1
|
Gong D, Jian N, Zhou YT, Wang J. Proteomic analysis of HeLa cells after stable transfection with the Chlamydia trachomatis CT143 gene. Gene 2025; 933:148982. [PMID: 39374816 DOI: 10.1016/j.gene.2024.148982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND The CT143 protein of Chlamydia trachomatis (Ct) is a key immunodominant antigen and candidate type-III secretion substrate. Although CT143 expression has not been detected in the cytosol of infected cells, it is known to interfere with the physiological behavior of HeLa cells. This study aims to investigate how the CT143 protein affects the protein expression profile of HeLa cells, providing a basis for further research into Ct's pathogenic mechanisms. METHODS We constructed a stably transfected HeLa cell line, pCD513B-1-CT143-HeLa, and a control cell line, pCD513B-1-HeLa. Protein expression profiles of these cell lines were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Differentially expressed proteins were identified, constructed into a database, and verified using parallel reaction monitoring (PRM). Bioinformatics software facilitated the preliminary analysis of the biological functions of these differential proteins. RESULTS A total of 221 host proteins were differentially expressed, with 68 upregulated and 153 downregulated. These variations influence the regulation of peptidase activity and are crucial in biological processes such as cell secretion and protease activity. Significant changes were noted in protein processing, alcohol dehydrogenase activity, Aldo-Keto reductase activity, and peptidase regulator activity. Furthermore, alterations were observed in cellular components like the plasma membrane and cell periphery. Pathways involving the hematopoietic system, glycosaminoglycan degradation, retinol metabolism, and cytochrome P450-mediated exogenous drug metabolism were notably affected. Indirect interactions among differentially expressed proteins included three key nodal proteins: C3, IFIT3, and IFIT1. CONCLUSION The successful construction of a host differential protein expression profile was achieved through stable transfection of HeLa cells with the CT143 gene. The differential proteins identified are implicated in regulating various biological processes such as intracellular signal transduction, cell secretion, protein processing, hydrolysis, and enzyme activity. These findings suggest that the CT143 protein may influence the host cell's biological behavior by altering host protein expression, potentially hindering Ct growth and development.
Collapse
Affiliation(s)
- Ding Gong
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yu-Tong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Wang S, Lu K, Lin L, Li G, Han Y, Lin Z, Chu Q, Wu K, Liu P, Zhou G, Peng R, Luo C. Exploring the mechanism of berberine treatment for atherosclerosis combined with non-alcoholic fatty liver disease based on bioinformatic and experimental study. PLoS One 2024; 19:e0314961. [PMID: 39700090 DOI: 10.1371/journal.pone.0314961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Atherosclerosis (AS) and Non-alcoholic fatty liver disease (NAFLD) are chronic metabolic disorders with high prevalence and significant health impacts. Both conditions share common pathophysiological pathways including abnormal lipid metabolism and inflammation. Berberine (BBR), an isoquinoline alkaloid, is known for its beneficial effects on various metabolic and cardiovascular disorders. This study investigates BBR's impact on AS and NAFLD through bioinformatics analysis and experimental models. This study utilized various bioinformatics methods, including transcriptome analysis, weighted gene co-expression network analysis (WGCNA), machine learning, and molecular docking, to identify key genes and pathways involved in AS and NAFLD. Subsequently an animal model of AS combined with NAFLD was established using ApoE-/- mice fed a high-fat diet. The efficacy and mechanism of action of BBR were verified using methods such as hematoxylin and eosin (HE) staining, Oil Red O staining, and real-time quantitative PCR (RTqPCR). Through transcriptome analysis, WGCNA, and machine learning, this study identified 48 key genes involved in both AS and NAFLD. Function analysis revealed that the implicated genes were significantly involved in pathways like cytokine-cytokine receptor interaction, chemokine signaling, and IL-17 signaling pathway, suggesting their role in inflammation and immune responses. Single cell validation identified six key genes: dual specificity phosphatase 6 (DUSP6), chemokine ligand 3 (CCL3), complement component 5a receptor 1 (C5AR1), formyl peptide receptor 1 (FPR1), myeloid nuclear differentiation antigen (MNDA), and proviral integration site of murine 2(PIM2). Finally, molecular docking and animal experiments showed that BBR significantly reduced lipid deposits and inflammatory markers in liver and aortic tissues. In conclusion, BBR can improve AS combined with NAFLD by regulating genes like MNDA, PIM2, DUSP6, CCL3, C5AR1, and FPR1, with the mechanism related to inflammation control. The findings suggest potential clinical benefits of BBR in reducing the progression of both AS and NAFLD, warranting further investigation.
Collapse
Affiliation(s)
- Shushu Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kachun Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liwen Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaijie Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxin Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhichao Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingmin Chu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Cardiology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunsheng Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Peijian Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Guiting Zhou
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Rui Peng
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Chuanjin Luo
- Cardiology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Li W, Huang Y, Liu J, Zhou Y, Sun H, Fan Y, Liu F. Defective macrophage efferocytosis in advanced atherosclerotic plaque and mitochondrial therapy. Life Sci 2024; 359:123204. [PMID: 39491771 DOI: 10.1016/j.lfs.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease primarily affecting large and medium-sized arterial vessels, characterized by lipoprotein disorders, intimal thickening, smooth muscle cell proliferation, and the formation of vulnerable plaques. Macrophages (MΦs) play a vital role in the inflammatory response throughout all stages of atherosclerotic development and are considered significant therapeutic targets. In early lesions, macrophage efferocytosis rapidly eliminates harmful cells. However, impaired efferocytosis in advanced plaques perpetuates the inflammatory microenvironment of AS. Defective efferocytosis has emerged as a key factor in atherosclerotic pathogenesis and the progression to severe cardiovascular disease. Herein, this review probes into investigate the potential mechanisms at the cellular, molecular, and organelle levels underlying defective macrophage efferocytosis in advanced lesion plaques. In the inflammatory microenvironments of AS with interactions among diverse inflammatory immune cells, impaired macrophage efferocytosis is strongly linked to multiple factors, such as a lower absolute number of phagocytes, the aberrant expression of crucial molecules, and impaired mitochondrial energy provision in phagocytes. Thus, focusing on molecular targets to enhance macrophage efferocytosis or targeting mitochondrial therapy to restore macrophage metabolism homeostasis has emerged as a potential strategy to mitigate the progression of advanced atherosclerotic plaque, providing various treatment options.
Collapse
Affiliation(s)
- Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
4
|
Isayeva G, Rumora K, Potlukova E, Leibfarth JP, Schäfer I, Bartha Z, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of mannan-binding lectin associated protein (MAp19) for functionally relevant coronary artery disease. Clin Chim Acta 2024; 558:119668. [PMID: 38599540 DOI: 10.1016/j.cca.2024.119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND This study aimed to evaluate the diagnostic and prognostic potential of MAp19, a regulating component of the lectin pathway of the complement system, in patients with suspected functionally relevant coronary artery disease (fCAD) as well as the determinants of MAp19 levels. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging with single-photon emission tomography and, where available, coronary angiography. MAp19 levels were measured in participants at rest, at peak stress tests, and two hours after the stress. The study also tracked major cardiovascular events, including non-fatal myocardial infarction and cardiovascular death, over a five-year follow-up period. RESULTS Among the 1,571 patients analyzed (32.3 % women), fCAD was identified in 462 individuals (29.4 %). MAp19 demonstrated no diagnostic significance, yielding an area under the curve (AUC) of 0.51 (0.47-0.55). Throughout the five-year follow-up, 107 patients (6.8 %) experienced non-fatal myocardial infarctions, 99 (6.3 %) had cardiovascular death, 194 (12.3 %) experienced all cause death and 50 (3.1 %) suffered a stroke. Cox and Kaplan-Meier analysis confirmed prognostic value of MAp19 for myocardial infarction, but not for cardiovascular death. Significant increases in the concentration of MAp19 were observed during bicycle (p = 0.001) and combined stress tests (p = 0.001). CONCLUSION MAp19 demonstrated an association with the risk of myocardial infarction. Increases in MAp19 concentration were observed during bicycle and combined stress-tests.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Eliska Potlukova
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland; University Center of Internal Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Zsofia Bartha
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
5
|
Abudureyimu S, He C, Xie W, Chen Z, Airikenjiang H, Abulaiti D, Cao Y, Qiu H, Gao Y. FOXO3a functions as a transcriptional and co-transcriptional splicing regulator in vascular endothelial cell lines. Gene 2024; 904:148221. [PMID: 38286271 DOI: 10.1016/j.gene.2024.148221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Recent studies have indicated a connection between Forkhead box O3a protein and coronary artery disease, yet the exact role of FOXO3a in the regulation of metabolic processes and apoptosis in vascular endothelial cells is still unknown. Therefore, we investigated the role of FOXO3a on target genes in a human vascular endothelial cell line. Through the utilization of high-throughput sequencing technology, we analyzed gene expression profiles and alternative splicing patterns in human vascular endothelial cells with FOXO3a over expression. This study identified 419 DEGs between FOXO3a-OE HUVEC model and control cells. KEGG analysis indicated that the upregulated genes were mainly enriched in inflammation-related signaling pathways, and the downregulated genes were enriched in lipid metabolism-related pathways.
Collapse
Affiliation(s)
- Shajidan Abudureyimu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Chunhui He
- China Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 100010 Beijing, China
| | - Wei Xie
- Department of Cardiology, Xinjiang Production and Construction Corps Hospital, 830011 Urumqi, Xinjiang, China
| | - Zhuo Chen
- The Second Clinical Medical College of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Halisha Airikenjiang
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Dilihumaer Abulaiti
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Yan Cao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital Xinjiang Medical University, 830000 Urumqi, Xinjiang, China
| | - Haitang Qiu
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China
| | - Ying Gao
- Department of Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, 830011 Urumqi, Xinjiang, China.
| |
Collapse
|
6
|
Wang Y, Zheng J, Li Q, Ma Y, Liu C, Deng J, Gao D. The relationship between complement C1q and coronary plaque vulnerability based on optical coherence tomography analysis. Sci Rep 2024; 14:9477. [PMID: 38658599 PMCID: PMC11043360 DOI: 10.1038/s41598-024-60128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
To determine the association between complement C1q and vulnerable plaque morphology among coronary artery disease (CAD) patients. We conducted a retrospective observational study of 221 CAD patients admitted to The Second Affiliated Hospital of Xi'an Jiaotong University. Intravascular optical coherence tomography was utilized to describe the culprit plaques' morphology. Using logistic regression analysis to explore the correlation between C1q and vulnerable plaques, and receiver operator characteristic (ROC) analysis assess the predictive accuracy. As reported, the complement C1q level was lower in ACS patients than CCS patients (18.25 ± 3.88 vs. 19.18 ± 4.25, P = 0.045). The low complement-C1q-level group was more prone to develop vulnerable plaques. In lipid-rich plaques, the complement C1q level was positively correlated with the thickness of fibrous cap (r = 0.480, P = 0.041). Univariate and multivariate logistic regression analyses suggested that complement C1q could be an independent contributor to plaques' vulnerability. For plaque rupture, erosion, thrombus, and cholesterol crystals, the areas under the ROC curve of complement C1q level were 0.873, 0.816, 0.785, and 0.837, respectively (P < 0.05 for all). In CAD patients, the complement C1q could be a valuable indicator of plaque vulnerability.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jiawei Zheng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Qing Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Monach PA. Complement. Arthritis Rheumatol 2024; 76:1-8. [PMID: 37551641 DOI: 10.1002/art.42671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The role of complement in human autoimmune, inflammatory, and infectious diseases is reviewed, focusing on clinical applicability. A typical case is presented in which serum testing for C3 and C4 is performed to help assess a syndrome with a broad differential diagnosis. The review includes a discussion of complement deficiency states, consumption of complement by diseases characterized by immune-complex formation and deposition, usefulness and interpretation of laboratory tests for complement, and development of drugs targeting specific components of the complement pathway for a growing number of indications.
