1
|
De Paoli M, Patel Z, Fang S, Werstuck GH. The Role of Estrogen and ER Stress in Glycemic Regulation in the Sexually Dimorphic TALLYHO/JngJ Mouse Model of Diabetes. J Endocr Soc 2025; 9:bvaf048. [PMID: 40191018 PMCID: PMC11968335 DOI: 10.1210/jendso/bvaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 04/09/2025] Open
Abstract
The global incidence of diabetes mellitus is increasing, causing a heavy burden on health care management and costs. Sex differences in the incidence and prevalence of diabetes mellitus do exist, with premenopausal women being protected from developing this disease, compared to men or postmenopausal women. The mechanisms underlying these differences are not yet known and experimental animal models can significantly advance our understanding of these processes. In this study we characterized a mouse model of polygenic type 2 diabetes, the TALLYHO/JngJ mouse, which shows sexual dimorphism in blood glucose regulation. Male TALLYHO/JngJ mice develop chronic hyperglycemia by 5 weeks of age, while females remain normoglycemic. We analyzed the role of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR) in the development of hyperglycemia in this mouse model. Additionally, we evaluated the effect of estrogen depletion in female TALLYHO/JngJ mice through ovariectomies. Ovariectomized female mice and males become chronically hyperglycemic (fasting blood glucose threshold >15 mM) and show significantly increased expression of GRP78/GRP94, markers of the adaptive unfolded protein response (UPR). GADD153/CHOP, a marker of the apoptotic UPR, is significantly increased in ovariectomized female mice. Treatment with a chemical chaperone 4-PBA, an ER stress alleviator, improves but does not normalize blood glucose levels in male and ovariectomized female TALLYHO/JngJ mice. Together, these findings support a protective role for estrogen and identify the UPR as a pathway through which estrogen may maintain pancreatic beta cell health.
Collapse
Affiliation(s)
- Monica De Paoli
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada L8L 2X2
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Zinal Patel
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Susanna Fang
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada L8L 2X2
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
2
|
Geng S, Zhang Y, Lu R, Irimia D, Li L. Resolving neutrophils through genetic deletion of TRAM attenuate atherosclerosis pathogenesis. iScience 2024; 27:110097. [PMID: 38883832 PMCID: PMC11179630 DOI: 10.1016/j.isci.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Daniel Irimia
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02114, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| |
Collapse
|
3
|
Liang T, Lin C, Ning H, Qin F, Zhang B, Zhao Y, Cao T, Jiao S, Chen H, He Y, Cai H. Pre-treatment risk predictors of valproic acid-induced dyslipidemia in pediatric patients with epilepsy. Front Pharmacol 2024; 15:1349043. [PMID: 38628642 PMCID: PMC11018995 DOI: 10.3389/fphar.2024.1349043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Valproic acid (VPA) stands as one of the most frequently prescribed medications in children with newly diagnosed epilepsy. Despite its infrequent adverse effects within therapeutic range, prolonged VPA usage may result in metabolic disturbances including insulin resistance and dyslipidemia. These metabolic dysregulations in childhood are notably linked to heightened cardiovascular risk in adulthood. Therefore, identification and effective management of dyslipidemia in children hold paramount significance. Methods: In this retrospective cohort study, we explored the potential associations between physiological factors, medication situation, biochemical parameters before the first dose of VPA (baseline) and VPA-induced dyslipidemia (VID) in pediatric patients. Binary logistic regression was utilized to construct a predictive model for blood lipid disorders, aiming to identify independent pre-treatment risk factors. Additionally, The Receiver Operating Characteristic (ROC) curve was used to evaluate the performance of the model. Results: Through binary logistic regression analysis, we identified for the first time that direct bilirubin (DBIL) (odds ratios (OR) = 0.511, p = 0.01), duration of medication (OR = 0.357, p = 0.009), serum albumin (ALB) (OR = 0.913, p = 0.043), BMI (OR = 1.140, p = 0.045), and aspartate aminotransferase (AST) (OR = 1.038, p = 0.026) at baseline were independent risk factors for VID in pediatric patients with epilepsy. Notably, the predictive ability of DBIL (AUC = 0.690, p < 0.0001) surpassed that of other individual factors. Furthermore, when combined into a predictive model, incorporating all five risk factors, the predictive capacity significantly increased (AUC = 0.777, p < 0.0001), enabling the forecast of 77.7% of dyslipidemia events. Conclusion: DBIL emerges as the most potent predictor, and in conjunction with the other four factors, can effectively forecast VID in pediatric patients with epilepsy. This insight can guide the formulation of individualized strategies for the clinical administration of VPA in children.
