1
|
Stevens CAT, Vallejo‐Vaz AJ, Chora JR, Barkas F, Brandts J, Mahani A, Abar L, Sharabiani MTA, Ray KK. Improving the Detection of Potential Cases of Familial Hypercholesterolemia: Could Machine Learning Be Part of the Solution? J Am Heart Assoc 2024; 13:e034434. [PMID: 38879446 PMCID: PMC11255759 DOI: 10.1161/jaha.123.034434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Familial hypercholesterolemia (FH), while highly prevalent, is a significantly underdiagnosed monogenic disorder. Improved detection could reduce the large number of cardiovascular events attributable to poor case finding. We aimed to assess whether machine learning algorithms outperform clinical diagnostic criteria (signs, history, and biomarkers) and the recommended screening criteria in the United Kingdom in identifying individuals with FH-causing variants, presenting a scalable screening criteria for general populations. METHODS AND RESULTS Analysis included UK Biobank participants with whole exome sequencing, classifying them as having FH when (likely) pathogenic variants were detected in their LDLR, APOB, or PCSK9 genes. Data were stratified into 3 data sets for (1) feature importance analysis; (2) deriving state-of-the-art statistical and machine learning models; (3) evaluating models' predictive performance against clinical diagnostic and screening criteria: Dutch Lipid Clinic Network, Simon Broome, Make Early Diagnosis to Prevent Early Death, and Familial Case Ascertainment Tool. One thousand and three of 454 710 participants were classified as having FH. A Stacking Ensemble model yielded the best predictive performance (sensitivity, 74.93%; precision, 0.61%; accuracy, 72.80%, area under the receiver operating characteristic curve, 79.12%) and outperformed clinical diagnostic criteria and the recommended screening criteria in identifying FH variant carriers within the validation data set (figures for Familial Case Ascertainment Tool, the best baseline model, were 69.55%, 0.44%, 65.43%, and 71.12%, respectively). Our model decreased the number needed to screen compared with the Familial Case Ascertainment Tool (164 versus 227). CONCLUSIONS Our machine learning-derived model provides a higher pretest probability of identifying individuals with a molecular diagnosis of FH compared with current approaches. This provides a promising, cost-effective scalable tool for implementation into electronic health records to prioritize potential FH cases for genetic confirmation.
Collapse
Affiliation(s)
- Christophe A. T. Stevens
- Department of Primary Care and Public HealthSchool of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Antonio J. Vallejo‐Vaz
- Department of Primary Care and Public HealthSchool of Public Health, Imperial College LondonLondonUnited Kingdom
- Department of Medicine, Faculty of MedicineUniversidad de SevillaSevillaSpain
- Clinical Epidemiology and Vascular RiskInstituto de Biomedicina de Sevilla (IBiS), IBiS/Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSICSevillaSpain
- Centro de Investigación Biomédica en Red (CIBER) de Epidemiología y Salud PúblicaInstituto de Salud Carlos IIIMadridSpain
| | - Joana R. Chora
- Nacional Institute of Health Dr. Ricardo JorgeLisbonPortugal
- BioISI—Biosystems and Integrative Sciences InstituteUniversity of LisbonPortugal
| | - Fotis Barkas
- Department of Primary Care and Public HealthSchool of Public Health, Imperial College LondonLondonUnited Kingdom
- Department of Internal Medicine, Faculty of Medicine, School of Health SciencesUniversity of IoanninaGreece
| | - Julia Brandts
- Department of Primary Care and Public HealthSchool of Public Health, Imperial College LondonLondonUnited Kingdom
- Department of Medicine IUniversity Hospital AachenAachenGermany
| | - Alireza Mahani
- Quantitative ResearchDavidson Kempner Capital ManagementNew YorkNY
| | - Leila Abar
- National Institute of CancerNational Institute of HealthRockvilleMD
| | - Mansour T. A. Sharabiani
- Department of Primary Care and Public HealthSchool of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Kausik K. Ray
- Department of Primary Care and Public HealthSchool of Public Health, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
da Silva Rodrigues Marçal E, Borges JB, Bastos GM, Crespo Hirata TD, de Oliveira VF, Gonçalves RM, Faludi AA, Dias França JI, de Oliveira Silva DV, Malaquias VB, Luchessi AD, Silbiger VN, Nakazone MA, Carmo TS, Silva Souza DR, Sampaio MF, Crespo Hirata RD, Hirata MH. Methylation status of LDLR, PCSK9 and LDLRAP1 is associated with cardiovascular events in familial hypercholesterolemia. Epigenomics 2024; 16:809-820. [PMID: 38884343 PMCID: PMC11370914 DOI: 10.1080/17501911.2024.2351792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/27/2024] [Indexed: 06/18/2024] Open
Abstract
Aim: Methylation of LDLR, PCSK9 and LDLRAP1 CpG sites was assessed in patients with familial hypercholesterolemia (FH). Methods: DNA methylation of was analyzed by pyrosequencing in 131 FH patients and 23 normolipidemic (NL) subjects.Results: LDLR, PCSK9 and LDLRP1 methylation was similar between FH patients positive (MD) and negative (non-MD) for pathogenic variants in FH-related genes. LDLR and PCSK9 methylation was higher in MD and non-MD groups than NL subjects (p < 0.05). LDLR, PCSK9 and LDLRAP1 methylation profiles were associated with clinical manifestations and cardiovascular events in FH patients (p < 0.05).Conclusion: Differential methylation of LDLR, PCSK9 and LDLRAP1 is associated with hypercholesterolemia and cardiovascular events. This methylation profile maybe useful as a biomarker and contribute to the management of FH.
Collapse
Affiliation(s)
- Elisangela da Silva Rodrigues Marçal
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Jéssica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | | | - Andre Arpad Faludi
- Medical Clinic Division, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - João Italo Dias França
- Center for Clinical Trials & Pharmacovigilance, Butantan Institute, Sao Paulo, 05585-000, Brazil
| | - Daiana Vitor de Oliveira Silva
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Vanessa Barbosa Malaquias
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Andre Ducati Luchessi
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
| | - Marcelo Arruda Nakazone
- Department of Cardiology & Cardiovascular Surgery, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto, 15090-000, Brazil
| | - Tayanne Silva Carmo
- Department of Biochemistry & Molecular Biology, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto, 15090-000, Brazil
| | - Dorotéia Rossi Silva Souza
- Department of Biochemistry & Molecular Biology, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto, 15090-000, Brazil
| | - Marcelo Ferraz Sampaio
- Department of Cardiology, Hospital Beneficencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
3
|
Timoshchenko O, Ivanoshchuk D, Semaev S, Orlov P, Zorina V, Shakhtshneider E. Diagnosis of Familial Hypercholesterolemia in Children and Young Adults. Int J Mol Sci 2023; 25:314. [PMID: 38203485 PMCID: PMC10778969 DOI: 10.3390/ijms25010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The early detection and treatment of familial hypercholesterolemia (FH) in childhood and adolescence are critical for increasing life expectancy. The purpose of our study was to investigate blood lipid parameters, features of physical signs of cholesterol accumulation, and a personal and family history of premature cardiovascular diseases in children and young adults when FH is diagnosed. The analysis included patients under 18 years of age (n = 17) and young adults (18-44 years of age; n = 43) who received a diagnosis of FH according to clinical criteria. Targeted high-throughput sequencing was performed using a custom panel of 43 genes. A family history of cardiovascular diseases was more often noted in the group under 18 years of age than in young adults (p < 0.001). Among young adults, there was a high prevalence of typical signs of the disease such as tendon xanthomas and the early development of arterial atherosclerosis (p < 0.001). By molecular genetic testing, "pathogenic" and "probably pathogenic" variants were identified in the genes of 73.3% of patients under 18 years of age and 51.4% of patients 18-44 years of age. Thus, blood lipid screening tests combined with an accurate assessment of the family history is a highly relevant and inexpensive option for diagnosing FH in childhood. Molecular genetic testing allows us to make an accurate diagnosis and to improve adherence to treatment.
Collapse
Affiliation(s)
- Olga Timoshchenko
- Institute of Internal and Preventive Medicine (IIPM)–Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia (E.S.)
| | - Dinara Ivanoshchuk
- Institute of Internal and Preventive Medicine (IIPM)–Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia (E.S.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, Novosibirsk 630090, Russia
| | - Sergey Semaev
- Institute of Internal and Preventive Medicine (IIPM)–Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia (E.S.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, Novosibirsk 630090, Russia
| | - Pavel Orlov
- Institute of Internal and Preventive Medicine (IIPM)–Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia (E.S.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, Novosibirsk 630090, Russia
| | - Valentina Zorina
- Institute of Internal and Preventive Medicine (IIPM)–Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia (E.S.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, Novosibirsk 630090, Russia
| | - Elena Shakhtshneider
- Institute of Internal and Preventive Medicine (IIPM)–Branch of ICG SB RAS, 175/1 Borisa Bogatkova Str., Novosibirsk 630089, Russia (E.S.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 10 Prospekt Ak. Lavrentyeva, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Ganokroj P, Muanpetch S, Deerochanawong C, Phimphilai M, Leelawattana R, Thongtang N, Krittayaphong R, Anthanont P, Vathesatogkit P, Sriphrapradang C, Senthong V, Torpongpun A, Suteerayongprasert P, Pengpong N, Sathavarodom N, Sunanta U, Porntharukchareon T, Kiatpanabhikul P, Kaewkrasaesin C, Suraamornkul S, Kongkit J, Umphonsathien M, Chattranukulchai P, Jiamjarasrungsi W, Khovidhunkit W. Gaps in the Care of Subjects with Familial Hypercholesterolemia: Insights from the Thai Familial Hypercholesterolemia Registry. J Atheroscler Thromb 2023; 30:1803-1816. [PMID: 37197952 DOI: 10.5551/jat.64081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
AIMS Familial hypercholesterolemia (FH) is currently underdiagnosed and undertreated. The establishment of a FH registry could facilitate a deeper understanding of this disease. We described the clinical characteristics of subjects with FH from the Thai FH Registry, compared our data with the regional and global data, and identified gaps in the care of these subjects. METHODS A multicenter, nationwide prospective FH registry was established in Thailand. Our data were compared with those of the European Atherosclerosis Society-FH Studies Collaboration. Multiple logistic regression analyses were performed for variables associated with lipid-lowering medication (LLM) use and the attainment of low-density lipoprotein-cholesterol (LDL-C) goal. RESULTS The study includes 472 subjects with FH (mean age at FH diagnosis: 46±12 years, 61.4% women). A history of premature coronary artery disease was found in 12%. The percentage of LLM use in subjects with a Dutch Lipid Clinic Network score of ≥ 6 (probable or definite FH) in our registry (64%) was slightly lower than the regional data but higher than the global data. Among those who received statins, 25.2% and 6.4% achieved LDL-C levels of <100 mg/dL and <70 mg/dL, respectively. Women with FH were less likely to achieve LDL-C <70 mg/dL (adjusted odds ratio: 0.22, 95% confidence interval: 0.06-0.71, p=0.012). CONCLUSIONS FH in Thailand was diagnosed late, and treatment was inadequate for the majority of subjects. Women with FH were less likely to achieve LDL-C goals. Our insights could potentially help raise awareness and narrow the gap in patient care.
