1
|
Drosos AA, Venetsanopoulou AA, Pelechas E, Voulgari PV. Exploring Cardiovascular Risk Factors and Atherosclerosis in Rheumatoid Arthritis. Eur J Intern Med 2024; 128:1-9. [PMID: 39048336 DOI: 10.1016/j.ejim.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease mainly affecting the peripheral diarthrodial joints symmetrically and also presenting many extra-articular manifestations. Morbidity and mortality in RA patients are higher compared to the general population. Cardiovascular (CV) disease is one of the most common causes of death in these patients. Classical or traditional risk factors for atherosclerosis development occur more frequently in RA patients compared to those without this condition. Studies have showed that RA patients often present comorbidities such as hypertension, dyslipidemia, diabetes mellitus and obesity. However, the high incidence of CV events occurring in RA patients is not explained by the presence of traditional risk factors. Systemic inflammation, as it is expressed with the presence of proinflammatory cytokines and increased acute phase reactants, may contribute to the development of premature atherosclerosis in these patients. In this review, we explore the risk factors for CV disease, the generation of dyslipidemia, the lipid paradox and the role of systemic inflammation in the atherosclerotic process in RA. We discuss also the role of early therapeutic intervention that suppresses inflammation which may have beneficial effects on CV disease in RA patients.
Collapse
Affiliation(s)
- Alexandros A Drosos
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece.
| | - Aliki A Venetsanopoulou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleftherios Pelechas
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paraskevi V Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
2
|
Qing G, Bao C, Yang Y, Wei B. Association between neutrophil to high-density lipoprotein cholesterol ratio (NHR) and depression symptoms among the United States adults: a cross-sectional study. Lipids Health Dis 2024; 23:215. [PMID: 39003458 PMCID: PMC11245866 DOI: 10.1186/s12944-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Depression acts as a noteworthy worldwide public health challenge. Identifying accessible biomarkers is crucial for early diagnosis and intervention. The relationship between depression in adult Americans and the neutrophil to high-density lipoprotein cholesterol ratio (NHR) was investigated in this research. METHODS The relationship between NHR and depressive symptoms was analyzed utilizing National Health and Nutrition Examination Survey data from 2005 to 2018 and the Patient Health Questionnaire-9. The study included 33,871 participants with complete NHR and depression data. Adjusted multivariable logistic regression models were used to account for possible confounders, and subgroup analyses were conducted to investigate effect changes. RESULTS Elevated NHR levels were positively correlated with a heightened risk of depression (OR = 1.03, 95% CI: 1.01-1.05, P < 0.0005). After the NHR was divided into tertiles, those in the top tertile had an 18% higher chance of developing depression than those in the bottom tertile (OR = 1.18; 95% CI: 1.05-1.32; P for trend = 0.0041). Subgroup analyses revealed variations in this association based on race and marital status. Additionally, the relationship between NHR and depression demonstrated a U-shaped pattern, with a significant breakpoint identified at an NHR of 6.97. CONCLUSION These results imply that the NHR may be a potential biomarker for depression risk, with implications for early detection and personalized treatment. Further research is needed to elucidate the mechanisms underlying the NHR-depression link and establish causality.
Collapse
Affiliation(s)
- Guangwei Qing
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, Jiangxi, China
- Third Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Cheng Bao
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, Jiangxi, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, 330029, Jiangxi, China
| | - Yuanjian Yang
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, Jiangxi, China
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, 330029, Jiangxi, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital & Affiliated Mental Hospital of Nanchang University, Nanchang, 330029, Jiangxi, China.
- Nanchang City Key Laboratory of Biological Psychiatry, Jiangxi Provincial Clinical Research Center on Mental Disorders, Jiangxi Mental Hospital, Nanchang, 330029, Jiangxi, China.
| |
Collapse
|
3
|
Wu Q, Sheng Q, Michell D, Ramirez-Solano M, Posey O, Phothisane A, Shaik S, Vickers KC, Ormseth MJ. Anti-Inflammatory Effect of High-Density Lipoprotein Blunted by Delivery of Altered MicroRNA Cargo in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:684-695. [PMID: 38111131 PMCID: PMC11045320 DOI: 10.1002/art.42782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE High-density lipoprotein (HDL) has well-characterized anti-atherogenic cholesterol efflux and antioxidant functions. Another function of HDL uncharacterized in rheumatoid arthritis (RA) is its ability to transport microRNAs (miRNAs) between cells and thus alter cellular function. The study's purpose was to determine if HDL-miRNA cargo is altered and affects inflammation in RA. METHODS HDL-microRNAs were characterized in 30 RA and 30 control participants by next generation sequencing and quantitative polymerase chain reaction. The most abundant differentially expressed miRNA was evaluated further. The function of miR-1246 was assessed by miRNA mimics, antagomiRs, small interfering RNA knockdown, and luciferase assays. Monocyte-derived macrophages were treated with miR-1246-loaded HDL and unmodified HDL from RA and control participants to measure delivery of miR-1246 and its effect on interleukin-6 (IL-6). RESULTS The most abundant miRNA on HDL was miR-1246; it was significantly enriched two-fold on HDL from RA versus control participants. HDL-mediated miR-1246 delivery to macrophages significantly increased IL6 expression 43-fold. miR-1246 delivery significantly decreased DUSP3 1.5-fold and DUSP3 small interfering RNA knockdown increased macrophage IL6 expression. Luciferase assay indicated DUSP3 is a direct target of miR-1246. Unmodified HDL from RA delivered 1.6-fold more miR-1246 versus control participant HDL. Unmodified HDL from both RA and control participants attenuated activated macrophage IL6 expression, but this effect was significantly blunted in RA so that IL6 expression was 3.4-fold higher after RA versus control HDL treatment. CONCLUSION HDL-miR-1246 was increased in RA versus control participants and delivery of miR-1246 to macrophages increased IL-6 expression by targeting DUSP3. The altered HDL-miRNA cargo in RA blunted HDL's anti-inflammatory effect.
Collapse
Affiliation(s)
- Qiong Wu
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Olivia Posey
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Michelle J Ormseth
- Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN USA
| |
Collapse
|
4
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
5
|
Song L, Wang J, Zhang Y, Yan X, He J, Nie J, Zhang F, Han R, Yin H, Li J, Liu H, Huang L, Li Y. Association Between Human Metabolomics and Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Arch Med Res 2024; 55:102907. [PMID: 38029644 DOI: 10.1016/j.arcmed.2023.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE The underdiagnosis and inadequate treatment of rheumatoid arthritis (RA) can be attributed to the various clinical manifestations presented by patients. To address this concern, we conducted an extensive review and meta-analysis, focusing on RA-related metabolites. METHODS A comprehensive literature search was conducted in PubMed, the Cochrane Library, Web of Science, and Embase to identify relevant studies published up to October 5, 2022. The quality of the included articles was evaluated and, subsequently, a meta-analysis was conducted using Review Manager software to analyze the association between metabolites and RA. RESULTS Forty nine studies met the inclusion criteria for the systematic review, and six of these studies were meta-analyzed to evaluate the association between 28 reproducible metabolites and RA. The results indicated that, compared to controls, the levels of histidine (RoM = 0.83, 95% CI = 0.79-0.88, I2 = 0%), asparagine (RoM = 0.83, 95% CI = 0.75-0.91, I2 = 0%), methionine (RoM = 0.82, 95% CI = 0.69-0.98, I2 = 85%), and glycine (RoM = 0.81, 95% CI = 0.67-0.97, I2 = 68%) were significantly lower in RA patients, while hypoxanthine levels (RoM = 1.14, 95% CI = 1.09-1.19, I2 = 0%) were significantly higher. CONCLUSION This study identified histidine, methionine, asparagine, hypoxanthine, and glycine as significantly correlated with RA, thus offering the potential for the advancement of biomarker discovery and the elucidation of disease mechanisms in RA.
Collapse
Affiliation(s)
- Lili Song
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jiayi Wang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Yue Zhang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Xingxu Yan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jiaxuan Nie
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Fangfang Zhang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Rui Han
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Hongqing Yin
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jingfang Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Huimin Liu
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Liping Huang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China.
| |
Collapse
|
6
|
Chang CK, Chiang EPI, Chang KH, Tang KT, Chen PK, Yip HT, Chen CH, Chen DY. The Sizes and Composition of HDL-Cholesterol Are Significantly Associated with Inflammation in Rheumatoid Arthritis Patients. Int J Mol Sci 2023; 24:10645. [PMID: 37445823 DOI: 10.3390/ijms241310645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease, carries a significant burden of atherosclerotic cardiovascular diseases (ASCVD). With their heterogeneous composition, high-density lipoprotein (HDL) particles have varied athero-protective properties, and some may even increase ASCVD risk. In this prospective and cross-sectional study, we aimed to examine the relationship between HDL sizes/metabolites and inflammation in RA. Using 1H-NMR-based lipid/metabolomics, differential HDL-related metabolites were identified between RA patients and healthy control (HC) subjects and between RA patients with and without anti-citrullinated peptide antibodies (ACPA). The correlation between the discriminative HDL-related metabolites and C-reactive protein (CRP) was evaluated in RA patients. RA patients demonstrated higher particle number, lipids, cholesterol, cholesterol ester, free cholesterol, and phospholipids in large/very large-sized HDLs. ACPA-positive patients had higher L-HDL-C and L-HDL-CE but lower small-/medium-sized HDL-TG levels than ACPA-negative patients. An inverse correlation was found between CRP levels and small-sized HDLs. Janus kinase inhibitor treatment was associated with increased serum small-sized HDL-related metabolites and decreased CRP levels. We are the first to reveal the significant associations between RA inflammation and HDL sizes/metabolites. A potential link between ACPA positivity and changes in serum levels of HDL-related metabolites was also observed in RA patients.