Collapse
Affiliation(s)
- Tiantian Liang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hong Ning
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fuli Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yifang He
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| |
Collapse
|
4
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell B, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563200. [PMID: 37961551 PMCID: PMC10634693 DOI: 10.1101/2023.10.19.563200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
|
5
|
Biondo-Simões MDELP, Dall'antonia MO, Goehr MP, Biondo-Simões R, Ioshii SO, Robes RR. Valproic acid and bladder healing: an experimental study in rats. Rev Col Bras Cir 2022; 49:e20223399. [PMID: 36449944 PMCID: PMC10578821 DOI: 10.1590/0100-6991e-20223399-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE to recognize the effects of valproic acid (VPA), an epigenetic drug, on the bladder healing process, in rats. METHOD twenty male Wistar rats were divided in two groups: experimental (A), treated with VPA (150mg/Kg/day), and control (B) with 0.9% sodium chloridrate. Healing was analyzed on the third and seventh days, evaluating the inflammatory reaction, collagen synthesis and angiogenesis. RESULTS inflammatory reaction on the third day was minimal and acute in both groups. On the seventh day, it was subacute in both groups, moderate intensity in group A and minimal in group B (p=0.0476). Collagen III intensity, marked by immunohistochemistry, was similar in both groups. Collagen I intensity on the third day was similar in both groups, but on the seventh day it was higher in experimental than control (p=0.0476). Collagen evaluation by picrosiriusred allowed to verify that the presence of collagen III was similar in both groups (p=0.3312) on the third day, and it was higher in control on the seventh day (p=0.0015). Collagen I showed similarity on the third day (p=0.3100), and it was higher in control on the seventh day (p=0.0015). Vessel marked with anti-SMA counting showed fewer vessels on the third (p=0.0034) and seventh day (p=0.0087) in experimental group. The lower intensity of angiogenesis was confirmed with anti-CD34, on the third day (p=0,0006) and on the seventh day (p=0,0072). CONCLUSION VPA determined alterations in the bladder healing process, in rats, with lower collagen density and less angiogenic activity, but without compromising the integrity of the organ.
Collapse
Affiliation(s)
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Rachel Biondo-Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Departamento de Cirurgia - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
6
|
Deletion of Macrophage-Specific Glycogen Synthase Kinase (GSK)-3α Promotes Atherosclerotic Regression in Ldlr−/− Mice. Int J Mol Sci 2022; 23:ijms23169293. [PMID: 36012557 PMCID: PMC9409307 DOI: 10.3390/ijms23169293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022] Open
Abstract
Recent evidence from our laboratory suggests that impeding ER stress–GSK3α/β signaling attenuates the progression and development of atherosclerosis in mouse model systems. The objective of this study was to determine if the tissue-specific genetic ablation of GSK3α/β could promote the regression of established atherosclerotic plaques. Five-week-old low-density lipoprotein receptor knockout (Ldlr−/−) mice were fed a high-fat diet for 16 weeks to promote atherosclerotic lesion formation. Mice were then injected with tamoxifen to induce macrophage-specific GSK3α/β deletion, and switched to standard diet for 12 weeks. All mice were sacrificed at 33 weeks of age and atherosclerosis was quantified and characterized. Female mice with induced macrophage-specific GSK3α deficiency, but not GSK3β deficiency, had reduced plaque volume (~25%) and necrosis (~40%) in the aortic sinus, compared to baseline mice. Atherosclerosis was also significantly reduced (~60%) in the descending aorta. Macrophage-specific GSK3α-deficient mice showed indications of increased plaque stability and reduced inflammation in plaques, as well as increased CCR7 and ABCA1 expression in lesional macrophages, consistent with regressive plaques. These results suggest that GSK3α ablation promotes atherosclerotic plaque regression and identify GSK3α as a potential target for the development of new therapies to treat existing atherosclerotic lesions in patients with cardiovascular disease.
Collapse
|
7
|
Gomez-Navarro N, Maldutyte J, Poljak K, Peak-Chew SY, Orme J, Bisnett BJ, Lamb CH, Boyce M, Gianni D, Miller EA. Selective inhibition of protein secretion by abrogating receptor-coat interactions during ER export. Proc Natl Acad Sci U S A 2022; 119:e2202080119. [PMID: 35901214 PMCID: PMC9351455 DOI: 10.1073/pnas.2202080119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2023] Open
Abstract
Protein secretion is an essential process that drives cell growth, movement, and communication. Protein traffic within the secretory pathway occurs via transport intermediates that bud from one compartment and fuse with a downstream compartment to deliver their contents. Here, we explore the possibility that protein secretion can be selectively inhibited by perturbing protein-protein interactions that drive capture into transport vesicles. Human proprotein convertase subtilisin/kexin type 9 (PCSK9) is a determinant of cholesterol metabolism whose secretion is mediated by a specific cargo adaptor protein, SEC24A. We map a series of protein-protein interactions between PCSK9, its endoplasmic reticulum (ER) export receptor SURF4, and SEC24A that mediate secretion of PCSK9. We show that the interaction between SURF4 and SEC24A can be inhibited by 4-phenylbutyrate (4-PBA), a small molecule that occludes a cargo-binding domain of SEC24. This inhibition reduces secretion of PCSK9 and additional SURF4 clients that we identify by mass spectrometry, leaving other secreted cargoes unaffected. We propose that selective small-molecule inhibition of cargo recognition by SEC24 is a potential therapeutic intervention for atherosclerosis and other diseases that are modulated by secreted proteins.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Julija Maldutyte
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Kristina Poljak
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jonathon Orme
