined. HDL profiles were obtained using the Lipoprint® System (non-denaturing electrophoresis). Quantification of pro-inflammatory cytokines (interleukin 1b, 6 and 8), cell-free DNA and lipopolysaccharide-binding protein was also performed. RESULTS HDL concentration was statistically lower in septic shock patients than in controls. At days 1 and 2, septic patients had significantly more large-sized HDL than control patients. Patients recovered a normal lipid profile at day 7. CONCLUSIONS Our results emphasize that HDL levels are dramatically decreased in the acute phase of septic shock and that there is a shift toward large HDL particles, which may reflect a major dysfunction of these lipoproteins. Further mechanistic studies are required to explore this shift observed during sepsis.
Collapse
Affiliation(s)
- Sébastien Tanaka
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Dévy Diallo
- Inserm U1148, Laboratory for Vascular, Translational Science Bichat Hospital, 46 Rue Henri Huchard, 75018 Paris, France
| | - Sandrine Delbosc
- Inserm U1148, Laboratory for Vascular, Translational Science Bichat Hospital, 46 Rue Henri Huchard, 75018 Paris, France
| | - Claire Genève
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Nathalie Zappella
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
| | - Jennyfer Yong-Sang
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Jessica Patche
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
| | - Anatole Harrois
- AP-HP, Service d’Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Laboratoire d’étude de la Microcirculation, «Bio-CANVAS: Biomarkers in CardioNeuroVascular DISEASES» UMRS 942, Paris, France
| | - Sophie Hamada
- AP-HP, Service d’Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Erick Denamur
- UMR1137 IAME, Inserm, Laboratoire de Génétique Moléculaire, Université Paris Diderot and AP-HP, Hôpital Bichat, Paris, France
| | - Philippe Montravers
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 46 Rue Henri Huchard, 75018 Paris, France
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | - Jacques Duranteau
- AP-HP, Service d’Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
- Laboratoire d’étude de la Microcirculation, «Bio-CANVAS: Biomarkers in CardioNeuroVascular DISEASES» UMRS 942, Paris, France
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Université de La Réunion, 2 Rue Maxime Rivière, 97491 Sainte Clotilde, La Réunion, France
- CHU de La Réunion, Saint-Denis, France
- INSERM U1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion au CYROI, 2, Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| |
Collapse
|
13
|
Jin L, Rao J, Zhang L, Ji F, Zhang Y, Hao X, Peng B, Liu X, Sun Y. Comparison of gene expression in cynomolgus monkeys with preclinical type II diabetes induced by different high energy diets. Animal Model Exp Med 2019; 2:44-50. [PMID: 31016286 PMCID: PMC6431119 DOI: 10.1002/ame2.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cynomolgus disease models that are similar to the preclinical stage of human type 2 diabetes mellitus (T2DM) were established by feeding middle-aged cynomolgus monkeys different high energy diets to study the differential expression of diabetes-related genes. METHODS A total of 36 male monkeys were randomly divided into four groups and fed human diets with high sugar, high fat, double high sugar and fat, and a normal diet. The preclinical diabetes phase was determined by monitoring the metabolic characteristic indices and the results of oral glucose tolerance tests (OGTT). The mRNA expression of 45 diabetes-related genes in peripheral blood leukocytes was analyzed using real-time PCR. RESULTS A total of 22, 25, and 21 genes were significantly up-regulated (P < 0.05) and 5, 7, and 5 genes were significantly down-regulated (P < 0.05) in the above three induced groups, respectively, compared with the control group. Of the 45 tested genes, the expression profiles of 21 genes were consistent. Most of the expression levels in the double high sugar-and-fat individuals were slightly lower than those in the high glucose and high fat groups, although the expression patterns of the three groups were essentially similar. CONCLUSION The different high energy diets all induced diabetes and shared some phenotypic properties with human T2DM. Most of the expression patterns of the related genes were identical. The gene expression profiles could be used as references for the study of early diagnostic indicators and T2DM pathogenesis.
Collapse
Affiliation(s)
- Li‐Sha Jin
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
- South China Botanical GardenGuangzhouChina
| | - Jun‐Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Li‐Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Fang Ji
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Yan‐Chun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Xiang‐Fen Hao
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
- South China Botanical GardenGuangzhouChina
| | - Bai‐Lu Peng
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Xiao‐Ming Liu
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| | - Yun‐Xiao Sun
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationGuangdong Institute of Applied Biological ResourcesGuangzhouChina
| |
Collapse
|
14
|
Pietrangelo A, Ridgway ND. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell Mol Life Sci 2018; 75:3079-3098. [PMID: 29536114 PMCID: PMC11105248 DOI: 10.1007/s00018-018-2795-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.
Collapse
Affiliation(s)
- Antonietta Pietrangelo
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
15
|
Laaksonen J, Taipale T, Seppälä I, Raitoharju E, Mononen N, Lyytikäinen LP, Waldenberger M, Illig T, Hutri-Kähönen N, Rönnemaa T, Juonala M, Viikari J, Kähönen M, Raitakari O, Lehtimäki T. Blood pathway analyses reveal differences between prediabetic subjects with or without dyslipidaemia. The Cardiovascular Risk in Young Finns Study. Diabetes Metab Res Rev 2017; 33. [PMID: 28609607 DOI: 10.1002/dmrr.2914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prediabetes often occurs together with dyslipidaemia, which is paradoxically treated with statins predisposing to type 2 diabetes mellitus. We examined peripheral blood pathway profiles in prediabetic subjects with (PRD ) and without dyslipidaemia (PR0 ) and compared these to nonprediabetic controls without dyslipidaemia (C0 ). METHODS The participants were from the Cardiovascular Risk in Young Finns Study, including 1240 subjects aged 34 to 49 years. Genome-wide expression data of peripheral blood and gene set enrichment analysis were used to investigate the differentially expressed genes and enriched pathways between different subtypes of prediabetes. RESULTS Pathways for cholesterol synthesis, interleukin-12-mediated signalling events, and downstream signalling in naïve CD8+ T-cells were upregulated in the PR0 group in comparison with controls (C0 ). The upregulation of these pathways was independent of waist circumference, blood pressure, smoking status, and insulin. Adjustment for CRP left the CD8+ T-cell signalling and interleukin-12-mediated signalling event pathway upregulated. The cholesterol synthesis pathway was also upregulated when all prediabetic subjects (PR0 and PRD ) were compared with the nonprediabetic control group. No pathways were upregulated or downregulated when the PRD group was compared with the C0 group. Five genes in the PR0 group and 1 in the PRD group were significantly differentially expressed in comparison with the C0 group. CONCLUSIONS Blood cell gene expression profiles differ significantly between prediabetic subjects with and without dyslipidaemia. Whether this classification may be used in detection of prediabetic individuals at a high risk of cardiovascular complications remains to be examined.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tuukka Taipale
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Institute for Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
16
|
Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus. Br J Nutr 2016; 116:1861-1868. [PMID: 27890035 DOI: 10.1017/s0007114516003846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.
