1
|
Johnson SM, Johnson SM, Watters JJ, Baker TL. Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations. Respir Physiol Neurobiol 2025; 331:104351. [PMID: 39303801 PMCID: PMC11614698 DOI: 10.1016/j.resp.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Substance P (SubP) and endomorphin-2 (Endo2) are co-localized presynaptically in vesicles of neurons adjacent to inspiratory rhythm-generating pre-Botzinger Complex (preBotC) neurons but the effects of co-released SubP and Endo2 on respiratory motor control are not known. To address this question, SubP alone or a combination of SubP and Endo2 (SubP/Endo2) were bath-applied in a sustained (15-min) or intermittent (5-min application, 5-min washout, x3) pattern at 10-100 nM to neonatal rat brainstem-spinal cord preparations. During neuropeptide application, SubP/Endo2 co-applications generally attenuated SubP-induced increases in burst frequency and decreases in burst amplitude. With respect to frequency plasticity (long-lasting increase in burst frequency 60 min post-neuropeptide application), SubP-induced frequency plasticity was increased with sustained SubP/Endo2 co-applications at 20 and 100 nM. Intermittent SubP/Endo2 co-applications tended to decrease the level of frequency plasticity induced by intermittent SubP alone applications. SubP/Endo2 co-applications revealed potentially new functions for neurokinin-1 (NK1R) and mu-opioid (MOR) receptors on respiratory rhythm-generating medullary neurons.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Johnson SM, Gumnit MG, Johnson SM, Baker TL, Watters JJ. Disinhibition does not play a role in endomorphin-2-induced changes in inspiratory motoneuron output produced by in vitro neonatal rat preparations. Respir Physiol Neurobiol 2024; 320:104186. [PMID: 37944625 PMCID: PMC10843717 DOI: 10.1016/j.resp.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Low level activation of mu-opioid receptors (MORs) in neonatal rat brainstem-spinal cord preparations increases inspiratory burst amplitude recorded on cervical spinal roots. We tested whether: (1) MOR activation with an endogenous ligand, such as endomorphin-2, increases inspiratory burst amplitude, (2) disinhibition of GABAergic or glycinergic inhibitory synaptic transmission is involved, and (3) inflammation alters endomorphin-2 effects. Using neonatal rat (P0-P3) brainstem-spinal cord preparations, bath-applied endomorphin-2 (10-200 nM) increased inspiratory burst amplitude and decreased burst frequency. Blockade of GABAA receptors (picrotoxin), glycine receptors (strychnine), or both (picrotoxin and strychnine) did not abolish endomorphin-2-induced effects. In preparations isolated from neonatal rats injected 3 h previously with lipopolysaccharide (LPS, 0.1 mg/kg), endomorphin-2 continued to decrease burst frequency but abolished the burst amplitude increase. Collectively, these data indicate that disinhibition of inhibitory synaptic transmission is unlikely to play a role in endomorphin-2-induced changes in inspiratory motor output, and that different mechanisms underlie the endomorphin-2-induced increases in inspiratory burst amplitude and decreases in burst frequency.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Maia G Gumnit
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Arnold MR, Williams PH, McArthur JA, Archuleta AR, O'Neill CE, Hassell JE, Smith DG, Bachtell RK, Lowry CA. Effects of chronic caffeine exposure during adolescence and subsequent acute caffeine challenge during adulthood on rat brain serotonergic systems. Neuropharmacology 2019; 148:257-271. [PMID: 30579884 PMCID: PMC6438184 DOI: 10.1016/j.neuropharm.2018.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/09/2023]
Abstract
Caffeine is the most commonly used drug in the world. However, animal studies suggest that chronic consumption of caffeine during adolescence can result in enhanced anxiety-like behavioral responses during adulthood. One mechanism through which chronic caffeine administration may influence subsequent anxiety-like responses is through actions on brainstem serotonergic systems. In order to explore potential effects of chronic caffeine consumption on brainstem serotonergic systems, we evaluated the effects of a 28-day exposure to chronic caffeine (0.3 g/L; postnatal day 28-56) or vehicle administration in the drinking water, followed by 24 h caffeine withdrawal, and subsequent challenge with caffeine (30 mg/kg; s.c.) or vehicle in adolescent male rats. In Experiment 1, acute caffeine challenge induced a widespread activation of serotonergic neurons