Collapse
Affiliation(s)
- Ching-Kun Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- Translational Medicine Laboratory, Rheumatology Research Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- Translational Medicine Laboratory, Rheumatology Research Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Hei-Tung Yip
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- Translational Medicine Laboratory, Rheumatology Research Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
7
|
Charles-Schoeman C, Wang J, Shahbazian A, Wilhalme H, Brook J, Kaeley GS, Oganesian B, Ben-Artzi A, Elashoff DA, Ranganath VK. Power doppler ultrasound signal predicts abnormal HDL function in patients with rheumatoid arthritis. Rheumatol Int 2023; 43:1041-1053. [PMID: 36828925 PMCID: PMC10125943 DOI: 10.1007/s00296-023-05285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Active rheumatoid arthritis (RA) is associated with increased cardiovascular risk and impaired function of high-density lipoprotein (HDL). Previous work suggests that HDL may become dysfunctional through oxidative modifications within the RA joint. The current work evaluates an association of synovial power doppler ultrasound signal (PDUS) with HDL function and structure. Two open-label clinical therapeutic studies using PDUS as a disease outcome measure were included in this analysis, including a 12-month trial of subcutaneous abatacept in 24 RA patients and a 6-month trial of IV tocilizumab in 46 RA patients. Laboratory assays included assessments of HDL function and structure, HDL and total cholesterol levels, and a cytokine/chemokine panel. Patients with the highest baseline PDUS scores in both clinical studies, had worse HDL function, including suppression of paraoxonase 1 (PON1) activity as well as lower HDL-C levels. Associations between other disease assessments (DAS28 and CDAI) and HDL function/structure were noted but were generally of lesser magnitude and consistency than PDUS across the HDL profile. Treatment with tocilizumab for 6 months was associated with increases in cholesterol levels and improvements in the HDL function profile, which correlated with greater decreases in PDUS scores. Similar trends were noted following treatment with abatacept for 3 months. Higher baseline PDUS scores identified patients with worse HDL function. This data supports previous work suggesting a direct association of joint inflammation with abnormal HDL function.
Collapse
Affiliation(s)
- Christina Charles-Schoeman
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Jennifer Wang
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Ani Shahbazian
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Holly Wilhalme
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Jenny Brook
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Gurjit S. Kaeley
- Division of Rheumatology and Clinical Immunology, College of Medicine, University of Florida, Jacksonville, FL USA
| | - Buzand Oganesian
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Ami Ben-Artzi
- Division of Rheumatology, Cedars Sinai Medical Center, Los Angeles, CA USA
| | - David A. Elashoff
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| | - Veena K. Ranganath
- David Geffen School of Medicine, University of California, 1000 Veteran Ave, Rm 32-59, Los Angeles, CA 90095 USA
| |
Collapse
|
8
|
Razmjou AA, Wang JM, Shahbazian A, Reddy S, Charles-Schoeman C. Suppressed paraoxonase-1 activity associates with elevated oxylipins and the presence of small airways disease in patients with rheumatoid arthritis. Clin Rheumatol 2023; 42:75-82. [PMID: 36138190 PMCID: PMC9823017 DOI: 10.1007/s10067-022-06375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA)-associated lung disease (LD) associates with significantly increased morbidity and mortality. Although oxidative stress plays an important role in the inflammatory responses in other forms of lung disease, minimal work has evaluated its role in RA-LD. The current work examines the relationship between the anti-oxidant HDL-associated enzyme paraoxonase-1 (PON1), the PON1 Q192R polymorphism, and a targeted oxylipin panel with RA-LD. METHODS This study was conducted as a retrospective chart review of a longitudinal single-center cohort of 250 RA patients. CT scans of the chest were reviewed by the interpreting radiologist and classified as small airways disease (SAD), interstitial lung disease (ILD), and bronchiectasis. PON1 activity was measured by its lactonase, arylesterase, and paraoxonase functions. The PON1 Q192R polymorphism and a targeted lipidomics panel were performed as previously reported. RESULTS 43.2% of the 250 RA patient cohort (n = 108) had available CT scans, including 48 patients (44.4%) with SAD, 27 patients (25.0%) with bronchiectasis, and 16 patients (14.8%) with ILD. Patients with SAD had significantly lower baseline PON1 activity by its arylesterase, and lactonase functions, as well as higher 15-HETE, LTB4, and PGE2 levels compared to those without SAD. These predictors of SAD remained significant after multivariate analysis including known risk factors for RA-LD. Suppressed PON1 activity also correlated with higher levels of 15-HETE and 12-HETE. CONCLUSION In a single-center RA cohort, suppressed baseline PON1 activity and elevation in the oxylipins 15-HETE, LTB4, and PGE2 predicted the presence of RA-SAD in longitudinal follow-up. Key Points • Small airways disease (SAD) was present in 44.4% of this rheumatoid arthritis (RA) cohort. • Patients with SAD had significantly lower baseline PON1 activity, as well as higher levels of the oxylipins 15-HETE, LTB4, and PGE2 levels compared to those without SAD. • Further work is warranted to confirm these findings and further define the role of PON1 and lipid oxidation in RA lung disease.
Collapse
Affiliation(s)
- Amir A Razmjou
- David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Ave, Room 31-79, Los Angeles, CA, 90095-1670, USA.
| | - Jennifer M Wang
- David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Ave, Room 31-79, Los Angeles, CA, 90095-1670, USA
| | - Ani Shahbazian
- David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Ave, Room 31-79, Los Angeles, CA, 90095-1670, USA
| | - Srinivasa Reddy
- David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Ave, Room 31-79, Los Angeles, CA, 90095-1670, USA
| | - Christina Charles-Schoeman
- David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Ave, Room 31-79, Los Angeles, CA, 90095-1670, USA
| |
Collapse
|
9
|
Effects of Nitisinone on Oxidative and Inflammatory Markers in Alkaptonuria: Results from SONIA1 and SONIA2 Studies. Cells 2022; 11:cells11223668. [PMID: 36429096 PMCID: PMC9688277 DOI: 10.3390/cells11223668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.
Collapse
|
10
|
HDL as Bidirectional Lipid Vectors: Time for New Paradigms. Biomedicines 2022; 10:biomedicines10051180. [PMID: 35625916 PMCID: PMC9138557 DOI: 10.3390/biomedicines10051180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The anti-atherogenic properties of high-density lipoproteins (HDL) have been explained mainly by reverse cholesterol transport (RCT) from peripheral tissues to the liver. The RCT seems to agree with most of the negative epidemiological correlations between HDL cholesterol levels and coronary artery disease. However, therapies designed to increase HDL cholesterol failed to reduce cardiovascular risk, despite their capacity to improve cholesterol efflux, the first stage of RCT. Therefore, the cardioprotective role of HDL may not be explained by RCT, and it is time for new paradigms about the physiological function of these lipoproteins. It should be considered that the main HDL apolipoprotein, apo AI, has been highly conserved throughout evolution. Consequently, these lipoproteins play an essential physiological role beyond their capacity to protect against atherosclerosis. We propose HDL as bidirectional lipid vectors carrying lipids from and to tissues according to their local context. Lipid influx mediated by HDL appears to be particularly important for tissue repair right on site where the damage occurs, including arteries during the first stages of atherosclerosis. In contrast, the HDL-lipid efflux is relevant for secretory cells where the fusion of intracellular vesicles drastically enlarges the cytoplasmic membrane with the potential consequence of impairment of cell function. In such circumstances, HDL could deliver some functional lipids and pick up not only cholesterol but an integral part of the membrane in excess, restoring the viability of the secretory cells. This hypothesis is congruent with the beneficial effects of HDL against atherosclerosis as well as with their capacity to induce insulin secretion and merits experimental exploration.
Collapse
|
11
|
Zhang Q, Jiang Z, Xu Y. HDL and Oxidation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:63-77. [PMID: 35575921 DOI: 10.1007/978-981-19-1592-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this chapter, we will focus on HDLs' activity of inhibiting LDL oxidation and neutralizing some other oxidants. ApoA-I was known as the main antioxidant component in HDLs. The regulation of antioxidant capacity of HDL is mainly exhibited in regulation of apoA-I and alterations at the level of the HDL lipidome and the modifications of the proteome, especially MPO and PON1. HDL oxidation will influence the processes of inflammation and cholesterol transport, which are important processes in atherosclerosis, metabolic diseases, and many other diseases. In a word, HDL oxidation might be an effective antioxidant target in treatment of many diseases.