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Brittany J. Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Caitlin H. Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710, USA
| | - Davide Gianni
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Elizabeth A. Miller
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
8
|
BIONDO-SIMÕES MARIADELOURDESPESSOLE, DALL’ANTONIA MOACIROLIVEIRA, GOEHR MATHEUSPRINCE, BIONDO-SIMÕES RACHEL, IOSHII SÉRGIOOSSAMU, ROBES ROGÉRIORIBEIRO. Ácido valpróico e cicatrização em bexiga: estudo experimental em ratos. Rev Col Bras Cir 2022. [DOI: 10.1590/0100-6991e-20223399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RESUMO Objetivo: reconhecer os efeitos do ácido valpróico (VPA), uma droga epigenética, no processo de cicatrização da bexiga, em ratos. Método: vinte ratos Wistar machos foram divididos em dois grupos: experimental (A), utilizando VPA (150mg/Kg/dia), e controle (B), tratados com cloreto de sódio 0,9% por gavagem. A cicatrização da bexiga foi analisada no terceiro e sétimo dia, estudando-se a reação inflamatória, síntese de colágeno, reepitelização e angiogênese. Resultados: a reação inflamatória no terceiro dia foi mínima e aguda em ambos os grupos. No sétimo dia, foi subaguda em ambos os grupos com intensidade moderada no grupo A e mínima no grupo B (p=0,0476). A intensidade do colágeno III, marcada pela imuno-histoquímica, foi semelhante nos dois grupos, nos dois tempos estudados. A intensidade de colágeno I no terceiro dia foi semelhante nos dois grupos, e maior no sétimo dia no grupo experimental (p=0,0476). A avaliação do colágeno pelo picrosiriusred mostrou que a presença de colágeno III foi semelhante em ambos os grupos (p=0,3312) no terceiro dia, e maior no controle no sétimo dia (p=0,0015). O colágeno I foi semelhante no terceiro dia (p=0,3100), e maior no controle no sétimo dia (p=0,0015). A contagem de vasos marcados pelo anti-SMA mostrou menos vasos no terceiro (p=0,0034) e sétimo dia (p=0,0087) no grupo experimental, confirmado pelo anti-CD34, no terceiro (p=00006) e no sétimo dia (p=0,0072). Conclusão: o VPA determinou alterações no processo de cicatrização da bexiga, em ratos, com menor densidade de colágeno e menor atividade angiogênica, mas sem comprometer a integridade do órgão.
Collapse
|
9
|
Kuang X, Chen S, Lao J, Chen Y, Jia D, Tu L, Ma L, Liao X, Zhao W, Li Q. HDAC9 in the Injury of Vascular Endothelial Cell Mediated by P38 MAPK Pathway. J Interferon Cytokine Res 2021; 41:439-449. [PMID: 34935488 DOI: 10.1089/jir.2021.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ischemic stroke caused by atherosclerosis (AS) poses a serious threat to human life expectancy and quality. With the development of genome-wide association studies, the association of histone deacetylase 9 (HDAC9) expression of atheromatous plaques with ischemic stroke in large arteries has been revealed, but the molecular mechanisms behind this phenomenon have not been elucidated. In this study, we explored the effect of HDAC9 on the P38 mitogen activated protein kinase (P38 MAPK), a classic cellular inflammation-related pathway, by knocking down HDAC9 in vascular endothelial cells with short hairpin RNA (shRNA) and found that HDAC9 may mediate oxidized low density lipoprotein (ox-LDL)-induced inflammatory injury in vascular endothelial cells by regulating the phosphorylation level of P38 MAPK to lead to AS. It can be seen that HDAC9 may be a target to control the formation of atherosclerotic plaques. In follow-up experiments, it was verified that sodium valproate (SVA), as a HDAC9 inhibitor, can indeed antagonize the inflammatory damage of vascular endothelial cells, as well as SB203580, which is a P38 MAPK inhibitor. It proves that SVA may be a potential drug for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xi Kuang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Shuang Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Jitong Lao
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Yongmin Chen
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Dandan Jia
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Linzhi Tu
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Lin Ma
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Xiaoping Liao
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Wenjie Zhao
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Haikou, China
| |
Collapse
|
10
|
Patel S, Werstuck G. Characterizing the Role of Glycogen Synthase Kinase-3α/β in Macrophage Polarization and the Regulation of Pro-Atherogenic Pathways in Cultured Ldlr -/- Macrophages. Front Immunol 2021; 12:676752. [PMID: 34394077 PMCID: PMC8361494 DOI: 10.3389/fimmu.2021.676752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
The molecular and cellular mechanisms that link cardiovascular risk factors to the initiation and progression of atherosclerosis are not understood. Recent findings from our laboratory indicate that endoplasmic reticulum (ER) stress signaling through glycogen synthase kinase (GSK)-3α/β induces pro-atherosclerotic pathways. The objective of this study was to define the specific roles of GSK3α and GSK3β in the activation of pro-atherogenic processes in macrophages. Bone marrow derived macrophages (BMDM) were isolated from low-density lipoprotein receptor knockout (Ldlr-/-) mice and Ldlr-/- mice with myeloid deficiency of GSK3α and/or GSK3β. M1 and M2 macrophages were used to examine functions relevant to the development of atherosclerosis, including polarization, inflammatory response, cell viability, lipid accumulation, migration, and metabolism. GSK3α deficiency impairs M1 macrophage polarization, and reduces the inflammatory response and lipid accumulation, but increases macrophage mobility/migration. GSK3β deficiency promotes M1 macrophage polarization, which further increases the inflammatory response and lipid accumulation, but decreases macrophage migration. Macrophages deficient in both GSK3α and GSK3β exhibit increased cell viability, proliferation, and metabolism. These studies begin to delineate the specific roles of GSK3α and GSK3β in macrophage polarization and function. These data suggest that myeloid cell GSK3α signaling regulates M1 macrophage polarization and pro-atherogenic functions to promote atherosclerosis development.