Collapse
Affiliation(s)
- Paul A Monach
- VA Boston Healthcare System and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Macarie RD, Tucureanu MM, Ciortan L, Gan AM, Butoi E, Mânduțeanu I. Ficolin-2 amplifies inflammation in macrophage-smooth muscle cell cross-talk and increases monocyte transmigration by mechanisms involving IL-1β and IL-6. Sci Rep 2023; 13:19431. [PMID: 37940674 PMCID: PMC10632380 DOI: 10.1038/s41598-023-46770-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023] Open
Abstract
Ficolin-2, recently identified in atherosclerotic plaques, has been correlated with future acute cardiovascular events, but its role remains unknown. We hypothesize that it could influence plaque vulnerability by interfering in the cross-talk between macrophages (MØ) and smooth muscle cells (SMC). To examine its role and mechanism of action, we exposed an in-vitro co-culture system of SMC and MØ to ficolin-2 (10 µg/mL) and then performed cytokine array, protease array, ELISA, qPCR, Western Blot, and monocyte transmigration assay. Carotid plaque samples from atherosclerotic patients with high plasma levels of ficolin-2 were analyzed by immunofluorescence. We show that ficolin-2: (i) promotes a pro-inflammatory phenotype in SMC following interaction with MØ by elevating the gene expression of MCP-1, upregulating gene and protein expression of IL-6 and TLR4, and by activating ERK/MAPK and NF-KB signaling pathways; (ii) increased IL-1β, IL-6, and MIP-1β in MØ beyond the level induced by cellular interaction with SMC; (iii) elevated the secretion of IL-1β, IL-6, and CCL4 in the conditioned medium; (iv) enhanced monocyte transmigration and (v) in atherosclerotic plaques from patients with high plasma levels of ficolin-2, we observed co-localization of ficolin-2 with SMC marker αSMA and the cytokines IL-1β and IL-6. These findings shed light on previously unknown mechanisms underlying ficolin-2-dependent pathological inflammation in atherosclerotic plaques.
Collapse
Affiliation(s)
- Răzvan Daniel Macarie
- Biopathology and Therapy of Inflammation Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Monica Mădălina Tucureanu
- Biopathology and Therapy of Inflammation Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.
| | - Letiția Ciortan
- Biopathology and Therapy of Inflammation Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ileana Mânduțeanu
- Biopathology and Therapy of Inflammation Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
9
|
Isayeva G, Potlukova E, Rumora K, Lopez Ayala P, Kurun A, Leibfarth JP, Schäfer I, Michel E, Pesen K, Zellweger MJ, Trendelenburg M, Hejlesen TK, Hansen AG, Thiel S, Mueller C. Diagnostic and prognostic value of H-ficolin for functionally relevant coronary artery disease. Clin Chim Acta 2023; 551:117582. [PMID: 37802208 DOI: 10.1016/j.cca.2023.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND We aimed to test the diagnostic and prognostic ability of H-ficolin, an initiator of the lectin pathway of the complement system, for functionally relevant coronary artery disease (fCAD), and explore its determinants. METHODS The presence of fCAD was adjudicated using myocardial perfusion imaging single-photon emission tomography and coronary angiography. H-ficolin levels were measured by a sandwich-type immunoassay at rest, peak stress-test, and 2 h after stress-test. Cardiovascular death and non-fatal myocardial infarction were assessed during 5-year follow-up. RESULTS Among 1,571 patients (32.3 % women), fCAD was detected in 462 patients (29.4 %). H-ficolin concentration at rest was 18.6 (15.3-21.8) µg/ml in patients with fCAD versus 17.8 (15.4-21.5) µg/ml, p = 0.33, in patients without fCAD, resulting in an AUC of 0.53 (95 %CI 0.48-0.56). During follow-up, 107 patients (6.8 %) had non-fatal myocardial infarction and 99 patients (6.3 %) experienced cardiovascular death. In Cox regression analysis, H-ficolin was not a predictor of events in the overall cohort. Subgroup analysis suggested a potential link between H-ficolin and non-fatal myocardial infarction in patients without fCAD (adjusted HR 1.03, 95 % CI 1.02-1.15, p = 0.005). H-ficolin concentration showed a weak positive correlation with systolic (r = 0.069, p < 0.001) and diastolic blood pressure (r = 0.111, p < 0.001). CONCLUSION H-ficolin concentration did not have diagnostic and/or prognostic value in patients referred for fCAD work-up.
Collapse
Affiliation(s)
- Ganna Isayeva
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| | - Eliska Potlukova
- Department of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | - Klara Rumora
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Pedro Lopez Ayala
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Atakan Kurun
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Jan-Philipp Leibfarth
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Ibrahim Schäfer
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Evita Michel
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Kaan Pesen
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Michael J Zellweger
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland
| | - Marten Trendelenburg
- Department of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
| | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Denmark
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Heart Center, University Hospital Basel, University of Basel, Switzerland.
| |
Collapse
|
10
|
Espírito-Santo DA, Cordeiro GS, Santos LS, Silva RT, Pereira MU, Matos RJB, Boaventura GT, Barreto-Medeiros JM. Cardioprotective effect of the quercetin on cardiovascular remodeling and atherosclerosis in rodents fed a high-fat diet: A systematic review. Chem Biol Interact 2023; 384:110700. [PMID: 37690744 DOI: 10.1016/j.cbi.2023.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death globally, estimated at 17.9 million premature deaths. Several risk factors contribute to the development of CVD, including unhealthy diet rich in saturated fat. Quercetin (Q) is a important natural flavonoid with cardioprotective effect. However, it is crucial to understand and clarify which dosages and intervention times quercetin promotes better cardioprotective effects when exposed to a High-Fat Diet (HFD). We aim was to carry out a review to identify and compare experimental studies that investigated the quercetin effect on cardiac parameters in rodents fed a HFD. This literature search was performed through the specialized databases PubMed, Embase, Web of Science and Lilacs in May 2022. The following information was collected and assessed: Species of animals, dietary fat content, intervention protocol (quercetin), and main results of alterations associated with cardiac change. A total of 116 articles were selected from the database and 30 articles were included in this study. The administration form of quercetin was used in the diet supplemented in 73.4% (n = 22) of the studies. The dosage ranged between 10 and 100 mg/kg, 0.01%-0.36%, and 4-8 g/kg diet. The treatment time ranged between 14 and 63 days in 48.4% studies and most of the selected studies observed changes in the: Serum concentrations of lipids (60%, n = 18) mainly decrease in TC and TG, left ventricle (LV) (16.13%, n = 5) includes attenuation of the cardiac hypertrophy; inhibition of atherosclerotic progression (32%, n = 10) with decrease in lesions and plaque formation; improvement in the expression of gene and protein associated with cardiac functionality and oxidative stress (51.6%; n = 16). Quercetin supplementation at different concentrations/doses promotes important cardioprotective effects in experimental models exposed to a HFD. The supplemented diet was shown to be the better administration option. The methodological variation presented in the articles selected in this review proves that the most appropriate intervention protocol, as well as the most effective route of administration, promotes these effects.
Collapse
Affiliation(s)
- Djane A Espírito-Santo
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil.
| | - Gabriele S Cordeiro
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Lucimeire S Santos
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Rafael T Silva
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Márcia U Pereira
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Rhowena Jane B Matos
- Health Sciences Center, Federal University of the Recôncavo of Bahia, Santo Antonio de Jesus, Bahia, Brazil
| | - Gilson T Boaventura
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | | |
Collapse
|
11
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial gene expression and alters cellular signaling in an aggressive Alzheimer's model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554306. [PMID: 37662399 PMCID: PMC10473603 DOI: 10.1101/2023.08.22.554306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. Pharmacologic inhibition of C5aR1 reduces plaque load, gliosis and memory deficits in animal models. However, the cellular basis underlying this neuroprotection and which processes were the consequence of amyloid reduction vs alteration of the response to amyloid were unclear. In the Arctic model, the C5aR1 antagonist PMX205 did not reduce plaque load, but deficits in short-term memory in female mice were prevented. Hippocampal single cell and single nucleus RNA-seq clusters revealed C5aR1 dependent and independent gene expression and cell-cell communication. Microglial clusters containing neurotoxic disease-associated microglial genes were robustly upregulated in Arctic mice and drastically reduced with PMX205 treatment, while genes in microglia clusters that were overrepresented in the Arctic-PMX205 vs Arctic group were associated with synapse organization and transmission and learning. PMX205 treatment also reduced some A-1 astrocyte genes. In spite of changes in transcript levels, overall protein levels of some reactive glial markers were relatively unchanged by C5aR1 antagonism, as were clusters associated with protective responses to injury. C5aR1 inhibition promoted signaling pathways associated with cell growth and repair, such as TGFβ and FGF, in Arctic mice, while suppressing inflammatory pathways including PROS, Pecam1, and EPHA. In conclusion, pharmacologic C5aR1 inhibition prevents cognitive loss, limits microglial polarization to a detrimental inflammatory state and permits neuroprotective responses, as well as leaving protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for individuals with AD.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
12
|
Jung F, Sánchez V, Brandt A, Bergheim I. Alcohol-related liver disease: also a question of what you drink? EXPLORATION OF DIGESTIVE DISEASES 2023; 2:118-132. [PMID: 39404693 PMCID: PMC7616590 DOI: 10.37349/edd.2023.00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 11/28/2024]
Abstract
Excessive alcohol intake is still among the leading causes of chronic liver diseases. Epidemiological studies suggest that per capita consumption of alcohol from various alcohol beverages e.g., beer, wine, or spirits, differs markedly between different areas of the world. Studies further suggest that different alcoholic beverages may impact the development of alcohol-related liver diseases (ALD) differentially. Specifically, results of several more recent epidemiological studies suggest that consumption of wine and herein especially of red wine may be less harmful in relation to the development of liver diseases than the intake of hard spirits. Results of studies evaluating the effects of beer on the development of ALD in humans are rather contradictory. Here, results of studies assessing the impact of wine, beer, and spirits on the development of ALD as well as possible underlying mechanisms are summarized and discussed.
Collapse
Affiliation(s)
- Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, A-1090Vienna, Austria
| |
Collapse
|
13
|
Deng XS, Meng X, Fullerton D, Stone M, Iguidbashian J, Jaggers J. Complement Cross Talks With H-K-ATPase to Upregulate Runx2 in Human Aortic Valve Interstitial Cells. J Surg Res 2023; 286:118-126. [PMID: 36822134 PMCID: PMC10120867 DOI: 10.1016/j.jss.2022.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/16/2022] [Accepted: 12/25/2022] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Calcific aortic valve disease (CAVD) is a slowly progressive fibro-calcific valve leaflet disorder. The underlying pathophysiology is complex and not yet well understood. Complement is known to play a role in the pathogenesis of CAVD by upregulating Runx2 to induce profibrogenic change in human aortic valve interstitial cells (AVICs). Furthermore, H-K-ATPase has independently been shown to induce tissue calcification. Therefore, we hypothesized that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs. MATERIALS AND METHODS Human AVICs were isolated from normal and calcified aortic valves. Cells were treated with a variation of complement, H-K-ATPase, or ERK1/2 inhibitors. H-K-ATPase and its association with complement in AVICs were investigated by reverse transcriptase-polymerase chain reaction, immunofluorescence, and Western blot. RESULTS Calcified human AVICs expressed significantly higher H-K-ATPase level than normal human AVICs. Presence of complement C3 with H-K-ATPase is found in AVICs after complement treatment. Complement induced both H-K-ATPase and Runx2 expression in AVICs, which was associated with increased phosphorylation of ERK1/2 and its downstream molecule p-70 S6. Pharmacological inhibition of either H-K-ATPase or Erk1/2 abolished complement-induced Runx2 expression. CONCLUSIONS These findings indicate that complement cross talks with H-K-ATPase to upregulate Runx2 in human AVICs by activation of ERK1/2 signaling pathways. The study revealed the potential role of H-K-ATPase in the pathogenesis of CAVD and therapeutically targeting either complement system or H-K-ATPase may limit the development of CAVD.