Collapse
Affiliation(s)
- Poranee Ganokroj
- Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University
| | | | | | | | | | | | | | - Pimjai Anthanont
- Department of Medicine, Thammasat Hospital, Thammasat University
| | | | | | - Vichai Senthong
- Department of Medicine, Srinagarind Hospital, Khon Kaen University
| | - Artit Torpongpun
- Department of Medicine, Chonburi Hospital, Ministry of Public Health
| | | | | | | | | | | | | | | | | | - Jaruwan Kongkit
- Department of Medicine, Vachira Phuket Hospital, Ministry of Public Health
| | | | | | - Wiroj Jiamjarasrungsi
- Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University
| | - Weerapan Khovidhunkit
- Department of Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University
| |
Collapse
|
5
|
de Sá ACMGN, Gomes CS, Prates EJS, Brant LCC, Malta DC. Prevalence and factors associated with possible cases of familial hypercholesterolemia in Brazilian adults: a cross-sectional study. Sci Rep 2023; 13:20459. [PMID: 37993629 PMCID: PMC10665423 DOI: 10.1038/s41598-023-47692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
This study aimed to estimate the prevalence of possible cases of FH and analyze associated factors in the adult Brazilian population. Cross-sectional study with laboratory data from the Brazilian National Health Survey, with 8521 participants. Possible cases of FH were defined according to the Dutch Lipid Clinic Network criteria. The prevalence and 95% confidence intervals (95% CI) of possible cases of FH were estimated according to sociodemographic variables, lifestyle, diabetes, hypertension, altered tests, treatment and self-rated health. Logistic regression was used to analyze the associations. The prevalence of possible cases of FH was 0.96%, higher in women, between 45 and 59 years, white race/skin color and others, less education, people with diabetes, hypertension and total cholesterol ≥ 310 mg/dL. The presence of FH was positively associated with regular self-rated health (OR 1.96; 95% CI 0.99-3.84), poor/very poor (OR 3.02; 95% CI 1.30-7.03) and negatively with black race/skin color (OR 0.10; 95% CI 0.02-0.46) and complete elementary school, incomplete high school (OR 0.47; 95% CI 0.23-0.98) and complete high school and more (OR 0.45; 95% CI 0.21-0.95). FH affects 1:104 Brazilian adults, these findings contribute to understanding the burden of disease in Brazil. Due to the scarcity of studies on FH in low- and middle-income countries, further studies are desirable.
Collapse
Affiliation(s)
| | - Crizian Saar Gomes
- Postgraduate Program in Public Health, Faculty of Medicine of the Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Elton Junio Sady Prates
- Postgraduate Nursing Program, Nursing School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Deborah Carvalho Malta
- Department of Maternal and Child Nursing and Public Health, School of Nursing, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Albuquerque J, Medeiros AM, Alves AC, Jannes CE, Mancina RM, Pavanello C, Chora JR, Mombelli G, Calabresi L, Pereira ADC, Krieger JE, Romeo S, Bourbon M, Antunes M. Generation and validation of a classification model to diagnose familial hypercholesterolaemia in adults. Atherosclerosis 2023; 383:117314. [PMID: 37813054 DOI: 10.1016/j.atherosclerosis.2023.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AND AIMS The early diagnosis of familial hypercholesterolaemia is associated with a significant reduction in cardiovascular disease (CVD) risk. While the recent use of statistical and machine learning algorithms has shown promising results in comparison with traditional clinical criteria, when applied to screening of potential FH cases in large cohorts, most studies in this field are developed using a single cohort of patients, which may hamper the application of such algorithms to other populations. In the current study, a logistic regression (LR) based algorithm was developed combining observations from three different national FH cohorts, from Portugal, Brazil and Sweden. Independent samples from these cohorts were then used to test the model, as well as an external dataset from Italy. METHODS The area under the receiver operating characteristics (AUROC) and precision-recall (AUPRC) curves was used to assess the discriminatory ability among the different samples. Comparisons between the LR model and Dutch Lipid Clinic Network (DLCN) clinical criteria were performed by means of McNemar tests, and by the calculation of several operating characteristics. RESULTS AUROC and AUPRC values were generally higher for all testing sets when compared to the training set. Compared with DLCN criteria, a significantly higher number of correctly classified observations were identified for the Brazilian (p < 0.01), Swedish (p < 0.01), and Italian testing sets (p < 0.01). Higher accuracy (Acc), G mean and F1 score values were also observed for all testing sets. CONCLUSIONS Compared to DLCN criteria, the LR model revealed improved ability to correctly classify observations, and was able to retain a similar number of FH cases, with less false positive retention. Generalization of the LR model was very good across all testing samples, suggesting it can be an effective screening tool if applied to different populations.
Collapse
Affiliation(s)
- João Albuquerque
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal.
| | - Ana Margarida Medeiros
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Ana Catarina Alves
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Cinthia Elim Jannes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, São Paulo, Brazil
| | - Rosellina M Mancina
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sweden
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Joana Rita Chora
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Giuliana Mombelli
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, 20162, Milano, Italy
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | | | - José Eduardo Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, São Paulo, Brazil
| | - Stefano Romeo
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical and Surgical Sciences, Nutrition Unit, University Magna Graecia, Catanzaro, Italy
| | - Mafalda Bourbon
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
7
|
Constantin AT, Streata I, Covăcescu MS, Riza AL, Roșca I, Delia C, Tudor LM, Dorobanțu Ș, Dragoș A, Ristea D, Ioana M, Gherghina I. Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase. Diagnostics (Basel) 2023; 13:1988. [PMID: 37370883 DOI: 10.3390/diagnostics13121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disease marked by high levels of LDL-cholesterol. This condition has long-term clinical implications, such as cardiovascular events, that are evident during adult life. Here, we report on a single-center cross-sectional showcase study of genetic testing for FH in a Romanian pediatric group. Genetic testing for FH was performed on 20 Romanian pediatric patients, 10 boys and 10 girls, admitted with LDL-cholesterol levels over 130 mg/mL to the National Institute for Mother and Child Health "Alesssandrescu-Rusescu" in 2020. Genetic testing was performed using the Illumina TruSight Cardio panel. We identified pathogenic/likely pathogenic variants that could explain the phenotype in 5/20 cases. The involved genes were LDLR and APOB. Clinical signs that suggest the diagnosis of FH are scarce for the pediatric patient, although it can be diagnosed early during childhood by lipid panel screening. Prevention could prove lifesaving for some of these patients.
Collapse
Affiliation(s)
- Andreea Teodora Constantin
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Ioana Streata
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mirela Silvia Covăcescu
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Anca Lelia Riza
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioana Roșca
- Faculty of Midwifery and Nursery, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
- Neonatology Department, Clinical Hospital of Obstetrics and Gynecology "Prof. Dr. P.Sârbu", 060251 Bucharest, Romania
| | - Corina Delia
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Lucia Maria Tudor
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Ștefania Dorobanțu
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Adina Dragoș
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Diana Ristea
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mihai Ioana
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioan Gherghina
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| |
Collapse
|
8
|
Serra-Planas E. Referral rate, profile and degree of control of patients with familial hypercholesterolemia: data from a single lipid unit from a Mediterranean area. Lipids Health Dis 2023; 22:62. [PMID: 37170237 PMCID: PMC10176814 DOI: 10.1186/s12944-023-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The challenging rigorous management of hypercholesterolemia promotes referral to specialized units. This study explored the need, based on referral rate and cardiovascular (CV) risk factor control in patients evaluated for familial hypercholesterolemia (FH), for a lipid unit (LU). METHODS Over a four-year period, 340 referrals to our unit were analyzed to establish the lipid disorder referral rate. Moreover, 118 patients referred for potential FH during the period 2010-2018 (52.4 ± 13.9 years, 47.5% male, Caucasian, 26.3% obese, 33.1% smokers and 51.7% with some glycaemic alteration) were investigated. The Dutch Lipid Clinic Network (DLCN) score, type and dose of lipid-lowering drugs, lipid profile including lipoprotein (a) (Lp(a)) and the presence of plaques with carotid ultrasound (CU) were recorded. RESULTS Lipids represented 6.2% of referrals (38 patient-years) requiring a 2-3 h weekly monographic outpatient consultation. The potential FH sample displayed a DLCN score ≥ 6 in 78% and modifiable CV risk factors in 51%. Only 22% achieved tight disease control despite intensive treatment. The statin-ezetimibe combination treatment group achieved better goals (73.0% vs. 45.5%, P = 0.003), and the rosuvastatin group had a higher proportion of prediabetes (60.9% vs. 39.1%, P = 0.037). Neither CU plaque presence nor Lp(a) > 50 mg/dL was linked with established CV disease patients, but higher Lp(a) concentrations were detected between them (102.5 (26.3-145.8) vs. 25.0 (13.0-52.0) mg/dL, P = 0.012). CONCLUSIONS The referral rate, degree of control, and proportion of modifiable CV risk factors in FH patients demonstrate the need for LU in our area as well as optimize control and treatment.
Collapse
Affiliation(s)
- Enric Serra-Planas
- Department of Endocrinology, Internal Medicine Service, Hospital Universitari d'Igualada, Consorci Sanitari de l'Anoia, Avinguda de Catalunya, 11, Igualada, Barcelona, 08700, Spain.