Collapse
|
17
|
Xing K, Zhu F, Zhai L, Chen S, Tan Z, Sun Y, Hou Z, Wang C. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data. Sci Rep 2016; 6:23219. [PMID: 26996612 PMCID: PMC4800386 DOI: 10.1038/srep23219] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/02/2016] [Indexed: 12/29/2022] Open
Abstract
Backfat thickness is strongly associated with meat quality, fattening efficiency, reproductive performance, and immunity in pigs. Fat storage and fatty acid synthesis mainly occur in adipose tissue. Therefore, we used a high-throughput massively parallel sequencing approach to identify transcriptomes in adipose tissue, and whole-genome differences from three full-sibling pairs of pigs with opposite (high and low) backfat thickness phenotypes. We obtained an average of 38.69 million reads for six samples, 78.68% of which were annotated in the reference genome. Eighty-nine overlapping differentially expressed genes were identified among the three pair comparisons. Whole-genome resequencing also detected multiple genetic variations between the pools of DNA from the two groups. Compared with the animal quantitative trait loci (QTL) database, 20 differentially expressed genes were matched to the QTLs associated with fatness in pigs. Our technique of integrating transcriptome, whole-genome resequencing, and QTL database information provided a rich source of important differentially expressed genes and variations. Associate analysis between selected SNPs and backfat thickness revealed that two SNPs and one haplotype of ME1 significantly affected fat deposition in pigs. Moreover, genetic analysis confirmed that variations in the differentially expressed genes may affect fat deposition.
Collapse
Affiliation(s)
- Kai Xing
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - LiWei Zhai
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - ShaoKang Chen
- Beijing General Station of Animal Husbandry, Beijing 100125, China
| | - Zhen Tan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - YangYang Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - ZhuoCheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - ChuDuan Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Mo XB, Zhang H, Xu T, Lei SF, Zhang YH. Identification of important genes associated with total cholesterol using bioinformatics analysis. Pharmacogenomics 2016; 17:219-30. [PMID: 26807482 DOI: 10.2217/pgs.15.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM The aim of this study was to identify related genes for total cholesterol (TC) and evaluate the functional relevance to provide evidences for prioritizing these genes. MATERIALS & METHODS We performed an initial gene-based association study in about 188,578 individuals. Furthermore, we performed bioinformatics analyses to support the identified genes. RESULTS A total of 22,098 genes were analyzed for TC levels in gene-based association analysis and 433 of them were found to be significant after Bonferroni correction (p < 2.3 × 10(-6)). CONCLUSION The evidence obtained from the analyses of this study signified the importance of many known genes as well as some novel genes, for example, NR1I2, STARD3 and FN1. The findings might provide more insights into the genetic basis of lipid metabolism.
Collapse
Affiliation(s)
- Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
19
|
Barnes EL, Liew CC, Chao S, Burakoff R. Use of blood based biomarkers in the evaluation of Crohn’s disease and ulcerative colitis. World J Gastrointest Endosc 2015; 7:1233-1237. [PMID: 26634038 PMCID: PMC4658602 DOI: 10.4253/wjge.v7.i17.1233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/14/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Despite significant improvements in our understanding of Crohn’s disease (CD) and ulcerative colitis (UC) in recent years, questions remain regarding the best approaches to assessment and management of these chronic diseases during periods of both relapse and remission. Various serologic biomarkers have been used in the evaluation of patients with both suspected and documented inflammatory bowel disease (IBD), and while each has potential utility in the assessment of patients with IBD, potential limitation remain with each method of assessment. Given these potential shortcomings, there has been increased interest in other means of evaluation of patients with IBD, including an expanding interest in the role of gene expression profiling. Among patients with IBD, gene expression profiles obtained from whole blood have been used to differentiate active from inactive CD, as well as to differentiate between CD, UC, and non-inflammatory diarrheal conditions. There are many opportunities for a non-invasive, blood based test to aid in the assessment of patients with IBD, particularly when considering more invasive means of evaluation including endoscopy with biopsy. Furthermore, as the emphasis on personalized medicine continues to increase, the potential ability of gene expression analysis to predict patient response to individual therapies offers great promise. While whole blood gene expression analysis may not completely replace more traditional means of evaluating patients with suspected or known IBD, it does offer significant potential to expand our knowledge of the underlying genes involved in the development of these diseases.
Collapse
|
20
|
Friede KA, Ginsburg GS, Voora D. Gene Expression Signatures and the Spectrum of Coronary Artery Disease. J Cardiovasc Transl Res 2015; 8:339-52. [PMID: 26089288 DOI: 10.1007/s12265-015-9640-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/07/2015] [Indexed: 11/25/2022]
Abstract
Over the past 10-15 years, developments in gene expression profiling have opened new arenas for the discovery of important factors in the pathogenesis of numerous disease processes, including coronary artery disease. Messenger RNA and microRNA are differentially expressed in patients with coronary plaques, acute plaque rupture, and response to well-established treatments for acute coronary syndromes. In this review, we will explore recent developments in messenger RNA and microRNA technology at each stage of a patient's progression through the natural history of cardiovascular disease, including evaluation of risk factors, prediction and detection of coronary artery disease and acute coronary syndromes, and finally, response to treatments for coronary artery disease and its sequelae including congestive heart failure.
