1
|
Poteryaeva ON, Usynin IF. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. BIOMEDITSINSKAIA KHIMIIA 2024; 70:206-217. [PMID: 39239895 DOI: 10.18097/pbmc20247004206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Endothelial dysfunction underlies the pathogenesis of many diseases, primarily cardiovascular diseases. Epidemiological studies have shown an inverse dependence between the plasma level of high-density lipoproteins (HDL) and cardiovascular diseases. The results of experimental studies indicate that the antiatherogenic effect of HDL is associated not only with their participation in the reverse transport of excess cholesterol, but also with their regulatory effect on the functions of cells of various organs and tissues, including endothelial cells. The purpose of this review is to consider recent data on the participation of plasma receptors and related intracellular signaling pathways in the mechanism of protective effect of HDL on endothelial cell functions. Understanding the mechanisms of cell function regulation under the influence of HDL is an important step for the development of new ways of pharmacological correction of impaired endothelial functions and creation of effective endothelial protection drugs.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
2
|
Walker ME, De Matteis R, Perretti M, Dalli J. Resolvin T4 enhances macrophage cholesterol efflux to reduce vascular disease. Nat Commun 2024; 15:975. [PMID: 38316794 PMCID: PMC10844649 DOI: 10.1038/s41467-024-44868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.
Collapse
Affiliation(s)
- Mary E Walker
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roberta De Matteis
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
4
|
Khattib A, Shmet M, Ashkar R, Hayek T, Khatib S. Novel bioactive lipids enhanced HDL-mediated cholesterol efflux from macrophages through the ABCA1 receptor pathway. Chem Phys Lipids 2024; 258:105367. [PMID: 38103770 DOI: 10.1016/j.chemphyslip.2023.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
High-density lipoprotein (HDL) has traditionally been acknowledged as "good cholesterol" owing to its significant association with a decreased risk of atherosclerosis. This association is primarily attributed to HDL's direct involvement in cholesterol efflux capacity, which plays a pivotal role in reverse cholesterol transport. A novel active compound from Nannochloropsis microalgae termed lyso-DGTS, a lipid that contains EPA fatty acids, was previously isolated and found to increase paraoxonase 1 activity and enhance HDL-mediated cholesterol efflux and HDL-induced endothelial nitric oxide release. Here, the effect of different lyso-DGTS derivatives and analogs on HDL-mediated cholesterol efflux from macrophages was examined, and the mechanism was explored. Structure-activity relationships were established to characterize the essential lipid moieties responsible for HDL-mediated cholesterol efflux from macrophages. Lyso-DGTS, 1-carboxy-N-N-N-trimethyl-3-oleamidopropan-1-aminium, and lyso-platelet-activating factor increased HDL-mediated cholesterol efflux from macrophages dose-dependently, mainly via the ABCA1-mediated cholesterol efflux pathway. The effect of lyso-DGTS derivatives and analogs on the surface polarity of HDL was examined using the Laurdan generalized polarization (GP) assay. A reverse Pearson linear regression was obtained between Laurdan GP values and HDL-mediated cholesterol efflux. Because the incorporation of bioactive lipids into the surface phospholipid layer of HDL leads to a decrease in Laurdan GP, these bioactive lipids may induce lower phospholipid ordering and greater free space on the HDL particle surface, thereby enhancing apolipoprotein A1 binding to the ABCA1 receptor and improving ABCA1 cholesterol-mediated efflux. Our findings suggest a beneficial effect of lyso-DGTS and its bioactive lipid derivatives on increasing HDL-mediated cholesterol efflux activity from macrophages, which may impact atherosclerosis attenuation.
Collapse
Affiliation(s)
- Ali Khattib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel; The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | - Manar Shmet
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel
| | - Rasha Ashkar
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel
| | - Tony Hayek
- The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | - Soliman Khatib
- Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel; Department of Biotechnology, Tel-Hai College, Israel.
| |
Collapse
|
5
|
Price TR, Emfinger CH, Schueler KL, King S, Nicholson R, Beck T, Yandell BS, Summers SA, Holland WL, Krauss RM, Keller MP, Attie AD. Identification of genetic drivers of plasma lipoprotein size in the Diversity Outbred mouse population. J Lipid Res 2023; 64:100471. [PMID: 37944753 PMCID: PMC10750189 DOI: 10.1016/j.jlr.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Tara R Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah King
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Rebekah Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Tim Beck
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Ronald M Krauss
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Frey K, Rohrer L, Frommelt F, Ringwald M, Potapenko A, Goetze S, von Eckardstein A, Wollscheid B. Mapping the dynamic high-density lipoprotein synapse. Atherosclerosis 2023; 380:117200. [PMID: 37619408 DOI: 10.1016/j.atherosclerosis.2023.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND AIMS Heterogeneous high-density lipoprotein (HDL) particles, which can contain hundreds of proteins, affect human health and disease through dynamic molecular interactions with cell surface proteins. How HDL mediates its long-range signaling functions and interactions with various cell types is largely unknown. Due to the complexity of HDL, we hypothesize that multiple receptors engage with HDL particles resulting in condition-dependent receptor-HDL interaction clusters at the cell surface. METHODS Here we used the mass spectrometry-based and light-controlled proximity labeling strategy LUX-MS in a discovery-driven manner to decode HDL-receptor interactions. RESULTS Surfaceome nanoscale organization analysis of hepatocytes and endothelial cells using LUX-MS revealed that the previously known HDL-binding protein scavenger receptor B1 (SCRB1) is embedded in a cell surface protein community, which we term HDL synapse. Modulating the endothelial HDL synapse, composed of 60 proteins, by silencing individual members, showed that the HDL synapse can be assembled in the absence of SCRB1 and that the members are interlinked. The aminopeptidase N (AMPN) (also known as CD13) was identified as an HDL synapse member that directly influences HDL uptake into the primary human aortic endothelial cells (HAECs). CONCLUSIONS Our data indicate that preformed cell surface residing protein complexes modulate HDL function and suggest new theragnostic opportunities.