Collapse
Affiliation(s)
- Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing, China
| | - Zongzhe Jiang
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
12
|
Zhou J, Dai Y, Lin Y, Chen K. Association between serum amyloid A and rheumatoid arthritis: A systematic review and meta-analysis. Semin Arthritis Rheum 2021; 52:151943. [PMID: 35027248 DOI: 10.1016/j.semarthrit.2021.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUNDS Consistent correlation of serum amyloid A (SAA) to rheumatoid arthritis (RA) is not completely established. The present study is to systematically summarize their relationship. METHODS Publications up to may 2021 were examined using key terms in the PubMed, Cochrane Library, Embase and China national knowledge infrastructure (CNKI) databases. RESULTS The total 33 studies, involving in 3524 RA cases and 3537 normal participants, were included. The pooled result indicated that the SAA level in the RA group was markedly higher than that in the control group [standardized mean difference (SMD) = 0.80, 95% CI (0.51, 1.08)]. By stratified analyses, the concentration of SAA was found to be gradually increased with the aggravation of RA. Additionally, the meta-analysis of correlation demonstrated that SAA levels were positively associated with the levels of disease activity score 28 (DAS28) [r = 0.55, 95% CI (0.15, 0.94)], erythrocyte sedimentation rate (ESR) [r = 0.65, 95% CI (0.53, 0.76)], C-reactive protein (CRP) [r = 0.92, 95% CI (0.57, 1.57)], rheumatoid factor (RF) [r = 0.24, 95% CI (0.09, 0.39)], interleukin 4 (IL-4) [r = 0.54, 95% CI (0.30, 0.78)], interleukin 6 (IL-6) [r = 0.46, 95% CI (0.27, 0.65)], interleukin 10 (IL-10) [r = 0.53, 95% CI (0.29, 0.77)], interleukin 17 (IL-17) [r = 0.52, 95% CI (0.27, 0.77)], and anti-cyclic citrullinated peptide antibody (A-CCP) [r = 0.32, 95% CI (0.15, 0.50)], but inversely linked with the levels of hemoglobin [r=-0.51, 95% CI (-0.84, -0.18)]. Furthermore, the allele of SAA 1.3 was actively related with increased risks of RA [OR=1.30, 95% CI (1.02, 1.65)] and of RA with amyloidosis [OR=2.06, 95% CI (1.63, 2.60)]. Besides, the genotype of SAA 1.3/1.3 was positively connected with the risks of RA [OR=1.56, 95% CI (1.00, 2.43)] and of RA with amyloidosis [OR=4.47, 95% CI (2.70, 7.41)]. CONCLUSIONS High levels of SAA might be associated with elevated risk of RA, and the concentration of SAA might be gradually increased with the aggravation of RA. Moreover, high levels of SAA might play a vital role in RA by enhancing the levels of DAS28, ESR, CRP, RF, IL-4, IL-6, IL-10, IL-17 and A-CCP, or by attenuating hemoglobin levels. More importantly, the allele of SAA 1.3 and genotype of SAA 1.3/1.3 might be the risk factor of RA and of RA with amyloidosis.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032,China
| | - Yu Dai
- Department of Surgery, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui 234000, China
| | - Yan Lin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032,China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
13
|
The Potential Role of Electronegative High-Density Lipoprotein H5 Subfraction in RA-Related Atherosclerosis. Int J Mol Sci 2021; 22:ijms222111419. [PMID: 34768851 PMCID: PMC8584111 DOI: 10.3390/ijms222111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023] Open
Abstract
Although the heterogeneity of high-density lipoprotein-cholesterol (HDL-c) composition is associated with atherosclerotic cardiovascular risk, the link between electronegative subfractions of HDL-c and atherosclerosis in rheumatoid arthritis (RA) remains unknown. We examined the association of the percentage of the most electronegative subfraction of HDL-c (H5%) and RA-related atherosclerosis. Using anion-exchange purification/fast-protein liquid chromatography, we demonstrated significantly higher H5% in patients (median, 7.2%) than HC (2.8%, p < 0.005). Multivariable regression analysis revealed H5% as a significant predictor for subclinical atherosclerosis. We subsequently explored atherogenic role of H5 using cell-based assay. The results showed significantly higher levels of IL-1β and IL-8 mRNA in H5-treated (mean ± SD, 4.45 ± 1.22 folds, 6.02 ± 1.43-folds, respectively) than H1-treated monocytes (0.89 ± 0.18-folds, 1.03 ± 0.26-folds, respectively, both p < 0.001). In macrophages, H5 upregulated the mRNA and protein expression of IL-1β and IL-8 in a dose-dependent manner, and their expression levels were significantly higher than H1-treated macrophages (all p < 0.001). H5 induced more foam cell formation compared with H1-treated macrophages (p < 0.005). In addition, H5 has significantly lower cholesterol efflux capacity than H1 (p < 0.005). The results of nanoLC-MS/MS approach reveal that the best discriminator between high-H5% and normal-H5% is Apo(a), the main constituent of Lp(a). Moreover, Lp(a) level is a significant predictor for high-H5%. These observations suggest that H5 is involved in RA-related atherosclerosis.
Collapse
|
14
|
Su X, Zhang G, Cheng Y, Wang B. New insights into the emerging effects of inflammatory response on HDL particles structure and function. Mol Biol Rep 2021; 48:5723-5733. [PMID: 34319542 DOI: 10.1007/s11033-021-06553-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
According to the increasing results, it has been well-demonstrated that the chronic inflammatory response, including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism whereby inflammatory response up-regulates the risk of cardio-metabolic disorder disease is multifactorial; furthermore, the alterations in high density lipoprotein (HDL) structure and function which occur under the inflammatory response could play an important modulatory function. On the other hand, the serum concentrations of HDL cholesterol (HDL-C) have been shown to be reduced significantly under inflammatory status with remarked alterations in HDL particles. Nevertheless, the potential mechanism whereby the inflammatory response reduces serum HDL-C levels is not simply defined but reduces apolipoprotein A1 production. The alterations in HDL structure mediated by the inflammatory response has been also confirmed to decrease the ability of HDL particle to play an important role in reverse cholesterol transport and protect the LDL particles from oxidation. Recently, it has been shown that under the inflammatory condition, diverse alterations in HDL structure could be observed which lead to changes in HDL function. In the current review, the emerging effects of inflammatory response on HDL particles structure and function are well-summarized to elucidate the potential mechanism whereby different inflammatory status modulates the pathogenic development of dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
15
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
16
|
Karpouzas GA, Bui VL, Ronda N, Hollan I, Ormseth SR. Biologics and atherosclerotic cardiovascular risk in rheumatoid arthritis: a review of evidence and mechanistic insights. Expert Rev Clin Immunol 2021; 17:355-374. [PMID: 33673792 DOI: 10.1080/1744666x.2021.1899809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Cardiovascular disease is a leading comorbidity in rheumatoid arthritis. Timely introduction of biologic therapies in a treat-to-target approach has optimized disease-related outcomes and attenuated accrual of comorbidities, including cardiovascular risk.Areas covered: A literature search in MEDLINE (via PubMed) was performed between January 2009 and November 2020. This manuscript explores recent developments in atherosclerotic cardiovascular risk in RA compared with non-RA individuals; it synopsizes differences in vascular function and inflammation, prevalence, burden, vulnerability, and progression of atherosclerotic plaque and their underlying cellular and molecular mechanisms. Finally, it reviews the recent literature on cardioprotective benefits of biologics and draws mechanistic links with inhibition of new plaque formation, stabilization of high-risk lesions and improvement in endothelial function, arterial stiffness, lipid metabolism, and traditional cardiac risk factors.Expert opinion: Increasing evidence points to a solid cardioprotective influence of earlier, longer, and ongoing use of biologic treatments in RA. Nevertheless, the precise mechanistic effects of plaque progression and remodeling, vascular stiffness, endothelial dysfunction, lipid metabolism, and traditional cardiac risk factors are less rigorously characterized.
Collapse
Affiliation(s)
- George A Karpouzas
- Division of Rheumatology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Viet L Bui
- Division of Rheumatology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ivana Hollan
- The Norwegian University of Science and Technology, Gjøvik, Norway.,Beitostølen Sport and Health Centre, Beitostølen, Norway
| | - Sarah R Ormseth
- Division of Rheumatology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
17
|
Chen W, Wang Q, Zhou B, Zhang L, Zhu H. Lipid Metabolism Profiles in Rheumatic Diseases. Front Pharmacol 2021; 12:643520. [PMID: 33897433 PMCID: PMC8064727 DOI: 10.3389/fphar.2021.643520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatic diseases are a group of chronic autoimmune disorders that involve multiple organs or systems and have high mortality. The mechanisms of these diseases are still ill-defined, and targeted therapeutic strategies are still challenging for physicians. Recent research indicates that cell metabolism plays important roles in the pathogenesis of rheumatic diseases. In this review, we mainly focus on lipid metabolism profiles (dyslipidaemia, fatty acid metabolism) and mechanisms in rheumatic diseases and discuss potential clinical applications based on lipid metabolism profiles.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
18
|
Pierini FS, Botta E, Soriano ER, Martin M, Boero L, Meroño T, Saez MS, Lozano Chiappe E, Cerda O, Citera G, Gandino I, Rosa J, Sorroche P, Kontush A, Brites F. Effect of Tocilizumab on LDL and HDL Characteristics in Patients with Rheumatoid Arthritis. An Observational Study. Rheumatol Ther 2021; 8:803-815. [PMID: 33811316 PMCID: PMC8217399 DOI: 10.1007/s40744-021-00304-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In patients with rheumatoid arthritis (RA), qualitative alterations of low and high-density lipoproteins (LDL and HDL, respectively) might partially explain their increased cardiovascular risk. Tocilizumab has been associated with an increase in lipids, including triglyceride (TG) and cholesterol levels. The aim of this study is to evaluate the effect of tocilizumab on certain LDL and HDL characteristics (oxidized LDL levels, HDL-associated enzymes, chemical composition of both total HDL and HDL3c subpopulation, and their capacity to promote cellular cholesterol efflux) at baseline and 3 months after the start of treatment in patients with RA. METHODS Twenty-eight RA patients (ACR/EULAR 2010 criteria) with indication of treatment with tocilizumab were included in the present study. Clinical assessment [Health assessment questionnaire (HAQ)], disease activity score 28 (DAS28), high-sensitivity C reactive protein (hsCRP) concentration, lipid profile, and lipoprotein (a) [Lp(a)] levels were evaluated in all patients at baseline and after 3 months of treatment with tocilizumab. Lipoprotein characteristics were evaluated through the levels of oxidized LDL (OxLDL), the activity of paraoxonase (PON) 1, the composition of total HDL and small, dense HDL3c subpopulation, and their ability to promote cellular cholesterol efflux. RESULTS After 3 months of treatment with tocilizumab, HAQ (- 23%, p < 0.05), DAS28 (- 49%, p < 0.001), and hsCRP (- 94%, p < 0.01) levels decreased significantly. Total cholesterol (TC), LDL-C, non-HDL-C, and apo B levels showed a significant increase after treatment (TC: + 7.0%, p < 0.01; LDL-C: + 10%, p < 0.01; non-HDL-C: + 9.9%, p < 0.01; and apo B: + 9.6%, p < 0.05). Decreases in Lp(a) and OxLDL levels were also observed after treatment [Lp(a): - 50%, p < 0.01; and oxLDL: - 5.4%, p < 0.05]. The latter was in accordance with the increment detected in PON activity. No changes were observed in HDL capacity to promote cholesterol efflux (p > 0.05) in the whole group. CONCLUSIONS Treatment with tocilizumab reduced hsCRP levels and displayed positive effects on certain lipoprotein-related parameters, such as a potent decrease inLp(a) and a reduction in OxLDL levels. Moreover, HDL capacity to promote cellular cholesterol efflux was maintained after 3 months of treatment.