Collapse
Affiliation(s)
- Kevin A Friede
- Department of Medicine, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
21
|
Guénard F, Lamontagne M, Bossé Y, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC. Influences of gestational obesity on associations between genotypes and gene expression levels in offspring following maternal gastrointestinal bypass surgery for obesity. PLoS One 2015; 10:e0117011. [PMID: 25603303 PMCID: PMC4300091 DOI: 10.1371/journal.pone.0117011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022] Open
Abstract
METHODS Whole-genome genotyping and gene expression analyses in blood of 22 BMS and 23 AMS offspring from 19 mothers were conducted using Illumina HumanOmni-5-Quad and HumanHT-12 v4 Expression BeadChips, respectively. Using PLINK we analyzed interactions between offspring gene variations and maternal surgical status on offspring gene expression levels. Altered biological functions and pathways were identified and visualized using DAVID and Ingenuity Pathway Analysis. RESULTS Significant interactions (p ≤ 1.22 x 10(-12)) were found for 525 among the 16,060 expressed transcripts: 1.9% of tested SNPs were involved. Gene function and pathway analysis demonstrated enrichment of transcription and of cellular metabolism functions and overrepresentation of cellular stress and signaling, immune response, inflammation, growth, proliferation and development pathways. CONCLUSION We suggest that impaired maternal gestational metabolic fitness interacts with offspring gene variations modulating gene expression levels, providing potential mechanisms explaining improved cardiometabolic risk profiles of AMS offspring related to ameliorated maternal lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Science and Nutrition, Laval University, Quebec, Canada
- Endocrinology and Nephrology, CHU de Quebec Research Center, Quebec, Canada
| | | | - Yohan Bossé
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Yves Deshaies
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Medicine, Laval University, Quebec, Canada
| | - Katherine Cianflone
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Medicine, Laval University, Quebec, Canada
| | - John G. Kral
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Picard Marceau
- Quebec Heart and Lung Institute, Quebec, Canada
- Department of Surgery, Laval University, Quebec, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Science and Nutrition, Laval University, Quebec, Canada
- Endocrinology and Nephrology, CHU de Quebec Research Center, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Kapoor D, Trikha D, Vijayvergiya R, Kaul D, Dhawan V. Conventional therapies fail to target inflammation and immune imbalance in subjects with stable coronary artery disease: A system-based approach. Atherosclerosis 2014; 237:623-31. [DOI: 10.1016/j.atherosclerosis.2014.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/20/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023]
|
23
|
Myhrstad MCW, Ulven SM, Günther CC, Ottestad I, Holden M, Ryeng E, Borge GI, Kohler A, Brønner KW, Thoresen M, Holven KB. Fish oil supplementation induces expression of genes related to cell cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: a transcriptomic approach. J Intern Med 2014; 276:498-511. [PMID: 24641624 PMCID: PMC4263263 DOI: 10.1111/joim.12217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fish oil supplementation has been shown to alter gene expression of mononuclear cells both in vitro and in vivo. However, little is known about the total transcriptome profile in healthy subjects after intake of fish oil. We therefore investigated the gene expression profile in peripheral blood mononuclear cells (PBMCs) after intake of fish oil for 7 weeks using transcriptome analyses. DESIGN In a 7-week, double-blinded, randomized, controlled, parallel-group study, healthy subjects received 8 g day(-1) fish oil (1.6 g day(-1) eicosapentaenoic acid + docosahexaenoic acid) (n = 17) or 8 g day(-1) high oleic sunflower oil (n = 19). Microarray analyses of RNA isolated from PBMCs were performed at baseline and after 7 weeks of intervention. RESULTS Cell cycle, DNA packaging and chromosome organization are biological processes found to be upregulated after intake of fish oil compared to high oleic sunflower oil using a moderated t-test. In addition, gene set enrichment analysis identified several enriched gene sets after intake of fish oil. The genes contributing to the significantly different gene sets in the subjects given fish oil compared with the control group are involved in cell cycle, endoplasmic reticulum (ER) stress and apoptosis. Gene transcripts with common motifs for 35 known transcription factors including E2F, TP53 and ATF4 were upregulated after intake of fish oil. CONCLUSION We have shown that intake of fish oil for 7 weeks modulates gene expression in PBMCs of healthy subjects. The increased expression of genes related to cell cycle, ER stress and apoptosis suggests that intake of fish oil may modulate basic cellular processes involved in normal cellular function.
Collapse
Affiliation(s)
- M C W Myhrstad
- Faculty of Health Sciences, Department of Health, Nutrition and Management, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Maghbooli Z, Larijani B, Emamgholipour S, Amini M, Keshtkar A, Pasalar P. Aberrant DNA methylation patterns in diabetic nephropathy. J Diabetes Metab Disord 2014; 13:69. [PMID: 25028646 PMCID: PMC4099150 DOI: 10.1186/2251-6581-13-69] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022]
Abstract
Background The aim of this study was to evaluate whether global levels of DNA methylation status were associated with albuminuria and progression of diabetic nephropathy in a case-control study of 123 patients with type 2 diabetes- 53 patients with albuminuria and 70 patients without albuminuria. Methods The 5-methyl cytosine content was assessed by reverse phase high pressure liquid chromatography (RP-HPLC) of peripheral blood mononuclear cells to determine individual global DNA methylation status in two groups. Results Global DNA methylation levels were significantly higher in patients with albuminuria compared with those in normal range of albuminuria (p = 0.01). There were significant differences in global levels of DNA methylation in relation to albuminuria (p = 0.028) and an interesting pattern of increasing global levels of DNA methylation in terms of albuminuria severity. In patients with micro- and macro albuminuria, we found no significant correlations between global DNA methylation levels and duration of diabetes (p > 0.05). In both sub groups, there were not significant differences between global DNA methylation levels with good and poor glycaemic control (p > 0.05). In addition, in patients with albuminuria, no differences in DNA methylation levels were observed between patients with and without other risk factors including age, gender, hypertension, dyslipidaemia and obesity. Conclusions These data may be helpful in further studies to develop novel biomarkers and new strategies for clinical care of patients at risk of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhila Maghbooli
- Endocrinology and Metabolism Clinical Sciences Institute of Tehran University of medical sciences, EMRI, 5th floor, Shariati Hospital, North Karegar Avenue, P.O Box: 1411413137, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Clinical Sciences Institute of Tehran University of medical sciences, EMRI, 5th floor, Shariati Hospital, North Karegar Avenue, P.O Box: 1411413137, Tehran, Iran
| | - Solaleh Emamgholipour
- Clinical Biochemistry Department, School of Medicine, Faculty of Medicine Tehran University of medical sciences, EMRI, 5th floor, Shariati Hospital, North Karegar Avenue, P.O Box: 1411413137, Tehran, Iran
| | - Manochehr Amini
- Nephrology Department, Shariati Hospital, Tehran University of Medical Sciences, EMRI, 5th floor, Shariati Hospital, North Karegar Avenue, P.O Box: 1411413137, Tehran, Iran
| | - Abbasali Keshtkar
- Endocrinology and Metabolism Clinical Sciences Institute of Tehran University of medical sciences, EMRI, 5th floor, Shariati Hospital, North Karegar Avenue, P.O Box: 1411413137, Tehran, Iran
| | - Parvin Pasalar
- Clinical Biochemistry Department, School of Medicine, Faculty of Medicine Tehran University of medical sciences, EMRI, 5th floor, Shariati Hospital, North Karegar Avenue, P.O Box: 1411413137, Tehran, Iran
| |
Collapse
|
25
|