Collapse
Affiliation(s)
- Kathrin Frey
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Institute for Clinical Chemistry University Hospital Zurich, Zurich, Switzerland.
| | - Lucia Rohrer
- Institute for Clinical Chemistry University Hospital Zurich, Zurich, Switzerland
| | - Fabian Frommelt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Meret Ringwald
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Anton Potapenko
- Institute for Clinical Chemistry University Hospital Zurich, Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; ETH PHRT Swiss Multi-Omics Center (SMOC), Switzerland
| | | | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; ETH PHRT Swiss Multi-Omics Center (SMOC), Switzerland.
| |
Collapse
|
7
|
Knaack DA, Chang J, Thomas MJ, Sorci-Thomas MG, Chen Y, Sahoo D. Scavenger receptor class B type I is required for efficient glucose uptake and metabolic homeostasis in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554190. [PMID: 37662321 PMCID: PMC10473602 DOI: 10.1101/2023.08.21.554190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Obesity is a worldwide epidemic and places individuals at a higher risk for developing comorbidities that include cardiovascular disease and type 2 diabetes. Adipose tissue contains adipocytes that are responsible for lipid metabolism and reducing misdirected lipid storage. Adipocytes facilitate this process through insulin-mediated uptake of glucose and its subsequent metabolism into triglycerides for storage. During obesity, adipocytes become insulin resistant and have a reduced ability to mediate glucose import, thus resulting in whole-body metabolic dysfunction. Scavenger receptor class B type I (SR-BI) has been implicated in glucose uptake in skeletal muscle and adipocytes via its native ligands, apolipoprotein A-1 and high-density lipoproteins. Further, SR-BI translocation to the cell surface in adipocytes is sensitive to insulin stimulation. Using adipocytes differentiated from ear mesenchymal stem cells isolated from wild-type and SR-BI knockout (SR-BI -/- ) mice as our model system, we tested the hypothesis that SR-BI is required for insulin-mediated glucose uptake and regulation of energy balance in adipocytes. We demonstrated that loss of SR-BI in adipocytes resulted in inefficient glucose uptake regardless of cell surface expression levels of glucose transporter 4 compared to WT adipocytes. We also observed reduced glycolytic capacity, increased lipid biosynthesis, and dysregulated expression of lipid metabolism genes in SR-BI -/- adipocytes compared to WT adipocytes. These results partially support our hypothesis and suggest a novel role for SR-BI in glucose uptake and metabolic homeostasis in adipocytes.
Collapse
|
8
|
Alkazmi L, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential role of scavenger receptor B type I (SR-BI) in SARS-CoV-2 infection. Immun Inflamm Dis 2023; 11:e786. [PMID: 37102664 PMCID: PMC10103078 DOI: 10.1002/iid3.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 04/28/2023] Open
Abstract
Scavenger receptor type B I (SR-BI), the major receptor for high-density lipoprotein (HDL) mediates the delivery of cholesterol ester and cholesterol from HDL to the cell membrane. SR-BI is implicated as a receptor for entry of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). SR-BI is colocalized with the angiotensin-converting enzyme 2 (ACE2) increasing the binding and affinity of SARS-CoV-2 to ACE2 with subsequent viral internalization. SR-BI regulates lymphocyte proliferation and the release of pro-inflammatory cytokines from activated macrophages and lymphocytes. SR-BI is reduced during COVID-19 due to consumption by SARS-CoV-2 infection. COVID-19-associated inflammatory changes and high angiotensin II (AngII) might be possible causes of repression of SR-BI in SARS-CoV-2 infection. In conclusion, the downregulation of SR-BI in COVID-19 could be due to direct invasion by SARS-CoV-2 or through upregulation of pro-inflammatory cytokines, inflammatory signaling pathways, and high circulating AngII. Reduction of SR-BI in COVID-19 look like ACE2 may provoke COVID-19 severity through exaggeration of the immune response. Further studies are invoked to clarify the potential role of SR-BI in the pathogenesis of COVID-19 that could be protective rather than detrimental.
Collapse
Affiliation(s)
- Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
9
|
Tetramethylpyrazine and Paeoniflorin Synergistically Attenuate Cholesterol Efflux in Macrophage Cells via Enhancing ABCA1 and ABCG1 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4304790. [PMID: 36387364 PMCID: PMC9653297 DOI: 10.1155/2022/4304790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022]
Abstract
The formation of foam cells is a characteristic of the occurrence and development of atherosclerosis. ATP-binding cassette subfamily A1 and G1 (ABCA1 and ABCG1) and scavenger receptor B1 (SR-B1) play critical roles in promoting intracellular cholesterol efflux to high-density lipoprotein (HDL) or apolipoprotein A1 (apoA1). We attempted to test the effect of the tetramethylpyrazine-paeoniflorin pair (TP) on cholesterol outflow in foam cells derived from macrophages. In this study, RAW264.7 macrophages were treated with 80 mg/L oxidized low-density lipoprotein (ox-LDL) for 24 h to obtain foam cells. Then they were intervened with TP (tetramethylpyrazine 40 ug/ml plus paeoniflorin 80 ug/ml) for additional 24 h. The distribution of cholesterol in foam cells was evaluated by oil red O staining. The contents of total cholesterol (TC) and free cholesterol (FC) were assessed with commercial kits. Fluorescent imaging was observed with a fluorescent inverted microscope. The capacity of cholesterol efflux was measured with a fluorescent plate reader, and the transcript and protein levels of ABCA1, ABCG1, and SR-B1 were detected by Western blot and quantitative polymerase chain reactions (Q-PCRs). Cytokines in the medium were detected by ELISA and adjusted by total cellular proteins. The results showed that TP decreased ox-LDL-induced cholesterol deposition and foam cell formation by promoting cholesterol efflux to apoA1, which was related to the upregulation of ABCA1 and ABCG1. Moreover, TP decreased the secretion of ox-LDL-induced tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and monocyte chemotactic protein-1 (MCP-1), an important profoam cell cytokine in atherosclerosis.
Collapse
|
10
|
Hueso M, Griñán R, Mallen A, Navarro E, Purqueras E, Gomá M, Sbraga F, Blasco-Lucas A, Revilla G, Santos D, Canyelles M, Julve J, Escolà-Gil JC, Rotllan N. MiR-125b downregulates macrophage scavenger receptor type B1 and reverse cholesterol transport. Biomed Pharmacother 2022; 146:112596. [PMID: 35062066 DOI: 10.1016/j.biopha.2021.112596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To determine whether miR-125b regulates cholesterol efflux in vivo and in vitro through the regulation of scavenger receptor type B1 (SR-B1). APPROACH AND RESULTS We demonstrated that miR-125b is up-regulated in the human aortas of patients with CAD and is located in macrophages and vascular smooth muscle cells (VSMCs). We identified SCARB1 as a direct target of miR-125b by repressing the activity of the SCARB1 3'-untranslated region reporter construct. Moreover, the overexpression of miR-125b in both human and mouse macrophages as well as VSMCs was found to downregulated the expression of the SCARB1 and the SR-B1 protein levels, thereby impairing α-HDL-mediated macrophage cholesterol efflux in vitro. The in vivo reverse cholesterol transport (RCT) rate from non-cholesterol-loaded macrophages transfected with miR-125b to feces was also found to be decreased when compared with that of control mimic-transfected macrophages. CONCLUSIONS Together, these results provide evidence that miR-125b downregulates SCARB1 and SR-B1 in both human and mouse macrophages as well as VSMCs, thereby impairing macrophage cholesterol efflux in vitro and the whole macrophage-specific RCT pathway in vivo.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Raquel Griñán
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma De Barcelonna, 08041 Barcelona, Spain
| | - Adrián Mallen
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Estanislao Navarro
- Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Elvira Purqueras
- Department of Pathology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Montse Gomá
- Department of Pathology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Fabrizio Sbraga
- Department of Cardiac Surgery, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Arnau Blasco-Lucas
- Department of Cardiac Surgery, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona, Spain
| | - David Santos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona, Spain
| | - Josep Julve
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, C/ Sant Quintí 77, 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
11
|
Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc Ther 2022; 2022:4610834. [PMID: 35087605 PMCID: PMC8763555 DOI: 10.1155/2022/4610834] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia characterized by abnormal deposition of cholesterol in arteries can cause atherosclerosis and coronary artery occlusion, leading to atherosclerotic coronary heart disease. The body prevents atherosclerosis by reverse cholesterol transport to mobilize and excrete cholesterol and other lipids. Apolipoprotein A1, the major component of high-density lipoprotein, plays a key role in reverse cholesterol transport. Here, we reviewed the role of apolipoprotein A1-targeting molecules in antiatherosclerosis therapy, in particular ATP-binding cassette transporter A1, lecithin-cholesterol acyltransferase, and scavenger receptor class B type 1.