- Unit of lipids and cardiovascular risk, University Hospital of Igualada, Barcelona, Spain.
| |
Collapse
|
9
|
Wang ZP, Wu YJ, Gao Y, Qian J, Liu LT, Guo YL, Li JJ, Chen KJ. Different clinical phenotypes of a pair of siblings with familial hypercholesterolemia: a case report and literature review. BMC Cardiovasc Disord 2023; 23:227. [PMID: 37127585 PMCID: PMC10150518 DOI: 10.1186/s12872-023-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) leads to high plasma low-density lipoprotein cholesterol (LDL-C) levels and early cardiovascular morbidity and mortality. We treated a pair of siblings with FH. The cardiovascular manifestations in the proband were more severe than those in his elder sister, although they had almost similar LDL-C levels, ages, and lifestyles. Herein, we report the cases of this family to explore the possible causes of clinical phenotypic differences within the same genetic background. CASE PRESENTATION We treated a 27-year-old male patient and his 30-year-old sister, both with FH. The coronary angiogram in the male patient revealed 80, 70, and 100% stenosis of the initial, distal right coronary artery branch, and left anterior descending branch, respectively, whereas his sister had almost no coronary stenosis. We treated them accordingly and performed family screening. We found that the LDL-C/particle discordance of the proband is much greater than that of his elder sister. In addition, the average size of LDL-C particle in the proband was smaller than that in his sister. CONCLUSIONS Patients with FH have a much higher risk of premature atherosclerotic cardiovascular disease, but the clinical manifestations are heterogeneous. The smaller LDL particle size may be the underlying cause for different clinical outcomes in this pair of FH cases and be a potential novel indicator for predicting the prognosis of FH.
Collapse
Affiliation(s)
- Ze-Ping Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ya-Jie Wu
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Ying Gao
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jie Qian
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Long-Tao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yuan-Lin Guo
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jian-Jun Li
- Cardiometabolic Medicine Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Ke-Ji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
10
|
Ganjali S, Hosseini S, Rizzo M, Kontush A, Sahebkar A. Capacity of HDL to Efflux Cellular Cholesterol from Lipid-Loaded Macrophages Is Reduced in Patients with Familial Hypercholesterolemia. Metabolites 2023; 13:metabo13020197. [PMID: 36837816 PMCID: PMC9961594 DOI: 10.3390/metabo13020197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
This study aimed to evaluate the high-density lipoprotein (HDL) capacity to efflux cellular cholesterol from lipid-loaded macrophages to find a reliable and low-cost biomarker with the purpose of better evaluating the risk of premature cardiovascular (CV) events in FH patients. This case-controlled study comprised 16 homozygous (HOFH) and 18 heterozygous (HEFH) FH patients, as well as 20 healthy subjects recruited as controls. Two main subfractions of HDL (HDL2 (d = 1.063-1.125 g/mL) and HDL3 (d = 1.125-1.210 g/mL)) were isolated from the patients' serum samples using sequential ultracentrifugation. After compositional characterization, the capacity of HDL to efflux cholesterol (CEC%) from lipid-laden macrophages was measured. The HDL2 and HDL3 subfractions showed some differences in lipid and protein composition between the studied groups. In addition, both HDL subfractions (p < 0.001) revealed significantly reduced CEC% in HOFH patients (HDL2: 2.5 ± 0.1 and HDL3: 3.2 ± 0.2) in comparison with the HEFH (HDL2: 3.2 ± 0.1% and HDL3: 4.1 ± 0.2%) and healthy (HDL2: 3.3 ± 0.2% and HDL3: 4.5 ± 0.3%) subjects. Additionally, multinomial logistic regression results indicated that the CEC% of both HDL2 (OR: 0.091; 95% CI: 0.018-0.452, p < 0.01) and HDL3 (OR: 0.118; 95% CI: 0.035-0.399, p < 0.01) subfractions are strongly and inversely associated with the homozygous form of FH. A decreased capacity of HDL particles to efflux cholesterol from macrophages might identify homozygous FH patients who are at elevated risk for premature CVDs. Prospective studies with a large sample size are warranted to evaluate this hypothesis.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Hosseini
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy
| | - Anatol Kontush
- Cardiovascular Diseases Research Unit, National Institute of Health and Medical Research (INSERM), Metabolism and Nutrition, ICAN, Sorbonne University, F-75013 Paris, France
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Correspondence:
| |
Collapse
|
11
|
Genetic Spectrum of Familial Hypercholesterolaemia in the Malaysian Community: Identification of Pathogenic Gene Variants Using Targeted Next-Generation Sequencing. Int J Mol Sci 2022; 23:ijms232314971. [PMID: 36499307 PMCID: PMC9736953 DOI: 10.3390/ijms232314971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
Collapse
|
12
|
New Trends and Therapies for Familial Hypercholesterolemia. J Clin Med 2022; 11:jcm11226638. [PMID: 36431115 PMCID: PMC9696955 DOI: 10.3390/jcm11226638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) is associated with an elevated risk of atherosclerosis. The finding of monogenic defects indicates higher atherosclerotic risk in comparison with hypercholesterolemia of other etiologies. However, in heterozygous FH, cardiovascular risk is heterogeneous and depends not only on high cholesterol levels but also on the presence of other biomarkers and genes. The development of atherosclerosis risk scores specific for heterozygous FH and the use of subclinical coronary atherosclerosis imaging help with identifying higher-risk individuals who may benefit from further cholesterol lowering with PCSK9 inhibitors. There is no question about the extreme high risk in homozygous FH, and intensive LDL-cholesterol-lowering therapy must be started as soon as possible. These patients have gained life free of events in comparison with the past, but a high atherosclerosis residual risk persists. Furthermore, there is also the issue of aortic and supra-aortic valve disease development. Newer therapies such as inhibitors of microsomal transfer protein and angiopoietin-like protein 3 have opened the possibility of LDL-cholesterol normalization in homozygous FH and may provide an alternative to lipoprotein apheresis for these patients. Gene-based therapies may provide more definite solutions for lowering high LDL cholesterol and consequent atherosclerosis risk for people with FH.
Collapse
|
13
|
Homeniuk R, Gallagher J, Collins C. A mixed methods study of the awareness and management of familial hypercholesterolaemia in Irish general practice. Front Med (Lausanne) 2022; 9:1016198. [PMID: 36314005 PMCID: PMC9596980 DOI: 10.3389/fmed.2022.1016198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Familial Hypercholesterolemia (FH) is one of the most common genetic disorders, with an estimated global prevalence of 1:200-500, which leads to premature cardiovascular disease. Nevertheless, public and professional awareness of FH is often lacking, with an estimated 20,000 largely undiagnosed cases in Ireland. Purpose The overall aim of the project was to test the feasibility of a model of care that would include electronic record screening, clinical assessment, and coding of possible FH patients across a network of general practices in Ireland. In addition, a secondary aim was to gauge the awareness and knowledge of FH across the network. Methods This study took part in multiple phases, employing a mixed methods design. The study included a validated questionnaire, tailored online educational resources, a retrospective chart review of patients with a history of elevated LDL cholesterol (LDLc) and an active review with a selection of those patients. Results were analyzed using SPSS V27, where descriptive statistics and relevant correlation tests were employed. Results Eighteen general practices agreed to take part in the study. In the initial survey, respondents rated their personal and practice familiarity with FH as slightly below average. Around one-third of respondents were not aware of FH guidelines. Of over 55,000 adult patient records searched, only 0.2% had a recorded FH diagnosis and 3.9% had ever had an LDLc above 4.9 mmol/l. Eight practices completed 198 chart reviews. Among these, 29.8% of patients had a family history recorded, and 22.2% had a family history of CVD recorded. Female patients had higher averages for highest and recent LDLc. Seventy patients underwent a clinical review-with 27% of these patients identified as "probable" or "definite FH." There was a statistically significant (p = 0.002) relationship between FH status and whether the patient had other CVD risk factors. Conclusion General practitioners in Ireland had similar levels of awareness of FH compared to findings from elsewhere. The activities discussed encouraged clinicians to consider FH when talking to their patients, especially those with elevated LDLc at an early age. Broader awareness of the condition could increase conversations about FH and benefit patient outcomes.
Collapse
Affiliation(s)
- Robyn Homeniuk
- Research Centre, Irish College of General Practitioners, Dublin, Ireland
| | - Joseph Gallagher
- Cardiovascular Clinical Lead, Irish College of General Practitioners, Dublin, Ireland
| | - Claire Collins
- Research Centre, Irish College of General Practitioners, Dublin, Ireland,*Correspondence: Claire Collins
| |
Collapse
|
14
|
Nazli SA, Chua YA, Mohd Kasim NA, Ismail Z, Md Radzi AB, Ibrahim KS, Kasim SS, Rosman A, Nawawi H. Familial hypercholesterolaemia and coronary risk factors among patients with angiogram-proven premature coronary artery disease in an Asian cohort. PLoS One 2022; 17:e0273896. [PMID: 36054188 PMCID: PMC9439256 DOI: 10.1371/journal.pone.0273896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) patients have elevated levels of low-density lipoprotein cholesterol, rendering them at high risk of premature coronary artery disease (PCAD). However, the FH prevalence among angiogram-proven PCAD (AP-PCAD) patients and their status of coronary risk factors (CRFs) have not been reported in the Asian population. OBJECTIVES This study aimed to (1) determine the prevalence of clinically diagnosed FH among AP-PCAD patients, (2) compare CRFs between AP-PCAD patients with control groups, and (3) identify the independent predictors of PCAD. METHODS AP-PCAD patients and FH patients without PCAD were recruited from Cardiology and Specialist Lipid Clinics. Subjects were divided into AP-PCAD with FH (G1), AP-PCAD without FH (G2), FH without PCAD (G3) and normal controls (G4). Medical records were collected from the clinic database and standardised questionnaires. FH was clinically diagnosed using Dutch Lipid Clinic Network Criteria. RESULTS A total of 572 subjects were recruited (males:86.4%; mean±SD age: 55.6±8.5years). The prevalence of Definite, Potential and All FH among AP-PCAD patients were 6%(19/319), 16% (51/319) and 45.5% (145/319) respectively. G1 had higher central obesity, family history of PCAD and family history of hypercholesterolaemia compared to other groups. Among all subjects, diabetes [OR(95% CI): 4.7(2.9,7.7)], hypertension [OR(95% CI): 14.1(7.8,25.6)], FH [OR(95% CI): 2.9(1.5,5.5)] and Potential (Definite and Probable) FH [OR(95% CI): 4.5(2.1,9.6)] were independent predictors for PCAD. Among FH patients, family history of PCAD [OR(95% CI): 3.0(1.4,6.3)] and Definite FH [OR(95% CI): 7.1(1.9,27.4)] were independent predictors for PCAD. CONCLUSION Potential FH is common among AP-PCAD patients and contributes greatly to the AP-PCAD. FH-PCAD subjects have greater proportions of various risk factors compared to other groups. Presence of FH, diabetes, hypertension, obesity and family history of PCAD are independent predictors of PCAD. FH with PCAD is in very-high-risk category, hence, early management of modifiable CRFs in these patients are warranted.