Collapse
Affiliation(s)
- Florencia S Pierini
- Rheumatology Unit, Internal Medical Services, and University Institute, Hospital Italiano de Buenos Aires, Peron 4190, (1181), Buenos Aires, Argentina
| | - Eliana Botta
- Laboratory of Lipids and Atherosclerosis, School of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Enrique R Soriano
- Rheumatology Unit, Internal Medical Services, and University Institute, Hospital Italiano de Buenos Aires, Peron 4190, (1181), Buenos Aires, Argentina.
| | - Maximiliano Martin
- Laboratory of Lipids and Atherosclerosis, School of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Laura Boero
- Laboratory of Lipids and Atherosclerosis, School of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Tomás Meroño
- Laboratory of Lipids and Atherosclerosis, School of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Soledad Saez
- Central Laboratory, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Lozano Chiappe
- Laboratory of Lipids and Atherosclerosis, School of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Osvaldo Cerda
- Rheumatology Service, Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| | - Gustavo Citera
- Rheumatology Service, Instituto de Rehabilitación Psicofísica, Buenos Aires, Argentina
| | - Ignacio Gandino
- Rheumatology Unit, Internal Medical Services, and University Institute, Hospital Italiano de Buenos Aires, Peron 4190, (1181), Buenos Aires, Argentina
| | - Javier Rosa
- Rheumatology Unit, Internal Medical Services, and University Institute, Hospital Italiano de Buenos Aires, Peron 4190, (1181), Buenos Aires, Argentina
| | - Patricia Sorroche
- Central Laboratory, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Anatol Kontush
- Faculty of Medicine Pitié-Salpêtrière, National Institute for Health and Medical Research (INSERM) Research Unit 1166 - ICAN, Sorbonne University, Paris, France
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, School of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Parada-Turska J, Wójcicka G, Beltowski J. Paraoxonase 1 Phenotype and Protein N-Homocysteinylation in Patients with Rheumatoid Arthritis: Implications for Cardiovascular Disease. Antioxidants (Basel) 2020; 9:antiox9090899. [PMID: 32967340 PMCID: PMC7555791 DOI: 10.3390/antiox9090899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Paraoxonase 1 (PON1) is the high density lipoprotein-associated esterase which inhibits the development of atherosclerosis by metabolizing lipid peroxidation products as well as hydrolyzing proatherogenic metabolite of homocysteine (Hcy), Hcy thiolactone, which otherwise reacts with lysine groups of proteins, thus forming N-Hcy-protein in a process referred to as protein N-homocysteinylation. Rheumatoid arthritis (RA) is the chronic inflammatory autoimmune disease associated with increased risk of cardiovascular complications, but the underlying mechanisms are incompletely understood. We examined PON1 status and N-homocysteinylation of serum proteins in patients with RA. Blood was collected from 74 RA patients and 70 control subjects. PON1 activity was measured toward synthetic (paraoxon, phenyl acetate) and natural (Hcy thiolactone) substrates. PON1 protein concentration was measured by ELISA. Total Hcy as well as N-Hcy-protein were measured in serum as well. PON1 activity toward Hcy thiolactone was lower in RA patients than in control subjects which was accompanied by increased concentration of N-Hcy-protein despite normal total Hcy concentration. PON1 protein concentration was unchanged in the RA group, but the specific enzyme activity was reduced. When RA patients were categorized according to the DAS28-ESR score, PON1 concentration and enzymatic activity were lower whereas N-Hcy-protein was higher in those with high disease activity. PON1 activity and Hcy thiolactone were correlated with DAS28-ESR score and myeloperoxidase concentration. In conclusion, RA is associated with deficiency of PON1 activity and increased protein N-homocyseinylation which may contribute to accelerated development of cardiovascular diseases.
Collapse
Affiliation(s)
- Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University, 20-090 Lublin, Poland;
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University, 20-090 Lublin, Poland;
| | - Jerzy Beltowski
- Department of Pathophysiology, Medical University, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-4486500
| |
Collapse
|
20
|
Fernández-Ortiz AM, Ortiz AM, Pérez S, Toledano E, Abásolo L, González-Gay MA, Castañeda S, González-Álvaro I. Effects of disease activity on lipoprotein levels in patients with early arthritis: can oxidized LDL cholesterol explain the lipid paradox theory? Arthritis Res Ther 2020; 22:213. [PMID: 32917272 PMCID: PMC7488761 DOI: 10.1186/s13075-020-02307-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background An increased risk of cardiovascular (CV) complications has been described in patients with rheumatoid arthritis (RA). It is the result of the combined effect of classic CV risk factors and others that are specific to the disease. Methods We assessed data from 448 early arthritis (EA) patients: 79% women, age (median [p25-p75]) at onset: 55 [44–67] years and disease duration at study entry 5 [3–8] months; and 72% fulfilled the 1987 RA criteria at 2 years of follow-up. Rheumatoid factor was positive in 54% of patients and anti-citrullinated peptide antibodies in 50%. The follow-up of patients ranged from 2 to 5 years with more than 1400 visits with lipoprotein measurements available (mean 2.5 visits/patient). Demographic- and disease-related variables were systematically recorded. Total cholesterol (TC), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C) levels were obtained from routine laboratory tests. Oxidized-LDL (oxLDL-C) levels were assessed using a commercial ELISA kit. We fitted population-averaged models nested by patient and visit to determine the effect of independent variables on serum levels of TC, its fractions, and oxLDL-C. Results After adjustment for several confounders, high-disease activity was significantly associated with decreased TC, HDL-C, and LDL-C levels and increased oxLDL-C levels. Standardized coefficients showed that the effect of disease activity was greater on oxLDL-C and HDL-C. Interestingly, we observed that those patients with lower levels of LDL-C showed higher oxLDL-C/LDL-C ratios. Conclusions High-disease activity in EA patients results in changes in the HDL-C and oxLDL-C levels, which in turn may contribute to the increased risk of CV disease observed in these patients.
Collapse
Affiliation(s)
| | - Ana M Ortiz
- Rheumatology Division, Hospital Universitario La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain
| | - Silvia Pérez
- Rheumatology Division, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Esther Toledano
- Rheumatology Division, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Lydia Abásolo
- Rheumatology Division, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Miguel A González-Gay
- Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander, Spain
| | - Santos Castañeda
- Rheumatology Division, Hospital Universitario La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain.,Cátedra UAM-Roche, EPID-Future, Universidad Autónoma Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Rheumatology Division, Hospital Universitario La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain.