Collapse
Affiliation(s)
- Sarvatit Patel
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Davis FM, Tsoi LC, Melvin WJ, denDekker A, Wasikowski R, Joshi AD, Wolf S, Obi AT, Billi AC, Xing X, Audu C, Moore BB, Kunkel SL, Daugherty A, Lu HS, Gudjonsson JE, Gallagher KA. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J Exp Med 2021; 218:211922. [PMID: 33779682 PMCID: PMC8008365 DOI: 10.1084/jem.20201839] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-β regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB–mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II–induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI.,Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI.,Department of Computation Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sonya Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Christopher Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Bethany B Moore
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI.,Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
13
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
14
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
15
|
Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021; 164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Our previous findings have demonstrated the protective effect of endothelial Nox4-based NADPH oxidase on atherosclerosis. One of the possible mechanisms is the inhibition of soluble epoxide hydrolase (sEH), a proinflammatory and atherogenic factor. Our goal was to investigate whether in vivo inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) alleviates endothelial Nox4 dysfunction caused atherosclerosis and the regulatory mechanism of endothelial Nox4 on sEH. METHODS & results: We used endothelial human Nox4 dominant-negative (EDN) transgenic mice in ApoE deficient background to mimic the dysfunction of endothelial Nox4 in atherosclerosis-prone conditions. In EDN aortic endothelium, sEH and the inflammatory marker vascular cell adhesion molecule 1 (VCAM1) were upregulated. TPPU reduced atherosclerotic lesions in EDN mice. In EDN endothelial cells (ECs), the endoplasmic reticulum (ER) stress markers (BIP, IRE1α, phosphorylation of PERK, ATF6) were upregulated, and they can be suppressed by ER stress inhibitor 4-phenyl butyric acid (4-PBA). In EDN ECs, 4-PBA downregulated the expression of sEH and VCAM1, suppressed inflammation, and its application in vivo reduced atherosclerotic lesions of EDN mice. CONCLUSIONS Endothelial Nox4 dysfunction upregulated sEH to enhance inflammation, probably by its induction of ER stress. Inhibition of ER stress or sEH is beneficial to alleviate atherosclerosis caused by endothelial Nox4 dysfunction.
Collapse
Affiliation(s)
- Weimin Yu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| | - Lili Chen
- Wuhan Easy Diagnosis Biomedicine Co., Ltd, Wuhan, 430075, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
16
|
|
17
|
Gong L, Liu G, Zhu H, Li C, Li P, Liu C, Tang H, Wu K, Wu J, Liu D, Tang X. IL-32 induces epithelial-mesenchymal transition by triggering endoplasmic reticulum stress in A549 cells. BMC Pulm Med 2020; 20:278. [PMID: 33097029 PMCID: PMC7585222 DOI: 10.1186/s12890-020-01319-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a key process in the onset and development of idiopathic pulmonary fibrosis (IPF) with unclear mechanisms. Our previous studies found that bleomycin and tunicamycin could induce ER stress and consequently trigger EMT accompanying with IL-32 overexpression. This study was aimed to investigate the effects of IL-32 on EMT and ER stress to elucidate the pathogenesis of IPF. Methods Human lung adenocarcinoma A549 cells were treated with recombinant human (rh)IL-32, IL-32 siRNA and EMT inducer tunicamycin, or 4-phenylbutyric acid (4-PBA), respectively. Then the cell morphology was observed and the expression of ER-related markers and EMT-related markers were detected by RT-qPCR or western blotting. Results Stimulation of A549 cells with rhIL-32 led to a morphological change from a pebble-like shape to an elongated shape in a portion of the cells, accompanied by down regulated expression of the epithelial cell marker E-cadherin and up regulated expression of the mesenchymal cell markers N-cadherin, Vimentin, and Zeb-1. However, these rhIL-32 induced changes were inhibited by the ER stress inhibitor 4-PBA. Suppression of IL-32 expression with siRNA inhibited TM-induced EMT. Further stimulation of the A549 cells with rhIL-32 demonstrated an increase in the expression of GRP78, although this increase was also inhibited by 4-PBA. Conclusions These results suggest that IL-32 induces EMT in A549 cells by triggering ER stress, and IL-32 may be a novel marker for IPF. Supplementary information Supplementary information accompanies this paper at 10.1186/s12890-020-01319-z.
Collapse
Affiliation(s)
- Ling Gong
- The First Clinical Medical College, Jinan University, 601 W. Huangpu Avenue, Guangzhou, 510630, China.,Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Gang Liu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.,Institute of Respiratory Diseases, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Honglan Zhu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Caihong Li
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Pengmei Li
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Changlu Liu
- Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hongbo Tang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Kaifeng Wu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.,Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Jie Wu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China.,Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China
| | - Daishun Liu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, China. .,Department of Respiratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No.98 Fenghuang Road, Zunyi, 563002, Guizhou, China.