Collapse
Affiliation(s)
- Sukma Azureen Nazli
- Laboratory and Forensic Medicine (I-PPerForM), Institute for Pathology, Universiti Teknologi MARA, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Yung-An Chua
- Laboratory and Forensic Medicine (I-PPerForM), Institute for Pathology, Universiti Teknologi MARA, Selangor, Malaysia
| | | | - Zaliha Ismail
- Laboratory and Forensic Medicine (I-PPerForM), Institute for Pathology, Universiti Teknologi MARA, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | | | | | | | - Azhari Rosman
- Institut Jantung Negara (IJN), Kuala Lumpur, Malaysia
| | - Hapizah Nawawi
- Laboratory and Forensic Medicine (I-PPerForM), Institute for Pathology, Universiti Teknologi MARA, Selangor, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
15
|
Wang L, Guo J, Tian Z, Seery S, Jin Y, Zhang S. Developing a Hybrid Risk Assessment Tool for Familial Hypercholesterolemia: A Machine Learning Study of Chinese Arteriosclerotic Cardiovascular Disease Patients. Front Cardiovasc Med 2022; 9:893986. [PMID: 35990942 PMCID: PMC9381985 DOI: 10.3389/fcvm.2022.893986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is an autosomal-dominant genetic disorder with a high risk of premature arteriosclerotic cardiovascular disease (ASCVD). There are many alternative risk assessment tools, for example, DLCN, although their sensitivity and specificity vary among specific populations. We aimed to assess the risk discovery performance of a hybrid model consisting of existing FH risk assessment tools and machine learning (ML) methods, based on the Chinese patients with ASCVD. Materials and Methods In total, 5,597 primary patients with ASCVD were assessed for FH risk using 11 tools. The three best performing tools were hybridized through a voting strategy. ML models were set according to hybrid results to create a hybrid FH risk assessment tool (HFHRAT). PDP and ICE were adopted to interpret black box features. Results After hybridizing the mDLCN, Taiwan criteria, and DLCN, the HFHRAT was taken as a stacking ensemble method (AUC_class[94.85 ± 0.47], AUC_prob[98.66 ± 0.27]). The interpretation of HFHRAT suggests that patients aged <75 years with LDL-c >4 mmol/L were more likely to be at risk of developing FH. Conclusion The HFHRAT has provided a median of the three tools, which could reduce the false-negative rate associated with existing tools and prevent the development of atherosclerosis. The hybrid tool could satisfy the need for a risk assessment tool for specific populations.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Guo
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuang Tian
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel Seery
- Department of Humanities and Social Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Shuyang Zhang,
| |
Collapse
|
16
|
Reduction of cardiovascular events with the use of lipid-lowering medication in patients with familial hypercholesterolemia or severe primary hypercholesterolemia: A systematic review. J Clin Lipidol 2022; 16:562-573. [DOI: 10.1016/j.jacl.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
|
17
|
Albuquerque J, Medeiros AM, Alves AC, Bourbon M, Antunes M. Comparative study on the performance of different classification algorithms, combined with pre- and post-processing techniques to handle imbalanced data, in the diagnosis of adult patients with familial hypercholesterolemia. PLoS One 2022; 17:e0269713. [PMID: 35749402 PMCID: PMC9231719 DOI: 10.1371/journal.pone.0269713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/26/2022] [Indexed: 11/27/2022] Open
Abstract
Familial Hypercholesterolemia (FH) is an inherited disorder of cholesterol metabolism. Current criteria for FH diagnosis, like Simon Broome (SB) criteria, lead to high false positive rates. The aim of this work was to explore alternative classification procedures for FH diagnosis, based on different biological and biochemical indicators. For this purpose, logistic regression (LR), naive Bayes classifier (NB), random forest (RF) and extreme gradient boosting (XGB) algorithms were combined with Synthetic Minority Oversampling Technique (SMOTE), or threshold adjustment by maximizing Youden index (YI), and compared. Data was tested through a 10 × 10 repeated k-fold cross validation design. The LR model presented an overall better performance, as assessed by the areas under the receiver operating characteristics (AUROC) and precision-recall (AUPRC) curves, and several operating characteristics (OC), regardless of the strategy to cope with class imbalance. When adopting either data processing technique, significantly higher accuracy (Acc), G-mean and F1 score values were found for all classification algorithms, compared to SB criteria (p < 0.01), revealing a more balanced predictive ability for both classes, and higher effectiveness in classifying FH patients. Adjustment of the cut-off values through pre or post-processing methods revealed a considerable gain in sensitivity (Sens) values (p < 0.01). Although the performance of pre and post-processing strategies was similar, SMOTE does not cause model’s parameters to loose interpretability. These results suggest a LR model combined with SMOTE can be an optimal approach to be used as a widespread screening tool.
Collapse
Affiliation(s)
- João Albuquerque
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
- * E-mail:
| | - Ana Margarida Medeiros
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
- Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Alves
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
- Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Bourbon
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
- Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Bahetibieke S, Moinuddin SM, Baiyisaiti A, Liu X, Zhang J, Liu G, Shi Q, Peng A, Tao J, Di C, Cai T, Qi R. Co-Amorphous Formation of Simvastatin-Ezetimibe: Enhanced Physical Stability, Bioavailability and Cholesterol-Lowering Effects in LDLr-/-Mice. Pharmaceutics 2022; 14:pharmaceutics14061258. [PMID: 35745830 PMCID: PMC9230881 DOI: 10.3390/pharmaceutics14061258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hypercholesterolemia is one of the independent risk factors for the development of cardiovascular diseases such as atherosclerosis. The treatment of hypercholesterolemia is of great significance to reduce clinical cardiovascular events and patient mortality. Simvastatin (SIM) and ezetimibe (EZE) are commonly used clinically as cholesterol-lowering drugs; however, their treatment efficacy is severely affected by their poor water solubility and low bioavailability. In this study, SIM and EZE were made into a co-amorphous system to improve their dissolution, oral bioavailability, storage stability, and cholesterol-lowering effects. The SIM-EZE co-amorphous solids (CO) were prepared successfully using the melt-quenched technique, and the physicochemical properties of CO were characterized accordingly, which exhibited improved physical stability and faster dissolution release profiles than their physical mixture (PM). In the pharmacokinetic study, the SIM-EZE CO or PM was given once by oral gavage, and mouse blood samples were collected retro-orbitally at multiple time points to determine the plasma drug concentrations. In the pharmacodynamic study, low-density lipoprotein receptor-deficient (LDLr−/−) mice were fed with a high-fat diet (HFD) for two weeks to establish a mouse model of hypercholesterolemia. Using PM as a control, we investigated the regulation of CO on plasma lipid levels in mice. Furthermore, the mice feces were collected to determine the cholesterol contents. Besides, the effect of EZE on the NPC1L1 mRNA expression level in the mouse intestines was also investigated. The pharmacokinetics results showed that the SIM-EZE CO has improved bioavailability compared to the PM. The pharmacodynamic studies showed that SIM-EZE CO significantly increased the cholesterol-lowering effects of the drugs compared to their PM. The total cholesterol excretion in the mouse feces and inhibitory effect on NCP1L1 gene expression in the mouse intestines after being given the SIM-EZE CO were more dramatic than the PM. Our study shows that the SIM-EZE CO prepared by the melt-quenched method can significantly improve the stability, bioavailability, and cholesterol-lowering efficacy with excellent development potential as a new drug formulation.
Collapse
Affiliation(s)
- Shamuha Bahetibieke
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
| | - Sakib M. Moinuddin
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA
| | - Asiya Baiyisaiti
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
- School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Xiaoang Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
- School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Jie Zhang
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Guomin Liu
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Qin Shi
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Ankang Peng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
| | - Jun Tao
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
| | - Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
| | - Ting Cai
- School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Xuanwu District, Nanjing 210009, China; (S.M.M.); (J.Z.); (G.L.); (Q.S.); (J.T.)
- Correspondence: (T.C.); (R.Q.); Tel./Fax: +86-25-86185516 (T.C.); +86-10-8280-5164 (R.Q.)
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (S.B.); (A.B.); (X.L.); (A.P.); (C.D.)
- School of Pharmacy, Shihezi University, Shihezi 832000, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- Correspondence: (T.C.); (R.Q.); Tel./Fax: +86-25-86185516 (T.C.); +86-10-8280-5164 (R.Q.)
| |
Collapse
|
19
|
Tünnemann-Tarr A, Katzmann JL, Thiery J, Laufs U. [Lipoprotein apheresis : State of the art and case report of the longest HELP treatment worldwide]. Herz 2022; 47:228-235. [PMID: 35451597 DOI: 10.1007/s00059-022-05115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
Lipoprotein apheresis is an extracorporeal procedure for the treatment of patients with homozygous familial hypercholesterolemia, patients with severe treatment-resistant hypercholesterolemia and patients with lipoprotein(a) hypercholesterolemia, who show progressive atherosclerotic cardiovascular disease despite optimal treatment. This article reports on the historical developments of the procedures, the most frequently used methods for apheresis as well as the data situation on efficacy and tolerability. Randomized prospective studies on clinical outcomes are not available. Furthermore, the article reports on a patient with homozygous familial hypercholesterolemia and 34 years of treatment with heparin-induced extracorporeal low-density lipoprotein (LDL) precipitation (HELP) apheresis, the longest treatment of this kind worldwide. A second patient with combined heterozygous familial hypercholesterolemia and 31 years of liposorber and HELP apheresis is also described. The observational studies and the case reports demonstrate the safety and long-term tolerability of the procedure.