Llorente-Cortés V, de Gonzalo-Calvo D, Orbe J, Páramo JA, Badimon L. Signature of subclinical femoral artery atherosclerosis in peripheral blood mononuclear cells. Eur J Clin Invest 2014; 44:539-48. [PMID: 24716741 DOI: 10.1111/eci.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Peripheral arterial disease is a relevant public health problem associated with increased risk of morbimortality. Most of the patients with this condition are asymptomatic. Therefore, the development of accessible biochemical markers seems to be necessary to anticipate diagnosis. Our hypothesis is that asymptomatic subjects with objectively confirmed femoral artery atherosclerosis could be distinguished from control subjects by gene expression analysis in peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS A total of 37 asymptomatic males over 50 years old were recruited at the University Clinic of Navarra (Spain). Nineteen participants were free from atherosclerotic vascular disease and 18 participants presented subclinical femoral artery atherosclerosis defined by means of Doppler ultrasound. PBMC were isolated from blood and the RNA extracted. A panel of atherosclerotic-related genes were evaluated by Taqman low-density array. RESULTS In univariate logistic regression models, we found a direct relationship between IL4, ITGAM and TLR2 expression levels in PBMC and femoral atherosclerosis, even when the models were adjusted for age and hypertension prevalence. Multivariate logistic regression models showed that elevated IL4 expression levels were intimately associated with subclinical femoral atherosclerosis after adjusting for the same potential confounders. CONCLUSIONS Current data suggest that gene expression in PBMC, in particular IL4 expression, could be a useful tool in the diagnosis of femoral artery atherosclerosis in asymptomatic patients. Furthermore, in patients with no differences in cardiovascular risk factors except for hypertension, the results point to the immune and inflammatory deregulation as a feature of subclinical peripheral atherosclerosis.
Collapse
|
26
|
de Gonzalo-Calvo D, Llorente-Cortés V, Orbe J, Páramo J, Badimon L. Altered atherosclerotic-related gene expression signature in circulating mononuclear leukocytes from hypercholesterolemic patients with low HDL cholesterol levels. Int J Cardiol 2014; 173:337-8. [DOI: 10.1016/j.ijcard.2014.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 01/24/2023]
|
27
|
McManus DD, Beaulieu LM, Mick E, Tanriverdi K, Larson MG, Keaney JF, Benjamin EJ, Freedman JE. Relationship among circulating inflammatory proteins, platelet gene expression, and cardiovascular risk. Arterioscler Thromb Vasc Biol 2013; 33:2666-73. [PMID: 23968978 DOI: 10.1161/atvbaha.112.301112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cardiovascular disease is a complex disorder influenced by interactions of genetic variants with environmental factors. However, there is no information from large community-based studies examining the relationship of circulating cell-specific RNA to inflammatory proteins. In light of the associations among inflammatory biomarkers, obesity, platelet function, and cardiovascular disease, we sought to examine the relationships of C-reactive protein (CRP) and interleukin-6 (IL-6) to the expression of key inflammatory transcripts in platelets. APPROACH AND RESULTS We quantified circulating levels of CRP and IL-6 in 1625 participants of the Framingham Heart Study (FHS) Offspring cohort examination 8 (mean age, 66.6 ± 6.6 years; 46% men). We measured the expression of 15 relevant genes by high-throughput quantitative reverse transcriptase polymerase chain reaction from platelet-derived RNA and used multivariable regression to relate serum concentrations of CRP and IL-6 with gene expression. Levels of CRP and IL-6 were associated with 10 of the 15 platelet-derived inflammatory transcripts, ALOX5, CRP, IFIT1, IL6, PTGER2, S100A9, SELENBP1, TLR2, TLR4, and TNFRSF1B (P<0.001). Associations between platelet mRNA expression with CRP and IL-6 persisted after multivariable adjustment for potentially confounding factors. Six genes positively associated with CRP or IL-6 in the FHS sample were also upregulated in megakaryocytes in response to CRP or IL-6 exposure. CONCLUSIONS Our data highlight the strong connection between the circulating inflammatory biomarkers CRP and IL-6 and platelet gene expression, adjusting for cardiovascular disease risk factors. Our results also suggest that body weight may directly influence these associations.
Collapse
Affiliation(s)
- David D McManus
- From the National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA (D.D.M., K.T., M.G.L., J.E.F.); Cardiology Division, Department of Medicine (D.D.M, L.M.B., K.T., J.F.K., J.E.F.) and Epidemiology Division, Department of Quantitative Health Sciences (D.D.M, E.M.), University of Massachusetts Medical School, Worcester, MA; Section of Cardiovascular Medicine, Department of Medicine (E.J.B.) and Department of Mathematics and Statistics (M.G.L.), Boston University, Boston, MA; Preventive Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA (E.J.B.); and Department of Epidemiology (E.J.B.) and Department of Biostatistics (M.G.L.), Boston University School of Public Health, Boston, MA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Guay SP, Voisin G, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L. Epigenome-wide analysis in familial hypercholesterolemia identified new loci associated with high-density lipoprotein cholesterol concentration. Epigenomics 2013; 4:623-39. [PMID: 23244308 DOI: 10.2217/epi.12.62] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM This study aims to assess whether epigenetic changes may account for high-density lipoprotein cholesterol (HDL-C) level variability in familial hypercholesterolemia (FH), a recognized human model to study cardiovascular disease risk modulators. MATERIALS & METHODS A genome-wide DNA methylation analysis (Infinium HumanMethylation27 BeadChip, Illumina) was performed on peripheral blood DNA samples obtained from men with FH with low (n = 10) or high (n = 11) HDL-C concentrations. The initial association with one of the top differentially methylated loci located in the promoter of the TNNT1 gene was replicated in a cohort of 276 FH subjects using pyrosequencing. RESULTS According to the Ingenuity Pathway Analysis software, the HDL-C differentially methylated loci identified were significantly associated with pathways related to lipid metabolism and cardiovascular disease. TNNT1 DNA methylation levels were positively correlated with mean HDL particle size, HDL-phospholipid, HDL-apolipoprotein AI, HDL-C and TNNT1 expression levels. CONCLUSION These results suggest that epigenome-wide changes account for interindividual variations in HDL particle metabolism and that TNNT1 is a new candidate gene for dyslipidemia.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, 225 St-Vallier Street, Chicoutimi, QC, G7H 7P2, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Nührenberg TG, Langwieser N, Binder H, Kurz T, Stratz C, Kienzle RP, Trenk D, Zohlnhöfer-Momm D, Neumann FJ. Transcriptome analysis in patients with progressive coronary artery disease: identification of differential gene expression in peripheral blood. J Cardiovasc Transl Res 2012. [PMID: 23188564 DOI: 10.1007/s12265-012-9420-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inflammation as a systemic process plays a central role in atherosclerotic plaque progression (PP). Here we investigated other systemic correlates of PP by global gene expression profiling (GEP) in peripheral blood. From a database of 45,727 coronary angiograms, we identified two patient groups with good risk factor control, but different clinical evolution: First, 16 patients had significant PP leading to repeated coronary interventions, and second, 16 patients had angiographically documented stable courses. GEP revealed 93 differentially expressed genes, of which 23 have unknown function. Among the remaining 70 genes, 10 were associated with progenitor and pluripotent cells, but only three genes with atherosclerosis. We developed a risk prediction gene signature by a multivariable statistical model integrating comprehensive laboratory and clinical patient data. This signature identified PP with high sensitivity and specificity for new patients, as estimated by resampling techniques. GEP results were validated by qPCR for ANK2 and GSTT1.