Collapse
Affiliation(s)
- Xin-Sheng Deng
- Cardiothoracic Surgery, University of Colorado, Children's Hospital Colorado, Aurora, Colorado; Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xianzhong Meng
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Fullerton
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew Stone
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John Iguidbashian
- Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James Jaggers
- Cardiothoracic Surgery, University of Colorado, Children's Hospital Colorado, Aurora, Colorado; Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
14
|
Yoon E, Zhang W, Cai Y, Peng C, Zhou D. Identification and Validation of Key Gene Modules and Pathways in Coronary Artery Disease Development and Progression. Crit Rev Eukaryot Gene Expr 2023; 33:81-90. [PMID: 37602455 DOI: 10.1615/critreveukaryotgeneexpr.2023039631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The development and progression of atherosclerosis represent a chronic process involving complex molecular interactions. Therefore, identifying the potential hub genes and pathways contributing to coronary artery disease (CAD) development is essential for understanding its underlying molecular mechanisms. To this end, we performed transcriptome analysis of peripheral venous blood collected from 100 patients who were divided into four groups according to disease severity, including 27 patients in the atherosclerosis group, 22 patients in the stable angina group, 35 patients in the acute myocardial infarction group, and 16 controls. Weighted gene co-expression network analysis was performed using R programming. Significant module-trait correlations were identified according to module membership and genetic significance. Metascape was used for the functional enrichment of differentially expressed genes between groups, and the hub genes were identified via protein-protein interaction network analysis. The hub genes were further validated by analyzing Gene Expression Omnibus (GSE48060 and GSE141512) datasets. A total of 9,633 messenger ribonucleic acids were detected in three modules, among which the blue module was highly correlated with the Gensini score. The hub genes were significantly enriched in the myeloid leukocyte activation pathway, suggesting its important role in the progression of atherosclerosis. Among these genes, the Mediterranean fever gene (MEFV) may play a key role in the progression of atherosclerosis and CAD severity.
Collapse
Affiliation(s)
- Ewnji Yoon
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, 518057, PR China; Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technologies, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Wenjing Zhang
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, 518057, PR China
| | - Yunpeng Cai
- Research Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technologies, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Changnong Peng
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong, 518057, PR China
| | - Daxin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Silencing of Long Noncoding RNA TUG1 Ameliorates Atherosclerosis-Induced Myocardial Injury by Upregulating microRNA-30b-3p and Downregulating Brd4. J Cardiovasc Pharmacol 2023; 81:45-54. [PMID: 36166514 DOI: 10.1097/fjc.0000000000001367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/27/2022] [Indexed: 01/27/2023]
Abstract
ABSTRACT Long noncoding RNAs and microRNAs (miRNAs) are emerging biomarkers involved in human diseases, and we focused on the roles of long noncoding RNA taurine upregulated gene 1 (TUG1) and miR-30b-3p in the related mechanisms of atherosclerosis-induced myocardial injury. ApoE-deficient mice were fed with high-fat diet to establish atherosclerotic models and then were subjected to either TUG1 downregulation or miR-30b-3p upregulation treatment. The serum myocardial enzymes, inflammatory biomarkers, pathological changes, intramyocardial macrophage infiltration, and apoptosis of cardiomyocytes in atherosclerotic mice were determined. The expression of TUG1, miR-30b-3p, and bromodomain protein 4 (Brd4) in atherosclerotic models was evaluated. Moreover, the correlations of TUG1, miR-30b-3p, and Brd4 were verified. TUG1 and Brd4 were increased while miR-30b-3p was decreased in atherosclerotic mice. The silenced TUG1 or elevated miR-30b-3p attenuated atherosclerosis-induced myocardial injury mainly by reducing serum myocardial enzyme content and inflammatory response, improving pathological changes, and preventing macrophage infiltration and cardiomyocyte apoptosis in atherosclerotic mice. Mechanistically, TUG1 could competitively bind with miR-30b-3p to prevent the degradation of its target gene Brd4. This study reveals that the silencing of TUG1 ameliorates atherosclerosis-induced myocardial injury by upregulating miR-30b-3p and downregulating Brd4, which may provide novel targets for atherosclerosis treatment.
Collapse
|
16
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
17
|
Zhu H, Xiong XG, Lu Y, Wu HC, Zhang ZH, Sun MJ. The mechanism of the anti-inflammatory effect of Oldenlandia diffusa on arthritis model rats: a quantitative proteomic and network pharmacologic study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1098. [PMID: 36388817 PMCID: PMC9652507 DOI: 10.21037/atm-22-3678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 07/28/2023]
Abstract
BACKGROUND In China, Oldenlandia diffusa (OD) has been prescribed as a therapeutic herb for rheumatoid arthritis (RA). We previously conducted a preliminary study of the anti-inflammatory effect of OD, and the purpose of this study is to further investigate its mechanism. METHODS We performed a quantitative proteomic analysis of synovium, identified the differentially expressed proteins, and performed bioinformatics analyses. With the help of network pharmacology, we aimed to find the key synovial proteins which OD or its key compound might influence. To verify the result, liquid chromatography-mass spectrometry (LC-MS) was applied to quantify and qualify the absorbable potential compounds of OD. The anti-inflammatory effect was evaluated by morphological, histopathological, and cytokine analyses. Target proteins were observed by immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). RESULTS MMP3 and CAV1 were identified as 2 of the differentially expressed proteins in RA synovium, and might be influenced by quercetin, the active compound of OD. MMP3 might be altered through atherosclerosis signaling, while CAV1 might be altered through caveolar-mediated endocytosis signaling. According to our verification, quercetin was identified as the absorbed and effective compound of OD, and it could exert an anti-inflammatory effect on the collagen-induced arthritis (CIA) model, including serum cytokine expression, synovial hyperplasia and lymphocyte infiltration, articular cartilage lesion. Quercetin could also down-regulate the synovial expression of MMP3 and CAV1, and could exert better effects at a high dose. CONCLUSIONS Quercetin was the main active compound of OD in the treatment of RA. OD might alleviate inflammatory responses in CIA rats by suppressing the expression of MMP3 and CAV1 through quercetin, and at a high dose, quercetin could exert a better anti-inflammatory effect.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xin-Gui Xiong
- Institute of Combined Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Lu
- Department of General Practice, Dushu Lake Hospital, Soochow University, Suzhou, China
| | - Hui-Chun Wu
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Zhi-Hui Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Mei-Juan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
18
|
Fang T, Sun S, Zhao B, Dong J, Cao K, Wang W. NLRC5 modulates phenotypic transition and inflammation of human venous smooth muscle cells by activating Wnt/β-catenin pathway via TLR4 in varicose veins. Microvasc Res 2022; 143:104405. [PMID: 35835172 DOI: 10.1016/j.mvr.2022.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
In varicose veins, abnormal phenotypic transition and inflammatory response is commonly found in venous smooth muscle cells (VSMCs). We aimed to explore the potential role and mechanism of NLRC5 exerted on VSMCs phenotypic transition and inflammation. NLRC5 expression was detected in varicose veins and platelet-derived growth factor (PDGF)-induced VSMCs by RT-qPCR and Western bolt assays. A loss-of-function assay was performed to evaluate the effects of NLRC5 knockdown on VSMC proliferation, migration, and phenotypic transition. ELISA was used to detect the contents of pro-inflammatory cytokines in the supernatant. The modulation of NLRC5 on TLR4 expression and Wnt/β-catenin signaling was also evaluated. We found that the expressions of NLRC5 in varicose veins and PDGF-induced VSMCs were upregulated. NLRC5 knockdown inhibited VSMC proliferation and migration. Extracellular matrix transformation was blocked by downregulating NLRC5 with increasing SM-22α expression and MMP-1/TIMP-1 ratio, as well as decreasing OPN and collagen I expressions. Besides, NLRC5 silencing reduced the contents of inflammatory cytokines. Furthermore, we found that NLRC5 regulated TLR4 expression, as well as subsequently activation of Wnt/β-catenin pathway and nuclear translocation of β-catenin, which was involved in NLRC5-mediated phenotypic transition and inflammatory in VSMCs. In conclusion, silencing NLRC5 depressed VSMCs' phenotypic transition and inflammation by modulating Wnt/β-catenin pathway via TLR4. This may provide a theoretical basis for treatment of varicose veins.
Collapse
Affiliation(s)
- Tao Fang
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Shaojun Sun
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Bingjie Zhao
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Jianxin Dong
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Kai Cao
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China
| | - Wenli Wang
- Department of Vascular Surgery, Yantaishan Hospital, Yantai city 264001, Shandong Province, China.
| |
Collapse
|
19
|
Durankuş F, Albayrak Y, Tokgöz Y, Beşer ÖF, Durankuş R, Çam S, Sünnetçi E, Akarsu Ö, Nural C, Erel Ö. Investigation of Thiol/Disulfide Homeostasis and Ischemia-Modified Albumin Levels in Children with Wilson Disease. Fetal Pediatr Pathol 2022; 41:576-583. [PMID: 33945395 DOI: 10.1080/15513815.2021.1918298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BackgroundThe aim of the present study was to assess thiol/disulfide homeostasis (TDH) parameters and ischemia-modified albumin (IMA) levels in children with Wilson Disease (WD) and to compare them to healthy controls. Methods: Based on the inclusion and exclusion criteria, fifteen children with WD and twenty-nine healthy children were enrolled, and serum thiol/disulfide and IMA levels were compared between groups. Results: The mean values of native and total thiols were significantly lower in the WD group than in the control group. The mean value of disulfide was significantly higher in the WD group than in the control group. The mean percentages of disulfide/total thiol and native thiol/total thiol were higher in the WD group than in the control group. The IMA value was also higher in the WD group than in the control group. Conclusion: The present study demonstrating altered thiol/disulfide parameters indicates increased oxidative stress in children with WD.
Collapse
Affiliation(s)
- Ferit Durankuş
- Department of Pediatrics, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Yakup Albayrak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Yavuz Tokgöz
- Department of Pediatrics, Keçiören Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Ömer Faruk Beşer
- Medical School, Department of Pediatric Gastroenterology, Cerrahpaşa University, İstanbul, Turkey
| | - Ramazan Durankuş
- Department of Pediatrics, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Sebahat Çam
- Department of Pediatrics, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Eda Sünnetçi
- Medical School, Department of Pediatrics, Acıbadem University, İstanbul, Turkey
| | - Ömer Akarsu
- Department of Microbiology, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Cemil Nural
- Department of Clinical Biochemistry, Medical Faculty, Yildirim Beyazit University, Ankara, Turkey
| | - Özcan Erel
- Department of Clinical Biochemistry, Medical Faculty, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
20
|
Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines 2022; 10:biomedicines10051174. [PMID: 35625910 PMCID: PMC9138341 DOI: 10.3390/biomedicines10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death in developed and developing countries. The atherogenicity phenomenon cannot be separated from the role of modified low-density lipoproteins (LDL) in atherosclerosis development. Among the multiple modifications of LDL, desialylation deserves to be discussed separately, since its atherogenic effects and contribution to atherogenicity are often underestimated or, simply, forgotten. Vladimir Tertov is linked to the origin of the research related to desialylated lipoproteins, including the association of modified LDL with atherogenicity, autoimmune nature of atherosclerosis, and discovery of sialidase activity in blood plasma. The review will briefly discuss all the above-mentioned information, with a description of the current situation in the research.