Collapse
Affiliation(s)
- Adrienn Tünnemann-Tarr
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland.
| | - Julius Ludwig Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| | - Joachim Thiery
- Dekanat der Medizinischen Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, 04103, Leipzig, Deutschland
| |
Collapse
|
20
|
Held PK, Campbell K, Wiberley-Bradford AE, Lasarev M, Horner V, Peterson A. Analytical Validation of Familial Hypercholesterolemia Biomarkers in Dried Blood Spots. Int J Neonatal Screen 2022; 8:ijns8010014. [PMID: 35225936 PMCID: PMC8883967 DOI: 10.3390/ijns8010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/07/2022] Open
Abstract
Heterozygous familial hypercholesterolemia (HeFH) is a common, treatable genetic disorder characterized by premature atherosclerosis and cardiovascular disease, yet the majority of affected individuals remain undiagnosed. Newborn screening could play a role in identification of at-risk individuals and provide an opportunity for early intervention, prior to the onset of symptoms. The objective of this study was to develop and validate assays for quantification of candidate HeFH biomarkers in dried blood spots (DBS). Commercially available enzyme assay kits for quantification of serum total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) were modified for high-throughput analysis of DBS. Apolipoprotein B (ApoB) concentrations in DBS were measured using an immunoassay with modifications from published studies. All three assays were validated according to the College of American Pathologists guidelines for clinical laboratories. The performance of TC, LDL-C, and ApoB assays was assessed by precision, recovery, limit of quantification (LOQ) and linearity. Precision studies yielded coefficients of variation (CV) of less than 15%, with recovery greater than 75% for all three assays. The determined LOQ and linearity were comparable to serum-based assays. In a direct comparison between serum and DBS concentrations, positive correlations were demonstrated for TC, LDL-C, and ApoB. Additionally, the initial evaluation of the three biomarker concentrations within the unaffected population was similar to values obtained in previous published studies. This study reports on methods for quantification of TC, LDL-C, and ApoB in DBS. Assay validation results were within acceptable limits for newborn screening. This is an important first step toward the identification of newborns with HeFH.
Collapse
Affiliation(s)
- Patrice K. Held
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
- Wisconsin State Laboratory of Hygiene, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA; (K.C.); (A.E.W.-B.)
- Correspondence: ; Tel.: +1-608-265-5968
| | - Kristin Campbell
- Wisconsin State Laboratory of Hygiene, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA; (K.C.); (A.E.W.-B.)
| | - Amy E. Wiberley-Bradford
- Wisconsin State Laboratory of Hygiene, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA; (K.C.); (A.E.W.-B.)
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
| | - Vanessa Horner
- Department of Pathology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
| | - Amy Peterson
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
| |
Collapse
|
21
|
Rosman N, Nawawi HM, Al-Khateeb A, Chua YA, Chua AL. Development of an Optimized Tetra-Amplification Refractory Mutation System PCR for Detection of 12 Pathogenic Familial Hypercholesterolemia Variants in the Asian Population. J Mol Diagn 2022; 24:120-130. [PMID: 35074074 DOI: 10.1016/j.jmoldx.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Early detection of genetic diseases such as familial hypercholesterolemia (FH), and the confirmation of related pathogenic variants, are crucial in reducing the risk for premature coronary artery disease. Currently, next-generation sequencing is used for detecting FH-related candidate genes but is expensive and time-consuming. There is a lack of kits suitable for the detection of the common FH-related variants in the Asia-Pacific region. Thus, this study addressed that need with the development of an optimized tetra-amplification mutation system (T-ARMS) PCR-based assay for the detection of 12 pathogenic variants of FH in the Asian population. The two important parameters for T-ARMS PCR assay performance-annealing temperature and the ratio of outer/inner primer concentrations-were optimized in this study. The optimal annealing temperature of all 12 T-ARMS PCR reactions was 64.6°C. The ideal ratios of outer/inner primer concentrations with each pathogenic variant were: A1, 1:2; A2, 1:4; L1, 1:10; L2, 1:1; L3, 1:2; L4, 1:8; L5, 1:1; L6, 1:2; L7, 1:8; L8, 1:8; L9, 1:2; and L10, 1:8. The lowest limit of detection using DNA extracted from patients was 0.1 ng. The present article highlights the beneficial findings on T-ARMS PCR as part of the development of a PCR-based detection kit for use in detecting FH in economically developing countries in Asia with a greater prevalence of FH.
Collapse
Affiliation(s)
- Norhidayah Rosman
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Alyaa Al-Khateeb
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Ang-Lim Chua
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia.
| |
Collapse
|
22
|
Jokiniitty A, Eskola M, Saarela T, Huhtala H, Metso S. Role of an automated screening tool for familial hypercholesterolemia in patients with premature coronary artery disease. ATHEROSCLEROSIS PLUS 2022; 48:1-7. [PMID: 36644564 PMCID: PMC9833226 DOI: 10.1016/j.athplu.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/18/2023]
Abstract
Background and aims To validate an automated screening tool for patients with premature coronary artery disease (CAD) and high total cholesterol or LDL-C levels and assess if it would provide clinicians with additional support in identifying patients with Familial Hypercholesterolemia (FH). Methods An IT-based automated screening tool based on coronary angiography data recorded in the KARDIO registry and laboratory values was validated among patients undergone coronary angiography in the Heart Hospital at Tampere University Hospital between 2007 and 2017 fulfilling the criteria of premature CAD (men <55 years and women <60 years) and history of high total cholesterol (>8 mmol/l) or LDL-cholesterol (>5 mmol/l) levels. Electronic health records were retrospectively analyzed to determine if these patients had been diagnosed with FH based on clinical features and whether genetic testing had been conducted. Results The automated screening tool identified 0.7% (211/28295) of all patients undergone coronary angiography and revealed history of high cholesterol in 8% (211/2678) of patients with premature CAD during the study period. Fifty-one percent (107/211) of these patients fulfilled the clinical criteria for probable/definite FH based on the Dutch Lipid Clinic Network (DLCN) criteria.None of the patients had been diagnosed with FH based on clinical criteria before or after diagnosis of CAD. Thirteen percent of patients (n = 14) with probable/definite FH had been tested for genetic mutations of FH before or after CAD, five (36%) of them having a pathogenic FH variant. Two patients were referred to cascade screening. Conclusions FH was underdiagnosed among the population studied. An automated screening tool in cardiac care could provide additional support for clinicians in diagnosing patients potentially having FH.
Collapse
Affiliation(s)
- Antti Jokiniitty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland,Department of Internal Medicine, Tampere University Hospital, Elämänaukio 2, 33521, Tampere, Finland,Corresponding author. Department of Internal Medicine, Tampere University Hospital, Elämänaukio 2, 33521, Tampere, Finland.
| | - Markku Eskola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland,Heart Hospital, Tampere University Hospital, Elämänaukio 1, 33521, Tampere, Finland
| | - Tanja Saarela
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland,Department of Clinical Genetics, Kuopio University Hospital, Kuopio, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Saara Metso
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland,Department of Internal Medicine, Tampere University Hospital, Elämänaukio 2, 33521, Tampere, Finland
| |
Collapse
|
23
|
Rizos CV, Skoumas I, Rallidis L, Skalidis E, Tziomalos K, Garoufi A, Anagnostis P, Sfikas G, Kotsis V, Doumas M, Kolovou G, Lambadiari V, Dima I, Kiouri E, Zacharis E, Agapakis D, Attilakos A, Antza C, Vlachopoulos C, Liberopoulos EN. LDL cholesterol target achievement in heterozygous familial hypercholesterolemia patients according to 2019 ESC/EAS lipid guidelines: Implications for newer lipid-lowering treatments. Int J Cardiol 2021; 345:119-124. [PMID: 34687802 DOI: 10.1016/j.ijcard.2021.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The 2019 European guidelines (ESC/EAS) for the treatment of dyslipidaemias recommend more aggressive targets for low-density lipoprotein cholesterol (LDL-C) in patients with familial hypercholesterolemia (FH). Current lipid-lowering treatment is often inadequate to achieve these targets. METHODS Data from the HELLAS-FH registry were analysed to assess achievement of LDL-C targets in adults with FH based on the 2019 ESC/EAS guidelines. In patients who had not achieved LDL-C target, the maximally reduced LDL-C value was calculated after theoretical switch to rosuvastatin/ezetimibe 40/10 mg/day. The percentage of patients who remained candidates for proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) was then calculated. RESULTS Patients (n = 1694, mean age 50.8 ± 14.7 years) had LDL-C levels 242 ± 71 mg/dL (6.3 ± 1.8 mmol/L) at diagnosis. Most treated patients were receiving statins (97.5%) and about half were on additional ezetimibe (47.5%). Based on the 2019 ESC/EAS guidelines the percentage of patients achieving LDL-C goals was only 2.7%. Following theoretical up titration to rosuvastatin/ezetimibe 40/10 mg, LDL-C target achievement rate would increase to 5.9%. In this scenario, most patients (55.9%) would be eligible for PCSK9i treatment. Following theoretical administration of a PCSK9i, LDL-C target achievement rate would rise to 57.6%. However, 42.4% of patients would still be eligible for further LDL-C lowering treatment. CONCLUSIONS Most FH patients do not reach new LDL-C targets even if on maximum intensity statin/ezetimibe treatment. In this case, more than half of FH patients are candidates for PCSK9i therapy and a considerable proportion may still require additional LDL-C lowering.