Collapse
Affiliation(s)
- Thomas G Nührenberg
- Klinik für Kardiologie und Angiologie II, Universitäts-Herzzentrum Freiburg • Bad Krozingen, Südring 15, 79189, Bad Krozingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jacobo-Albavera L, Aguayo-de la Rosa PI, Villarreal-Molina T, Villamil-Ramírez H, León-Mimila P, Romero-Hidalgo S, López-Contreras BE, Sánchez-Muñoz F, Bojalil R, González-Barrios JA, Aguilar-Salinas CA, Canizales-Quinteros S. VNN1 gene expression levels and the G-137T polymorphism are associated with HDL-C levels in Mexican prepubertal children. PLoS One 2012. [PMID: 23185446 PMCID: PMC3504107 DOI: 10.1371/journal.pone.0049818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND VNN1 gene expression levels and the G-137T polymorphism have been associated with high density lipoprotein cholesterol (HDL-C) levels in Mexican American adults. We aim to evaluate the contribution of VNN1 gene expression and the G-137T variant to HDL-C levels and other metabolic traits in Mexican prepubertal children. METHODOLOGY/PRINCIPAL FINDINGS VNN1 mRNA expression levels were quantified in peripheral blood leukocytes from 224 unrelated Mexican-Mestizo children aged 6-8 years (107 boys and 117 girls) and were genotyped for the G-137T variant (rs4897612). To account for population stratification, a panel of 10 ancestry informative markers was analyzed. After adjustment for admixture, the TT genotype was significantly associated with lower VNN1 mRNA expression levels (P = 2.9 × 10(-5)), decreased HDL-C levels (β = -6.19, P = 0.028) and with higher body mass index (BMI) z-score (β = 0.48, P = 0.024) in the total sample. In addition, VNN1 expression showed a positive correlation with HDL-C levels (r = 0.220; P = 0.017) and a negative correlation with BMI z-score (r = -0.225; P = 0.015) only in girls. CONCLUSION/SIGNIFICANCE Our data suggest that VNN1 gene expression and the G-137T variant are associated with HDL-C levels in Mexican children, particularly in prepubertal girls.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Pablo I. Aguayo-de la Rosa
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Hugo Villamil-Ramírez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Paola León-Mimila
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City, Mexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Samuel Canizales-Quinteros
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- * E-mail:
| |
Collapse
|
31
|
Laguna JC, Alegret M. Regulation of gene expression in atherosclerosis: insights from microarray studies in monocytes/macrophages. Pharmacogenomics 2012; 13:477-95. [PMID: 22380002 DOI: 10.2217/pgs.12.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a pathological phenomenon in which the walls of large arteries thicken and lose elasticity as a result of the growth of atheromatous lesions. It is a complex, multifactorial disease that involves several cell types and various pathobiological processes. Its genetic basis has not yet been deciphered, but it is related to complex multigene patterns influenced by environmental interactions. In this review, we focus specifically on the application of microarrays to atherosclerosis research using monocytes and monocyte-derived macrophages, as these are key cells in all phases of atherosclerosis, from the formation of foam cells to the destabilization and rupture of the atherosclerotic plaque. These studies have provided relevant information on genes involved in atherosclerosis development, contributing to our understanding of the molecular mechanisms that underlie this complex disease.
Collapse
Affiliation(s)
- Juan C Laguna
- Pharmacology Department, Faculty of Pharmacy & Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | | |
Collapse
|
32
|
Jia X, Ju H, Yang L, Tian Y. A novel multiplex polymerase chain reaction assay for profile analyses of gene expression in peripheral blood. BMC Cardiovasc Disord 2012; 12:51. [PMID: 22780915 PMCID: PMC3445828 DOI: 10.1186/1471-2261-12-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Background Studies have demonstrated that inflammation has a key role in the pathogenesis of atherosclerosis due to the abnormal gene expressions of multiple cytokines. We established an accurate and precise method to observe gene expression in whole blood that might provide specific diagnostic information for coronary artery disease (CAD) and other related diseases. Methods The fifteen selected CAD-related genes (IL1B, IL6, IL8, IFNG, MCP-1, VWF, MTHFR, SELL, TNFalpha, ubiquitin, MCSF, ICAM1, ID2, HMOX1 and LDLR) and two housekeeping genes (ACTB and GK) as internal references have been measured simultaneously with a newly developed multiplex polymerase chain reaction (multi-PCR) method. Moreover, the precision was evaluated, and a procedure for distinguishing patients from the normal population has been developed based upon analyses of peripheral blood. A total of 148 subjects were divided into group A (control group without plaques), group B (calcified plaques) and group C (non-calcified plaques, and combination group) according dual-source CT criteria. Gene expression in blood was analyzed by multi-PCR, and levels of glucose and lipids measured in 50 subjects to explore the relationship among them. Results The precision results of the multi-PCR system revealed within-run and between-run CV values of 3.695–12.537% and 4.405–13.405%, respectively. The profiles of cytokine gene expression in peripheral blood were set: a positive correlation between glucose and MCSF, HMOX1 or TNFalpha were found. We also found that triglyceride levels were negatively correlated with SELL gene expression in 50 subjects. Compared with controls, gene expression levels of IL1B, IL6, IL8 and MCP-1 increased significantly in group C. Conclusions A new multiple gene expression analysis system has been developed. The primary data suggested that gene expression was related to CAD. This system might be used for risk assessment of CVDs and other related diseases.