| | - Xiaoping Tang
- The First Clinical Medical College, Jinan University, 601 W. Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
18
|
Batjargal K, Tajima T, Jimbo EF, Yamagata T. Effect of 4-phenylbutyrate and valproate on dominant mutations of WFS1 gene in Wolfram syndrome. J Endocrinol Invest 2020; 43:1317-1325. [PMID: 32219690 DOI: 10.1007/s40618-020-01228-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Wolfram syndrome (WS) is a rare disorder caused by mutations in WFS1 that is characterized by diabetes mellitus, optic atrophy, sensorineural deafness, diabetes insipidus, and neurodegeneration. This disease is usually inherited as an autosomal recessive trait, but an autosomal dominant form has been reported. WFS1 encodes a transmembrane protein, which is a maintenance component of endoplasmic homeostasis. These dominant mutations were thought to increase endoplasmic reticulum (ER) stress. Recent studies suggest that 4-phenylbutyrate (PBA) and valproate (VPA) reduce ER stress. The objective of this study was to analyze the effect of PBA and VPA on dominant WFS1 mutants in vitro. METHODS We determined whether dominant WFS1 mutants (p.His313Tyr, p.Trp314Arg, p.Asp325_Ile328del, p.Glu809Lys, and p.Glu864Lys) have the dominant negative effect using a luciferase assay of ER stress response element marker as ER stress. Moreover, the rescue of cell apoptosis induced by dominant WFS1 mutants following treatment with PBA or VPA was determined by quantitative real-time PCR of C/EBP homologous protein (CHOP) mRNA expression. RESULTS These mutants showed the dominant negative effect on the wild-type WFS1. In addition, the levels of ER stress and CHOP mRNA were significantly elevated by all dominant WFS1 mutants. After treatment with PBA or VPA, ER stress and cell apoptosis were reduced in each mutant. CONCLUSIONS PBA and VPA could reduce the ER stress and cell apoptosis caused by dominant WFS1 mutants.
Collapse
Affiliation(s)
- K Batjargal
- Department of Pediatrics, Graduate School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
- Department of Pediatrics, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - T Tajima
- Department of Pediatrics, Graduate School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - E F Jimbo
- Department of Pediatrics, Graduate School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - T Yamagata
- Department of Pediatrics, Graduate School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|
19
|
Mazzoli V, Zhong LH, Dang VT, Shi Y, Werstuck GH. Characterization of Retinal Microvascular Complications and the Effects of Endoplasmic Reticulum Stress in Mouse Models of Diabetic Atherosclerosis. Invest Ophthalmol Vis Sci 2020; 61:49. [PMID: 32852545 PMCID: PMC7452854 DOI: 10.1167/iovs.61.10.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Recent evidence suggests that there is a correlation between the micro- and macrovascular complications of diabetes mellitus. The aim of this study is to investigate the molecular mechanisms by which diabetes promotes the development of microvascular disease (diabetic retinopathy [DR]) through characterization of the effects of hyperglycemia in the retina of mouse models of diabetic atherosclerosis. Methods Hyperglycemia was induced in apolipoprotein E-deficient (ApoE-/-) mice, a model of accelerated atherosclerosis, either through streptozotocin (STZ) injection or introduction of the Ins2Akita mutation (ApoE-/-Ins2+/Akita). Another subset of ApoE-/- mice was supplemented with glucosamine (GlcN). To attenuate atherosclerosis, subsets of mice from each experimental group were treated with the chemical chaperone, 4-phenylbutyric acid (4PBA). Eyes from 15-week-old mice were either trypsin digested and stained with periodic acid-Schiff (PAS) or frozen for cryostat sectioning and immunostained for endoplasmic reticulum (ER) stress markers, including C/EBP homologous protein (CHOP) and 78-kDa glucose-regulated protein (GRP78). PAS-stained retinal flatmounts were analyzed for microvessel density, acellular capillaries, and pericyte ghosts. Results Features of DR, including pericyte ghosts and reduced microvessel density, were observed in hyperglycemic and GlcN-supplemented mice. Treatment with 4PBA reduced ER stress in the retinal periphery and attenuated DR in the experimental groups. Conclusions Mouse models of diabetic atherosclerosis show characteristic pathologies of DR that correlate with atherosclerosis. The increased magnitude of these changes and responses to 4PBA in the peripheral retina suggest that future studies should be aimed at assessing regional differences in mechanisms of ER stress-related pathways in these mouse models.
Collapse
Affiliation(s)
- Vienna Mazzoli
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Lexy H. Zhong
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Vi T. Dang
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Geoff H. Werstuck
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Kusumastuti K, Jaeri S. The effect of long-term valproic acid treatment in the level of total cholesterol among adult. Indian J Pharmacol 2020; 52:134-137. [PMID: 32565601 PMCID: PMC7282689 DOI: 10.4103/ijp.ijp_655_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/29/2019] [Indexed: 11/26/2022] Open
Abstract
Valproic acid (VA) is the antiepileptic, antimigraine and anti-mental disturbances agent. The use of VA is correlated to metabolic rearrangements including changes of lipoproteins; however, these effects still in debate. Herewith we analyze the effect of long-term VA treatment in the level of total cholesterol among adult. Sixty (30 case groups and 30 control groups) participants were asked for venous blood collection to examine the level of total cholesterol by enzymatic cholesterol oxidase phenol 4-aminoantipyrine peroxidase. The relationship of the long-term VA treatment and the level of total cholesterol was obtained from the analysis using the logistic regression analysis. Our analysis depicts that there is a relationship between the long-term VA treatment and the level of total cholesterol (P=0.024, odds ratio 0.272, 95% confidence interval 0.088–0.844). in conclusion, the long-term VA treatment reduces the level of total cholesterol in adult.