Collapse
Affiliation(s)
- Christos V Rizos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Ioannis Skoumas
- Cardiology Clinic, Hippokration General Hospital, Athens, Greece
| | - Loukianos Rallidis
- Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Emmanouil Skalidis
- Cardiology Clinic, University General Hospital of Heraklion, Heraklion, Greece
| | - Konstantinos Tziomalos
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Anastasia Garoufi
- Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Β' Pediatrics Clinic, General Children's Hospital "Pan. & Aglaia Kyriakou", Athens, Greece
| | | | - George Sfikas
- Department of Internal Medicine, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Vasileios Kotsis
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital Thessaloniki, Thessaloniki, Greece
| | - Michalis Doumas
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Genovefa Kolovou
- Cardiometabolic Center, Lipid Clinic, LA apheresis Unit, Metropolitan Hospital, Athens, Greece
| | - Vaia Lambadiari
- 2nd Propaedeutic Internal Medicine Department and Diabetes Research Unit, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Ioanna Dima
- Cardiology Clinic, Hippokration General Hospital, Athens, Greece
| | - Estela Kiouri
- Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Evangelos Zacharis
- Cardiology Clinic, University General Hospital of Heraklion, Heraklion, Greece
| | - Dimitrios Agapakis
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece; Department of Internal Medicine, Goumenissa, Greece
| | - Achilleas Attilakos
- Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, C' Pediatrics Clinic, Attikon University General Hospital, Athens, Greece
| | - Christina Antza
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital Thessaloniki, Thessaloniki, Greece
| | - Charalambos Vlachopoulos
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | |
Collapse
|
24
|
PCNA News. J Cardiovasc Nurs 2021. [PMID: 34870944 DOI: 10.1097/jcn.0000000000000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
de Oliveira J, Engel DF, de Paula GC, Dos Santos DB, Lopes JB, Farina M, Moreira ELG, de Bem AF. High Cholesterol Diet Exacerbates Blood-Brain Barrier Disruption in LDLr-/- Mice: Impact on Cognitive Function. J Alzheimers Dis 2021; 78:97-115. [PMID: 32925052 PMCID: PMC7683087 DOI: 10.3233/jad-200541] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Evidence has revealed an association between familial hypercholesterolemia and cognitive impairment. In this regard, a connection between cognitive deficits and hippocampal blood-brain barrier (BBB) breakdown was found in low-density lipoprotein receptor knockout mice (LDLr–/–), a mouse model of familial hypercholesterolemia. Objective: Herein we investigated the impact of a hypercholesterolemic diet on cognition and BBB function in C57BL/6 wild-type and LDLr–/–mice. Methods: Animals were fed with normal or high cholesterol diets for 30 days. Thus, wild-type and LDLr–/–mice were submitted to memory paradigms. Additionally, BBB integrity was evaluated in the mice’s prefrontal cortices and hippocampi. Results: A tenfold elevation in plasma cholesterol levels of LDLr–/–mice was observed after a hypercholesterolemic diet, while in wild-type mice, the hypercholesterolemic diet exposure increased plasma cholesterol levels only moderately and did not induce cognitive impairment. LDLr–/–mice presented memory impairment regardless of the diet. We observed BBB disruption as an increased permeability to sodium fluorescein in the prefrontal cortices and hippocampi and a decrease on hippocampal claudin-5 and occludin mRNA levels in both wild-type and LDLr–/–mice treated with a hypercholesterolemic diet. The LDLr–/–mice fed with a regular diet already presented BBB dysfunction. The BBB-increased leakage in the hippocampi of LDLr–/–mice was related to high microvessel content and intense astrogliosis, which did not occur in the control mice. Conclusion: Therefore, LDLr–/–mice seem to be more susceptible to cognitive impairments and BBB damage induced by exposure to a high cholesterol diet. Finally, BBB disruption appears to be a relevant event in hypercholesterolemia-induced brain alterations.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS)M, Porto Alegre, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daiane F Engel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Gabriela C de Paula
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Danúbia B Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jadna B Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Eduardo L G Moreira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Andreza F de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
26
|
A Western-style diet interacts with genetic variants of the LDL receptor to hyper-LDL cholesterolemia in Korean adults. Public Health Nutr 2021; 24:2964-2974. [PMID: 32698935 PMCID: PMC9886520 DOI: 10.1017/s1368980020001305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the association of genetic risk scores (GRS) of LDLR, APOB and proprotein convertase subtilisin-kexin type 9 (PCSK9) SNP and plasma LDL concentrations and to identify lifestyle interactions with the GRS in Korean middle-aged adults. DESIGN Korean genome and epidemiology study (KoGES) was conducted to determine genetic variants and lifestyle factors, including nutrient intakes, in a retrospective hospital-based city cohort conducted by the Korean Center for Disease and Control during 2004-2013. SETTINGS Hospitals in Korea. PARTICIPANTS Adults aged 40-77 years (n 28 445) without serious diseases. RESULTS Subjects with the major alleles (risk allele) of LDLR rs1433099 and rs11557092, APOB rs13306194 and PCSK9 rs11583723 had higher plasma LDL concentration by 1·20-folds than those with the minor alleles. Subjects with High-GRS (major alleles) of the four SNP had higher adjusted OR for plasma total and LDL-cholesterol and TAG concentrations by 1·24-, 1·203- and 1·167-folds, respectively, but not HDL-cholesterol, than those with Low-GRS. Western-style flour-rich dietary patterns, but not balanced Korean-style and rice-based dietary patterns, had interactions with GRS to increase plasma LDL concentrations. Daily energy intake also interacted with GRS. In the high intake of Western-style flour-rich dietary patterns, carriers with High-GRS had much higher plasma LDL concentrations than the Low-GRS. With high energy intake, carriers with High-GRS had much higher plasma LDL concentrations than those with Low-GRS. CONCLUSIONS Adults with major alleles of four SNP are recommended to have low-energy intakes with a balanced Korean diet need to avoid high-energy intakes especially with Western-style flour-rich diet patterns.
Collapse
|
27
|
Diagnosis and management of secondary causes of steatohepatitis. J Hepatol 2021; 74:1455-1471. [PMID: 33577920 DOI: 10.1016/j.jhep.2021.01.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) was originally coined to describe hepatic fat deposition as part of the metabolic syndrome. However, a variety of rare hereditary liver and metabolic diseases, intestinal diseases, endocrine disorders and drugs may underlie, mimic, or aggravate NAFLD. In contrast to primary NAFLD, therapeutic interventions are available for many secondary causes of NAFLD. Accordingly, secondary causes of fatty liver disease should be considered during the diagnostic workup of patients with fatty liver disease, and treatment of the underlying disease should be started to halt disease progression. Common genetic variants in several genes involved in lipid handling and metabolism modulate the risk of progression from steatosis to fibrosis, cirrhosis and hepatocellular carcinoma development in NAFLD, alcohol-related liver disease and viral hepatitis. Hence, we speculate that genotyping of common risk variants for liver disease progression may be equally useful to gauge the likelihood of developing advanced liver disease in patients with secondary fatty liver disease.
Collapse
|
28
|
Dombalis S, Nash A. The Effect of Statins in Children and Adolescents With Familial Hypercholesterolemia: A Systematic Review. J Pediatr Health Care 2021; 35:292-303. [PMID: 33342622 DOI: 10.1016/j.pedhc.2020.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Familial hypercholesterolemia (FH) is a genetic disorder that causes elevated low-density lipoprotein-cholesterol (LDL-C) levels. If undiagnosed and untreated in childhood, affected individuals can suffer premature health complications. Statins reduce the risks of complications for adults, but less is known about children. This systematic review examined the effectiveness of statin therapy for lowering LDL-C levels in children with FH. METHOD Medline Ovid, Embase, CINAHL, and Allied Health Literature Plus were searched for studies that examined the effectiveness of stains in children ages 1-18 years with heterozygous FH. RESULTS Of the 706 articles identified, 10 were included in the review. Statin therapy significantly reduced LDL-C levels in pediatric patients with FH. Statins were safe and well-tolerated with minimal adverse effects. DISCUSSION Pediatric providers should be familiar with diagnosis, treatment, and management of FH to successfully lower LDL-C levels and avoid potential long-term health effects. Evidence suggests statins are safe and effective in children with FH.
Collapse
|
29
|
Mehta R, Martagon AJ, Galan Ramirez GA, Antonio-Villa NE, Vargas-Vázquez A, Elias-Lopez D, Gonzalez-Retana G, Rodríguez-Encinas B, Ceballos-Macías JJ, Romero-Zazueta A, Martinez-Alvarado R, Morales-Portano JD, Alvarez-Lopez H, Sauque-Reyna L, Gomez-Herrera LG, Simental-Mendia LE, Garcia-Aguilar H, Ramirez-Cooremans E, Peña-Aparicio B, Mendoza-Zubieta V, Carrillo-Gonzalez PA, Ferreira-Hermosillo A, Caracas-Portilla N, Jimenez-Dominguez G, Ruiz-Garcia AY, Arriaga-Cazares HE, Gonzalez-Gonzalez JR, Mendez-Valencia CV, Padilla FG, Madriz-Prado R, De Los Rios-Ibarra MO, Vazquez-Cardenas A, Arjona-Villicaña RD, Acevedo-Rivera KJ, Allende-Carrera R, Alvarez JA, Amezcua-Martinez JC, de Los Reyes Barrera-Bustillo M, Carazo-Vargas G, Contreras-Chacon R, Figueroa-Andrade MH, Flores-Ortega A, Garcia-Alcala H, Garcia de Leon LE, Garcia-Guzman B, Garduño-Garcia JJ, Garnica-Cuellar JC, Gomez-Cruz JR, Hernandez-Garcia A, Holguin-Almada JR, Juarez-Herrera U, Lugo-Sobrevilla F, Marquez-Rodriguez E, Martinez-Sibaja C, Medrano-Rodriguez AB, Morales-Oyervides JC, Perez-Vazquez DI, Reyes-Rodriguez EA, Robles-Osorio ML, Rosas-Saucedo J, Torres-Tamayo M, Valdez-Talavera LA, Vera-Arroyo LE, Zepeda-Carrillo EA, Aguilar-Salinas CA. Familial hypercholesterolemia in Mexico: Initial insights from the national registry. J Clin Lipidol 2021; 15:124-133. [PMID: 33422452 DOI: 10.1016/j.jacl.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) remains underdiagnosed and undertreated. OBJECTIVE Report the results of the first years (2017-2019) of the Mexican FH registry. METHODS There are 60 investigators, representing 28 federal states, participating in the registry. The variables included are in accordance with the European Atherosclerosis Society (EAS) FH recommendations. RESULTS To date, 709 patients have been registered, only 336 patients with complete data fields are presented. The mean age is 50 (36-62) years and the average time since diagnosis is 4 (IQR: 2-16) years. Genetic testing is recorded in 26.9%. Tendon xanthomas are present in 43.2%. The prevalence of type 2 diabetes is 11.3% and that of premature CAD is 9.8%. Index cases, male gender, hypertension and smoking were associated with premature CAD. The median lipoprotein (a) level is 30.5 (IQR 10.8-80.7) mg/dl. Statins and co-administration with ezetimibe were recorded in 88.1% and 35.7% respectively. A combined treatment target (50% reduction in LDL-C and an LDL-C <100 mg/dl) was achieved by 13.7%. Associated factors were index case (OR 3.6, 95%CI 1.69-8.73, P = .002), combination therapy (OR 2.4, 95%CI 1.23-4.90, P = .011), type 2 diabetes (OR 2.8, 95%CI 1.03-7.59, P = .036) and age (OR 1.023, 95%CI 1.01-1.05, P = .033). CONCLUSION The results confirm late diagnosis, a lower than expected prevalence and risk of ASCVD, a higher than expected prevalence of type 2 diabetes and undertreatment, with relatively few patients reaching goals. Recommendations include, the use of combination lipid lowering therapy, control of comorbid conditions and more frequent genetic testing in the future.