Collapse
|
21
|
Antirheumatic therapy is associated with reduced complement activation in rheumatoid arthritis. PLoS One 2022; 17:e0264628. [PMID: 35213675 PMCID: PMC8880951 DOI: 10.1371/journal.pone.0264628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/13/2022] [Indexed: 12/29/2022] Open
Abstract
Background The complement system plays an important role in pathophysiology of cardiovascular disease (CVD), and might be involved in accelerated atherogenesis in rheumatoid arthritis (RA). The role of complement activation in response to treatment, and in development of premature CVD in RA, is limited. Therefore, we examined the effects of methotrexate (MTX) and tumor necrosis factor inhibitors (TNFi) on complement activation using soluble terminal complement complex (TCC) levels in RA; and assessed associations between TCC and inflammatory and cardiovascular biomarkers. Methods We assessed 64 RA patients starting with MTX monotherapy (n = 34) or TNFi with or without MTX co-medication (TNFi±MTX, n = 30). ELISA was used to measure TCC in EDTA plasma. The patients were examined at baseline, after 6 weeks and 6 months of treatment. Results Median TCC was 1.10 CAU/mL, and 57 (89%) patients had TCC above the estimated upper reference limit (<0.70). Compared to baseline, TCC levels were significantly lower at 6-week visit (0.85 CAU/mL, p<0.0001), without significant differences between the two treatment regimens. Notably, sustained reduction in TCC was only achieved after 6 months on TNFi±MTX (0.80 CAU/mL, p = 0.006). Reductions in TCC after treatment were related to decreased C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and interleukin 6, and increased levels of total, high and low-density lipoprotein cholesterol. Similarly, baseline TCC was significantly related to baseline CRP, ESR and interleukin 6. Patients with endothelial dysfunction had higher baseline TCC than those without (median 1.4 versus 1.0 CAU/mL, p = 0.023). Conclusions Patients with active RA had elevated TCC, indicating increased complement activation. TCC decreased with antirheumatic treatment already after 6 weeks. However, only treatment with TNFi±MTX led to sustained reduction in TCC during the 6-month follow-up period. RA patients with endothelial dysfunction had higher baseline TCC compared to those without, possibly reflecting involvement of complement in the atherosclerotic process in RA.
Collapse
|
22
|
Liisborg C, Skov V, Kjær L, Hasselbalch HC, Sørensen TL. Patients with MPNs and retinal drusen show signs of complement system dysregulation and a high degree of chronic low-grade inflammation. EClinicalMedicine 2022; 43:101248. [PMID: 35128362 PMCID: PMC8808164 DOI: 10.1016/j.eclinm.2021.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The hematopoietic stem cell disorders, myeloproliferative neoplasms (MPNs), are characterised by chronic low-grade inflammation (CLI). Recently, we showed that patients with MPNs have an increased prevalence of drusen and age-related macular degeneration (AMD), and drusen prevalence seemed associated with higher CLI. Studying MPNs may reveal more about drusen pathophysiology. This study investigated CLI further by measuring cytokine levels and complement system markers, comparing these between patients with MPNs and AMD. METHODS This cross-sectional study, between July 2018 and November 2020 conducted at Zealand University Hospital (ZUH) - Roskilde, Denmark, included 29 patients with neovascular AMD (nAMD), 28 with intermediate-stage AMD (iAMD), 62 with MPNs (35 with drusen - MPNd and 27 with healthy retinas - MPNn). With flow cytometry, we measured complement-regulatory-proteins (Cregs). With immunoassays, we investigated cytokine levels combined into a summary-inflammation-score (SIS). FINDINGS The MPNd and nAMD groups had similar SIS, significantly higher than the MPNn and iAMD groups. Additionally, we found SIS to increase over the MPN biological continuum from early cancer stage, essential thrombocytaemia (ET), over polycythaemia vera (PV) to the late-stage primary myelofibrosis (PMF). MPNs showed signs of complement dysregulation, with Cregs expression lower in PV than ET and PMF and even lower in PV patients with drusen. INTERPRETATION This study suggests that MPNd have a higher CLI than MPNn and may indicate systemic CLI to play a greater part in, and even initiate drusen formation. We suggest using MPNs as a "Human Inflammation Model" of drusen development. The CLI in MPNs elicits drusen formation, triggering more CLI creating a vicious cycle, increasing the risk of developing AMD. FUNDING Fight for Sight, Denmark, and Region Zealand's research promotion fund.
Collapse
Affiliation(s)
- Charlotte Liisborg
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Corresponding author.
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Hans Carl Hasselbalch
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
23
|
Irmscher S, Zipfel SLH, Halder LD, Ivanov L, Gonzalez-Delgado A, Waldeyer C, Seiffert M, Brunner FJ, von der Heide M, Löschmann I, Wulf S, Czamara D, Papac-Milicevic N, Strauß O, Lorkowski S, Reichenspurner H, Holers MV, Banda NK, Zeller T, Binder EB, Binder CJ, Wiech T, Zipfel PF, Skerka C. Factor H-related protein 1 (FHR-1) is associated with atherosclerotic cardiovascular disease. Sci Rep 2021; 11:22511. [PMID: 34795372 PMCID: PMC8602345 DOI: 10.1038/s41598-021-02011-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ACVD) is a lipid-driven inflammatory disease and one of the leading causes of death worldwide. Lipid deposits in the arterial wall lead to the formation of plaques that involve lipid oxidation, cellular necrosis, and complement activation, resulting in inflammation and thrombosis. The present study found that homozygous deletion of the CFHR1 gene, which encodes the plasma complement protein factor H-related protein 1 (FHR-1), was protective in two cohorts of patients with ACVD, suggesting that FHR-1 accelerates inflammation and exacerbates the disease. To test this hypothesis, FHR-1 was isolated from human plasma and was found to circulate on extracellular vesicles and to be deposited in atherosclerotic plaques. Surface-bound FHR-1 induced the expression of pro-inflammatory cytokines and tissue factor in both monocytes and neutrophils. Notably, plasma concentrations of FHR-1, but not of factor H, were significantly (p < 0.001) elevated in patients with ACVD, and correlated with the expression of the inflammation markers C-reactive protein, apolipoprotein serum amyloid protein A, and neopterin. FHR-1 expression also significantly correlated with plasma concentrations of low-density lipoprotein (LDL) (p < 0.0001) but not high-density lipoprotein (HDL). Taken together, these findings suggest that FHR-1 is associated with ACVD.
Collapse
Affiliation(s)
- Sarah Irmscher
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Svante L H Zipfel
- Clinic for Heart and Visceral Surgery, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany
| | - Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Lia Ivanov
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Andres Gonzalez-Delgado
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christoph Waldeyer
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Moritz Seiffert
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Fabian J Brunner
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany
| | - Monika von der Heide
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Ina Löschmann
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Sonia Wulf
- Institute of Pathology, Medical University Hamburg-Eppendorf, Hamburg, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Olaf Strauß
- Department of Ophthalmology, Charité -University Medicine Berlin, a Corporate Member of Free University, Humboldt-University and the Berlin Institute of Health, Berlin, Germany
| | - Stefan Lorkowski
- Institute for Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Hermann Reichenspurner
- Clinic for Heart and Visceral Surgery, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany
| | - Michael V Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States of America
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States of America
| | - Tania Zeller
- Department of General and Interventional Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK) Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thorsten Wiech
- Institute of Pathology, Medical University Hamburg-Eppendorf, Hamburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Faculty of Biosciences, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.
| |
Collapse
|
24
|
Liu HP, Wei JCC, Yip HT, Yeh MH. Association of Insomnia, Depressive Disorders, and Mood Disorders as Risk Factors With Breast Cancer: A Nationwide Population-Based Cohort Study of 232,108 Women in Taiwan. Front Oncol 2021; 11:757626. [PMID: 34707998 PMCID: PMC8542844 DOI: 10.3389/fonc.2021.757626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Insomnia, depressive disorders, and to a more general view, mood disorders are raising people’s concerns and causing disability of life. Herein, we try to seek the association of such illnesses with subsequent breast cancer. Methods This population-based, retrospective cohort study used data from the Taiwan National Health Insurance Research Database. This study included 232,108 women diagnosed with insomnia, depressive disorders, and mood disorders from January 1, 2000 to December 31, 2013. Physician diagnosed insomnia, depressive disorders, or mood disorders using outpatient and inpatient records before diagnosis of breast cancer. Cox proportional hazards regression analysis is adjusted for women with insomnia, depressive disorders, mood disorders, and other factors like insured amount, urbanization, and comorbidities such as having subsequent breast cancer. Results Sleep medication was associated with a significantly increased incidence rate of breast cancer (aHR = 1.23 (95% CI = 1.13, 1.35), p < 0.001). Insomnia was associated with significant increased hazard of breast cancer (aHR = 1.16 (95% CI = 1.07, 1.27), p < 0.001). Annual insured amount >20,000 (TWD), high urbanization area, and hyperlipidemia were associated with increased hazard of breast cancer (aHR = 1.13 (95% CI = 1.01, 1.27), p = 0.04; aHR = 1.41 (95% CI = 1.17, 1.71), p < 0.001; aHR = 1.14 995% CI = 1.02, 1.29), p = 0.02, respectively). There was a positive correlation between depressive disorders and increased incidence rate of breast cancer but not statistically significant (aHR = 1.11 (95% CI = 0.99, 1.25), p = 0.08). Mood disorders were not associated with increased hazard (aHR = 1.11 (95% CI = 0.91, 1.34), p = 0.31). Conclusion In this study, women with insomnia had increased risk of breast cancer, particularly those in high urbanization or with high insured amounts. Sleep medication (benzodiazepine (BZD) or non-BZD) and hyperlipidemia were independently associated with a higher hazard ratio of breast cancer. Insomnia along with sleep medication did not yield more hazards than each alone. Mood disorders appeared to be not associated with subsequent breast cancer. However, depressive disorders, the subgroups of mood disorders, could possibly increase the incidence rate of breast cancer though not statistically significant.