Collapse
|
12
|
Powers HR, Sahoo D. SR-B1's Next Top Model: Structural Perspectives on the Functions of the HDL Receptor. Curr Atheroscler Rep 2022; 24:277-288. [PMID: 35107765 PMCID: PMC8809234 DOI: 10.1007/s11883-022-01001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW The binding of high-density lipoprotein (HDL) to its primary receptor, scavenger receptor class B type 1 (SR-B1), is critical for lowering plasma cholesterol levels and reducing cardiovascular disease risk. This review provides novel insights into how the structural elements of SR-B1 drive efficient function with an emphasis on bidirectional cholesterol transport. RECENT FINDINGS We have generated a new homology model of full-length human SR-B1 based on the recent resolution of the partial structures of other class B scavenger receptors. Interrogating this model against previously published observations allows us to generate structurally informed hypotheses about SR-B1's ability to mediate HDL-cholesterol (HDL-C) transport. Furthermore, we provide a structural perspective as to why human variants of SR-B1 may result in impaired HDL-C clearance. A comprehensive understanding of SR-B1's structure-function relationships is critical to the development of therapeutic agents targeting SR-B1 and modulating cardiovascular disease risk.
Collapse
Affiliation(s)
- Hayley R. Powers
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA
| | - Daisy Sahoo
- grid.30760.320000 0001 2111 8460Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Cardiovascular Center, H4930 Health Research Center, Medical College of Wisconsin, 8701 W. Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
13
|
HDL and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:49-61. [DOI: 10.1007/978-981-19-1592-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Yu H. HDL and Scavenger Receptor Class B Type I (SRBI). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:79-93. [DOI: 10.1007/978-981-19-1592-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Refsnes M, Skuland T, Øvrevik J, Låg M. Role of scavenger receptors in silica nanoparticle-induced cytokine responses in bronchial epithelial cells. Toxicol Lett 2021; 353:100-106. [PMID: 34653535 DOI: 10.1016/j.toxlet.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
A major challenge in nanoparticle (NP) research is to elucidate how NPs activate initial targets in cells, leading to cytotoxicity and inflammation. We have previously shown that silica (Si)NPs induce pro-inflammatory responses in bronchial epithelial cells (BEAS-2B) via mechanisms involving transforming growth factor (TGF)-α release, and activation of MAP-kinase p38 and JNK besides NF-κB (p65). In the present study, the roles of scavenger receptors (SRs) in SiNP-induced cytokine responses in BEAS-2B cells were examined by siRNA silencing. Cells exposed to Si10 and Si50 (nominal sizes 10 and 50 nm) showed marked interleukin (IL)-6, CXCL8, IL-1α, IL-1β responses. Transient knockdown of SR-B1, LOX-1 and CXCL16 reduced the Si10- and Si50-induced cytokine responses, to a different magnitude dependent on the particle size, SR and cytokine. Si10-induced TGF-α responses were also markedly reduced by knockdown of SR-B1 and CXCL16. Furthermore, the role of SR-B1 in Si10-induced phosphorylations of p65 and MAP-kinases p38 and JNK were examined, and no significant reductions were observed upon knockdown of SR-B1. In conclusion, LOX-1 and CXCL16 and especially SR-B1 seem to have important roles in mediating cytokine responses and TGF-α release due to SiNP exposure in BEAS-2B cells, without a down-stream role of MAP-kinase and NF-κB.
Collapse
Affiliation(s)
- Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Tonje Skuland
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| |
Collapse
|
16
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
17
|
Lai P, Cao X, Xu Q, Liu Y, Li R, Zhang J, Zhang M. Ganoderma lucidum spore ethanol extract attenuates atherosclerosis by regulating lipid metabolism via upregulation of liver X receptor alpha. PHARMACEUTICAL BIOLOGY 2021; 58:760-770. [PMID: 32780606 PMCID: PMC7470073 DOI: 10.1080/13880209.2020.1798471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Ganoderma lucidum (Leyss.ex Fr.) Karst (Ganodermataceae) is a fungus that has been used in traditional Chinese medicine. OBJECTIVE This is the first investigation of the lipid-lowering and anti-atherosclerotic effects of Ganoderma lucidum spore ethanol extract (EEG) in hyperlipidemic rabbits. MATERIALS AND METHODS Fifty-four Japanese rabbits were randomly divided into six groups (n = 9): control, model, atorvastatin and three EEG groups (6, 24 and 96 mg/kg/day, p.o.). Control group was administered a normal diet and other groups were administered a high-fat diet to induce hyperlipidaemia and atherosclerosis for 14 weeks. During this time, lipid profiles were recorded; lipid testing and histopathological examination of aorta and liver were conducted. LXRα and its downstream genes expression in the liver and small intestine were examined. The effect of EEG on macrophage cholesterol efflux and ABCA1/G1 expression was observed under silenced LXRα expression. RESULTS EEG reduced serum cholesterol (20.33 ± 3.62 mmol/L vs 34.56 ± 8.27 mmol/L for the model group) and LDL-C, reduced the area of arterial plaques (24.8 ± 10% vs 53.9 ± 15.2% for the model group) and Intima/Medium thickness ratio, increased faecal bile acid content, upregulated LXRα, CYP7A1, ABCA1/G1, ABCG5/G8 expression in the liver, small intestine and macrophages. After silencing LXRα in macrophages, the ability of EEG to promote cholesterol efflux was inhibited. DISCUSSION AND CONCLUSION EEG exert lipid-lowering and anti-atherosclerotic effects via upregulating expression of LXRα and downstream genes associated with reverse cholesterol transport and metabolism. However, whether PPARα/γ are involved in the up-regulation of LXR expression by EEG remains to be elucidated.