Collapse
Affiliation(s)
- Roopa Mehta
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico; Departamento de Endocrinologia y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Alexandro J Martagon
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Gabriela A Galan Ramirez
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Neftali Eduardo Antonio-Villa
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Arsenio Vargas-Vázquez
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico
| | - Daniel Elias-Lopez
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico; Departamento de Endocrinologia y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Gustavo Gonzalez-Retana
- Departamento de Endocrinologia y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Bethsabel Rodríguez-Encinas
- Departamento de Endocrinologia y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Guadalupe Jimenez-Dominguez
- Hospital General Zona #46 IMSS, Villahermosa, Tabasco, Mexico; Hospital Angeles de Villahermosa, Tabasco, Mexico
| | | | - Hector E Arriaga-Cazares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico; Centro Medico Nacional del Noreste IMSS, Monterrey, Nuevo Leon, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, México City, Mexico; Departamento de Endocrinologia y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubiran, Mexico City, Mexico; Direccion de Nutricion, Instituto Nacional de Ciencias Médicas y Nutricion Salvador Zubiran, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
30
|
Li JJ, Yeo KK, Tan K, Ako J, Krittayaphong R, Tan RS, Aylward PE, Lam C, Baek SH, Dalal J, Fong A, Li YH, O’Brien RC, Koh SYN, Scherer DJ, Tada H, Kang V, Butters J, Nicholls SJ. Tackling cardiometabolic risk in the Asia Pacific region. Am J Prev Cardiol 2020; 4:100096. [PMID: 34327472 PMCID: PMC8315619 DOI: 10.1016/j.ajpc.2020.100096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
With the global spread of abdominal obesity, cardiovascular disease continues to spread to all countries of the world. Given the large population, the challenges presented by cardiometabolic risk in the Asia Pacific region are considerable. In addition to the clinical consequences of cardiovascular disease, in terms of its morbidity and mortality, the diversity of the Asia Pacific region brings heterogeneity in approaches to prevention, diagnosis and treatment of cardiometabolic risk. In this manuscript, we will review the current state of knowledge of cardiometabolic risk in Asia Pacific and highlight the needs moving forward to tackle this public health challenge.
Collapse
Affiliation(s)
- Jian-Jun Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Khung Keong Yeo
- National Heart Centre Singapore and Duke-NUS Medical School, Singapore
| | - Kathyrn Tan
- Department of Medicine, University of Hong Kong; Kitasato University, Sagamihara, Japan
| | - Junya Ako
- Kitasato University, Sagamihara, Japan
| | - Rungroj Krittayaphong
- Division of Cardiology, Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ru San Tan
- National Heart Centre Singapore and Duke-NUS Medical School, Singapore
| | - Philip E. Aylward
- South Australian Health and Medical Research Institute and Flinders University, Adelaide, Australia
| | - CarolynS.P. Lam
- National Heart Centre Singapore and Duke-NUS Medical School, Singapore
| | - Sang Hong Baek
- Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Alan Fong
- Department of Cardiology, Sarawak Heart Centre; and Clinical Research Centre, Sarawak General Hospital, Kuching, Malaysia
| | - Yi-Heng Li
- National Cheng Kung University Hospital, Tainan, Taiwan
| | | | - Si Ya Natalie Koh
- National Heart Centre Singapore and Duke-NUS Medical School, Singapore
| | | | - Hayato Tada
- Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | - Julie Butters
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Pokrovsky SN, Afanasieva OI, Ezhov MV. Therapeutic Apheresis for Management of Lp(a) Hyperlipoproteinemia. Curr Atheroscler Rep 2020; 22:68. [DOI: 10.1007/s11883-020-00886-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Hu P, Dharmayat KI, Stevens CA, Sharabiani MT, Jones RS, Watts GF, Genest J, Ray KK, Vallejo-Vaz AJ. Prevalence of Familial Hypercholesterolemia Among the General Population and Patients With Atherosclerotic Cardiovascular Disease. Circulation 2020; 141:1742-1759. [DOI: 10.1161/circulationaha.119.044795] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
Contemporary studies suggest that familial hypercholesterolemia (FH) is more frequent than previously reported and increasingly recognized as affecting individuals of all ethnicities and across many regions of the world. Precise estimation of its global prevalence and prevalence across World Health Organization regions is needed to inform policies aiming at early detection and atherosclerotic cardiovascular disease (ASCVD) prevention. The present study aims to provide a comprehensive assessment and more reliable estimation of the prevalence of FH than hitherto possible in the general population (GP) and among patients with ASCVD.
Methods:
We performed a systematic review and meta-analysis including studies reporting on the prevalence of heterozygous FH in the GP or among those with ASCVD. Studies reporting gene founder effects and focused on homozygous FH were excluded. The search was conducted through Medline, Embase, Cochrane, and Global Health, without time or language restrictions. A random-effects model was applied to estimate the overall pooled prevalence of FH in the general and ASCVD populations separately and by World Health Organization regions.
Results:
From 3225 articles, 42 studies from the GP and 20 from populations with ASCVD were eligible, reporting on 7 297 363 individuals/24 636 cases of FH and 48 158 patients/2827 cases of FH, respectively. More than 60% of the studies were from Europe. Use of the Dutch Lipid Clinic Network criteria was the commonest diagnostic method. Within the GP, the overall pooled prevalence of FH was 1:311 (95% CI, 1:250–1:397; similar between children [1:364] and adults [1:303],
P
=0.60; across World Health Organization regions where data were available,
P
=0.29; and between population-based and electronic health records–based studies,
P
=0.82). Studies with ≤10 000 participants reported a higher prevalence (1:200–289) compared with larger cohorts (1:365–407;
P
<0.001). The pooled prevalence among those with ASCVD was 18-fold higher than in the GP (1:17 [95% CI, 1:12–1:24]), driven mainly by coronary artery disease (1:16; [95% CI, 1:12–1:23]). Between-study heterogeneity was large (
I
2
>95%). Tests assessing bias were nonsignificant (
P
>0.3).
Conclusions:
With an overall prevalence of 1:311, FH is among the commonest genetic disorders in the GP, similarly present across different regions of the world, and is more frequent among those with ASCVD. The present results support the advocacy for the institution of public health policies, including screening programs, to identify FH early and to prevent its global burden.
Collapse
Affiliation(s)
- Pengwei Hu
- Imperial Center for Cardiovascular Disease Prevention (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V.), Imperial College London, UK
- Department of Primary Care and Public Health (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V., M.T.A.S.), Imperial College London, UK
- Department of Health Service, Logistics University of People’s Armed Police Force, Tianjin, China (P.H.)
| | - Kanika I. Dharmayat
- Imperial Center for Cardiovascular Disease Prevention (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V.), Imperial College London, UK
- Department of Primary Care and Public Health (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V., M.T.A.S.), Imperial College London, UK
| | - Christophe A.T. Stevens
- Imperial Center for Cardiovascular Disease Prevention (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V.), Imperial College London, UK
- Department of Primary Care and Public Health (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V., M.T.A.S.), Imperial College London, UK
| | - Mansour T.A. Sharabiani
- Department of Primary Care and Public Health (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V., M.T.A.S.), Imperial College London, UK
| | - Rebecca S. Jones
- School of Public Health, and Charing Cross Campus Library (R.S.J.), Imperial College London, UK
| | - Gerald F. Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth (G.F.W.)
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Australia (G.F.W.)
| | - Jacques Genest
- McGill University Health Center, Montreal, QC, Canada (J.G.)
| | - Kausik K. Ray
- Imperial Center for Cardiovascular Disease Prevention (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V.), Imperial College London, UK
- Department of Primary Care and Public Health (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V., M.T.A.S.), Imperial College London, UK
| | - Antonio J. Vallejo-Vaz
- Imperial Center for Cardiovascular Disease Prevention (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V.), Imperial College London, UK
- Department of Primary Care and Public Health (P.H., K.I.D., C.A.T.S., K.K.R., A.J.V.-V., M.T.A.S.), Imperial College London, UK
| |
Collapse
|
33
|
Worldwide Prevalence of Familial Hypercholesterolemia. J Am Coll Cardiol 2020; 75:2553-2566. [DOI: 10.1016/j.jacc.2020.03.057] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
34
|
Constantin AT, Covacescu SM, Kozma A, Gherghina I, Lazarescu H. STATINS TREATMENT AND ORO-DENTAL ASPECTS IN A CASE OF HEREDITARY HYPERCHOLESTEROLEMIA IN A CHILD UNDER 6 YEARS. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 15:378-383. [PMID: 32010359 DOI: 10.4183/aeb.2019.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Familial hypercholesterolemia (FH) is a genetic disease with autosomal dominant transmission, characterised by high blood cholesterol levels. The evolution of this disease leads to primary atherosclerosis and cardiovascular disease. Patients with HF develop atherosclerosis by the age of 20 and usually do not survive past the age of 30. We present the case and oro-dental aspects of a preschooler that was diagnosed at the age of 4 with FH, compound heterozygote (mutation/genotype1 LDLR: C20IX, exon 4; mutation/genotype2 LDLR: G571E, exon 12) and the experience of our clinic in the management of this patient that received off-label treatment with statins. When diagnosed, his cholesterol level was 932 mg/dL and his LDL-cholesterol level was 792 mg/dL. Treatment with rosuvastatin and ezetimibe was prescribed. Both substances (rosuvastatin and ezetimibe) are not approved for children under the age of 6 in Europe. Taking into considerations the diagnosis and prognosis for unfavorable evolution, treatment with statins was started at the age of 5 years.