Collapse
Affiliation(s)
- Hui-Pu Liu
- Department of General Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsin Yeh
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
25
|
Aarsetøy R, Ueland T, Aukrust P, Michelsen AE, Leon de la Fuente R, Grundt H, Staines H, Nygaard O, Nilsen DWT. Complement component 7 is associated with total- and cardiac death in chest-pain patients with suspected acute coronary syndrome. BMC Cardiovasc Disord 2021; 21:496. [PMID: 34649504 PMCID: PMC8515738 DOI: 10.1186/s12872-021-02306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complement activation has been associated with atherosclerosis, atherosclerotic plaque destabilization and increased risk of cardiovascular events. Complement component 7 (CC7) binds to the C5bC6 complex which is part of the terminal complement complex (TCC/C5b-9). High-sensitivity C-reactive protein (hsCRP) is a sensitive marker of systemic inflammation and may reflect the increased inflammatory state associated with cardiovascular disease. AIM To evaluate the associations between CC7 and total- and cardiac mortality in patients hospitalized with chest-pain of suspected coronary origin, and whether combining CC7 with hsCRP adds prognostic information. METHODS Baseline levels of CC7 were related to 60-months survival in a prospective, observational study of 982 patients hospitalized with a suspected acute coronary syndrome (ACS) at 9 hospitals in Salta, Argentina. A cox regression model, adjusting for conventional cardiovascular risk factors, was fitted with all-cause mortality, cardiac death and sudden cardiac death (SCD) as the dependent variables. A similar Norwegian population of 871 patients was applied to test the reproducibility of results in relation to total death. RESULTS At follow-up, 173 patients (17.7%) in the Argentinean cohort had died, of these 92 (9.4%) were classified as cardiac death and 59 (6.0%) as SCD. In the Norwegian population, a total of 254 patients (30%) died. In multivariable analysis, CC7 was significantly associated with 60-months all-cause mortality [hazard ratio (HR) 1.26 (95% confidence interval (CI), 1.07-1.47) and cardiac death [HR 1.28 (95% CI 1.02-1.60)], but not with SCD. CC7 was only weakly correlated with hsCRP (r = 0.10, p = 0.002), and there was no statistically significant interaction between the two biomarkers in relation to outcome. The significant association of CC7 with total death was reproduced in the Norwegian population. CONCLUSIONS CC7 was significantly associated with all-cause mortality and cardiac death at 60-months follow-up in chest-pain patients with suspected ACS. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01377402, NCT00521976.
Collapse
Affiliation(s)
- Reidun Aarsetøy
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Cardiology, Stavanger University Hospital, P.O. Box 8100, 4068, Stavanger, Norway.
| | - Thor Ueland
- Rikshospitalet, Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Rikshospitalet, Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Rikshospitalet, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Annika E Michelsen
- Rikshospitalet, Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Heidi Grundt
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Respiratory Medicine, Stavanger University Hospital, Stavanger, Norway
| | | | - Ottar Nygaard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Dennis W T Nilsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Cardiology, Stavanger University Hospital, P.O. Box 8100, 4068, Stavanger, Norway
| |
Collapse
|
26
|
Dong Z, Liu Z, Chen S, Zhang C, Xiao J, Zhou X. Cardiovascular status of breast cancer patients before and after receiving anthracycline chemotherapy regimen. Nurs Open 2021; 9:256-266. [PMID: 34592784 PMCID: PMC8685860 DOI: 10.1002/nop2.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
Aim To explore the effect of TEC chemotherapy regimen (Docetaxel + Epirubicin + Cyclophosphamide) on traditional cardiovascular risk factors, atherosclerotic cardiovascular disease and cardiac electrical activity. Design 243 patients with first initially diagnosed breast cancer were collected who receiving TEC chemotherapy. Methods Univariate analysis, multivariate analysis, binary logistic regression analysis and statistical description were used to analyse the data. Results Among the first diagnosed patients, prevalence of hypertension and overweight/obesity in postmenopausal patients were significantly higher than premenopausal group. Compared with initially diagnosed state, incidence of hyperlipidaemia increased significantly after TEC chemotherapy, blood glucose level was remarkably increased, and prevalence of hyperuricaemia was significantly increased, changes of blood pressure level and prevalence rate of hypertension were not significant, and there was no statistical difference. Different menopause status showed the same trend. Atherosclerotic cardiovascular disease risk stratification showed after chemotherapy low‐risk patients decrease, medium‐risk and high‐risk people increased. Grouped by menstrual status, after chemotherapy, both groups showed the same trend. The independent influencing factors of increased heart rate after chemotherapy were postmenopausal status. Postmenopausal patients had more cardiovascular risk factors than premenopausal patients. After receiving chemotherapy, levels of cardiovascular risk factors in both groups mostly changed to the direction of disease. Chemotherapy drugs increase the risk of atherosclerotic cardiovascular disease in breast cancer patients. It is necessary to strengthen interdisciplinary cooperation to dynamic assess the cardiovascular health of patients of breast cancer patients.
Collapse
Affiliation(s)
- Zhaoying Dong
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaojun Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyu Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Zhang
- School of Public Health and Management, Research Center for Medicine and Social Development, Collaborative Innovation of Chongqing Medical University, Chongqing, China
| | - Jun Xiao
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Dahl H, Eide DM, Tengs T, Duale N, Kamstra JH, Oughton DH, Olsen AK. Perturbed transcriptional profiles after chronic low dose rate radiation in mice. PLoS One 2021; 16:e0256667. [PMID: 34428250 PMCID: PMC8384182 DOI: 10.1371/journal.pone.0256667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag M. Eide
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jorke H. Kamstra
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Deborah H. Oughton
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
28
|
Arya P, Nabi S, Bhandari U. Modulatory role of atorvastatin against high-fat diet and zymosan-induced activation of TLR2/NF-ƙB signaling pathway in C57BL/6 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1023-1032. [PMID: 34804419 PMCID: PMC8591763 DOI: 10.22038/ijbms.2021.55460.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/11/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Accumulated evidence provides a strong connection between the immune system and vascular inflammation. The innate immune system's main sensors are toll-like receptors (TLRs). Zymosan (Zym), a fungal product, induces an inflammatory response via activating TLR2 of the immune system. Atorvastatin, a potent statin, possesses pleiotropic effects including immunomodulatory, lipid-lowering, and anti-inflammatory. Therefore, the current study aimed to evaluate the protective role of atorvastatin against a high-fat diet (HFD) and Zym-induced vascular inflammation in C57BL/6 mice via modulation of TLR2/NF-ƙB signaling pathway. MATERIALS AND METHODS In silico study was conducted to confirm the binding affinity of atorvastatin against TLR2. Under in vivo study, mice were divided into four groups: Normal control: normal standard chow-diet fed for 30 days + Zym vehicle (sterile PBS, 5 mg/ml on 8th day); HFD (30 days) + Zym (80 mg/kg, IP, on 8th day); HFD/Zym + atorvastatin vehicle (0.5% CMC, p.o., from 10th to 30th day); HFD/Zym + atorvastatin (3.6 mg/kg, p.o., from 10th to 30th day). RESULTS Atorvastatin treatment along with HFD and Zym inhibited vascular inflammation by suppressing the levels of aortic TLR2, cardiac NF-ƙB and decrease in serum TNF-α and IL-6. Further, there was an increase in hepatic LDLR levels, resulting in a decrease in serum LDL-C and an increase in HDL-C levels. Histopathological examination of the aorta showed a reduction in plaque accumulation with the atorvastatin-treated group as compared with HFD and Zym-treated group. CONCLUSION Atorvastatin attenuates vascular inflammation mediated by HFD and Zym through suppression of TLR2, NF-ƙB, TNF-α, IL-6, and upregulation of LDLR levels.
Collapse
Affiliation(s)
- Priyanka Arya
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India
| | - Sayima Nabi
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard (UGC approved deemed to be University, Govt. of India), New Delhi- 110062, India
| |
Collapse
|
29
|
Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development. Biomedicines 2021; 9:biomedicines9080915. [PMID: 34440119 PMCID: PMC8389651 DOI: 10.3390/biomedicines9080915] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that has a prominent inflammatory component. Currently, atherosclerosis is regarded as an active autoimmune process that involves both innate and adaptive immune pathways. One of the drivers of this process is the presence of modified low-density lipoprotein (LDL). For instance, lipoprotein oxidation leads to the formation of oxidation-specific epitopes (OSE) that can be recognized by the immune cells. Macrophage response to OSEs is recognized as a key trigger for initiation and a stimulator of progression of the inflammatory process in the arteries. At the same time, the role of oxidized LDL components is not limited to pro-inflammatory stimulation, but includes immunoregulatory effects that can have protective functions. It is, therefore, important to better understand the complexity of oxidized LDL effects in atherosclerosis in order to develop new therapeutic approaches to correct the inflammatory and metabolic imbalance associated with this disorder. In this review, we discuss the process of oxidized LDL formation, mechanisms of OSE recognition by macrophages and the role of these processes in atherosclerosis.
Collapse
|
30
|
Gao S, Ma W, Lin X, Huang S, Yu M. Identification of Key Genes and Underlying Mechanisms in Acute Kawasaki Disease Based on Bioinformatics Analysis. Med Sci Monit 2021; 27:e930547. [PMID: 34290221 PMCID: PMC8314960 DOI: 10.12659/msm.930547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Kawasaki disease (KD) is a systemic vasculitis that predominantly occurs in children, but the pathogenesis of KD remains unclear. Here, we explored key genes and underlying mechanisms potentially involved in KD using bioinformatic analyses. Material/Methods The shared differentially expressed genes (DEGs) in KD compared to control samples were identified using the microarray data from the Gene Expression Omnibus Series (GSE) 18606, GSE68004, and GSE73461. Analyses of the functional annotation, protein-protein interaction (PPI) network, microRNA-target DEGs regulatory network, and immune cell infiltration were performed. The expression of hub genes before and after intravenous immunoglobulin (IVIG) treatment in KD was further verified using GSE16797. Results A total of 195 shared DEGs (164 upregulated and 31 downregulated genes) were identified between KD and healthy controls. These shared DEGs were mainly enriched in immune and inflammatory responses. Ten upregulated hub genes (ITGAX, SPI1, LILRB2, MMP9, S100A12, C3AR1, RETN, MAPK14, TLR5, MYD88) and the most significant module were identified in the PPI network. There were 309 regulatory relationships detected within 70 predicted microRNAs and 193 target DEGs. The immune cell infiltration analysis showed that monocytes, neutrophils, activated mast cells, and activated natural killer cells had relatively high proportions and were significantly more infiltrated in KD samples. Six hub genes of ITGAX, LILRB2, C3AR1, MAPK14, TLR5, and MYD88 were markedly downregulated after IVIG treatment for KD. Conclusions Our study identified the candidate genes and associated molecules that may be related to the KD process, and provided new insights into potential mechanisms and therapeutic targets for KD.
Collapse
Affiliation(s)
- Side Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Wenjian Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Xuze Lin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Sizhuang Huang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Mengyue Yu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
31
|
High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important? Biomedicines 2021; 9:biomedicines9070836. [PMID: 34356900 PMCID: PMC8301429 DOI: 10.3390/biomedicines9070836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDL) are a heterogenous group of plasma molecules with a large variety in composition. There is a wide specter in lipid content and the number of different proteins that has been associated with HDL is approaching 100. Given this heterogeneity and the fact that the total amount of HDL is inversely related to the risk of coronary heart disease (CHD), there has been increasing interest in the function of specific HDL subgroups and in what way measuring and quantifying these subgroups could be of clinical importance in determining individual CHD risk. If certain subgroups appear to be more protective than others, it may also in the future be possible to pharmacologically increase beneficial and decrease harmful subgroups in order to reduce CHD risk. In this review we give a short historical perspective, summarize some of the recent clinical findings regarding HDL subclassifications and discuss why such classification may or may not be of clinical relevance.