Collapse
Affiliation(s)
- Peng Lai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Xu Cao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qiao Xu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yixin Liu
- West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- School of Traditional Chinese Medicine, Chengdu University of TCM, Chengdu, China
| | - Ju Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Meng Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
18
|
Gracia-Rubio I, Martín C, Civeira F, Cenarro A. SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines 2021; 9:biomedicines9060612. [PMID: 34072125 PMCID: PMC8229968 DOI: 10.3390/biomedicines9060612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
High plasma level of low-density lipoprotein (LDL) is the main driver of the initiation and progression of cardiovascular disease (CVD). Nevertheless, high-density lipoprotein (HDL) is considered an anti-atherogenic lipoprotein due to its role in reverse cholesterol transport and its ability to receive cholesterol that effluxes from macrophages in the artery wall. The scavenger receptor B class type 1 (SR-B1) was identified as the high-affinity HDL receptor, which facilitates the selective uptake of cholesterol ester (CE) into the liver via HDL and is also implicated in the plasma clearance of LDL, very low-density lipoprotein (VLDL) and lipoprotein(a) (Lp(a)). Thus, SR-B1 is a multifunctional receptor that plays a main role in the metabolism of different lipoproteins. The aim of this review is to highlight the association between SR-B1 and CVD risk through mice and human genetic studies.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Correspondence: or ; Tel.: +34-976-765-500 (ext. 142895)
| | - César Martín
- Instituto Biofisika (UPV/EHU, CSIC) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco UPB/EHU, 48940 Bilbao, Spain;
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain; (F.C.); (A.C.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto Salud Carlos III, 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
19
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Adorni MP, Ronda N, Bernini F, Zimetti F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021; 10:cells10030574. [PMID: 33807918 PMCID: PMC8002038 DOI: 10.3390/cells10030574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Over the years, the relationship between high-density lipoprotein (HDL) and atherosclerosis, initially highlighted by the Framingham study, has been revealed to be extremely complex, due to the multiple HDL functions involved in atheroprotection. Among them, HDL cholesterol efflux capacity (CEC), the ability of HDL to promote cell cholesterol efflux from cells, has emerged as a better predictor of cardiovascular (CV) risk compared to merely plasma HDL-cholesterol (HDL-C) levels. HDL CEC is impaired in many genetic and pathological conditions associated to high CV risk such as dyslipidemia, chronic kidney disease, diabetes, inflammatory and autoimmune diseases, endocrine disorders, etc. The present review describes the current knowledge on HDL CEC modifications in these conditions, focusing on the most recent human studies and on genetic and pathophysiologic aspects. In addition, the most relevant strategies possibly modulating HDL CEC, including lifestyle modifications, as well as nutraceutical and pharmacological interventions, will be discussed. The objective of this review is to help understanding whether, from the current evidence, HDL CEC may be considered as a valid biomarker of CV risk and a potential pharmacological target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
- Correspondence:
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| |
Collapse
|
21
|
Effect of Phosphatidylcholine Nanosomes on Phospholipid Composition of the Plasma Membranes in Liver Cells and Blood Serum in Experimental Atherosclerosis. Bull Exp Biol Med 2020; 170:181-184. [PMID: 33263842 DOI: 10.1007/s10517-020-05028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Indexed: 10/22/2022]
Abstract
Alimentary atherosclerosis is associated with a significant decrease in the content of phosphatidylcholine, the phospholipid that provides antioxidant protection, in the plasma membrane of liver cells, while the level of phosphatidic acid that initiates generation of superoxides, on the contrary, increases. The level of membrane phosphatidylserine, a target of the scavenger receptors, which initiates removal of damaged cells and modified lipoproteins from the circulation was also elevated. In the blood serum of rabbits receiving an atherogenic diet, the content of cardiolipin involved in the immune mechanisms of atherosclerosis development and a risk factor for thrombosis, sharply increased. The level of lysophosphatidylcholine that mediates initiation and progression of atherosclerosis increased. The content of phosphatidylinositol that is involved in the mechanisms protecting from exposure to excess cholesterol was significantly reduced. Treatment of alimentary atherosclerosis with "empty" phosphatidylcholine nanosomes eliminates the key factors initiating atherosclerosis development.
Collapse
|
22
|
Ma B, Jia J, Wang X, Zhang R, Niu S, Ni L, Di X, Liu C. Differential roles of Scavenger receptor class B type I: A protective molecule and a facilitator of atherosclerosis (Review). Mol Med Rep 2020; 22:2599-2604. [PMID: 32945418 PMCID: PMC7453654 DOI: 10.3892/mmr.2020.11383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The scavenger receptor class B type I (SR-BI) is a multi-ligand membrane protein receptor that binds to high-density lipoprotein (HDL) under physiological conditions, promoting the selective uptake of cholesterol esters from HDL into cells. SR-BI also promotes the reverse transport of excess cholesterol from peripheral tissues to the liver, contributing to the synthesis of bile acids for excretion and the removal of excess cholesterol from the body, thereby lowering the cholesterol load and exerting anti-atherosclerotic effects. Studies in mice and humans have demonstrated that a functional defect of SR-BI can cause atherosclerotic lesions and cardiovascular diseases, such as myocardial infarction and stroke. Additionally, SR-BI in vascular endothelial cells promoted the deposition of low-density lipoprotein under the endothelium. Although SR-BI is widely expressed in various tissues and cell types throughout the body, its expression level and function vary accordingly. The present review focuses on the biological functions and mechanisms of SR-BI in regulating atherosclerosis.