throughout the dorsal raphe nucleus (DR); this effect was attenuated in rats that had been exposed to chronic caffeine consumption. In Experiment 2, acute caffeine administration profoundly decreased tph2 and slc22a3 mRNA expression throughout the DR, with no effects on htr1a or slc6a4 mRNA expression. Chronic caffeine exposure for four weeks during adolescence was sufficient to decrease tph2 mRNA expression in the DR measured 28 h after caffeine withdrawal. Chronic caffeine administration during adolescence did not impact the ability of acute caffeine to decrease tph2 or slc22a3 mRNA expression. Together, these data suggest that both chronic caffeine administration during adolescence and acute caffeine challenge during adulthood are important determinants of serotonergic function and serotonergic gene expression, effects that may contribute to chronic effects of caffeine on anxiety-like responses.
Collapse
Affiliation(s)
- M R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - P H Williams
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - J A McArthur
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - A R Archuleta
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - C E O'Neill
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - J E Hassell
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - D G Smith
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - R K Bachtell
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - C A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Denver Veterans Affairs Medical Center (VAMC), Denver, CO, 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, 80220, USA.
| |
Collapse
|
4
|
Lee JA, Knight CA, Kun X, Yang XB, Wood DJ, Dalgarno KW, Genever PG. In vivobiocompatibility of custom-fabricated apatite-wollastonite-mesenchymal stromal cell constructs. J Biomed Mater Res A 2015; 103:3188-200. [DOI: 10.1002/jbm.a.35448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/18/2015] [Accepted: 03/09/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Jennifer A. Lee
- Department of Biology; University of York; York YO10 5YW United Kingdom
- Biomaterials and Tissue Engineering Research Group; School of Dentistry; University of Leeds; Leeds LS2 9LU United Kingdom
| | | | - Xiao Kun
- Biomaterials and Tissue Engineering Research Group; School of Dentistry; University of Leeds; Leeds LS2 9LU United Kingdom
| | - Xuebin B. Yang
- Biomaterials and Tissue Engineering Research Group; School of Dentistry; University of Leeds; Leeds LS2 9LU United Kingdom
| | - David J. Wood
- Biomaterials and Tissue Engineering Research Group; School of Dentistry; University of Leeds; Leeds LS2 9LU United Kingdom
| | - Kenneth W. Dalgarno
- School of Mechanical and Systems Engineering; Newcastle University; Newcastle NE1 7RU United Kingdom
| | - Paul G. Genever
- Department of Biology; University of York; York YO10 5YW United Kingdom
| |
Collapse
|
5
|
de Moura MM, dos Santos RAS, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS. Altered cardiovascular reflexes responses in conscious Angiotensin-(1-7) receptor Mas-knockout mice. Peptides 2010; 31:1934-9. [PMID: 20603170 DOI: 10.1016/j.peptides.2010.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022]
Abstract
This study evaluated the physiological importance of Angiotensin-(1-7) receptor Mas on reflex control of circulation. Experiments were performed in male Mas-knockout (Mas-KO) and Wild Type (WT) conscious mice (12-20 wk of age). Baroreceptor reflex was evaluated by the bradycardic response induced by phenylephrine (0.25 μg/5 μl, i.v.). Bezold-Jarisch reflex was evaluated by phenylbiguanide (0.5 μg/5 μl, i.v.) and chemoreflex by potassium cyanide (2.5 μg/5 μl, i.v.). Baseline mean arterial pressure was higher in Mas-KO (n=14) as compared with WT mice (n=18) (118±1 mmHg vs. 109±2 mmHg); however, heart rate was similar in both strains (615±30 bpm vs. 648±13 bpm). Baroreflex bradycardia was lower (0.78±0.44 ms/mmHg vs. 1.30±0.14 ms/mmHg) in Mas-KO compared with WT mice. The depressor (-17±5 mmHg vs. -45±6 mmHg) and bradycardic (-212±36 bpm vs. -391±29 bpm) components of the Bezold-Jarisch reflex were also lower in Mas-KO mice. In addition, chemoreflex pressor response (+20±3 mmHg vs. +12±0.8 mmHg) and bradycardic response (-250±74 bpm vs. -52±26 bpm) were significantly higher in Mas-KO. These results further advances previous studies by showing that the lack of Mas receptor induced important imbalance in the neural control of blood pressure, altering not only the baroreflex but also the chemo- and Bezold-Jarisch reflexes.