Collapse
|
32
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
33
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Lage SL, Wong CS, Amaral EP, Sturdevant D, Hsu DC, Rupert A, Wilson EMP, Qasba SS, Naqvi NS, Laidlaw E, Lisco A, Manion M, Sereti I. Classical complement and inflammasome activation converge in CD14highCD16- monocytes in HIV associated TB-immune reconstitution inflammatory syndrome. PLoS Pathog 2021; 17:e1009435. [PMID: 33788899 PMCID: PMC8041190 DOI: 10.1371/journal.ppat.1009435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/12/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammasome-derived cytokines, IL-1β and IL-18, and complement cascade have been independently implicated in the pathogenesis of tuberculosis (TB)-immune reconstitution inflammatory syndrome (TB-IRIS), a complication affecting HIV+ individuals starting antiretroviral therapy (ART). Although sublytic deposition of the membrane attack complex (MAC) has been shown to promote NLRP3 inflammasome activation, it is unknown whether these pathways may cooperatively contribute to TB-IRIS. To evaluate the activation of inflammasome, peripheral blood mononuclear cells (PBMCs) from HIV-TB co-infected patients prior to ART and at the IRIS or equivalent timepoint were incubated with a probe used to assess active caspase-1/4/5 followed by screening of ASC (apoptosis-associated speck-like protein containing a CARD domain) specks as a readout of inflammasome activation by imaging flow cytometry. We found higher numbers of monocytes showing spontaneous caspase-1/4/5+ASC-speck formation in TB-IRIS compared to TB non-IRIS patients. Moreover, numbers of caspase-1/4/5+ASC-speck+ monocytes positively correlated with IL-1β/IL-18 plasma levels. Besides increased systemic levels of C1q and C5a, TB-IRIS patients also showed elevated C1q and C3 deposition on monocyte cell surface, suggesting aberrant classical complement activation. A clustering tSNE analysis revealed TB-IRIS patients are enriched in a CD14highCD16- monocyte population that undergoes MAC deposition and caspase-1/4/5 activation compared to TB non-IRIS patients, suggesting complement-associated inflammasome activation during IRIS events. Accordingly, PBMCs from patients were more sensitive to ex-vivo complement-mediated IL-1β secretion than healthy control cells in a NLRP3-dependent manner. Therefore, our data suggest complement-associated inflammasome activation may fuel the dysregulated TB-IRIS systemic inflammatory cascade and targeting this pathway may represent a novel therapeutic approach for IRIS or related inflammatory syndromes. Tuberculosis (TB) associated-immune reconstitution inflammatory syndrome (TB-IRIS) is a clinical complication affecting HIV+ individuals previously co-infected with Mycobacterium tuberculosis (Mtb), upon antiretroviral therapy (ART) initiation. TB-IRIS is characterized by an exacerbated inflammatory response and can be associated with high morbidity and mortality rates in resource-limited countries with high TB prevalence. So far, there is no targeted TB-IRIS therapy, and corticosteroids are frequently used to prevent or alleviate IRIS related-symptoms. Here we found inflammasome activation (i.e. caspase1/4/5+ASC speck complex formation) on circulating classical CD14highCD16- monocytes may contribute to TB-IRIS immunopathology, since it correlates with pro-inflammatory cytokine plasma levels and its decay is associated with dampening in IRIS-related symptoms promoted by anti-inflammatory therapy. We also found TB-IRIS monocytes display higher surface complement deposition, being more sensitive to external complement-mediated NLRP3 inflammasome activation than healthy control cells. In fact, complement MAC molecule C9 and caspase-1/4/5 activation were associated on classical monocytes in TB-IRIS patients, suggesting complement-mediated inflammasome activation may lead to a positive feedback loop in the inflammatory responses observed in TB-IRIS. Therefore, our findings support that complement-NLRP3/ASC/caspase1/4/5 axis may be considered as a potential target for host-directed therapy of TB-IRIS.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SLL); (IS)
| | - Chun-Shu Wong
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Eduardo Pinheiro Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Daniel Sturdevant
- RML Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Denise C. Hsu
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Adam Rupert
- Applied and Developmental Research Directorate, AIDS Monitoring Laboratory, Leidos Biomedical Research, Inc, Frederick, MD, United States of America
| | - Eleanor M. P. Wilson
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - S. Sonia Qasba
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Nuha Sultana Naqvi
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Laidlaw
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Andrea Lisco
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Maura Manion
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SLL); (IS)
| |
Collapse
|
35
|
Durankuş F, Şenkal E, Çam S, Potas N, Albayrak Y, Nural C, Erel Ö. Altered thiol/disulfide homeostasis and ischemia-modified albumin levels in children with irritable bowel syndrome. Pediatr Int 2021; 63:300-305. [PMID: 32713058 DOI: 10.1111/ped.14406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND In this study, we assessed thiol/disulfide homeostasis (TDH) parameters and ischemia-modified albumin (IMA) levels in children with irritable bowel syndrome (IBS) compared with healthy children. METHODS Fifty-six children with IBS and 53 healthy children were included in the study after assessment of inclusion and exclusion criteria. Plasma thiol/disulfide and IMA levels were compared between children with and without IBS. RESULTS The mean values of native thiol, total thiol, and disulfide were 343.779 ± 138.654 μmol/L, 365.398 ± 140.148 μmol/L, and 23.190 ± 4.978 μmol/L, respectively, in the IBS group and 409.908 ± 69.288 μmol/L, 433.481 ± 76.891 μmol/L, and 20.090 ± 4.252 μmol/L, respectively, in the control group. Native thiol and total thiol values were significantly reduced in the IBS group compared with the control group. The mean IMA values were 0.835 ± 0.083 (g/L) and 0.778 ± 0.072 in the IBS and control groups, respectively. The IMA value was significantly increased in the IBS group. CONCLUSION Impaired thiol/disulfide homeostasis and increased IMA levels can be considered etiological factors in children with IBS.
Collapse
Affiliation(s)
- Ferit Durankuş
- Departments of, Department of, Pediatrics, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Evrim Şenkal
- Departments of, Department of, Pediatrics, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Sebahat Çam
- Department of, Pediatric Gastroenterology, Göztepe Education and Research Hospital, Istanbul Medeniyet University, İstanbul, Turkey
| | - Nihan Potas
- Department of Healthcare Managment, Faculty of Economics and Administrative Science, Ankara Hacıbayram Veli University, Ankara, Turkey
| | - Yakup Albayrak
- Department of Psychiatry, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Cemil Nural
- Department of Clinical Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Özcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| |
Collapse
|
36
|
Martínez-López D, Roldan-Montero R, García-Marqués F, Nuñez E, Jorge I, Camafeita E, Minguez P, Rodriguez de Cordoba S, López-Melgar B, Lara-Pezzi E, Fernández-Ortiz A, Ibáñez B, Valdivielso JM, Fuster V, Michel JB, Blanco-Colio LM, Vázquez J, Martin-Ventura JL. Complement C5 Protein as a Marker of Subclinical Atherosclerosis. J Am Coll Cardiol 2021; 75:1926-1941. [PMID: 32327104 DOI: 10.1016/j.jacc.2020.02.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The mechanisms underlying early atherosclerotic plaque formation are not completely understood. Moreover, plasma biomarkers of subclinical atherosclerosis are lacking. OBJECTIVES The purpose of this study was to analyze the temporal and topologically resolved protein changes taking place in human aortas with early atherosclerosis to find new potential diagnostic and/or therapeutic targets. METHODS The protein composition of healthy aortas (media layer) or with early atheroma (fatty streak and fibrolipidic, media and intima layers) was analyzed by deep quantitative multiplexed proteomics. Further analysis was performed by Western blot, immunohistochemistry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Plasma levels of complement C5 were analyzed in relation to the presence of generalized (>2 plaques) or incipient (0 to 2 plaques) subclinical atherosclerosis in 2 independent clinical cohorts (PESA [Progression of Early Subclinical Atherosclerosis] [n = 360] and NEFRONA [National Observatory of Atherosclerosis in Nephrology] [n = 394]). RESULTS Proteins involved in lipid transport, complement system, immunoglobulin superfamily, and hemostasis are increased in early plaques. Components from the complement activation pathway were predominantly increased in the intima of fibrolipidic plaques. Among them, increased C5 protein levels were further confirmed by Western blot, enzyme-linked immunosorbent assay and immunohistochemistry, and associated with in situ complement activation. Plasma C5 was significantly increased in individuals with generalized subclinical atherosclerosis in both PESA and NEFRONA cohorts, independently of risk factors. Moreover, in the PESA study, C5 plasma levels positively correlated with global plaque volume and coronary calcification. CONCLUSIONS Activation of the complement system is a major alteration in early atherosclerotic plaques and is reflected by increased C5 plasma levels, which have promising value as a novel circulating biomarker of subclinical atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Pablo Minguez
- IIS-Fundación Jiménez Díaz-Universidad Autónoma, and CIBERER, Madrid, Spain
| | | | - Beatriz López-Melgar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain; Hospital Universitario HM Montepríncipe-CIEC and Universidad CEU San Pablo, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain; Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - Borja Ibáñez
- IIS-Fundación Jiménez Díaz-Universidad Autónoma, and CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain
| | | | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain; Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBERCV, Madrid, Spain.
| | | |
Collapse
|
37
|
Vinciguerra M, Romiti S, Fattouch K, De Bellis A, Greco E. Atherosclerosis as Pathogenetic Substrate for Sars-Cov2 Cytokine Storm. J Clin Med 2020; 9:E2095. [PMID: 32635302 PMCID: PMC7408959 DOI: 10.3390/jcm9072095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) outbreak is a public health emergency affecting different regions around the world. The lungs are often damaged due to the presence of Sars-CoV-2 binding receptor ACE2 on epithelial alveolar cells. Severity of infection varies from complete absence of symptomatology to more aggressive symptoms, characterized by sudden acute respiratory distress syndrome (ARDS), multiorgan failure, and sepsis, requiring treatment in intensive care unit (ICU). It is not still clear why the immune system is not able to efficiently suppress viral replication in a small percentage of patients. It has been documented as pathological conditions affecting the cardiovascular system, strongly associated to atherosclerotic progression, such as heart failure (HF), coronary heart disease (CHD), hypertension (HTN) and diabetes mellitus (DM), could serve as predictive factors for severity and susceptibility during Sars-CoV-2 infection. Atherosclerotic progression, as a chronic inflammation process, is characterized by immune system dysregulation leading to pro-inflammatory patterns, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1β. Reviewing immune system and inflammation profiles in atherosclerosis and laboratory results reported in severe COVID-19 infections, we hypothesized a pathogenetic correlation. Atherosclerosis may be an ideal pathogenetic substrate for high viral replication ability, leading to adverse outcomes, as reported in patients with cardiovascular factors. The level of atherosclerotic progression may affect a different degree of severe infection; in a vicious circle, feeding itself, Sars-CoV-2 may exacerbate atherosclerotic evolution due to excessive and aberrant plasmatic concentration of cytokines.
Collapse
Affiliation(s)
- Mattia Vinciguerra
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| | - Silvia Romiti
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| | - Khalil Fattouch
- Department of Cardiovascular Surgery, GVM Care and Research, Maria Eleonora Hospital, 90135 Palermo, Italy
| | - Antonio De Bellis
- Department of Cardiology and Cardiac Surgery, Casa di Cura “S. Michele”, Maddaloni, 81024 Caserta, Italy;
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| |
Collapse
|
38
|
Xie CB, Jiang B, Qin L, Tellides G, Kirkiles-Smith NC, Jane-wit D, Pober JS. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. J Clin Invest 2020; 130:3437-3452. [PMID: 32191642 PMCID: PMC7324183 DOI: 10.1172/jci135060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Alloantibodies in presensitized transplant candidates deposit complement membrane attack complexes (MACs) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed that human ECs endocytose MACs into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB-inducing kinase (NIK) protein. Endosomal NIK activates both noncanonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β. IL-1β activates ECs, increasing recruitment and activation of alloreactive effector memory CD4+ T (Tem) cells. Here, we report that IFN-γ priming induced nuclear expression of IL-15/IL-15Rα complexes in cultured human ECs and that MAC-induced IL-1β stimulated translocation of IL-15/IL-15Rα complexes to the EC surface in a canonical NF-κB-dependent process in which IL-15/IL-15Rα transpresentation increased activation and maturation of alloreactive CD8+ Tem cells. Blocking NLRP3 inflammasome assembly, IL-1 receptor, or IL-15 on ECs inhibited the augmented CD8+ Tem cell responses, indicating that this pathway is not redundant. Adoptively transferred alloantibody and mouse complement deposition induced IL-15/IL-15Rα expression by human ECs lining human coronary artery grafts in immunodeficient mice, and enhanced intimal CD8+ T cell infiltration, which was markedly reduced by inflammasome inhibition, linking alloantibody to acute rejection. Inhibiting MAC signaling may similarly limit other complement-mediated pathologies.
