1
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2024:S2451-9456(24)00363-5. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
3
|
Colson C, Wang Y, Atherton J, Su X. SLC45A4 encodes a mitochondrial putrescine transporter that promotes GABA de novo synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604788. [PMID: 39091866 PMCID: PMC11291067 DOI: 10.1101/2024.07.23.604788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Solute carriers (SLC) are membrane proteins that facilitate the transportation of ions and metabolites across either the plasma membrane or the membrane of intracellular organelles. With more than 450 human genes annotated as SLCs, many of them are still orphan transporters without known biochemical functions. We developed a metabolomic-transcriptomic association analysis, and we found that the expression of SLC45A4 has a strong positive correlation with the cellular level of γ-aminobutyric acid (GABA). Using mass spectrometry and the stable isotope tracing approach, we demonstrated that SLC45A4 promotes GABA de novo synthesis through the Arginine/Ornithine/Putrescine (AOP) pathway. SLC45A4 functions as a putrescine transporter localized to the mitochondrial membrane to facilitate GABA production. Taken together, our results revealed a new biochemical mechanism where SLC45A4 controls GABA production.
Collapse
Affiliation(s)
- Cecilia Colson
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - James Atherton
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
4
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Dali O, Muriel-Muriel JA, Vargas-Baco A, Tevosian S, Zubcevic J, Smagulova F, Hayward LF. Prenatal nicotine exposure leads to epigenetic alterations in peripheral nervous system signaling genes in the testis of the rat. Epigenetics Chromatin 2024; 17:14. [PMID: 38715099 PMCID: PMC11075221 DOI: 10.1186/s13072-024-00539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Prenatal nicotine exposure (PNE) has been documented to cause numerous deleterious effects on fetal development. However, the epigenetic changes promoted by nicotine exposure on germ cells are still not well understood. OBJECTIVES In this study, we focused on elucidating the impact of prenatal nicotine exposure on regulatory epigenetic mechanisms important for germ cell development. METHODS Sprague-Dawley rats were exposed to nicotine during pregnancy and male progeny was analyzed at 11 weeks of age. Testis morphology was analyzed using frozen testis sections and expression of germ cell markers was examined by RT-qPCR; histone modifications were assessed by Western Blot (WB). DNA methylation analysis was performed by methylation-specific PCR of bisulfite converted DNA. Genome-wide DNA methylation was analyzed using Methylated DNA immunoprecipitation (MeDIP)-seq. We also carried out transcriptomics analysis of pituitary glands by RNA-seq. RESULTS We show that gestational exposure to nicotine reduces germ cell numbers, perturbs meiosis, affects the expression of germ line reprogramming responsive genes, and impacts the DNA methylation of nervous system genes in the testis. PNE also causes perturbation of gene expression in the pituitary gland of the brain. CONCLUSIONS Our data demonstrate that PNE leads to perturbation of male spermatogenesis, and the observed effects are associated with changes of peripheral nervous system signaling pathways. Alterations in the expression of genes associated with diverse biological activities such as cell migration, cell adhesion and GABA signaling in the pituitary gland underscore the complexity of the effects of nicotine exposure during pregnancy.
Collapse
Affiliation(s)
- Ouzna Dali
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Jose Antonio Muriel-Muriel
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Ana Vargas-Baco
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, USA
| | - Fatima Smagulova
- EHESP, Inserm, Irset (Institut de recherche en sante, environnement et travail)-UMR_S 1085, Univ. Rennes, 35000, Rennes, France.
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| |
Collapse
|
6
|
Cáceres ARR, Cardone DA, Sanhueza MDLÁ, Bosch IM, Cuello-Carrión FD, Rodriguez GB, Scotti L, Parborell F, Halperin J, Laconi MR. Local effect of allopregnanolone in rat ovarian steroidogenesis, follicular and corpora lutea development. Sci Rep 2024; 14:6402. [PMID: 38493224 PMCID: PMC10944484 DOI: 10.1038/s41598-024-57102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024] Open
Abstract
Allopregnanolone (ALLO) is a known neurosteroid and a progesterone metabolite synthesized in the ovary, CNS, PNS, adrenals and placenta. Its role in the neuroendocrine control of ovarian physiology has been studied, but its in situ ovarian effects are still largely unknown. The aims of this work were to characterize the effects of intrabursal ALLO administration on different ovarian parameters, and the probable mechanism of action. ALLO administration increased serum progesterone concentration and ovarian 3β-HSD2 while decreasing 20α-HSD mRNA expression. ALLO increased the number of atretic follicles and the number of positive TUNEL granulosa and theca cells, while decreasing positive PCNA immunostaining. On the other hand, there was an increase in corpora lutea diameter and PCNA immunostaining, whereas the count of TUNEL-positive luteal cells decreased. Ovarian angiogenesis and the immunohistochemical expression of GABAA receptor increased after ALLO treatment. To evaluate if the ovarian GABAA receptor was involved in these effects, we conducted a functional experiment with a specific antagonist, bicuculline. The administration of bicuculline restored the number of atretic follicles and the diameter of corpora lutea to normal values. These results show the actions of ALLO on the ovarian physiology of the female rat during the follicular phase, some of them through the GABAA receptor. Intrabursal ALLO administration alters several processes of the ovarian morpho-physiology of the female rat, related to fertility and oocyte quality.