Collapse
Affiliation(s)
- Kurnia Kusumastuti
- Department of Neurology, Faculty of Medicine, Airlangga University, Surabaya Indonesia, Indonesia
| | - Santoso Jaeri
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
21
|
The Association Between Vascular Inflammation and Depressive Disorder. Causality, Biomarkers and Targeted Treatment. Pharmaceuticals (Basel) 2020; 13:ph13050092. [PMID: 32408603 PMCID: PMC7281196 DOI: 10.3390/ph13050092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes, obesity, atherosclerosis, and myocardial infarction are frequently co-morbid with major depressive disorder. In the current review, it is argued that vascular inflammation is a factor that is common to all disorders and that an endothelial dysfunction of the blood-brain barrier could be involved in the induction of depression symptoms. Biomarkers for vascular inflammation include a high plasma level of C-reactive protein, soluble cell-adhesion molecules, von Willebrand factor, aldosterone, and proinflammatory cytokines like interleukin-6 or tumor necrosis factor α. A further possible biomarker is flow-mediated dilation of the brachial artery. Treatment of vascular inflammation is expected to prevent or to reduce symptoms of depression. Several tentative treatments for this form of depression can be envisioned: eicosapentaenoic acid (EPA), valproate, Vagus-nerve stimulation, nicotinic α7 agonists, and agonists of the cannabinoid CB2-receptor.
Collapse
|
22
|
Zhu W, Liu S. The role of human cytomegalovirus in atherosclerosis: a systematic review. Acta Biochim Biophys Sin (Shanghai) 2020; 52:339-353. [PMID: 32253424 DOI: 10.1093/abbs/gmaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a progressive vascular disease with increasing morbidity and mortality year by year in modern society. Human cytomegalovirus (HCMV) infection is closely associated with the development of atherosclerosis. HCMV infection may accelerate graft atherosclerosis and the development of transplant vasculopathy in organ transplantation. However, our current understanding of HCMV-associated atherosclerosis remains limited and is mainly based on clinical observations. The underlying mechanism of the involvement of HCMV infection in atherogenesis remains unclear. Here, we summarized current knowledge regarding the multiple influences of HCMV on a diverse range of infected cells, including vascular endothelial cells, vascular smooth muscle cells, monocytes, macrophages, and T cells. In addition, we described potential HCMV-induced molecular mechanisms, such as oxidative stress, endoplasmic reticulum stress, autophagy, lipid metabolism, and miRNA regulation, which are involved in the development of HCMV-associated atherogenesis. Gaining an improved understanding of these mechanisms will facilitate the development of novel and effective therapeutic strategies for the treatment of HCMV-related cardiovascular disease.
Collapse
Affiliation(s)
- Wenbo Zhu
- Clinical Research Institute, First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Clinical Laboratory, First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta 2020; 504:125-137. [PMID: 32017925 DOI: 10.1016/j.cca.2020.01.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) is an intracellular membranous organelle involved in the synthesis, folding, maturation and post-translation modification of secretory and transmembrane proteins. Therefore, ER is closely related to the maintenance of intracellular homeostasis and the good balance between health and diseases. Endoplasmic reticulum stress (ERS) occurs when unfolded/misfolded proteins accumulate after disturbance of ER environment. In response to ERS, cells trigger an adaptive response called the Unfolded protein response (UPR), which helps cells cope with the stress. In recent years, a large number of studies show that ERS can aggravate cardiovascular diseases. ERS-related proteins expression in cardiovascular diseases is on the rise. Therefore, down-regulation of ERS is critical for alleviating symptoms of cardiovascular diseases, which may be used in the near future to treat cardiovascular diseases. This article reviews the relationship between ERS and cardiovascular diseases and drugs that inhibit ERS. Furthermore, we detail the role of ERS inhibitors in the treatment of cardiovascular disease. Drugs that inhibit ERS are considered as promising strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
24
|
Rahtes A, Pradhan K, Sarma M, Xie D, Lu C, Li L. Phenylbutyrate facilitates homeostasis of non-resolving inflammatory macrophages. Innate Immun 2019; 26:62-72. [PMID: 31604378 PMCID: PMC6974874 DOI: 10.1177/1753425919879503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Non-resolving inflammatory monocytes/macrophages are critically involved in the
pathogenesis of chronic inflammatory diseases. However, mechanisms of macrophage
polarization are not well understood, thus hindering the development of
effective strategies to promote inflammation resolution. In this study, we
report that macrophages polarized by subclinical super-low dose LPS
preferentially expressed pro-inflammatory mediators such as
ccl2 (which encodes the protein monocyte chemo attractant
protein-1) with reduced expression of anti-inflammatory/homeostatic mediators
such as slc40a1 (which encodes the protein ferroportin-1). We
observed significantly elevated levels of the autophagy-associated and
pro-inflammatory protein p62 in polarized macrophages, closely correlated with
the inflammatory activation of ccl2 gene expression. In
contrast, we noted a significant increase of ubiquitinated/inactive
nuclear-erythroid-related factor 2 (NRF2), consistent with reduced
slc40a1 gene expression in polarized macrophages. Addition
of the homeostatic restorative agent phenylbutyrate (4-PBA) effectively reduced
cellular levels of p62 as well as ccl2 gene induction by
super-low dose LPS. On the other hand, application of 4-PBA also blocked the
accumulation of ubiquitinated NRF2 and restored anti-inflammatory
slc40a1 gene expression in macrophages. Together, our study
provides novel insights with regard to macrophage polarization and reveals 4-PBA
as a promising molecule in restoring macrophage homeostasis.