Collapse
Affiliation(s)
- A T Constantin
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Clinical Department of Pediatrics, Bucharest, Romania
| | - S M Covacescu
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Clinical Department of Pediatrics, Bucharest, Romania
| | - A Kozma
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Department of Research in Social Pediatrics and Obstetrics, Bucharest, Romania.,"Alessandrescu-Rusescu" National Institute for Mother and Child Health - National Institute for Recovery, Physical Medicine and Balneoclimatology - Research Department, Bucharest, Romania
| | - I Gherghina
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - Clinical Department of Pediatrics, Bucharest, Romania
| | - H Lazarescu
- "Alessandrescu-Rusescu" National Institute for Mother and Child Health - National Institute for Recovery, Physical Medicine and Balneoclimatology - Research Department, Bucharest, Romania
| |
Collapse
|
35
|
Ranganath LR, Norman BP, Gallagher JA. Ochronotic pigmentation is caused by homogentisic acid and is the key event in alkaptonuria leading to the destructive consequences of the disease-A review. J Inherit Metab Dis 2019; 42:776-792. [PMID: 31282009 DOI: 10.1002/jimd.12152] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Ochronosis is the process in alkaptonuria (AKU) that causes all the debilitating morbidity. The process involves selective deposition of homogentisic acid (HGA)-derived pigment in tissues altering the properties of these tissues, leading to their failure. Some tissues like cartilage are more easily affected by ochronosis while others such as the liver and brain are unaffected for reasons that are still not understood. In vitro and mouse models of ochronosis have confirmed the dose relationships between HGA and ochronosis and also their modulation by p-hydroxyphenylpyruvate dioxygenase inhibition. Ochronosis cannot be fully reversed and is a key factor in influencing treatment decisions. Earlier detection of ochronosis preferably by noninvasive means is desirable. A cause-effect relationship between HGA and ochronosis is discussed. The similarity in AKU and familial hypercholesterolaemia is explored and lessons learnt. More research is needed to more fully understand the crucial nature of ochronosis.
Collapse
Affiliation(s)
- Lakshminarayan R Ranganath
- Royal Liverpool University Hospital, Liverpool, UK
- Musculoskeletal Biology I, Institute of Ageing & Chronic Disease, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| | - Brendan P Norman
- Musculoskeletal Biology I, Institute of Ageing & Chronic Disease, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| | - James A Gallagher
- Musculoskeletal Biology I, Institute of Ageing & Chronic Disease, William Henry Duncan Building, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Hylocereus polyrhizus peel's high-methoxyl pectin: A potential source of hypolipidemic agent. Int J Biol Macromol 2019; 134:361-367. [DOI: 10.1016/j.ijbiomac.2019.03.143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
|
37
|
Review of the long-term safety of lomitapide: a microsomal triglycerides transfer protein inhibitor for treating homozygous familial hypercholesterolemia. Expert Opin Drug Saf 2019; 18:403-414. [DOI: 10.1080/14740338.2019.1602606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Hovingh GK, Reeskamp LF, Ray KK. Hypercholesterolemia Among Premature Infarcts. J Am Coll Cardiol 2019; 73:2451-2453. [DOI: 10.1016/j.jacc.2019.02.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 10/26/2022]
|
39
|
|
40
|
Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, Hovingh GK, Kastelein JJP, Mata P, Raal FJ, Santos RD, Soran H, Watts GF, Abifadel M, Aguilar-Salinas CA, Al-Khnifsawi M, AlKindi FA, Alnouri F, Alonso R, Al-Rasadi K, Al-Sarraf A, Ashavaid TF, Binder CJ, Bogsrud MP, Bourbon M, Bruckert E, Chlebus K, Corral P, Descamps O, Durst R, Ezhov M, Fras Z, Genest J, Groselj U, Harada-Shiba M, Kayikcioglu M, Lalic K, Lam CSP, Latkovskis G, Laufs U, Liberopoulos E, Lin J, Maher V, Majano N, Marais AD, März W, Mirrakhimov E, Miserez AR, Mitchenko O, Nawawi HM, Nordestgaard BG, Paragh G, Petrulioniene Z, Pojskic B, Postadzhiyan A, Reda A, Reiner Ž, Sadoh WE, Sahebkar A, Shehab A, Shek AB, Stoll M, Su TC, Subramaniam T, Susekov AV, Symeonides P, Tilney M, Tomlinson B, Truong TH, Tselepis AD, Tybjærg-Hansen A, Vázquez-Cárdenas A, Viigimaa M, Vohnout B, Widén E, Yamashita S, Banach M, Gaita D, Jiang L, Nilsson L, Santos LE, Schunkert H, Tokgözoğlu L, Car J, Catapano AL, Ray KK. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis 2018; 277:234-255. [PMID: 30270054 DOI: 10.1016/j.atherosclerosis.2018.08.051] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. METHODS Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. RESULTS 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in ∼2/3 countries. Lipoprotein-apheresis is offered in ∼60% countries, although access is limited. CONCLUSIONS FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.
Collapse
Affiliation(s)
- Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Martina De Marco
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Christophe A T Stevens
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Frederick J Raal
- Division of Endocrinology & Metabolism, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Handrean Soran
- University Department of Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; FH Australasia Network (FHAN), Australia
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
| | | | - Mutaz Al-Khnifsawi
- Al-Qadisiyah University, Faculty of Medicine, Department of Internal Medicine, Diwaniya City, Iraq
| | | | - Fahad Alnouri
- Cardiovascular Prevention Unit, Prince Sultan Cardiac Centre Riyadh, Riyadh, Saudi Arabia
| | | | | | - Ahmad Al-Sarraf
- Laboratory Department, Kuwait Cancer Control Centre, Kuwait City, Kuwait
| | - Tester F Ashavaid
- P. D Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Mafalda Bourbon
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Faculty of Sciences, Biosystems & Integrative Sciences Institute (BioISI), University of Lisboa, Lisboa, Portugal
| | - Eric Bruckert
- Department of Endocrinology, Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Krzysztof Chlebus
- First Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland; Clinical Centre of Cardiology, University Clinical Centre, Gdańsk, Poland
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata, Argentina
| | | | - Ronen Durst
- Cardiology Department and Centre for Treatment and Prevention of Atherosclerosis, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Marat Ezhov
- National Cardiology Research Centre, Ministry of Health of the Russian Federation, Russia
| | - Zlatko Fras
- University Medical Centre Ljubljana, Division of Medicine, Preventive Cardiology Unit, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Urh Groselj
- University Medical Centre Ljubljana, University Children's Hospital, Department of Endocrinology, Diabetes and Metabolism, Ljubljana, Slovenia
| | - Mariko Harada-Shiba
- National Cerebral and Cardiovascular Centre Research Institute, Suita, Osaka, Japan
| | - Meral Kayikcioglu
- Ege University Medical School, Department of Cardiology, Izmir, Turkey
| | - Katarina Lalic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Carolyn S P Lam
- National Heart Centre, Singapore; Duke-NUS Medical School, Singapore
| | - Gustavs Latkovskis
- Research Institute of Cardiology and Regenerative Medicine, Faculty of Medicine, University of Latvia, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Ulrich Laufs
- Klinik und Poliklinikfür Kardiologie, Universitätsklinikum Leipzig, Germany
| | | | - Jie Lin
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Vincent Maher
- Advanced Lipid Management and Research (ALMAR) Centre, Ireland
| | | | - A David Marais
- University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Winfried März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany; Klinisches Institutfür Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria; Synlab Akademie, Synlab Holding Deutschland GmbH, Mannheim und Augsburg, Germany; D-A-CH-Gesellschaft Prävention von Herz-Kreislauf-Erkrankungen e.V., Hamburg, Germany
| | - Erkin Mirrakhimov
- Kyrgyz State Medical Academy, Centre of Cardiology and Internal Diseases, Biskek, Kyrgizstan
| | - André R Miserez
- Diagene Research Institute, Swiss FH Center, Reinach, Switzerland; Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Olena Mitchenko
- Dyslipidemia Department, State Institution National Scientific Centre "The M.D. Strazhesko Institute of Cardiology National Academy of Medical Sciences of Ukraine", Kiev, Ukraine
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zaneta Petrulioniene
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania; Clinic of Cardiac and Vascular Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Arman Postadzhiyan
- Bulgarian Society of Cardiology, Medical University of Sofia, Sofia, Bulgaria
| | - Ashraf Reda
- Cardiology, Menofia University, Egypt; Egyptian Association of Vernacular Biology and Atherosclerosis (EAVA), Egypt
| | - Željko Reiner
- Department of Internal Medicine, Division of Metabolic Diseases, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Wilson E Sadoh
- Cardiology Unit, Department of Child Health, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdullah Shehab
- Department of Internal Medicine, United Arab Emirates University-College of Medicine and Health Sciences, AlAin, United Arab Emirates
| | - Aleksander B Shek
- CAD and Atherosclerosis Laboratory, Republican Specialized Centre of Cardiology (RSCC), Ministry of Health of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Mario Stoll
- Honorary Commission for Cardiovascular Health (CHSCV), Montevideo, Uruguay
| | - Ta-Chen Su
- Departments of Internal Medicine and Environmental & Occupational Medicine, Cardiovascular Centre, National Taiwan University Hospital, Taipei, Taiwan
| | - Tavintharan Subramaniam
- Diabetes Centre, Admiralty Medical Centre, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Andrey V Susekov
- Faculty of Clinical Pharmacology and Therapeutics, Academy for Postgraduate Medical Education and Central Clinical Hospital, Academy of Medical Science, Moscow, Russia
| | | | - Myra Tilney
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Malta; Lipid Clinic, Mater Dei Hospital, Malta
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Thanh-Huong Truong
- Department of Cardiology, Hanoi Medical University, Hanoi, Viet Nam; Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Viet Nam
| | | | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | - Margus Viigimaa
- Centre for Cardiovascular Medicine, North Estonia Medical Centre, Tallinn University of Technology, Tallinn, Estonia
| | - Branislav Vohnout
- Institute of Nutrition, FOZOS, Slovak Medical University, Bratislava, Slovakia; Coordination Centre for Familial Hyperlipoproteinemias, Slovak Medical University, Bratislava, Slovakia
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Shizuya Yamashita
- Rinku General Medical Centre and Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor Babes din Timisoara, Romania
| | - Lixin Jiang
- National Clinical Research Centre of Cardiovascular Diseases, Fuwai Hospital, National Centre for Cardiovascular Diseases, Beijing, China
| | - Lennart Nilsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lourdes E Santos
- Cardinal Santos Medical Centre, University of the Philippines - Philippine General Hospital (UP-PGH), Philippines
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrumfür Herz- und Kreislauferkrankungen (DZHK), Munich Heart Alliance, Germany
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Josip Car
- Global eHealth Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Vallejo-Vaz AJ. Guest Editorial: Reducing Risk in Familial Hypercholesterolaemia and Severe Dyslipidaemia: Novel Drugs Targeting PCSK9. Eur Cardiol 2018; 13:7-8. [PMID: 30310462 PMCID: PMC6159434 DOI: 10.15420/ecr.2018.13.1.ge3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London London, UK
| |
Collapse
|