Collapse
Affiliation(s)
- Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xuebin Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Rui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuai Niu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
23
|
Wang G, Gao JH, He LH, Yu XH, Zhao ZW, Zou J, Wen FJ, Zhou L, Wan XJ, Tang CK. Fargesin alleviates atherosclerosis by promoting reverse cholesterol transport and reducing inflammatory response. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158633. [DOI: 10.1016/j.bbalip.2020.158633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
|
24
|
Mayneris-Perxachs J, Puig J, Burcelin R, Dumas ME, Barton RH, Hoyles L, Federici M, Fernández-Real JM. The APOA1bp-SREBF-NOTCH axis is associated with reduced atherosclerosis risk in morbidly obese patients. Clin Nutr 2020; 39:3408-3418. [PMID: 32199697 DOI: 10.1016/j.clnu.2020.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 02/24/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Atherosclerosis is characterized by an inflammatory disease linked to excessive lipid accumulation in the artery wall. The Notch signalling pathway has been shown to play a key regulatory role in the regulation of inflammation. Recently, in vitro and pre-clinical studies have shown that apolipoprotein A-I binding protein (AIBP) regulates cholesterol metabolism (SREBP) and NOTCH signalling (haematopoiesis) and may be protective against atherosclerosis, but the evidence in humans is scarce. METHODS We evaluated the APOA1bp-SREBF-NOTCH axis in association with atherosclerosis in two well-characterized cohorts of morbidly obese patients (n = 78) within the FLORINASH study, including liver transcriptomics, 1H NMR plasma metabolomics, high-resolution ultrasonography evaluating carotid intima-media thickness (cIMT), and haematological parameters. RESULTS The liver expression levels of APOA1bp were associated with lower cIMT and leukocyte counts, a better plasma lipid profile and higher circulating levels of metabolites associated with lower risk of atherosclerosis (glycine, histidine and asparagine). Conversely, liver SREBF and NOTCH mRNAs were positively associated with atherosclerosis, liver steatosis, an unfavourable lipid profile, higher leukocytes and increased levels of metabolites linked to inflammation and CVD such as branched-chain amino acids and glycoproteins. APOA1bp and NOTCH signalling also had a strong association, as revealed by the negative correlations among APOA1bp expression levels and those of all NOTCH receptors and jagged ligands. CONCLUSIONS We here provide the first evidence in human liver of the putative APOA1bp-SREBF-NOTCH axis signalling pathway and its association with atherosclerosis and inflammation.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Puig
- Department of Radiology, Diagnostic Imaging Institute (IDI), Dr Josep Trueta University Hospital, IDIBGI, Girona, Spain
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432 Toulouse Cedex 4, France
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Section of Genomic and Environmental Medicine, Respiratory Division, National Heart and Lung Institute, Imperial College London, Dovehouse St, London SW3 6KY, United Kingdom
| | - Richard H Barton
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, United Kingdom
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta", Departament de Ciències Mèdiques, University of Girona, Girona Biomedical Research Institute (IdibGi), Girona, Spain; CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
26
|
Gkolfinopoulou C, Bourtsala A, Chroni A. Structural and functional basis for increased HDL-cholesterol levels due to the naturally occurring V19L mutation in human apolipoprotein A-I. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158593. [PMID: 31863971 DOI: 10.1016/j.bbalip.2019.158593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022]
Abstract
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.
Collapse
Affiliation(s)
- Christina Gkolfinopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Bourtsala
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
27
|
Çaykara B, Alsaadoni H, Hanım Pençe H, Pençe S, Yılmaz Aydoğan H, Şabançelebi S, Yıldız A. Effects of SR-BI rs5888 and rs4238001 variations on hypertension. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2018-0394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Background
Scavenger receptor class B, type I (SR-BI), involved in reverse cholesterol pathway, is a multilipoprotein receptor and capable of binding HDL, LDL and VLDL. SR-BI may contribute to the development of hypertension due to accumulation of cholesterol in the vessel wall via transporting lipoproteins. Therefore, it was aimed to investigate the relationship between SR-BI rs5888 and rs4238001 variants in the patient with hypertension.
Materials and methods
Seventy three subjects diagnosed with hypertension and 76 healthy subjects constituted the patient and control group, respectively. Genomic DNA was isolated from peripheral blood samples and a real-time quantitative polymerase chain reaction protocol was performed to detect variations of rs5888 and rs4238001. The results were analyzed with the SPSS 22 program and p < 0.05 was considered statistically significant.
Results and discussion
SR-BI rs4238001 variation did not show significant difference between patient and control group (p > 0.05). In the SR-BI rs5888 variation; normal homozygous CC and heterozygous CT carriers had an average 2-fold lower risk of hypertension than those carrying the TT genotype (p < 0.05).
Conclusion
SR-BI rs5888 TT variant may increase hypertension risk by reducing lipid transport to the liver from the vessel wall.
Collapse
|
28
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
29
|
Chroni A, Kardassis D. HDL Dysfunction Caused by Mutations in apoA-I and Other Genes that are Critical for HDL Biogenesis and Remodeling. Curr Med Chem 2019. [DOI: 10.2174/0929867325666180313114950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The “HDL hypothesis” which suggested that an elevation in HDL cholesterol
(HDL-C) levels by drugs or by life style changes should be paralleled by a decrease in the
risk for Cardiovascular Disease (CVD) has been challenged by recent epidemiological and
clinical studies using HDL-raising drugs. HDL components such as proteins, lipids or small
RNA molecules, but not cholesterol itself, possess various atheroprotective functions in different
cell types and accumulating evidence supports the new hypothesis that HDL functionality
is more important than HDL-C levels for CVD risk prediction. Thus, the detailed characterization
of changes in HDL composition and functions in various pathogenic conditions
is critically important in order to identify new biomarkers for diagnosis, prognosis and therapy
monitoring of CVD. Here we provide an overview of how HDL composition, size and
functionality are affected in patients with monogenic disorders of HDL metabolism due to
mutations in genes that participate in the biogenesis and the remodeling of HDL. We also review
the findings from various mouse models with genetic disturbances in the HDL biogenesis
pathway that have been generated for the validation of the data obtained in human patients
and how these models could be utilized for the evaluation of novel therapeutic strategies such
as the use of adenovirus-mediated gene transfer technology that aim to correct HDL abnormalities.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research , Greece
| | - Dimitris Kardassis
- Department of Basic Medical Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 71003, Greece
| |
Collapse
|
30
|
β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. Proc Nutr Soc 2019; 78:68-87. [PMID: 30747092 DOI: 10.1017/s0029665118002641] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
β-Carotene intake and tissue/blood concentrations have been associated with reduced incidence of several chronic diseases. Further bioactive carotenoid-metabolites can modulate the expression of specific genes mainly via the nuclear hormone receptors: retinoic acid receptor- and retinoid X receptor-mediated signalling. To better understand the metabolic conversion of β-carotene, inter-individual differences regarding β-carotene bioavailability and bioactivity are key steps that determine its further metabolism and bioactivation and mediated signalling. Major carotenoid metabolites, the retinoids, can be stored as esters or further oxidised and excreted via phase 2 metabolism pathways. In this review, we aim to highlight the major critical control points that determine the fate of β-carotene in the human body, with a special emphasis on β-carotene oxygenase 1. The hypothesis that higher dietary β-carotene intake and serum level results in higher β-carotene-mediated signalling is partly questioned. Alternative autoregulatory mechanisms in β-carotene / retinoid-mediated signalling are highlighted to better predict and optimise nutritional strategies involving β-carotene-related health beneficial mediated effects.