Collapse
Affiliation(s)
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, USA
| | - Mimosa Sarma
- Department of Chemical Engineering, Virginia Tech, USA
| | - David Xie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, USA
| |
Collapse
|
25
|
Mimori S, Kawada K, Saito R, Takahashi M, Mizoi K, Okuma Y, Hosokawa M, Kanzaki T. Indole-3-propionic acid has chemical chaperone activity and suppresses endoplasmic reticulum stress-induced neuronal cell death. Biochem Biophys Res Commun 2019; 517:623-628. [PMID: 31378367 DOI: 10.1016/j.bbrc.2019.07.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Insoluble aggregated proteins are often associated with neurodegenerative diseases. Previously, we investigated chemical chaperones that prevent the aggregation of denatured proteins. Among these, 4-phenyl butyric acid (4-PBA) has well-documented chemical chaperone activity, but is required at doses that have multiple effects on cells, warranting further optimization of treatment regimens. In this study, we demonstrate chemical chaperone activities of the novel compound indole-3-propionic acid (IPA). Although it has already been reported that IPA prevents β-amyloid aggregation, herein we show that this compound suppresses aggregation of denatured proteins. Our experiments with a cell culture model of Parkinson's disease are the first to show that IPA prevents endoplasmic reticulum (ER) stress and thereby protects against neuronal cell death. We suggest that IPA has potential for the treatment of neurodegenerative diseases and other diseases for which ER stress has been implicated.
Collapse
Affiliation(s)
- Seisuke Mimori
- Department of Clinical Medicine, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan.
| | - Koichi Kawada
- Department of Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Ryo Saito
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, 255 Furusawa-tsuko, Asao-ku, Kawasaki, Kanagawa, 215-0026, Japan
| | - Masato Takahashi
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Kenta Mizoi
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60, Nakaorui-machi, Takasaki, Gunma, 377-0033, Japan
| | - Yasunobu Okuma
- Department of Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Masakiyo Hosokawa
- Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomicho, Choshi, Chiba, 288-0025, Japan
| | - Tetsuto Kanzaki
- Department of Drug Informatics, Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
26
|
Burke AC, Sutherland BG, Telford DE, Morrow MR, Sawyez CG, Edwards JY, Huff MW. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr -/- mice. Atherosclerosis 2019; 286:60-70. [PMID: 31102954 DOI: 10.1016/j.atherosclerosis.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Naringenin is a citrus-derived flavonoid with lipid-lowering and insulin-sensitizing effects leading to athero-protection in Ldlr-/- mice fed a high-fat diet. However, the ability of naringenin to promote atherosclerosis regression is unknown. In the present study, we assessed the capacity of naringenin to enhance regression in Ldlr-/- mice with diet-induced intermediate atherosclerosis intervened with a chow diet. METHODS Male Ldlr-/- mice were fed a high-fat, cholesterol-containing (HFHC) diet for 12 weeks to induce intermediate atherosclerosis and metabolic dysfunction. Subsequently, a group of these mice were sacrificed for baseline analyses and the remainder either 1) continued on the HFHC diet, 2) switched to a chow diet or 3) switched to chow diet supplemented with naringenin. RESULTS After 12 weeks induction, intermediate lesions developed in the aortic sinus. Intervention with chow alone slowed lesion growth, while intervention with naringenin-supplemented chow completely halted lesion growth. Lesions were characterized by features of improved morphology. Compared to chow alone, naringenin reduced plaque macrophages and modestly increased smooth muscle cells. Investigating processes that contributed to improved plaque morphology, we showed naringenin further reduced plasma triglycerides and cholesterol compared to chow alone. Furthermore, elevated monocytosis and myelopoiesis were further corrected by intervention with naringenin compared to chow alone. Metabolically, naringenin enhanced the correction of insulin resistance, hepatic steatosis and obesity compared to chow alone, potentially contributing to enhanced regression. CONCLUSIONS Naringenin supplementation to chow enhances atherosclerosis regression in male Ldlr-/- mice. These studies further underscore the potential therapeutic utility of naringenin.