Collapse
Affiliation(s)
- Xingwang Jia
- Department of Clinical Biochemistry, State Key Laboratory of Kidney Disease, Chinese PLA General Hospital, 100853 Beijing, China
| | | | | | | |
Collapse
|
33
|
de Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M. Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: What do we know so far? Mol Nutr Food Res 2012; 56:1160-72. [PMID: 22610960 DOI: 10.1002/mnfr.201100685] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/01/2012] [Accepted: 03/11/2012] [Indexed: 12/21/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) generally refer to monocytes and lymphocytes, representing cells of the innate and adaptive immune systems. PBMCs are a promising target tissue in the field of nutrigenomics because they seem to reflect the effects of dietary modifications at the level of gene expression. In this review, we describe and discuss the scientific literature concerning the use of gene expression at the mRNA level measured from PBMCs in dietary interventions studies conducted in humans. A search of literature was undertaken using PubMed (last assessed November 24, 2011) and 20 articles were selected for discussion. Currently, results from these studies showed that PBMCs seem to reflect liver environment and complement adipose tissue findings in transcriptomics. PBMC gene expression after dietary intervention studies can be used for studying the response of certain genes related to fatty acid and cholesterol metabolism, and to explore the response of dietary interventions in relation to inflammation. However, PBMC transcriptomics from dietary intervention studies have not resulted yet in clear confirmation of candidate genes related to disease risk. Use of microarray technology in larger well-designed dietary intervention studies is still needed for exploring PBMC potential in the field of nutrigenomics.
Collapse
Affiliation(s)
- Vanessa Derenji Ferreira de Mello
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
34
|
Differentially expressed genes in human peripheral blood as potential markers for statin response. J Mol Med (Berl) 2011; 90:201-11. [PMID: 21947165 DOI: 10.1007/s00109-011-0818-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
There is a considerable inter-individual variation in response to statin therapy and one third of patients do not meet their treatment goals. We aimed to identify differentially expressed genes that might be involved in the effects of statin treatment and to suggest potential markers to guide statin therapy. Forty-six healthy Korean subjects received atorvastatin; their whole-genome expression profiles in peripheral blood were analyzed before and after atorvastatin administration in relation with changes in lipid profiles. The expression patterns of the differentially expressed genes were also compared with the data of familial hypercholesterolemia (FH) patients and controls. Pairwise comparison analyses revealed differentially expressed genes involved in diverse biological processes and molecular functions related with immune responses. Atorvastain mainly affected antigen binding, immune or inflammatory response including interleukin pathways. Similar expression patterns of the genes were observed in patients with FH and controls. The Charcol-Leyden crystal (CLC), CCR2, CX3CR1, LRRN3, FOS, LDLR, HLA-DRB1, ERMN, and TCN1 genes were significantly associated with cholesterol levels or statin response. Interestingly, the CLC gene, which was significantly altered by atorvastatin administration and differentially expressed between FH patients and controls, showed much bigger change in high-responsive group than in low-responsive group. We identified differentially expressed genes that might be involved in mechanisms underlying the known pleiotropic effects of atorvastatin, baseline cholesterol levels, and drug response. Our findings suggest CLC as a new candidate marker for statin response, and further validation is needed.
Collapse
|
35
|
Type II interleukin-1 receptor expression is reduced in monocytes/macrophages and atherosclerotic lesions. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:556-63. [DOI: 10.1016/j.bbalip.2011.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 11/19/2022]
|
36
|
Azorín-Ortuño M, Yáñez-Gascón MJ, González-Sarrías A, Larrosa M, Vallejo F, Pallarés FJ, Lucas R, Morales JC, Tomás-Barberán FA, García-Conesa MT, Espín JC. Effects of long-term consumption of low doses of resveratrol on diet-induced mild hypercholesterolemia in pigs: a transcriptomic approach to disease prevention. J Nutr Biochem 2011; 23:829-37. [PMID: 21852083 DOI: 10.1016/j.jnutbio.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases (CVDs) have risen to alarming proportions, and there is a need for therapeutic and preventive measures. The polyphenol resveratrol (RES) protects against CVDs, but in vivo molecular mechanisms responsible for protection are not yet understood. Peripheral blood mononuclear cells (PBMNCs) are involved in the development of atherosclerosis and metabolic disorders. The identification of PBMNCs genes responding to dietary compounds might help to understand the mechanisms underlying the effects of polyphenols. We determined gene expression differences between PBMNCs from pigs fed a high-fat diet manifesting a mild increase of cholesterol and pigs fed a high-fat diet containing low doses of RES. Although the consumption of RES did not modify the levels of cholesterol, microarray analyses indicated that some of the differentially expressed genes, collagens (COL1A, COL3A), lipoprotein lipase (LPL) and fatty-acid binding proteins (FABPs) involved in CVDs and lipid metabolism were up-regulated by the high-fat diet and down-regulated by RES. Reverse transcriptase polymerase chain reaction confirmed that RES and RES-containing grape extract prevented the induction of FABP4 in PBMNCs in female pigs fed a high-fat diet. Low micromolar concentrations of RES and its metabolite dihydroresveratrol exerted a minor but significant reducing effect on the induction of FABP4 expression in human macrophages treated with oxidized low-density lipoprotein. Our results show that the consumption of low doses of RES modulates the expression of genes related to lipid metabolism and metabolic disorders that are affected by a high-fat diet and suggest that some of the circulating RES metabolites may contribute to these effects.