Collapse
Affiliation(s)
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Dan Jane-wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
39
|
Hovland A, Retterstøl K, Mollnes TE, Halvorsen B, Aukrust P, Lappegård KT. Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: an unused potential? SCAND CARDIOVASC J 2020; 54:274-279. [PMID: 32500743 DOI: 10.1080/14017431.2020.1775878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives. Inflammatory responses are closely knit with low-density lipoprotein (LDL)-cholesterol in driving atherosclerosis. Even if LDL-cholesterol is causative to atherosclerotic diseases and LDL-cholesterol lowering reduces hard clinical endpoints, there is a residual risk for clinical events, possibly driven by inflammatory processes, in accordance with its role in autoimmune diseases. Design. As LDL-cholesterol treatment targets are reduced, the use of non-statin lipid-lowering drugs will probably increase. Atherosclerotic plaques evolve through lipid infiltration and modification in the intima, furthermore infiltration of cells including monocytes, macrophages, T-lymphocytes and neutrophils initiating inflammatory signaling. Here we briefly review inflammation in atherosclerosis and the effects of the non-statin lipid-lowering drugs on inflammation. The review is limited to the most common non-statin lipid lowering drugs, i.e. proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors, bile acid sequestrants (BAS) and cholesterol absorption inhibitors. Results. PCSK9 inhibition is mostly studied together with statins and is associated with a reduction of pro-inflammatory cytokines. Furthermore, PCSK9 inhibitors seem to have an effect on monocyte migration trough CCR2. They also have an interaction with sirtuins, possibly offering a therapeutic target. BAS have several interesting effects on inflammation, including reduction of pro-inflammatory cytokines and a reduction of the number of infiltrating macrophages, however there are relatively few reports considering that these drugs have been on the market for decades. Ezetimibe also has effects on inflammation including reduction of pro-inflammatory cytokines and adhesion molecules, however these effects are usually accomplished in tandem with statins. Conclusion. This topic adds an interesting piece to the puzzle of atherosclerosis, indicating that PCSK9 inhibition, BAS and ezetimibe all affect thromboinflammation.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Kjetil Retterstøl
- The Lipid Clinic, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Nutrition, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Tore Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, Bodø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
40
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
41
|
Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. J Clin Med 2020; 9:jcm9040978. [PMID: 32244740 PMCID: PMC7230212 DOI: 10.3390/jcm9040978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronification of inflammation is the process that lies at the basis of several human diseases that make up to 80% of morbidity and mortality worldwide. It can also explain a great deal of processes related to aging. Atherosclerosis is an example of the most important chronic inflammatory pathology in terms of public health impact. Atherogenesis is based on the inflammatory response of the innate immunity arising locally or focally. The main trigger for this response appears to be modified low-density lipoprotein (LDL), although other factors may also play a role. With the quick resolution of inflammation, atherosclerotic changes in the arterial wall do not occur. However, a violation of the innate immunity response can lead to chronification of local inflammation and, as a result, to atherosclerotic lesion formation. In this review, we discuss possible mechanisms of the impaired immune response with a special focus on mitochondrial dysfunction. Some mitochondrial dysfunctions may be due to mutations in mitochondrial DNA. Several mitochondrial DNA mutations leading to defective mitophagy have been identified. The regulatory role of mitophagy in the immune response has been shown in recent studies. We suggest that defective mitophagy promoted by mutations in mitochondrial DNA can cause innate immunity disorders leading to chronification of inflammation.
Collapse
Affiliation(s)
- Alexander N. Orekhov
- Laboratory for Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Nikita N. Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia;
| |
Collapse
|
42
|
Temporal Dynamics of High-Density Lipoprotein Proteome in Diet-Controlled Subjects with Type 2 Diabetes. Biomolecules 2020; 10:biom10040520. [PMID: 32235466 PMCID: PMC7226298 DOI: 10.3390/biom10040520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
We examined the effect of mild hyperglycemia on high-density lipoprotein (HDL) metabolism and kinetics in diet-controlled subjects with type 2 diabetes (T2D). 2H2O-labeling coupled with mass spectrometry was applied to quantify HDL cholesterol turnover and HDL proteome dynamics in subjects with T2D (n = 9) and age- and BMI-matched healthy controls (n = 8). The activities of lecithin–cholesterol acyltransferase (LCAT), cholesterol ester transfer protein (CETP), and the proinflammatory index of HDL were quantified. Plasma adiponectin levels were reduced in subjects with T2D, which was directly associated with suppressed ABCA1-dependent cholesterol efflux capacity of HDL. The fractional catabolic rates of HDL cholesterol, apolipoprotein A-II (ApoA-II), ApoJ, ApoA-IV, transthyretin, complement C3, and vitamin D-binding protein (all p < 0.05) were increased in subjects with T2D. Despite increased HDL flux of acute-phase HDL proteins, there was no change in the proinflammatory index of HDL. Although LCAT and CETP activities were not affected in subjects with T2D, LCAT was inversely associated with blood glucose and CETP was inversely associated with plasma adiponectin. The degradation rates of ApoA-II and ApoA-IV were correlated with hemoglobin A1c. In conclusion, there were in vivo impairments in HDL proteome dynamics and HDL metabolism in diet-controlled patients with T2D.
Collapse
|
43
|
Complement Activation in Association with Markers of Neutrophil Extracellular Traps and Acute Myocardial Infarction in Stable Coronary Artery Disease. Mediators Inflamm 2020; 2020:5080743. [PMID: 32308555 PMCID: PMC7136779 DOI: 10.1155/2020/5080743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Complement activation and neutrophil extracellular traps (NETs) have both been suggested to drive atherosclerotic plaque progression. Although experimental studies suggest interplay between these two innate immunity components, the relevance in patients with coronary artery disease (CAD) is unclear. The aim of this study was to assess associations between complement activation and NETs in patients with stable CAD and examine the role of complement activation on clinical outcome. Blood samples from a cohort of patients with angiographically verified stable CAD (n = 1001) were analyzed by ELISA for the terminal complement complex (TCC) and by relative quantification for gene expression of the C5a receptor 1 (C5aR1) as markers of complement activation. As markers of NETs, dsDNA was analyzed by fluorescent nucleic acid stain and myeloperoxidase-DNA (MPO-DNA) by ELISA. Clinical outcome was defined as unstable angina, nonhemorrhagic stroke, acute myocardial infarction (MI), or death (n = 106, whereof 36 MI). Levels of TCC and C5aR1 were not significantly correlated to dsDNA (TCC: r = −0.045, p = 0.153; C5aR1: r = −0.060, p = 0.434) or MPO-DNA (TCC: r = 0.026, p = 0.414; C5aR1: r = 0.123, p = 0.107). When dividing TCC and C5aR1 levels into quartiles (Q), levels of MPO-DNA differed significantly across quartiles (TCC: p = 0.008, C5aR1: 0.049), while dsDNA did not (TCC: p = 0.181, C5aR1: p = 0.771). Patients with TCC levels in Q4 had significantly higher levels of MPO-DNA than Q1-3 (p = 0.019), and C5aR1 levels in Q3-4 had significantly higher levels of MPO-DNA than Q1-2 (p = 0.046). TCC levels did not differ between patients experiencing a clinical endpoint or not, but high levels were associated with increased risk of acute MI (OR. 1.97, 95% CI: 0.99-3.90, p = 0.053) during two-year follow up, also when adjusted for relevant covariates. In conclusion, TCC and C5aR1 were moderately associated with the NET marker MPO-DNA, and TCC levels were related to the risk of future MI in this cohort of patients with stable CAD.
Collapse
|
44
|
Hu Y, Yu Y, Bu Z, Cun B, Gong Y, Li D, Li J, Lu L, Li G, Yuan L. INCREASED SYSTEMIC HEPARANASE IN RETINAL VEIN OCCLUSION IS ASSOCIATED WITH ACTIVATION OF INFLAMMATION AND THROMBOPHILIA. Retina 2020; 40:345-349. [PMID: 31972805 DOI: 10.1097/iae.0000000000002374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the levels of systemic heparanase, inflammatory markers, and coagulation factor activities in patients with retinal vein occlusion (RVO). METHODS This prospective study included 18 patients with central RVO, 22 patients with branch RVO, and 40 patients with age-related cataract as the control group. Serum heparanase protein levels and activities were measured by ELISA and a heparan degrading enzyme assay kit, respectively. Serum levels of MMP-2, MMP-9, TLR-2, and TLR-4 were measured by ELISA kits. The activities of coagulation factors (V, VII, VIII, and IX) were determined with an autoanalyzer. The Mann-Whitney U test was used to compare the above parameters between patients with RVO and control subjects. The relationship between two of the above parameters was analyzed by Spearman's correlation. RESULTS Patients with RVO had higher levels of systemic heparanase protein, heparanase activities, coagulation factors' (V, VIII, and IX) activities, MMP-2, MMP-9, TLR-2, and TLR-4 compared with the control group. Systemic heparanase levels were correlated with serum levels of MMP-2, MMP-9, TLR-2, TLR-4, and activities of coagulation factors VIII and IX. CONCLUSION Increase of systemic heparanase in RVO is associated with activation of systemic inflammation and blood hypercoagulability.
Collapse
Affiliation(s)
- Yijun Hu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yang Yu
- Department of Ophthalmology, The Second People's Hospital of Qujing, Qujing, China
| | - Zhanyun Bu
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Biyun Cun
- Clinical Skill Center, Kunming Medical University, Kunming, China
| | - Yi Gong
- Department of Physiology, Kunming Medical University, Kunming, China; and
| | - Dongli Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianhua Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Lu
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guodong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
45
|
Coelho‐Landell CA, Salomão RG, Almada MORDV, Mathias MG, Toffano RBD, Hillesheim E, Barros TT, Camarneiro JM, Camelo‐Junior JS, Rosa JC, Izumi C, Czernisz É, Moco S, Kaput J, Monteiro JP. Metabo groups in response to micronutrient intervention: Pilot study. Food Sci Nutr 2020; 8:683-693. [PMID: 31993192 PMCID: PMC6977437 DOI: 10.1002/fsn3.1357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Micronutrients and their metabolites are cofactors in proteins involved in lipid metabolism. The present study was a subproject of the Harmonized Micronutrient Project (ClinTrials.gov # NCT01823744). Twenty participants were randomly selected from 136 children and adolescents that consumed a daily dose of 12 vitamins and 5 minerals supplementation for 6 weeks. The 20 individuals were divided into two pools of 10 individuals, according to their lipid profile at baseline (Pool 1 with lower triglycerides, LDL, and VLDL). The individuals were analyzed at baseline, after 6 weeks of daily supplementation, and after 6 weeks of a washout period in relation to anthropometric, body composition, food intake, lipid profile, micronutrient levels, and iTRAQ proteomic data. Genetic ancestry and its association with vitamin serum levels were also determined. After supplementation, LDL levels decreased while alpha-tocopherol and pantothenic acid levels increased in pool 2; lipid profiles in pool 1 did not change but had higher plasma levels of pantothenic acid, pyridoxal, and pyridoxic acid. In pool 2, expression of some proteins increased, and expression of other ones decreased after intervention, while in pool 1, the same proteins responded inversely or did not change their levels. Plasma alpha-tocopherol and Native American genetic ancestry explained a significant fraction of LDL plasma levels at baseline and in response to the intervention. After intervention, changes in expression of alpha-1 antitrypsin, haptoglobin, Ig alpha-1 chain C region, plasma protease C1 inhibitor, alpha-1-acid glycoprotein 1, fibrinogen alpha, beta, and gamma-chain in individuals in pool 2 may be associated with levels of LDL and vitamin E. Vitamin E and Native American genetic ancestry may also be implicated in changes of vitamin E and LDL levels. The results of this pilot study must be validated in future studies with larger sample size or in in vitro studies.