| |
Collapse
|
21
|
PON-1 haplotype (-108C>T, L55M, and Q192R) modulates the serum levels and activity PONase promoting an atherogenic lipid profile in rheumatoid arthritis patients. Clin Rheumatol 2020; 40:741-752. [PMID: 32556934 DOI: 10.1007/s10067-020-05218-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION/OBJECTIVE Paraoxonase 1 (PON1) promotes antioxidant and antiatherogenic activity related to the hydrolysis of oxidized lipids of low-density lipoproteins. In rheumatoid arthritis (RA) patients, it has been reported that low PON1 activity is related to an impaired lipid profile, increasing cardiovascular risk (CVR). The goal of this study was to analyze the effect of common PON1 polymorphisms and haplotypes on enzymatic activity, PON1 serum levels (PON1s), and lipid parameters related to atherogenic profile in RA patients. METHODS A cross-sectional study was carried out on 250 Mexican patients with RA. The lipid profile was determined by colorimetric tests. The PON1 activity (CMPAase) was measured by spectrophotometry. The levels of PON1s were determined by ELISA, and the polymorphisms in the PON-1 gene (-108C>T, L55M, and Q192R) were genotyped by the PCR-RFLP method. The haplotypes were estimated and statistical analysis was performed. RESULTS The median of the CMPAase activity and PON1 levels was 13.91 U/mL and 24.75 ng/mL, respectively. The CMPAase activity was significantly lower in carriers of -108TT and 192QQ genotypes (β = - 4.09, P = 0.001 and β = - 3.73, P = 0.002, respectively); moreover, the PON1 levels were lower in 192Q allele carriers (P < 0.01). The TLQ haplotype was associated with CMPAase activity < 13.91 U/mL (OR = 2.29, P < 0.001), as well as with levels of PON1s < 24.75 ng/mL (OR = 1.65, P = 0.017). In this study, the CMPAase activity (< 13.91 U/mL) showed a positive association with lower levels of high-density lipoprotein cholesterol (HDL-c; < 40/50 mg/dL), and with a triglycerides/HDL-c ratio > 3%, and a total cholesterol/HDL-c ratio > 4.5/5%, all representatives of an atherogenic risk lipid profile. CONCLUSIONS PON1 polymorphisms modulate the CMPAase activity and PON1 levels in Mexican patients with RA. The CMPAase activity < 13.91 U/mL is associated with an atherogenic lipid profile, independently of inflammation markers and treatment with anti-rheumatic drugs. Key Points •The haplotype TLQ is a marker for low PONase activity in rheumatoid arthritis. •The haplotype TLQ is a marker for low PON1 serum levels in rheumatoid arthritis. •The enzymatic PON1 activity represents the best marker for an atherogenic lipid profile in rheumatoid arthritis, in comparison with PON1 levels. •The haplotype TLQ is a marker of low PON1 activity, levels of PON1s, and atherogenic lipid profile, independent of treatment therapy in rheumatoid arthritis.
Collapse
|
22
|
Lanchais K, Capel F, Tournadre A. Could Omega 3 Fatty Acids Preserve Muscle Health in Rheumatoid Arthritis? Nutrients 2020; 12:E223. [PMID: 31952247 PMCID: PMC7019846 DOI: 10.3390/nu12010223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a high prevalence of death due to cardiometabolic diseases. As observed during the aging process, several comorbidities, such as cardiovascular disorders (CVD), insulin resistance, metabolic syndrome and sarcopenia, are frequently associated to RA. These abnormalities could be closely linked to alterations in lipid metabolism. Indeed, RA patients exhibit a lipid paradox, defined by reduced levels of total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol whereas the CVD risk is increased. Moreover, the accumulation of toxic lipid mediators (i.e., lipotoxicity) in skeletal muscles can induce mitochondrial dysfunctions and insulin resistance, which are both crucial determinants of CVD and sarcopenia. The prevention or reversion of these biological perturbations in RA patients could contribute to the maintenance of muscle health and thus be protective against the increased risk for cardiometabolic diseases, dysmobility and mortality. Yet, several studies have shown that omega 3 fatty acids (FA) could prevent the development of RA, improve muscle metabolism and limit muscle atrophy in obese and insulin-resistant subjects. Thereby, dietary supplementation with omega 3 FA should be a promising strategy to counteract muscle lipotoxicity and for the prevention of comorbidities in RA patients.
Collapse
Affiliation(s)
- Kassandra Lanchais
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Frederic Capel
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
| | - Anne Tournadre
- Université Clermont Auvergne, INRAE, Unité de Nutrition Humaine (UNH), 28 Place Henri Dunant—BP 38, UFR Médecine, UMR1019, 63009 Clermont-Ferrand, France; (K.L.); (A.T.)
- CHU de Clermont-Ferrand, Service de rhumatologie, 63003 Clermont-Ferrand, France
| |
Collapse
|
23
|
Alterations of HDL particle phospholipid composition and role of inflammation in rheumatoid arthritis. J Physiol Biochem 2019; 75:453-462. [PMID: 31392628 DOI: 10.1007/s13105-019-00694-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
The increased cardiovascular risk in RA (rheumatoid arthritis) cannot be explained by common quantitative circulating lipid parameters. The objective of the study was to characterize the modifications in HDL phosphosphingolipidome in patients with RA to identify qualitative modifications which could better predict the risk for CVD. Nineteen patients with RA were compared to control subjects paired for age, sex, BMI, and criteria of metabolic syndrome. The characterization of total HDL phosphosphingolipidome was performed by LC-MS/MS. RA was associated with an increased HDL content of lysophosphatidylcholine and a decreased content of PC (phosphatidylcholine), respectively, positively and negatively associated with cardiovascular risk. A discriminant molecular signature composed of 18 lipids was obtained in the HDL from RA patients. The detailed analysis of phospholipid species showed that molecules carrying omega-3 FA (fatty acids), notably docosahexaenoic acid (C22:6 n-3), were depleted in HDL isolated from RA patients. By contrast, two PE (phosphatidylethanolamine) species carrying arachidonic acid (C20:4 n-6) were increased in HDL from RA patients. Furthermore, disease activity and severity indexes were associated with altered HDL content of 4 PE and 2 PC species. In conclusion, the composition of HDL phosphosphingolipidome is altered during RA. Identification of a lipidomic signature could therefore represent a promising biomarker for CVD risk. Although a causal link remains to be demonstrated, pharmacological and nutritional interventions targeting the normalization of the FA composition of altered phospholipids could help to fight against RA-related inflammation and CVD risk.
Collapse
|
24
|
Mihajlovic M, Ninic A, Sopic M, Miljkovic M, Stefanovic A, Vekic J, Spasojevic-Kalimanovska V, Zeljkovic D, Trifunovic B, Stjepanovic Z, Zeljkovic A. Association among resistin, adenylate cyclase-associated protein 1 and high-density lipoprotein cholesterol in patients with colorectal cancer: a multi-marker approach, as a hallmark of innovative predictive, preventive, and personalized medicine. EPMA J 2019; 10:307-316. [PMID: 31462946 DOI: 10.1007/s13167-019-00178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Background Elevated concentrations of resistin have been reported in colorectal cancer (CRC), but its interactions with adenylate cyclase-associated protein 1 (CAP-1) are largely unexplored. We investigated resistin plasma concentration, peripheral blood mononuclear cells (PBMCs) resistin messenger ribonucleic acid (mRNA), and CAP-1 mRNA levels in CRC patients, as well as the impact of resistin gene polymorphism rs1862513 on the examined markers. We also explored associations of resistin with high-density lipoprotein cholesterol (HDL-C) and predictive potential of our parameters for CRC. Methods Eighty-six patients with CRC and 75 healthy adults were included. Commercial ELISA kit was used for obtaining resistin's concentrations, while polymerase chain reaction (PCR) method was applied for evaluation of resistin and CAP-1 mRNA levels and rs1862513 polymorphism. Results Plasma resistin and CAP-1 mRNA levels were higher in CRC patients (p < 0.001 and p < 0.05, respectively), while resistin mRNA levels were lower (p < 0.001). Negative association existed among plasma resistin and HDL-C concentrations (ρ = - 0.280; p < 0.05). A model including age, body-mass index, HDL-C, low-density lipoprotein cholesterol (LDL-C), and plasma resistin concentrations as independent predictors of CRC showed very good diagnostic accuracy (AUC = 0.898). We found no associations of rs1862513 with the examined markers. Conclusions Our study demonstrated increased plasma resistin and CAP-1 mRNA levels, implying their possible interaction in CRC. The association among plasma resistin and HDL-C might indicate that HDL-C is involved in alterations of resistin's secretion process. As a hallmark of personalized medicine, multi-marker approach in determination of resistin-related parameters might be useful for prediction and prevention of CRC development.
Collapse
Affiliation(s)
- Marija Mihajlovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Ana Ninic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Miron Sopic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Milica Miljkovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Aleksandra Stefanovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | - Jelena Vekic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| | | | - Dejan Zeljkovic
- 2Clinic of General Surgery, Military Medical Academy, Belgrade, Serbia
| | - Bratislav Trifunovic
- 2Clinic of General Surgery, Military Medical Academy, Belgrade, Serbia
- 3Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | | | - Aleksandra Zeljkovic
- 1Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, POB 146, Belgrade, 11000 Serbia
| |
Collapse
|
25
|
Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids 2019; 221:8-14. [DOI: 10.1016/j.chemphyslip.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
|
26
|
Ossoli A, Pavanello C, Giorgio E, Calabresi L, Gomaraschi M. Dysfunctional HDL as a Therapeutic Target for Atherosclerosis Prevention. Curr Med Chem 2019; 26:1610-1630. [DOI: 10.2174/0929867325666180316115726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the main risk factors for the development of atherosclerosis. Among the various lipoprotein classes, however, high density lipoproteins (HDL) are inversely associated with the incidence of atherosclerosis, since they are able to exert a series of atheroprotective functions. The central role of HDL within the reverse cholesterol transport, their antioxidant and anti-inflammatory properties and their ability to preserve endothelial homeostasis are likely responsible for HDL-mediated atheroprotection. However, drugs that effectively raise HDL-C failed to result in a decreased incidence of cardiovascular event, suggesting that plasma levels of HDL-C and HDL function are not always related. Several evidences are showing that different pathologic conditions, especially those associated with an inflammatory response, can cause dramatic alterations of HDL protein and lipid cargo resulting in HDL dysfunction. Established and investigational drugs designed to affect lipid metabolism and to increase HDL-C are only partly effective in correcting HDL dysfunction.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Eleonora Giorgio
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Monica Gomaraschi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
27
|
Abstract
High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK.