Collapse
Affiliation(s)
- María Azorín-Ortuño
- Department Food Science and Technology, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Burakoff R, Chao S, Perencevich M, Ying J, Friedman S, Makrauer F, Odze R, Khurana H, Liew CC. Blood-based biomarkers can differentiate ulcerative colitis from Crohn's disease and noninflammatory diarrhea. Inflamm Bowel Dis 2011; 17:1719-25. [PMID: 21744426 DOI: 10.1002/ibd.21574] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 01/15/2023]
Abstract
BACKGROUND Blood gene expression profiling has been used in several studies to identify patients with a number of conditions and diseases. A blood test with the ability to differentiate Crohn's disease (CD) from ulcerative colitis (UC) and noninflammatory diarrhea would be useful in the clinical management of these diseases. METHODS Affymetrix U133Plus 2.0 GeneChip oligonucleotide arrays were used to generate whole blood gene expression profiles for 21 patients with UC, 24 patients with CD, and 10 control patients with diarrhea, but without colonic pathology. RESULTS A supervised learning method (logistic regression) was used to identify specific panels of probe sets which were able to discriminate between UC and CD and from controls. The UC panel consisted of the four genes, CD300A, KPNA4, IL1R2, and ELAVL1; the CD panel comprised the four genes CAP1, BID, NIT2, and NPL. These panels clearly differentiated between CD and UC. CONCLUSIONS Gene expression profiles from blood can differentiate patients with CD from those with UC and from noninflammatory diarrheal disorders.
Collapse
Affiliation(s)
- Robert Burakoff
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vanburen P, Ma J, Chao S, Mueller E, Schneider DJ, Liew CC. Blood gene expression signatures associate with heart failure outcomes. Physiol Genomics 2011; 43:392-7. [PMID: 21266504 DOI: 10.1152/physiolgenomics.00175.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression signatures in blood correlate with specific diseases. Such signatures may serve as valuable diagnostic and prognostic tools in disease management. Blood gene expression signatures associated with heart failure may be applied to predict prognosis, monitor disease progression, and optimize treatment. Blood gene expression profiles were generated for 71 subjects with heart failure and 15 controls without heart failure, using the Affymetrix GeneChip U133Plus2.0. Survival analysis identified 197 "mortality genes" that were significantly associated with patient outcome. Functional categorization showed that genes associated with T cell receptor signaling were most significantly overpresented. Cluster analysis of these T cell receptor signaling genes significantly categorized heart failure patients into three risk groups (P = 0.031) that were distinct from the three risk groups categorized by New York Heart Association (NYHA) Classification (P = 0.0002). By combining the analysis of clinical assessment (NYHA class) with T cell receptor signaling gene expression, we proposed a model that demonstrated an even greater differentiation of patients at risk (P = 0.0001). In this discovery study, we identified blood expression signatures associated with heart failure patient outcomes. Characterization of these mortality genes helped identify a set of T cell receptor signaling genes that may be of utility in predicting survival of heart failure patients. These data raise the possibility of prospectively risk stratifying patients with heart failure by integrating blood gene expression signatures with current clinical assessment.
Collapse
Affiliation(s)
- Peter Vanburen
- Department of Medicine, Cardiology Unit, University of Vermont, Burlington, Vermont, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Jeannesson E, Siest G, Herbeth B, Albertini L, Shahabi P, Pfister M, Visvikis-Siest S. Biological and genetic factors associated with ABCB1 and pregnane-X-receptor expressions in peripheral blood mononuclear cells in the STANISLAS cohort. ACTA ACUST UNITED AC 2011; 26:27-32. [DOI: 10.1515/dmdi.2011.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Freedman JE, Larson MG, Tanriverdi K, O'Donnell CJ, Morin K, Hakanson AS, Vasan RS, Johnson AD, Iafrati MD, Benjamin EJ. Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation 2010; 122:119-29. [PMID: 20606121 DOI: 10.1161/circulationaha.109.928192] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Although many genetic epidemiology and biomarker studies have been conducted to examine associations of genetic variants and circulating proteins with cardiovascular disease and risk factors, there has been little study of gene expression or transcriptomics. Quantitative differences in the abundance of transcripts has been demonstrated in malignancies, but gene expression from a large community-based cohort examining risk of cardiovascular disease has never been reported. METHODS AND RESULTS On the basis of preliminary microarray data and previously suggested genes from the literature, we measured expression of 48 genes by high-throughput quantitative reverse-transcriptase polymerase chain reaction in 1846 participants of the Framingham Offspring cohort from RNA derived from isolated platelets and leukocytes. A multivariable stepwise regression model was used to assess clinical correlates of quantitative RNA expression. For specific inflammatory platelet-derived transcripts, including ICAM1, IFNG, IL1R1, IL6, MPO, COX2, TNF, TLR2, and TLR4, there were significant associations with higher body mass index (BMI). Compared with platelets, fewer leukocyte-derived transcripts were associated with BMI or other cardiovascular risk factors. Select transcripts were found to be highly heritable, including GPIBA and COX1. Almost uniformly, heritable transcripts were not those associated with BMI. CONCLUSIONS Inflammatory transcripts derived from platelets, particularly those part of the nuclear factor kappa B pathway, are associated with BMI, whereas others are heritable. This is the first study, using a large community-based cohort, to demonstrate clinical correlates of gene expression and is consistent with the hypothesis that specific peripheral-blood transcripts play a role in the pathogenesis of coronary heart disease and its risk factors.
Collapse
Affiliation(s)
- Jane E Freedman
- Department of Medicine, Boston University School of Medicine, Whitaker Cardiovascular Institute, 700 Albany St, W-507, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barlage S, Gnewuch C, Liebisch G, Wolf Z, Audebert FX, Glück T, Fröhlich D, Krämer BK, Rothe G, Schmitz G. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med 2009; 35:1877-85. [DOI: 10.1007/s00134-009-1609-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 07/01/2009] [Indexed: 11/24/2022]
|
42
|
Marteau JB, Samara A, Dedoussis G, Pfister M, Visvikis-Siest S. Candidate gene microarray analysis in peripheral blood cells for studying hypertension/obesity. Per Med 2009; 6:269-291. [PMID: 29783504 DOI: 10.2217/pme.09.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIMS The gene expression of 182 cardiovascular candidate genes was measured in high quality groups of individuals (n = 20) by microarrays to determine whether a subset of genes would discriminate obese and hypertensive individuals, in spite of the existence of a close link between these two cardiovascular risk factors. MATERIALS & METHODS The results were validated on the 20 subjects used for microarray analysis and on 62 additional individuals by real-time PCR. RESULTS The first analysis, where patient groups were compared with healthy subjects, revealed 15 out of 182 genes that differed in hypertensive, obese or obesity-related hypertensive individuals. These genes were ALOX5, APOA2, SELL, RGS2, CD14, FPR1, CAMP, DEFA3, DEFA4, CBS, CHRM1, ICAM1, NR1H2, SCNN1B and TGFB1. A second analysis was carried out in which patient groups were compared with each other, demonstrating FPR1 and DEFA3 as being significant genes discriminating patient groups. Furthermore, an analysis stratified by sex revealed that, with the exception of DEFA3, there are no other common genes between men and women. DISCUSSION We were able to indentify a number of interesting genes that distinguish patient and healthy subject groups as well as patient groups between them. CONCLUSION In addition, it seems that gender plays an important role, at least for some of the genes we tested. These findings may have important implications in the screening and etiology of hypertension or obesity, and could further help to focus on these specific mRNAs as antisense therapy targets.