Collapse
|
31
|
Zhao W, Wang L, Haller V, Ritsch A. A Novel Candidate for Prevention and Treatment of Atherosclerosis: Urolithin B Decreases Lipid Plaque Deposition in apoE -/- Mice and Increases Early Stages of Reverse Cholesterol Transport in ox-LDL Treated Macrophages Cells. Mol Nutr Food Res 2019; 63:e1800887. [PMID: 30762936 DOI: 10.1002/mnfr.201800887] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/20/2019] [Indexed: 12/13/2022]
Abstract
SCOPE HDL cholesterol is inversely related to the incidence of atherosclerosis. Polyphenols including ellagitannins have been shown to exert antiatherogenic properties. Urolithin B is formed from ellagitannins by components of the gut microbiota, and urolithins might be involved in beneficial effects against cardiovascular diseases in vitro. In this study, the influence of urolithin B on several parameters involved in the lipid plaque deposition and the reverse cholesterol transport is investigated. METHODS AND RESULTS In apoE-/- mice and two different macrophage cell lines, the influence of urolithin B and its phase II conjugated metabolite on lipid plaque deposition, cholesterol uptake, and expression of ABCA1 and SR-BI is tested. It is shown that urolithin B decreases lipid plaque deposition, both urolithin B and urolithin B sulfate modulate expression of SR-BI and ABCA1, and cholesterol efflux increases from cholesterol laden macrophages to HDL particles as well as to reverse lipid uptake by stimulated THP-1 macrophages. CONCLUSIONS Urolithin B can decrease lipid plaque deposition, and urolithin B and urolithin B sulfate are able to induce reverse cholesterol transport by influencing expression of key proteins of this pathway. Urolithin B may represent the basis for development of new drugs for prevention and treatment of atherosclerosis in humans.
Collapse
Affiliation(s)
- Wenhua Zhao
- College of Pharmaceutical Sciences, Capital Medical University, 10 Xitoutiao,You An Men, Beijing, 100069, P. R. China
| | - Lixue Wang
- College of Pharmaceutical Sciences, Capital Medical University, 10 Xitoutiao,You An Men, Beijing, 100069, P. R. China
| | - Viktoria Haller
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, A-6020, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, A-6020, Innsbruck, Austria
| |
Collapse
|
32
|
Sahebi R, Hassanian SM, Ghayour‐Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A. Scavenger receptor Class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol 2019; 234:16925-16932. [DOI: 10.1002/jcp.28393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour‐Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shabbou Bahramian
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan Iran
| | - Gordon A. Ferns
- Division of Medical Education Brighton & Sussex Medical School, Falmer Brighton Sussex
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
33
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
34
|
Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, Xiao X, Weston TA, Vashi D, Ferrari A, Orozco JL, Hartman CL, Strugatsky D, Lee SD, He C, Hong C, Jiang H, Bentolila LA, Gatta AT, Levine TP, Ferng A, Lee R, Ford DA, Young SG, Ikonen E, Schwabe JWR, Tontonoz P. Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell 2018; 175:514-529.e20. [PMID: 30220461 DOI: 10.1016/j.cell.2018.08.033] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/08/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.
Collapse
Affiliation(s)
- Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiqian Li
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Louise Fairall
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Simon G Pfisterer
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Jennifer E Gurnett
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dipti Vashi
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose L Orozco
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Celine L Hartman
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - David Strugatsky
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - Laurent A Bentolila
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Alberto T Gatta
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Tim P Levine
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Annie Ferng
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - David A Ford
- Edward A. Doisy Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elina Ikonen
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - John W R Schwabe
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Muthuramu I, Amin R, Aboumsallem JP, Mishra M, Robinson EL, De Geest B. Hepatocyte-Specific SR-BI Gene Transfer Corrects Cardiac Dysfunction in
Scarb1
-Deficient Mice and Improves Pressure Overload-Induced Cardiomyopathy. Arterioscler Thromb Vasc Biol 2018; 38:2028-2040. [DOI: 10.1161/atvbaha.118.310946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective—
We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in
Scarb1
−/−
mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in
Scarb1
−/−
mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function.
Approach and Results—
Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in
Scarb1
−/−
TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14–3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in
Scarb1
−/−
mice (hazard ratio, 0.329; 95% CI, 0.180–0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in
Scarb1
−/−
TAC mice.
Scarb1
−/−
sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in
Scarb1
−/−
TAC mice. Increased oxidative stress and reduced antioxidant defense systems in
Scarb1
−/−
mice were rescued by AdSR-BI transfer.
Conclusions—
The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocyte-specific SR-BI transfer, which restores HDL metabolism.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Ruhul Amin
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Joseph Pierre Aboumsallem
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Mudit Mishra
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| | - Emma Louise Robinson
- Experimental Cardiology, Department of Cardiovascular Sciences (E.L.R.), Catholic University of Leuven, Belgium
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (E.L.R.)
| | - Bart De Geest
- From the Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences (I.M., R.A., J.P.A., M.M., B.D.G.)
| |
Collapse
|
36
|
Anastasius M, Luquain-Costaz C, Kockx M, Jessup W, Kritharides L. A critical appraisal of the measurement of serum 'cholesterol efflux capacity' and its use as surrogate marker of risk of cardiovascular disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1257-1273. [PMID: 30305243 DOI: 10.1016/j.bbalip.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
The 'cholesterol efflux capacity (CEC)' assay is a simple in vitro measure of the capacities of individual sera to promote the first step of the reverse cholesterol transport pathway, the delivery of cellular cholesterol to plasma HDL. This review describes the cell biology of this model and critically assesses its application as a marker of cardiovascular risk. We describe the pathways for cell cholesterol export, current cell models used in the CEC assay with their limitations and consider the contribution that measurement of serum CEC provides to our understanding of HDL function in vivo.