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
28
|
Braconi D, Giustarini D, Marzocchi B, Peruzzi L, Margollicci M, Rossi R, Bernardini G, Millucci L, Gallagher JA, Le Quan Sang KH, Imrich R, Rovensky J, Al-Sbou M, Ranganath LR, Santucci A. Inflammatory and oxidative stress biomarkers in alkaptonuria: data from the DevelopAKUre project. Osteoarthritis Cartilage 2018; 26:1078-1086. [PMID: 29852277 DOI: 10.1016/j.joca.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 05/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this work was to assess baseline serum levels of established biomarkers related to inflammation and oxidative stress in samples from alkaptonuric subjects enrolled in SONIA1 (n = 40) and SONIA2 (n = 138) clinical trials (DevelopAKUre project). METHODS Baseline serum levels of Serum Amyloid A (SAA), IL-6, IL-1β, TNFα, CRP, cathepsin D (CATD), IL-1ra, and MMP-3 were determined through commercial ELISA assays. Chitotriosidase activity was assessed through a fluorimetric method. Advanced Oxidation Protein Products (AOPP) were determined by spectrophotometry. Thiols, S-thiolated proteins and Protein Thiolation Index (PTI) were determined by spectrophotometry and HPLC. Patients' quality of life was assessed through validated questionnaires. RESULTS We found that SAA serum levels were significantly increased compared to reference threshold in 57.5% and 86% of SONIA1 and SONIA2 samples, respectively. Similarly, chitotriosidase activity was above the reference threshold in half of SONIA2 samples, whereas CRP levels were increased only in a minority of samples. CATD, IL-1β, IL-6, TNFα, MMP-3, AOPP, thiols, S-thiolated protein and PTI showed no statistically significant differences from control population. We provided evidence that alkaptonuric patients presenting with significantly higher SAA, chitotriosidase activity and PTI reported more often a decreased quality of life. This suggests that worsening of symptoms in alkaptonuria (AKU) is paralleled by increased inflammation and oxidative stress, which might play a role in disease progression. CONCLUSIONS Monitoring of SAA may be suggested in AKU to evaluate inflammation. Though further evidence is needed, SAA, chitotriosidase activity and PTI might be proposed as disease activity markers in AKU.
Collapse
Affiliation(s)
- D Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - D Giustarini
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Siena, Italy.
| | - B Marzocchi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy.
| | - L Peruzzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - M Margollicci
- UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - R Rossi
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Siena, Italy.
| | - G Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - L Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - J A Gallagher
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.
| | | | - R Imrich
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - J Rovensky
- National Institute of Rheumatic Diseases, Piešťany, Slovakia.
| | - M Al-Sbou
- Department of Pharmacology, Alkaptonuria Research Office, Faculty of Medicine, Mutah University, Mutah, Karak, Jordan.
| | - L R Ranganath
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK; Department of Clinical Biochemistry and Metabolism, Royal Liverpool University Hospital, Liverpool, UK.
| | - A Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| |
Collapse
|
29
|
Cardiovascular Safety of Biologics and JAK Inhibitors in Patients with Rheumatoid Arthritis. Curr Rheumatol Rep 2018; 20:42. [DOI: 10.1007/s11926-018-0752-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Collier TS, Jin Z, Topbas C, Bystrom C. Rapid Affinity Enrichment of Human Apolipoprotein A-I Associated Lipoproteins for Proteome Analysis. J Proteome Res 2018; 17:1183-1193. [PMID: 29411613 DOI: 10.1021/acs.jproteome.7b00816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isolation of high density lipoproteins (HDL) for structural and functional studies typically relies on ultracentrifugation techniques, which are time-consuming and difficult to scale. With emerging interest in the clinical relevance of HDL structure and function to cardiovascular disease, a significant gap exists between current and desirable sample preparation throughput. To enable proteomic studies of HDL with large clinical cohorts, we have developed an affinity enrichment approach that relies on the association of histidine-tagged, lipid free ApoA-I with HDL followed by standard metal chelate chromatography. Characterization of the resulting affinity-enriched ApoA-I associated lipoprotein (AALP) pool using biochemical, electrophoretic, and proteomic analysis demonstrates that the isolated material is closely related in structural features, lipid content, protein complement, and relative protein distribution to HDL isolated by ultracentrifugation using sequential density adjustment. The simplicity of the method provides avenues for high-throughput analysis of HDL associated proteins.
Collapse
Affiliation(s)
- Timothy S Collier
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| | - Zhicheng Jin
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| | - Celalettin Topbas
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| | - Cory Bystrom
- Cleveland HeartLab, Inc. 6701 Carnegie Avenue, Suite 500 Cleveland, Ohio 44103, United States
| |
Collapse
|
31
|
Tanaka M, Kawakami T, Okino N, Sasaki K, Nakanishi K, Takase H, Yamada T, Mukai T. Acceleration of amyloid fibril formation by carboxyl-terminal truncation of human serum amyloid A. Arch Biochem Biophys 2018; 639:9-15. [DOI: 10.1016/j.abb.2017.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
|
32
|
Hancock-Cerutti W, Lhomme M, Dauteuille C, Lecocq S, Chapman MJ, Rader DJ, Kontush A, Cuchel M. Paradoxical coronary artery disease in humans with hyperalphalipoproteinemia is associated with distinct differences in the high-density lipoprotein phosphosphingolipidome. J Clin Lipidol 2017; 11:1192-1200.e3. [PMID: 28826666 PMCID: PMC10455038 DOI: 10.1016/j.jacl.2017.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/16/2017] [Accepted: 06/25/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Plasma high-density lipoprotein cholesterol (HDL-C) levels are inversely associated with risk of coronary artery disease (CAD) in epidemiologic studies. Despite this, the directionality of this relationship and the underlying biology behind it remain to be firmly established, especially at the extremes of HDL-C levels. OBJECTIVE We investigated differences in the HDL phosphosphingolipidome in a rare population of subjects with premature CAD despite high HDL-C levels to gain insight into the association between the HDL lipidome and CAD disease status in this unusual phenotype. We sought to assess differences in HDL composition that are associated with CAD in subjects with HDL-C >90th percentile. We predicted that quantitative lipidomic analysis of HDL particles would reveal novel differences between CAD patients and healthy subjects with matched HDL-C levels. METHODS We collected plasma samples from 25 subjects with HDL-C >90th percentile and clinically manifest CAD and healthy controls with HDL-C >90th percentile and without self-reported CAD. More than 140 individual HDL phospholipid and sphingolipid species were analyzed by LC/MS/MS. RESULTS Significant reductions in HDL phosphatidylcholine (-2.41%, Q value = 0.025) and phosphatidylinositol (-10.7%, Q value = 0.047) content, as well as elevated sphingomyelin (+10.0%, Q value = 0.025) content, and sphingomyelin/phosphatidylcholine ratio (+12.8%, P value = .005) were associated with CAD status in subjects with high HDL-C. CONCLUSIONS These differences may lay the groundwork for further analysis of the relationship between the HDL lipidome and disease states, as well as for the development of biomarkers of CAD status and HDL function.
Collapse
Affiliation(s)
- William Hancock-Cerutti
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France; Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Carolane Dauteuille
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - Sora Lecocq
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - M John Chapman
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anatol Kontush
- National Institute for Health and Medical Reserch (INSERM), Research Unit 1166 ICAN, Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; AP-HP, Groupe Hospitalier Pitié Salpétrière, Paris, France; ICAN Analytics, ICAN Institute, Paris, France.
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
34
|
Identifying mitotane-induced mitochondria-associated membranes dysfunctions: metabolomic and lipidomic approaches. Oncotarget 2017; 8:109924-109940. [PMID: 29299119 PMCID: PMC5746354 DOI: 10.18632/oncotarget.18968] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/18/2017] [Indexed: 12/21/2022] Open
Abstract
Mitotane (o,p’DDD), the most effective drug in adrenocortical carcinoma, concentrates into the mitochondria and impacts mitochondrial functions. To address the molecular mechanisms of mitotane action and to identify its potential target, metabolomic and lipidomic approaches as well as imaging analyses were employed in human adrenocortical H295R cells allowing identification of Mitochondria-Associated Membranes dysfunction as a critical impact of mitotane. Study of intracellular energetic metabolites by NMR spectroscopy showed that mitotane significantly decreased aspartate while concomitantly increased glutamate content in a time- and concentration-dependent manner. Such alterations were very likely linked to the previously described, mitotane-induced respiratory chain defect. Lipidomic studies of intracellular and intramitochondrial phospholipids revealed that mitotane exposure markedly reduced the phosphatidylserine/phosphatidylethanolamine ratio, indicative of a dysfunction of phosphatidylserine decarboxylase located in Mitochondria-Associated Membranes. Expression levels of Mitochondria-Associated Membranes proteins phosphatidylserine decarboxylase, DRP1, ATAD3A or TSPO were greatly reduced by mitotane as assessed by western blot analyses. Mitotane exposure markedly altered endogenous Mitochondria-Associated Membranes integrity and reduced the magnitude of mitochondria and the endoplasmic reticulum interactions as demonstrated by high resolution deconvolution microscopy and quantification. Finally, we showed that PK11195, a pharmacological inhibitor of the cholesterol translocator TSPO, embedded in Mitochondria-Associated Membranes, exerts a synergetic effect with mitotane in inducing Mitochondria-Associated Membranes disruption, apoptosis and in inhibiting steroid secretion. Altogether, our results demonstrate Mitochondria-Associated Membranes dysfunction in H295R cells treated with mitotane and that TSPO inhibition significantly potentiates mitotane antitumoral and antisecretory actions in vitro. This constitutes a potential and promising pharmacological strategy for patients with adrenocortical carcinoma.