Collapse
Affiliation(s)
- Jean-Brice Marteau
- Nancy Université Henri Poincaré, Faculté de Pharmacie, Unité de recherche Génétique Cardiovasculaire, 30 rue Lionnois, 54000 Nancy, France.
| | - Anastasia Samara
- Nancy Université Henri Poincaré, Faculté de Pharmacie, Unité de recherche Génétique Cardiovasculaire, 30 rue Lionnois, 54000 Nancy, France.
| | | | - Michèle Pfister
- Nancy Université Henri Poincaré, Faculté de Pharmacie, Unité de recherche Génétique Cardiovasculaire, 30 rue Lionnois, 54000 Nancy, France.
| | - Sophie Visvikis-Siest
- Nancy Université Henri Poincaré, Faculté de Pharmacie, Unité de recherche Génétique Cardiovasculaire, 30 rue Lionnois, 54000 Nancy, France.
| |
Collapse
|
43
|
Increased expression of lipid biosynthesis genes in peripheral blood cells of olanzapine-treated patients. Int J Neuropsychopharmacol 2008; 11:679-84. [PMID: 18241359 DOI: 10.1017/s1461145708008468] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent in-vitro studies show that antipsychotic drugs increase lipid biosynthesis through changes in gene expression. Based on these finding we compared the expression of two central lipid biosynthesis genes, fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD), in whole blood of olanzapine-treated and unmedicated patients. Patients with psychotic disorders were consecutively selected from an ongoing, naturalistic study, and divided into two groups according to the following criteria: (1) strict monotherapy with olanzapine (n=19) or (2) no current medication (n=19). The groups were matched on gender, race and body mass index. Blood lipid levels were examined, and gene expression in whole blood was assessed with quantitative real-time PCR. Expression of FASN (p=0.003) and SCD (p=0.002) was significantly up-regulated in olanzapine-treated compared to unmedicated patients. Transcriptional activation of lipid biosynthesis genes in peripheral blood cells of olanzapine-treated patients suggests a direct lipogenic action of antipsychotic drugs, which may be related to metabolic adverse effects.
Collapse
|
44
|
Aziz H, Zaas A, Ginsburg GS. Peripheral blood gene expression profiling for cardiovascular disease assessment. Genomic Med 2008; 1:105-12. [PMID: 18923935 DOI: 10.1007/s11568-008-9017-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 01/25/2008] [Indexed: 12/18/2022] Open
Abstract
Whole blood gene expression profiling has the potential to be informative about dynamic changes in disease states and to provide information on underlying disease mechanisms. Having demonstrated proof of concept in animal models, a number of studies have now tried to tackle the complexity of cardiovascular disease in human hosts to develop better diagnostic and prognostic indicators. These studies show that genomic signatures are capable of classifying patients with cardiovascular diseases into finer categories based on the molecular architecture of a patient's disease and more accurately predict the likelihood of a cardiovascular event than current techniques. To highlight the spectrum of potential applications of whole blood gene expression profiling approach in cardiovascular science, we have chosen to review the findings in a number of complex cardiovascular diseases such as atherosclerosis, hypertension and myocardial infarction as well as thromboembolism, aortic aneurysm, and heart transplant.
Collapse
Affiliation(s)
- Hamza Aziz
- School of Medicine, Duke University, Durham, USA
| | | | | |
Collapse
|
45
|
Visvikis-Siest S, Marteau JB, Samara A, Berrahmoune H, Marie B, Pfister M. Peripheral blood mononuclear cells (PBMCs): a possible model for studying cardiovascular biology systems. Clin Chem Lab Med 2008; 45:1154-68. [PMID: 17663631 DOI: 10.1515/cclm.2007.255] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The inflammation system, alone or in relation to or interaction with other cardiovascular pathways, is suggested to be the central pathway in the development and progression of cardiovascular diseases. The aim of the present investigation was to propose a specific and informative model for exploring this hypothesis. METHODS In a biological system approach, we studied the expression of 182 candidate cardiovascular genes in peripheral blood mononuclear cells (PBMCs), cells that provide specific information on the inflammatory pathway. We explored their expression in 20 individuals with or without risk factors (obesity, hypertension) for cardiovascular disease. RESULTS We found that: 1) 166 among the 182 selected genes were expressed in at least one individual's PBMCs, some of them being detected for the first time in this tissue; 2) all pathways were represented by the majority of their genes selected; 3) genes were expressed at a level sufficient for further study of the inter-individual variations in their mRNA to determine their biological variation; and 4) 15 genes discriminated hypertensive from obese or controls. CONCLUSIONS The results of the present investigation support our proposal of a promising novel strategy based on PBMC transcriptomic studies to elucidate the complexity of the cardiovascular system in relation to inflammation. Preliminary data support the usefulness of the PBMC model in hypertension/inflammation research.
Collapse
|
46
|
Mohr S, Liew CC. The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 2007; 13:422-32. [PMID: 17919976 DOI: 10.1016/j.molmed.2007.08.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 08/12/2007] [Accepted: 08/12/2007] [Indexed: 12/14/2022]
Abstract
Future personalized medicine strategies for assessing an individual's health require, ideally, a noninvasive system that is capable of integrating numerous interactive factors, including gender, age, genetics, behavior, environment and comorbidities. Several microarray-based methods developed to meet this goal are currently under investigation. However, most rely on tissue biopsies, which are not readily available or accessible. As an alternative, several recent studies have investigated the use of human peripheral blood cells as surrogate biopsy material. Such studies are based on the assumption that molecular profiling of circulating blood might reflect physiological and pathological events occurring in different tissues of the body. This has led to the development of novel methods for identifying and monitoring blood biomarkers to probe an individual's health status. Here, we discuss the rationale and clinical potential of profiling the peripheral-blood transcriptome.
Collapse
Affiliation(s)
- Steve Mohr
- GeneNews Corp., 2-2 East Beaver Creek Road, Richmond Hill, Ontario, L4B 2N3, Canada.
| | | |
Collapse
|