Collapse
Affiliation(s)
- Malcolm Anastasius
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Maaike Kockx
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Wendy Jessup
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia; Cardiology Department, Concord Repatriation General Hospital, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
37
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
39
|
Rubinow KB, Vaisar T, Chao JH, Heinecke JW, Page ST. Sex steroids mediate discrete effects on HDL cholesterol efflux capacity and particle concentration in healthy men. J Clin Lipidol 2018; 12:1072-1082. [PMID: 29793828 DOI: 10.1016/j.jacl.2018.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Exogenous testosterone decreases serum concentrations of high-density lipoprotein cholesterol (HDL-C) in men, but whether this alters cardiovascular risk is uncertain. OBJECTIVE To investigate the effects of testosterone and estradiol on HDL particle concentration (HDL-Pima) and metrics of HDL function. METHODS We enrolled 53 healthy men, 19 to 55 years of age, in a double-blinded, placebo-controlled, randomized trial. Subjects were rendered medically castrate using the GnRH receptor antagonist acyline and administered either (1) placebo gel, (2) low-dose transdermal testosterone gel (1.62%, 1.25 g), (3) full replacement dose testosterone gel (1.62%, 5 g) or (4) full replacement dose testosterone gel together with an aromatase inhibitor for 4 weeks. At baseline and end of treatment, serum HDL total macrophage and ABCA1-specific cholesterol efflux capacity (CEC), HDL-Pima and size, and HDL protein composition were determined. RESULTS Significant differences in serum HDL-C were observed with treatment across groups (P = .01 in overall repeated measures ANOVA), with increases in HDL-C seen after both complete and partial testosterone deprivation. Medical castration increased total HDL-Pima (median [interquartile range] 19.1 [1.8] nmol/L at baseline vs 21.3 [3.1] nmol/L at week 4, P = .006). However, corresponding changes in total macrophage CEC and ABCA1-specific CEC were not observed. Change in serum 17β-estradiol concentration correlated with change in total macrophage CEC (β = 0.33 per 10 pg/mL change in serum 17β-estradiol, P = .03). CONCLUSIONS Testosterone deprivation in healthy men leads to a dissociation between changes in serum HDL-C and HDL CEC. Changes in serum HDL-C specifically due to testosterone exposure may not reflect changes in HDL function.
Collapse
Affiliation(s)
- Katya B Rubinow
- Center for Research in Reproduction and Contraception, Seattle, WA, USA; Diabetes Institute, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Tomas Vaisar
- Diabetes Institute, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jing H Chao
- Center for Research in Reproduction and Contraception, Seattle, WA, USA
| | - Jay W Heinecke
- Diabetes Institute, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephanie T Page
- Center for Research in Reproduction and Contraception, Seattle, WA, USA; Diabetes Institute, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
40
|
Park HJ, Kuai R, Jeon EJ, Seo Y, Jung Y, Moon JJ, Schwendeman A, Cho SW. High-density lipoprotein-mimicking nanodiscs carrying peptide for enhanced therapeutic angiogenesis in diabetic hindlimb ischemia. Biomaterials 2018; 161:69-80. [PMID: 29421564 PMCID: PMC5817004 DOI: 10.1016/j.biomaterials.2018.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Therapeutic strategies using endogenous stem cell mobilizer can provide effective cell-free therapy for addressing various ischemic diseases. In particular, substance P (SP) exhibited therapeutic regeneration by facilitating mobilization of endogenous stem cells from bone marrow to the injured sites. However, its therapeutic effect has been limited due to short half-life and rapid degradation of administered SP peptides in vivo. Here we sought to develop high-density lipoprotein (HDL)-mimicking nanodiscs conjugated with SP (HDL-SP) in order to increase the in vivo half-life, bone marrow targeting, and therapeutic efficacy of SP for the treatment of diabetic peripheral ischemia. Conjugation of SP onto HDL nanodisc led to remarkable ∼3215- and ∼1060-fold increase in the ex vivo and in vivo half-lives of SP, respectively. Accordingly, HDL-SP nanodiscs improved retention of SP in bone marrow after systemic administration, leading to efficient mobilization of stem cells from bone marrow into blood circulation and reduction of systemic inflammation. Consequently, nanodisc based SP peptide delivery promoted blood vessel formation, blood perfusion recovery and markedly improved limb salvage in diabetic hindlimb ischemia model relative to administration of free SP without nanodisc modification. Therefore, HDL-SP nanodisc can provide a novel strategy for the treatment of diabetic ischemia and HDL nanodisc modification could be potentially useful for the extension of plasma circulation of other labile peptides.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoojin Seo
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
| |
Collapse
|
41
|
Wang K, Yu C, Liu Y, Zhang W, Sun Y, Chen Y. Enhanced Antiatherosclerotic Efficacy of Statin-Loaded Reconstituted High-Density Lipoprotein via Ganglioside GM1 Modification. ACS Biomater Sci Eng 2018; 4:952-962. [DOI: 10.1021/acsbiomaterials.7b00871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
de Lima AD, Guido MC, Tavares ER, Carvalho PO, Marques AF, de Melo MDT, Salemi VMC, Kalil-Filho R, Maranhão RC. The Expression of Lipoprotein Receptors Is Increased in the Infarcted Area After Myocardial Infarction Induced in Rats With Cardiac Dysfunction. Lipids 2018; 53:177-187. [DOI: 10.1002/lipd.12014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Aline D. de Lima
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Maria C. Guido
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Elaine R. Tavares
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Priscila O. Carvalho
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Alyne F. Marques
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Marcelo D. T. de Melo
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Vera M. C. Salemi
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Roberto Kalil-Filho
- Heart Failure Unit and Clinical Cardiology Division; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| | - Raul C. Maranhão
- Laboratory of Metabolism and Lipids; Heart Institute (InCor), Medical School Hospital, University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
- Faculty of Pharmaceutical Sciences; University of São Paulo; Av. Dr. Eneas de Carvalho Aguiar, 44, Bl. 2, 1o.SS, São Paulo SP, 05403-900 Brazil
| |
Collapse
|
43
|
Masana L, Girona J, Ibarretxe D, Rodríguez-Calvo R, Rosales R, Vallvé JC, Rodríguez-Borjabad C, Guardiola M, Rodríguez M, Guaita-Esteruelas S, Oliva I, Martínez-Micaelo N, Heras M, Ferré R, Ribalta J, Plana N. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis. J Clin Lipidol 2018; 12:292-299.e3. [PMID: 29398429 DOI: 10.1016/j.jacl.2017.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
While the impact of very low concentrations of low-density lipoprotein cholesterol (LDL-C) on cardiovascular prevention is very reassuring, it is intriguing to know what effect these extremely low LDL-C concentrations have on lipid homoeostasis. The evidence supporting the safety of extremely low LDL levels comes from genetic studies and clinical drug trials. Individuals with lifelong low LDL levels due to mutations in genes associated with increased LDL-LDL receptor (LDLR) activity reveal no safety issues. Patients achieving extremely low LDL levels in the IMPROVE-IT and FOURIER, and the PROFICIO and ODYSSEY programs seem not to have an increased prevalence of adverse effects. The main concern regarding extremely low LDL-C plasma concentrations is the adequacy of the supply of cholesterol, and other molecules, to peripheral tissues. However, LDL proteomic and kinetic studies reaffirm that LDL is the final product of endogenous lipoprotein metabolism. Four of 5 LDL particles are cleared through the LDL-LDLR pathway in the liver. Given that mammalian cells have no enzymatic systems to degrade cholesterol, the LDL-LDLR pathway is the main mechanism for removal of cholesterol from the body. Our focus, therefore, is to review, from a physiological perspective, why such extremely low LDL-C concentrations do not appear to be detrimental. We suggest that extremely low LDL-C levels due to increased LDLR activity may be a surrogate of adequate LDL-LDLR pathway function.