Collapse
|
35
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
36
|
Tanaka M, Nishimura A, Takeshita H, Takase H, Yamada T, Mukai T. Effect of lipid environment on amyloid fibril formation of human serum amyloid A. Chem Phys Lipids 2017; 202:6-12. [DOI: 10.1016/j.chemphyslip.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
37
|
Ungurianu A, Margină D, Grădinaru D, Băcanu C, Ilie M, Tsitsimpikou C, Tsarouhas K, Spandidos DA, Tsatsakis AM. Lipoprotein redox status evaluation as a marker of cardiovascular disease risk in patients with inflammatory disease. Mol Med Rep 2016; 15:256-262. [PMID: 27909725 PMCID: PMC5355743 DOI: 10.3892/mmr.2016.5972] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/02/2022] Open
Abstract
Patients with chronic inflammatory disorders (ID) have an increased risk of developing cardiovascular disease, and routinely determined parameters do not reveal the real metabolic status of specific subgroups, such as patients with rheumatoid arthritis (RA). In this study, in order to evaluate state of the art markers for the assessment of cardiometabolic risk, abnormalities in lipoprotein levels in patients with a low-grade inflammatory status [diabetes mellitus (DM) subgroup] and in patients with a high systemic inflammatory burden (RA subgroup) was determined. The study group comprised patients with ID [DM (n=20) and RA (n=20)], with an aged-matched control group (n=17). Patient serum was used to determine routine biochemical parameters and to isolate low-density lipoprotein (LDL) and high-density lipoprotein (HDL). The heparin-citrate method was used for LDL precipitation and the phosphotungstic acid-MgCl2 technique for the isolation of HDL. Further, Amplex Red and advanced oxidation protein product (AOPP) assays were applied to determine lipid peroxides and protein oxidation, respectively, while the levels of serum advanced glycation end products (AGEs) were also determined. Although the differences in the routinely determined lipidemic profile were notable between the DM and RA subgroups, markers of lipid peroxidation and of advanced protein oxidation/glycation did not differ significantly, indicating possible similar oxidative damage of serum lipoproteins. On the whole, as alterations in lipoprotein functionality can occur long before any changes in routinely measured biochemical parameters are observed, more sensitive markers for the assessment of cardiovascular risk are required. As AOPPs, AGEs, oxidized LDL (oxLDL) and especially oxidized HDL (oxHDL) are affected during the early stages of inflammatory disease, and due to their known link to coronary artery disease, it would be wise to include these markers in the routine cardiovascular evaluation of patients with chronic inflammatory disease, such as those with RA.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Claudia Băcanu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Mihaela Ilie
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Christina Tsitsimpikou
- Department of Hazardous Substances, Mixtures and Articles, General Chemical State Laboratory of Greece, Athens 115121, Greece
| | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
38
|
Karathanasis SK, Freeman LA, Gordon SM, Remaley AT. The Changing Face of HDL and the Best Way to Measure It. Clin Chem 2016; 63:196-210. [PMID: 27879324 DOI: 10.1373/clinchem.2016.257725] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND HDL cholesterol (HDL-C) is a commonly used lipid biomarker for assessing cardiovascular health. While a central focus has been placed on the role of HDL in the reverse cholesterol transport (RCT) process, our appreciation for the other cardioprotective properties of HDL continues to expand with further investigation into the structure and function of HDL and its specific subfractions. The development of novel assays is empowering the research community to assess different aspects of HDL function, which at some point may evolve into new diagnostic tests. CONTENT This review discusses our current understanding of the formation and maturation of HDL particles via RCT, as well as the newly recognized roles of HDL outside RCT. The antioxidative, antiinflammatory, antiapoptotic, antithrombotic, antiinfective, and vasoprotective effects of HDL are all discussed, as are the related methodologies for assessing these different aspects of HDL function. We elaborate on the importance of protein and lipid composition of HDL in health and disease and highlight potential new diagnostic assays based on these parameters. SUMMARY Although multiple epidemiologic studies have confirmed that HDL-C is a strong negative risk marker for cardiovascular disease, several clinical and experimental studies have yielded inconsistent results on the direct role of HDL-C as an antiatherogenic factor. As of yet, our increased understanding of HDL biology has not been translated into successful new therapies, but will undoubtedly depend on the development of alternative ways for measuring HDL besides its cholesterol content.
Collapse
Affiliation(s)
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Scott M Gordon
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD.
| |
Collapse
|
39
|
Gomez Rosso L, Lhomme M, Meroño T, Dellepiane A, Sorroche P, Hedjazi L, Zakiev E, Sukhorukov V, Orekhov A, Gasparri J, Chapman MJ, Brites F, Kontush A. Poor glycemic control in type 2 diabetes enhances functional and compositional alterations of small, dense HDL3c. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:188-195. [PMID: 27815221 DOI: 10.1016/j.bbalip.2016.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
High-density lipoprotein (HDL) possesses multiple biological activities; small, dense HDL3c particles displaying distinct lipidomic composition exert potent antiatherogenic activities which can be compromised in dyslipidemic, hyperglycemic insulin-resistant states. However, it remains indeterminate (i) whether such functional HDL deficiency is related to altered HDL composition, and (ii) whether it originates from atherogenic dyslipidemia, dysglycemia, or both. In the present work we analyzed compositional characteristics of HDL subpopulations and functional activity of small, dense HDL3c particles in treatment-naïve patients with well-controlled (n=10) and poorly-controlled (n=8) type 2 diabetes (T2D) and in normolipidemic age- and sex-matched controls (n=11). Our data reveal that patients with both well- and poorly-controlled T2D displayed dyslipidemia and low-grade inflammation associated with altered HDL composition. Such compositional alterations in small, dense HDL subfractions were specifically correlated with plasma HbA1c levels. Further analysis using a lipidomic approach revealed that small, dense HDL3c particles from T2D patients with poor glycemic control displayed additional modifications of their chemical composition. In parallel, antioxidative activity of HDL3c towards oxidation of low-density lipoprotein was diminished. These findings indicate that defective functionality of small, dense HDL particles in patients with T2D is not only affected by the presence of atherogenic dyslipidemia, but also by the level of glycemic control, reflecting compositional alterations of HDL.
Collapse
Affiliation(s)
- Leonardo Gomez Rosso
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, 91 Bld de l'Hopital, 75013 Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), Paris F-75013, France
| | - Tomas Meroño
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Ana Dellepiane
- Ramón Carrillo Centre, La Matanza, Buenos Aires, Argentina
| | | | - Lyamine Hedjazi
- Institute of Cardiometabolism and Nutrition (ICAN), Paris F-75013, France; Ramón Carrillo Centre, La Matanza, Buenos Aires, Argentina
| | - Emile Zakiev
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, 91 Bld de l'Hopital, 75013 Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8, Baltiyskaya Str., 125315 Moscow, Russia
| | - Vasily Sukhorukov
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, 91 Bld de l'Hopital, 75013 Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France; Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8, Baltiyskaya Str., 125315 Moscow, Russia
| | - Alexander Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8, Baltiyskaya Str., 125315 Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, PO Box #21, 121609 Moscow, Russia
| | - Julieta Gasparri
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - M John Chapman
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, 91 Bld de l'Hopital, 75013 Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Anatol Kontush
- INSERM UMR_S 1166, Faculte de Medecine Pitie-Salpetriere, 91 Bld de l'Hopital, 75013 Paris, France; University of Pierre and Marie Curie - Paris 6, Paris, France.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Studies have shown that chronic inflammatory disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism by which inflammation increases cardiovascular disease is likely multifactorial but changes in HDL structure and function that occur during inflammation could play a role. RECENT FINDINGS HDL levels decrease with inflammation and there are marked changes in HDL-associated proteins. Serum amyloid A markedly increases whereas apolipoprotein A-I, lecithin:cholesterol acyltransferase, cholesterol ester transfer protein, paraoxonase 1, and apolipoprotein M decrease. The exact mechanism by which inflammation decreases HDL levels is not defined but decreases in apolipoprotein A-I production, increases in serum amyloid A, increases in endothelial lipase and secretory phospholipase A2 activity, and decreases in lecithin:cholesterol acyltransferase activity could all contribute. The changes in HDL induced by inflammation reduce the ability of HDL to participate in reverse cholesterol transport and protect LDL from oxidation. SUMMARY During inflammation multiple changes in HDL structure occur leading to alterations in HDL function. In the short term, these changes may be beneficial resulting in an increase in cholesterol in peripheral cells to improve host defense and repair but over the long term these changes may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
41
|
Associations between disease activity, markers of HDL functionality and arterial stiffness in patients with rheumatoid arthritis. Atherosclerosis 2016; 251:438-444. [DOI: 10.1016/j.atherosclerosis.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/04/2023]
|
42
|
Fort-Gallifa I, García-Heredia A, Hernández-Aguilera A, Simó JM, Sepúlveda J, Martín-Paredero V, Camps J, Joven J. Biochemical indices of oxidative stress and inflammation in the evaluation of peripheral artery disease. Free Radic Biol Med 2016; 97:568-576. [PMID: 27449545 DOI: 10.1016/j.freeradbiomed.2016.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/24/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aims of this study were: (1) to investigate changes in indices of oxidative stress and inflammation in the evaluation of peripheral artery disease (PAD); (2) to compare the diagnostic efficacy of these parameters with that of classical clinical laboratory routine parameters. DESIGN AND METHODS We studied 115 patients with PAD and 300 healthy volunteers. RESULTS PAD patients had significantly increased circulating concentrations of F2-isoprostanes, protein carbonyls, chemokine (C-C motif) ligand 2 (CCL2), high-sensitivity C-reactive protein (hs-CRP), β-2-microglobulin (B2M), and decreased paraoxonase-1 (PON1) levels. When patients were classified according to the Fontaine score, we observed important increases in plasma F2-isoprostanes and CCL2 that appeared in milder stages of the disease, and remained so at similar levels in more advanced stages; almost no overlapping with the control group was noted. Receiver operating characteristics analysis comparing patients and controls revealed that the areas under the curve for F2-isoprostanes and CCL2 approached unity [0.999 (0.998-1.000) and 0.993 (0.985-1.000)], respectively, and significantly higher to those of the other measured parameters. CONCLUSION Our data suggest that F2-isoprostanes and CCL2 measurements may be useful tools for the diagnosis of PAD.