Collapse
Affiliation(s)
- Amy C Burke
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Marisa R Morrow
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Cynthia G Sawyez
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Jane Y Edwards
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
27
|
Lynn EG, Lhoták Š, Lebeau P, Byun JH, Chen J, Platko K, Shi C, O'Brien RE, Austin RC. 4‐Phenylbutyrate protects against atherosclerotic lesion growth by increasing the expression of HSP25 in macrophages and in the circulation of
Apoe
−/−
mice. FASEB J 2019; 33:8406-8422. [DOI: 10.1096/fj.201802293rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Edward G. Lynn
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| | - Šárka Lhoták
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| | - Paul Lebeau
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| | - Jae Hyun Byun
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| | - Jack Chen
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| | - Khrystyna Platko
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| | - Chunhua Shi
- Department of Cardiac SciencesLibin Cardiovascular Institute of AlbertaCumming School of MedicineUniversity of Calgary Calgary Alberta Canada
| | - R. Edward O'Brien
- Department of Cardiac SciencesLibin Cardiovascular Institute of AlbertaCumming School of MedicineUniversity of Calgary Calgary Alberta Canada
| | - Richard C. Austin
- Division of NephrologyDepartment of MedicineMcMaster UniversityThe Research Institute of St. Joe's HamiltonHamilton Centre for Kidney Research Hamilton Ontario Canada
| |
Collapse
|
28
|
Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications. Pharmacol Res 2019; 144:116-131. [PMID: 30954630 DOI: 10.1016/j.phrs.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/08/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
In the past two decades, significant advances have been made in the etiology of lipid disorders. Concomitantly, the discovery of liporegulatory functions of certain short-chain fatty acids has generated interest in their clinical applications. In particular, butyric acid (BA) and its derivative, 4-phenylbutyric acid (PBA), which afford health benefits against lipid disorders while being generally well tolerated by animals and humans have been assessed clinically. This review examines the evidence from cell, animal and human studies pertaining to the lipid-regulating effects of BA and PBA, their molecular mechanisms and therapeutic potential. Collectively, the evidence supports the view that intakes of BA and PBA benefit lipid homeostasis across biological systems. We reviewed the evidence that BA and PBA downregulate de novo lipogenesis, ameliorate lipotoxicity, slow down atherosclerosis progression, and stimulate fatty acid β-oxidation. Central to their mode of action, BA appears to function as a histone deacetylase (HDAC) inhibitor while PBA acts as a chemical chaperone and/or a HDAC inhibitor. Areas of further inquiry include the effects of BA and PBA on adipogenesis, lipolysis and apolipoprotein metabolism.
Collapse
|
29
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
30
|
Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018; 7:cells7060063. [PMID: 29921793 PMCID: PMC6025008 DOI: 10.3390/cells7060063] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders have become among the most serious threats to human health, leading to severe chronic diseases such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, as well as cardiovascular diseases. Interestingly, despite the fact that each of these diseases has different physiological and clinical symptoms, they appear to share certain pathological traits such as intracellular stress and inflammation induced by metabolic disturbance stemmed from over nutrition frequently aggravated by a modern, sedentary life style. These modern ways of living inundate cells and organs with saturating levels of sugar and fat, leading to glycotoxicity and lipotoxicity that induce intracellular stress signaling ranging from oxidative to ER stress response to cope with the metabolic insults (Mukherjee, et al., 2015). In this review, we discuss the roles played by cellular stress and its responses in shaping metabolic disorders. We have summarized here current mechanistic insights explaining the pathogenesis of these disorders. These are followed by a discussion of the latest therapies targeting the stress response pathways.
Collapse
|
31
|
Huang A, Patel S, McAlpine CS, Werstuck GH. The Role of Endoplasmic Reticulum Stress-Glycogen Synthase Kinase-3 Signaling in Atherogenesis. Int J Mol Sci 2018; 19:ijms19061607. [PMID: 29848965 PMCID: PMC6032052 DOI: 10.3390/ijms19061607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of global mortality and atherosclerosis is the underlying cause of most CVD. However, the molecular mechanisms by which cardiovascular risk factors promote the development of atherosclerosis are not well understood. The development of new efficient therapies to directly block or slow disease progression will require a better understanding of these mechanisms. Accumulating evidence supports a role for endoplasmic reticulum (ER) stress in all stages of the developing atherosclerotic lesion however, it was not clear how ER stress may contribute to disease progression. Recent findings have shown that ER stress signaling through glycogen synthase kinase (GSK)-3α may significantly contribute to macrophage lipid accumulation, inflammatory cytokine production and M1macrophage polarization. In this review we summarize our knowledge of the potential role of ER stress-GSK3 signaling in the development and progression of atherosclerosis as well as the possible therapeutic implications of this pathway.
Collapse
Affiliation(s)
- Aric Huang
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L9L 2X2, Canada.
| | - Sarvatit Patel
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L9L 2X2, Canada.
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Cameron S McAlpine
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L9L 2X2, Canada.
| | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L9L 2X2, Canada.
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada.
- Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Regression, or reversal, of atherosclerosis has become an important clinical objective. The development of consistent models of murine atherosclerosis regression has accelerated this field of research. The purpose of this review is to highlight recent mouse studies that reveal molecular mechanisms as well as therapeutics targeted for regression. RECENT FINDINGS Atherosclerosis regression does not involve the same mechanisms as progression in reverse order. Distinct molecular processes within the plaque characterize regression. These processes remained elusive until the advent of murine regression models including aortic transplant, the Reversa mouse, gene complementation and dietary intervention. Studies revealed that depletion of plaque macrophages is a quintessential characteristic of regression, driven by reduced monocyte recruitment into plaques, increased egress of macrophages from plaques and reduced macrophage proliferation. In addition, regression results in polarization of remaining plaque macrophages towards an anti-inflammatory phenotype, smaller necrotic cores and promotion of an organized fibrous cap. Furthermore, type 1 diabetes hinders plaque regression, and several therapeutic interventions show promise in slowing plaque progression or inducing regression. SUMMARY Mouse models of atherosclerosis regression have accelerated our understanding of the molecular mechanisms governing lesion resolution. These insights will be valuable in identifying therapeutic targets aimed at atherosclerosis regression.
Collapse
|