Collapse
Affiliation(s)
- Luis Masana
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain.
| | - Josefa Girona
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Daiana Ibarretxe
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Ricardo Rodríguez-Calvo
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Roser Rosales
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Joan-Carles Vallvé
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Cèlia Rodríguez-Borjabad
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Montserrat Guardiola
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Marina Rodríguez
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Sandra Guaita-Esteruelas
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Iris Oliva
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Neus Martínez-Micaelo
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Mercedes Heras
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Raimon Ferré
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Josep Ribalta
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Núria Plana
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|
44
|
Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model. Eur J Pharmacol 2017; 818:449-456. [PMID: 29155143 DOI: 10.1016/j.ejphar.2017.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/27/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
The use of rat and mouse models limits the translation to humans for developing novel drugs targeting nonalcoholic steatohepatitis (NASH). Obeticholic acid (OCA) illustrates this limitation since its dyslipidemic effect in humans cannot be observed in these rodents. Conversely, Golden Syrian hamsters have a lipoprotein metabolism mimicking human dyslipidemia since it does express the cholesteryl ester transfer protein (CETP). We therefore developed a Diet-Induced NASH (DIN) hamster model and evaluated the impact of OCA. Compared with chow fed controls, hamsters fed for 20 weeks with a free-choice (FC) diet, developed obesity, insulin resistance, dyslipidemia and NASH (microvesicular steatosis, inflammation, hepatocyte ballooning and perisinusoidal to bridging fibrosis). After 20 weeks of diet, FC fed hamsters were treated without or with obeticholic acid (15mg/kg/day) for 5 weeks. Although a non-significant trend towards higher dietary caloric intake was observed, OCA significantly lowered body weight after 5 weeks of treatment. OCA significantly increased CETP activity and LDL-C levels by 20% and 27%, and reduced HDL-C levels by 20%. OCA blunted hepatic gene expression of Cyp7a1 and Cyp8b1 and reduced fecal bile acids mass excretion by 64% (P < 0.05). Hamsters treated with OCA showed a trend towards higher scavenger receptor Class B type I (SR-BI) and lower LDL-receptor hepatic protein expression. OCA reduced NAS score for inflammation (P < 0.01) and total NAS score, although not significantly. Compared to mouse and rat models, the DIN hamster replicates benefits and side effects of OCA as observed in humans, and should be useful for evaluating novel drugs targeting NASH.
Collapse
|
45
|
Vitali C, Khetarpal SA, Rader DJ. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep 2017; 19:132. [PMID: 29103089 DOI: 10.1007/s11886-017-0940-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy. RECENT FINDINGS Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B. Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Cecilia Vitali
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sumeet A Khetarpal
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Daniel J Rader
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Departments of Genetics and Medicine, Cardiovascular Institute, and Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Ye LF, Zheng YR, Zhang QG, Yu JW, Wang LH. Meta-analysis of the association between SCARB1 polymorphism and fasting blood lipid levels. Oncotarget 2017; 8:81145-81153. [PMID: 29113374 PMCID: PMC5655269 DOI: 10.18632/oncotarget.20867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Studies have shown that the scavenger receptor class B type 1 (SCARB1) rs5888 polymorphism impacts fasting blood lipid levels differently in men and women. A meta-analysis and statistical tests was therefore performed to determine the relationship between the rs5888 polymorphism and lipid levels in men and women. Twelve studies with 12,147 subjects were selected for this study. In a dominant model, the CT+TT genotype group had lower triglyceride levels than the CC group in men (standardized mean difference (SMD): −0.11; 95% confidence interval (CI): −0.21 to −0.02; P = 0.016; I2 = 51.5%). No statistical differences were detected in women. Subgroup analysis of different racial groups revealed significant correlation between the SCARB1 rs5888 polymorphism and higher high-density lipoprotein cholesterol (HDL-C) levels (SMD: 0.15; 95% CI: 0.08 to 0.21; P ≤ 0.001; I2 = 0%) and lower triglyceride levels (SMD: −0.16; 95% CI: −0.26 to −0.04; P = 0.013; I2 = 60.6%) in non-Asian men. No evidence of heterogeneity was observed when eliminating outlier studies, and no publication bias was detected. This meta-analysis suggests the SCARB1 rs5888 polymorphism is associated with higher HDL-C and lower triglyceride levels in non-Asian men.
Collapse
Affiliation(s)
- Li-Fang Ye
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Ya-Ru Zheng
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Qing-Gang Zhang
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Jian-Wu Yu
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Li-Hong Wang
- Department of Cardiovascular Sciences, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
DOBIÁŠOVÁ M. Atherogenic Impact of Lecithin-Cholesterol Acyltransferase and Its Relation to Cholesterol Esterification Rate in HDL (FERHDL) and AIP [log(TG/HDL-C)] Biomarkers: The Butterfly Effect? Physiol Res 2017; 66:193-203. [DOI: 10.33549/physiolres.933621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers – FERHDL (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php.
Collapse
Affiliation(s)
- M. DOBIÁŠOVÁ
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
48
|
Borel P, Desmarchelier C. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability. Nutrients 2017; 9:E246. [PMID: 28282870 PMCID: PMC5372909 DOI: 10.3390/nu9030246] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/11/2023] Open
Abstract
Blood concentration of vitamin A (VA), which is present as different molecules, i.e., mainly retinol and provitamin A carotenoids, plus retinyl esters in the postprandial period after a VA-containing meal, is affected by numerous factors: dietary VA intake, VA absorption efficiency, efficiency of provitamin A carotenoid conversion to VA, VA tissue uptake, etc. Most of these factors are in turn modulated by genetic variations in genes encoding proteins involved in VA metabolism. Genome-wide association studies (GWAS) and candidate gene association studies have identified single nucleotide polymorphisms (SNPs) associated with blood concentrations of retinol and β-carotene, as well as with β-carotene bioavailability. These genetic variations likely explain, at least in part, interindividual variability in VA status and in VA bioavailability. However, much work remains to be done to identify all of the SNPs involved in VA status and bioavailability and to assess the possible involvement of other kinds of genetic variations, e.g., copy number variants and insertions/deletions, in these phenotypes. Yet, the potential usefulness of this area of research is exciting regarding the proposition of more personalized dietary recommendations in VA, particularly in populations at risk of VA deficiency.
Collapse
Affiliation(s)
- Patrick Borel
- NORT, Aix-Marseille Université, INRA, INSERM, 13005 Marseille, France.
| | | |
Collapse
|