Collapse
Affiliation(s)
- Isabel Fort-Gallifa
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Laboratori de Referència de Catalunya SUD, Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anabel García-Heredia
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Josep M Simó
- Laboratori de Referència de Catalunya SUD, Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Julio Sepúlveda
- Servei d'Angiologia, Cirurgia Vascular i Endocirurgia, Hospital Universitari Joan XXIII, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Vicente Martín-Paredero
- Servei d'Angiologia, Cirurgia Vascular i Endocirurgia, Hospital Universitari Joan XXIII, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Patients with rheumatoid arthritis (RA) have accelerated atherosclerosis despite the appearance of having a less atherogenic lipid profile; however, lipoprotein function rather than concentration may be a better indicator of atherosclerotic risk. The purpose of this review is to summarize recent findings concerning HDL function in patients with RA. RECENT FINDINGS Two major activities of HDL, its antioxidant and cholesterol efflux functions have been examined in RA. HDL antioxidant capacity is inversely associated with inflammation and RA disease activity; however, there is no clear consensus if antioxidant capacity is altered significantly in RA compared with control study participants. Moreover, despite numerous studies there is no consensus whether HDL cholesterol efflux capacity is significantly altered in RA compared with control study participants or influenced by inflammation or disease activity. SUMMARY Additional studies will be valuable to consolidate existing data and find consensus. Moreover, studies evaluating the impact of various HDL functions on cardiovascular disease in RA are needed.
Collapse
|
44
|
Mutharasan RK, Foit L, Thaxton CS. High-Density Lipoproteins for Therapeutic Delivery Systems. J Mater Chem B 2016; 4:188-197. [PMID: 27069624 PMCID: PMC4825811 DOI: 10.1039/c5tb01332a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-density lipoproteins (HDL) are a class of natural nanostructures found in the blood and are composed of lipids, proteins, and nucleic acids (e.g. microRNA). Their size, which appears to be well-suited for both tissue penetration/retention as well as payload delivery, long circulation half-life, avoidance of endosomal sequestration, and potential low toxicity are all excellent properties to model in a drug delivery vehicle. In this review, we consider high-density lipoproteins for therapeutic delivery systems. First we discuss the structure and function of natural HDL, describing in detail its biogenesis and transformation from immature, discoidal forms, to more mature, spherical forms. Next we consider features of HDL making them suitable vehicles for drug delivery. We then describe the use of natural HDL, discoidal HDL analogs, and spherical HDL analogs to deliver various classes of drugs, including small molecules, lipids, and oligonucleotides. We briefly consider the notion that the drug delivery vehicles themselves are therapeutic, constituting entities that exhibit "theralivery." Finally, we discuss challenges and future directions in the field.
Collapse
Affiliation(s)
- R. Kannan Mutharasan
- Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL 60611 United States
| | - Linda Foit
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA
| | - C. Shad Thaxton
- Feinberg School of Medicine, Department of Urology, Northwestern University, Tarry 16-703, 303 E. Chicago Ave, Chicago, IL 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior St, Chicago, IL 60611, USA
- International Institute for Nanotechnology (IIN), 2145 Sheridan Road, Evanston, IL 60208, USA
- Robert H Lurie Comprehensive Cancer Center (RHLCCC), Northwestern University, Feinberg School of Medicine, 303 E Superior, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Lee JS, Chapman MJ, Piraino P, Lamerz J, Schindler T, Cutler P, Dernick G. Remodeling of plasma lipoproteins in patients with rheumatoid arthritis: Interleukin-6 receptor-alpha inhibition with tocilizumab. Proteomics Clin Appl 2015. [PMID: 26201085 DOI: 10.1002/prca.201500036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Rheumatoid arthritis (RA) is associated with increased cardiovascular risk, mediated in part by elevated circulating interleukin-6 levels and proinflammatory changes in plasma lipoproteins. We hypothesized that RA patients acquire inflammation-induced modifications to the protein cargo of circulating lipoproteins that may be reversed by tocilizumab, an interleukin-6 receptor-alpha inhibitor. EXPERIMENTAL DESIGN Size-exclusion chromatography and reverse-phase protein arrays using 29 antibodies against 26 proteins were applied at baseline and after tocilizumab treatment to analyze the distributions of apolipoproteins, enzymes, lipid transfer proteins, and other associated proteins in plasma lipoprotein fractions from 20 women with RA. RESULTS A 30% reduction in high-density lipoprotein (HDL)-associated serum amyloid A4 and complement C4 occurred with tocilizumab. Levels of C-reactive protein, associated or comigrating with HDL and low-density lipoprotein (LDL) peaks, were reduced on treatment by approximately 80% and 24%, respectively. Reductions in lipoprotein-associated phospholipase A2, lipoprotein (a), and cholesteryl ester transfer protein in the LDL fraction suggest reductions in LDL-associated proatherogenic factors. Elevations in very low-density lipoprotein (VLDL) enriched with apolipoprotein E were equally observed. CONCLUSIONS AND CLINICAL RELEVANCE Tocilizumab treatment led to reductions in proinflammatory components and proatherogenic proteins associated with HDL. Whether changes in the proteome of VLDL, LDL, and HDL induced by anti-inflammatory tocilizumab treatment in RA patients modify cardiovascular disease risk requires further investigation.
Collapse
Affiliation(s)
| | - M John Chapman
- INSERM Dyslipidemia and Atherosclerosis Research Unit, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Jens Lamerz
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Thomas Schindler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Paul Cutler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Gregor Dernick
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
46
|
Rached F, Lhomme M, Camont L, Gomes F, Dauteuille C, Robillard P, Santos RD, Lesnik P, Serrano CV, Chapman MJ, Kontush A. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1254-61. [PMID: 26037829 DOI: 10.1016/j.bbalip.2015.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Low plasma levels of high-density lipoprotein-cholesterol (HDL-C) are typical of acute myocardial infarction (MI) and predict risk of recurrent cardiovascular events. The potential relationships between modifications in the molecular composition and the functionality of HDL subpopulations in acute MI however remain indeterminate. METHODS AND RESULTS ST segment elevation MI (STEMI) patients were recruited within 24h after diagnosis (n=16) and featured low HDL-C (-31%, p<0.05) and acute-phase inflammation (determined as marked elevations in C-reactive protein, serum amyloid A (SAA) and interleukin-6) as compared to age- and sex-matched controls (n=10). STEMI plasma HDL and its subpopulations (HDL2b, 2a, 3a, 3b, 3c) displayed attenuated cholesterol efflux capacity from THP-1 cells (up to -32%, p<0.01, on a unit phospholipid mass basis) vs. CONTROLS Plasma HDL and small, dense HDL3b and 3c subpopulations from STEMI patients exhibited reduced anti-oxidative activity (up to -68%, p<0.05, on a unit HDL mass basis). HDL subpopulations in STEMI were enriched in two proinflammatory bioactive lipids, lysophosphatidylcholine (up to 3.0-fold, p<0.05) and phosphatidic acid (up to 8.4-fold, p<0.05), depleted in apolipoprotein A-I (up to -23%, p<0.05) and enriched in SAA (up to +10.2-fold, p<0.05); such changes were most marked in the HDL3b subfraction. In vitro HDL enrichment in both lysophosphatidylcholine and phosphatidic acid exerted deleterious effects on HDL functionality. CONCLUSIONS In the early phase of STEMI, HDL particle subpopulations display marked, concomitant alterations in both lipidome and proteome which are implicated in impaired HDL functionality. Such modifications may act synergistically to confer novel deleterious biological activities to STEMI HDL. SIGNIFICANCE Our present data highlight complex changes in the molecular composition and functionality of HDL particle subpopulations in the acute phase of STEMI, and for the first time, reveal that concomitant modifications in both the lipidome and proteome contribute to functional deficiencies in cholesterol efflux and antioxidative activities of HDL particles. These findings may provide new biomarkers and new insights in therapeutic strategy to reduce cardiovascular risk in this clinical setting where such net deficiency in HDL function, multiplied by low circulating HDL concentrations, can be expected to contribute to accelerated atherogenesis.
Collapse
Affiliation(s)
- Fabiana Rached
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France; Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Marie Lhomme
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Laurent Camont
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Fernando Gomes
- Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Carolane Dauteuille
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Paul Robillard
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Raul D Santos
- Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Philippe Lesnik
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Carlos V Serrano
- Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - M John Chapman
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - Anatol Kontush
- National Institute of Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6; Pitié-Salpétrière University Hospital, ICAN, Paris, France.
| |
Collapse
|