Collapse
Affiliation(s)
- Carolina Almeida Coelho‐Landell
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Roberta Garcia Salomão
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | | | - Mariana Giaretta Mathias
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Roseli Borges Donega Toffano
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Elaine Hillesheim
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Tamiris Trevisan Barros
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Joyce Moraes Camarneiro
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - José Simon Camelo‐Junior
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - José Cesar Rosa
- Department of Molecular and Cell Biology and Pathogenic BioagentsProtein Chemistry CenterMedical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Clarice Izumi
- Department of Molecular and Cell Biology and Pathogenic BioagentsProtein Chemistry CenterMedical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Érika Czernisz
- Department of Molecular and Cell Biology and Pathogenic BioagentsProtein Chemistry CenterMedical School of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
| | - Sofia Moco
- Nestlé Institute of Health SciencesNestle ResearchEPFL Innovation ParkLausanneSwitzerland
| | - Jim Kaput
- Nestlé Institute of Health SciencesNestle ResearchEPFL Innovation ParkLausanneSwitzerland
- Present address:
VydiantSacramentoCAUSA
| | - Jacqueline Pontes Monteiro
- Department of Pediatrics and Department of Health SciencesFaculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| |
Collapse
|
46
|
Yang X, Ma Y, Zhao Z, Zhen S, Wen D. Complement C1q as a Potential Biomarker for Obesity and Metabolic Syndrome in Chinese Adolescents. Front Endocrinol (Lausanne) 2020; 11:586440. [PMID: 33329392 PMCID: PMC7735390 DOI: 10.3389/fendo.2020.586440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Complement C1q (C1q) has been confirmed to be related to obesity, metabolic syndrome (MetS), and its components. However, human data regarding the associations are relatively scarce. This study aimed to investigate associations of C1q with obesity as well as MetS in Chinese adolescents. METHODS A total of 1,191 Chinese adolescents aged 13-18 years were enrolled in this study. The biochemical and anthropometric variables of all the subjects were evaluated using standardized procedures. C1q was measured using the immunoturbidometric assay. The relationship between C1q and obesity or MetS was analyzed using multiple regression analyses. RESULTS Obesity was more prevalent among participants in the highest tertile than in the lowest tertile of C1q levels. The highest tertile of C1q was related to a greater effect on the risk of MetS, and its trend test was statistically significant. Except for hyperglycemia, the prevalence of other components of MetS significantly increased relative to an increase in C1q tertile. Receiver operating characteristic (ROC) curve analysis of C1q for predicting adolescents with MetS illustrated that the area under the curve (AUC) was 0.82 [95% confidence interval (CI): 0.76, 0.88; P<0.001] in the total population after adjusting for confounders. CONCLUSIONS This study observed a significantly higher prevalence of obesity and MetS features in adolescents with high C1q. The findings of the current study also reported a significant relationship between C1q levels and MetS components [except for fasting plasma glucose (FPG)] in Chinese adolescents. C1q may represent a biomarker for predicting obesity or MetS in adolescents.
Collapse
Affiliation(s)
- Xuelian Yang
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, China
| | - Zhongyi Zhao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shihan Zhen
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
47
|
Resveratrol Inhibits MMP3 and MMP9 Expression and Secretion by Suppressing TLR4/NF- κB/STAT3 Activation in Ox-LDL-Treated HUVECs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9013169. [PMID: 31583048 PMCID: PMC6754947 DOI: 10.1155/2019/9013169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Aim Resveratrol is a natural plant polyphenol. The present study investigated the effects of resveratrol on the Toll-like receptor 4- (TLR4-) mediated expression and secretion of matrix metalloproteinases (MMPs) in oxidized low-density lipoprotein- (ox-LDL-) treated human umbilical vein endothelial cells (HUVECs). Methods Protein expression was analyzed by immunoblotting. The secretion of MMPs was measured by an enzyme-linked immunosorbent assay. The animal experiments were performed with and without resveratrol treatment in high-fat chow-fed mice. Results Resveratrol inhibited the expression of TLR4, MMP3, and MMP9 in ox-LDL- and lipopolysaccharide- (LPS-) treated HUVECs. Resveratrol reduced the secretion of MMP3 and MMP9 that was induced by ox-LDL and LPS. The TLR4 inhibitor CLI-095 similarly suppressed the expression and secretion of MMP3 and MMP9 in ox-LDL- and LPS-treated HUVECs. Resveratrol attenuated the phosphorylation of the transcription factors nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) that was induced by ox-LDL and LPS. Resveratrol recovered Sirt1 expression. In the animal experiments, resveratrol decreased TLR4 expression in the aorta, MMP9 levels in plasma, and vascular structural changes in high-fat chow-fed mice, with no significant effect on plasma MMP3 levels. Conclusion Resveratrol inhibited the TLR4-mediated expression and secretion of MMP3 and MMP9 in ox-LDL-treated HUVECs. The mechanism of action of resveratrol may be associated with the suppression of NF-κB and STAT3 phosphorylation and restoration of Sirt1 expression. Resveratrol exerts protective effects against vascular structural changes in high-fat chow-fed mice.
Collapse
|
48
|
Kim H, Conway EM. Platelets and Complement Cross-Talk in Early Atherogenesis. Front Cardiovasc Med 2019; 6:131. [PMID: 31555668 PMCID: PMC6742699 DOI: 10.3389/fcvm.2019.00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis remains a ubiquitous and serious threat to human health. The initial formation of the atherosclerotic lesion (atheroma) is driven by pro-inflammatory signaling involving monocytes and vascular endothelial cells; later stages of the disease involve rupture of well-established atherosclerotic plaques, thrombosis, and blood vessel occlusion. While the central role of platelets in thrombosis is undisputed, platelets exhibit pro-inflammatory activities, and contribute to early-stage atheroma formation. Platelets also engage components of the complement system, an essential element of innate immunity that contributes to vascular inflammation. Here we provide an overview of the complex interplay between platelets and the complement system, with a focus on how the crosstalk between them may impact on the initiation of atheroma formation.
Collapse
Affiliation(s)
- Hugh Kim
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Cruz Junho CV, Trentin-Sonoda M, Alvim JM, Gaisler-Silva F, Carneiro-Ramos MS. Ca2+/Calmodulin-dependent kinase II delta B is essential for cardiomyocyte hypertrophy and complement gene expression after LPS and HSP60 stimulation in vitro. ACTA ACUST UNITED AC 2019; 52:e8732. [PMID: 31314855 PMCID: PMC6644523 DOI: 10.1590/1414-431x20198732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Inflammation plays an important role in the development of cardiovascular diseases (CVDs), suggesting that the immune system is a target of therapeutic interventions used for treating CVDs. This study evaluated mechanisms underlying inflammatory response and cardiomyocyte hypertrophy associated with bacterial lipopolysaccharide (LPS)- or heat shock protein 60 (HSP60)-induced Toll-like receptor (TLR) stimulation and the effect of a small interfering RNA (siRNA) against Ca2+/calmodulin-dependent kinase II delta B (CaMKIIδB) on these outcomes. Our results showed that treatment with HSP60 or LPS (TLR agonists) induced cardiomyocyte hypertrophy and complement system C3 and factor B gene expression. In vitro silencing of CaMKIIδB prevented complement gene transcription and cardiomyocyte hypertrophy associated with TLR 2/4 activation but did not prevent the increase in interleukin-6 and tumor necrosis factor-alfa gene expression in primary cultured cardiomyocytes. Moreover, CaMKIIδB silencing attenuated nuclear factor-kappa B expression. These findings supported the hypothesis that CaMKIIδB acts as a link between inflammation and cardiac hypertrophy. Furthermore, the present study is the first to show that extracellular HSP60 activated complement gene expression through CaMKIIδB. Our results indicated that a stress stimulus induced by LPS or HSP60 treatment promoted cardiomyocyte hypertrophy and initiated an inflammatory response through the complement system. However, CaMKIIδB silencing prevented the cardiomyocyte hypertrophy independent of inflammatory response induced by LPS or HSP60 treatment.
Collapse
Affiliation(s)
- C V Cruz Junho
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| | - M Trentin-Sonoda
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil.,Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - J M Alvim
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil.,Laboratorio de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Gaisler-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| | - M S Carneiro-Ramos
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brasil
| |
Collapse
|
50
|
Gourgari E, Ma J, Playford MP, Mehta NN, Goldman R, Remaley AT, Gordon SM. Proteomic alterations of HDL in youth with type 1 diabetes and their associations with glycemic control: a case-control study. Cardiovasc Diabetol 2019; 18:43. [PMID: 30922315 PMCID: PMC6437869 DOI: 10.1186/s12933-019-0846-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Abstract
Background Patients with type 1 diabetes (T1DM) typically have normal or even elevated plasma high density lipoprotein (HDL) cholesterol concentrations; however, HDL protein composition can be altered without a change in cholesterol content. Alteration of the HDL proteome can result in dysfunctional HDL particles with reduced ability to protect against cardiovascular disease (CVD). The objective of this study was to compare the HDL proteomes of youth with T1DM and healthy controls (HC) and to evaluate the influence of glycemic control on HDL protein composition. Methods This was a cross-sectional case–control study. Blood samples were obtained from patients with T1DM and HC. HDL was isolated from plasma by size-exclusion chromatography and further purified using a lipid binding resin. The HDL proteome was analyzed by mass spectrometry using label-free SWATH peptide quantification. Results Samples from 26 patients with T1DM and 13 HC were analyzed and 78 HDL-bound proteins were measured. Youth with T1DM had significantly increased amounts of complement factor H related protein 2 (FHR2; adjusted P < 0.05), compared to HC. When patients were analyzed based on glucose control, several trends emerged. Some proteins were altered in T1DM and not influenced by glycemic control (e.g. FHR2) while others were partially or completely corrected with optimal glucose control (e.g. alpha-1-beta glycoprotein, A1BG). In a subgroup of poorly controlled T1DM patients, inter alpha trypsin inhibitor 4 (ITIH4) was dramatically elevated (P < 0.0001) and this was partially reversed in patients with optimal glucose control. Some proteins including complement component C3 (CO3) and albumin (ALB) were significantly different only in T1DM patients with optimal glucose control, suggesting a possible effect of exogenous insulin. Conclusions Youth with T1DM have proteomic alterations of their HDL compared to HC, despite similar concentration of HDL cholesterol. The influence of these compositional changes on HDL function are not yet known. Future efforts should focus on investigating the role of these HDL associated proteins in regard to HDL function and their role in CVD risk in patients with T1DM. Trial registration NCT02275091 Electronic supplementary material The online version of this article (10.1186/s12933-019-0846-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evgenia Gourgari
- Division of Pediatric Endocrinology, Department of Pediatrics, Georgetown University, Washington, DC, 20016, USA.
| | - Junfeng Ma
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.,Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|