Collapse
|
6
|
Netzer F, Mandjee N, Verberne AJ, Bernard JF, Hamon M, Laguzzi R, Sévoz-Couche C. Inhibition of the bradycardic component of the von Bezold-Jarisch reflex and carotid chemoreceptor reflex by periaqueductal gray stimulation: involvement of medullary receptors. Eur J Neurosci 2009; 29:2017-28. [DOI: 10.1111/j.1460-9568.2009.06758.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Moncrief K, Hamza S, Kaufman S. Splenic reflex modulation of central cardiovascular regulatory pathways. Am J Physiol Regul Integr Comp Physiol 2007; 293:R234-42. [PMID: 17395787 DOI: 10.1152/ajpregu.00562.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The splenorenal reflex induces changes in mean arterial pressure (MAP) and renal function. We hypothesized that, in addition to spinal pathways previously identified, these effects are also mediated through central pathways. We investigated the effect of elevated splenic venous pressure on central neural activation in intact, renal-denervated, and renal + splenic-denervated rats. Fos-labeled neurons were quantified in the nucleus of the tractus solitarius (NTS), paraventricular nucleus (PVN), supraoptic nucleus (SON), and subfornical organ (SFO) after 1-h partial splenic vein occlusion (SVO) in conscious rats bearing balloon occluders around the splenic vein, telemetric pressure transducers in the gastric vein (splenic venous pressure), and abdominal aorta catheters (MAP). SVO stimulated Fos expression in the PVN and SON, but not NTS or SFO of intact rats. Renal denervation abolished this response in the parvocellular PVN, while renal + splenic denervation abolished activation in the magnocellular PVN and the SON. In renal-denervated animals, SVO depressed Fos expression in the NTS and increased expression in the SFO, responses that were abolished by renal + splenic denervation. In intact rats, SVO also induced a fall in right atrial pressure, an increase in renal afferent nerve activity, and an increase in MAP. We conclude that elevated splenic venous pressure does induce hypothalamic activation and that this is mediated through both splenic and renal afferent nerves. However, in the absence of renal afferent input, SVO depressed NTS activation, probably as a result of the accompanying fall in cardiac preload and reduced afferent signaling from the cardiopulmonary receptors.
Collapse
Affiliation(s)
- Karli Moncrief
- Department of Physiology, University of Alberta, 473 Heritage Medical Research Centre, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
8
|
Lowry CA, Hollis JH, de Vries A, Pan B, Brunet LR, Hunt JRF, Paton JFR, van Kampen E, Knight DM, Evans AK, Rook GAW, Lightman SL. Identification of an immune-responsive mesolimbocortical serotonergic system: potential role in regulation of emotional behavior. Neuroscience 2007; 146:756-72. [PMID: 17367941 PMCID: PMC1868963 DOI: 10.1016/j.neuroscience.2007.01.067] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 11/01/2022]
Abstract
Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes.
Collapse
Affiliation(s)
- C A Lowry
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|