Collapse
Affiliation(s)
- Antonella Rosario Ramona Cáceres
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Daniela Alejandra Cardone
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina
| | - María de Los Ángeles Sanhueza
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina
| | | | - Fernando Darío Cuello-Carrión
- Laboratorio de Oncología, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
| | | | - Leopoldina Scotti
- Ovarian Pathophysiology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina
| | - Fernanda Parborell
- Ovarian Pathophysiology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Myriam Raquel Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Av. Ruiz Leal s/n Parque General San Martín, CP 5500, Mendoza, Argentina.
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina.
| |
Collapse
|
7
|
Kuo YF, Polychronopoulou E, Raji MA. Signal detection of adverse events associated with gabapentinoid use for chronic pain. Pharmacoepidemiol Drug Saf 2024; 33:e5685. [PMID: 37640024 PMCID: PMC10844952 DOI: 10.1002/pds.5685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Gabapentinoids (GABA) prescribing as a potential and conceivably safer substitute for opioids has substantially increased. Understanding all potential adverse drug events (ADEs) associated with GABA will guide clinical decision-making for pain management. METHODS A 20% sample of Medicare enrollees with new chronic pain diagnoses in 2017-2018 was selected. GABA users were those with >=30 consecutive days prescription in a year without opioid prescription. Opioid users were similarly defined. The control group used neither of these drugs. Propensity score match across three groups based on demographics and comorbidity was performed. We used proportional reporting ratio (PRR), Gamma Poisson Shrinker, and tree-based scan statistic (TBSS) to detect ADEs within 3, 6, and 12 months of follow-up. RESULTS Immunity disorder was detected within 3 months of follow-up by PRR compared to opioid use (PRR:2.33), and by all three methods compared to controls. Complications of transplanted organs/tissues and schizophrenia spectrum/other psychotic disorders were consistently detected by PRR and TBSS within 3 months. Skin disorders were detected by TBSS; and stroke was detected by PRR within 3 months compared to opioid use (PRR:4.74). Some malignancies were detected by PRR within 12 months. Other signals detected in GABA users were neuropathy and nerve disorders. CONCLUSIONS Our study identified expected and unexpected ADE signals in GABA users. Neurological signals likely related to indications for GABA use. Signals for immunity, mental/behavior, and skin disorders were found in the FDA adverse event reporting system database. Unexpected signals of stroke and cancer require further confirmatory analyses to verify.
Collapse
Affiliation(s)
- Yong-Fang Kuo
- Department of Internal Medicine and Sealy Center on Aging,
University of Texas Medical Branch, Galveston, TX, USA
- Department of Biostatistics and Data Science, University of
Texas Medical Branch, Galveston, TX, USA
- Office of Biostatistics, University of Texas Medical
Branch, Galveston, TX, USA
| | | | - Mukaila A Raji
- Department of Internal Medicine and Sealy Center on Aging,
University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
8
|
Han J, Zhao X, Zhao X, Wang Q, Li P, Gu Q. Microbial-Derived γ-Aminobutyric Acid: Synthesis, Purification, Physiological Function, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14931-14946. [PMID: 37792666 DOI: 10.1021/acs.jafc.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
γ-Aminobutyric acid (GABA) is an important nonprotein amino acid that extensively exists in nature. At present, GABA is mainly obtained through chemical synthesis, plant enrichment, and microbial production, among which microbial production has received widespread attention due to its safety and environmental benefits. After using microbial fermentation to obtain GABA, it is necessary to be isolated and purified to ensure its quality and suitability for various industries such as food, agriculture, livestock, pharmaceutics, and others. This article provides a comprehensive review of the different sources of GABA, including its presence in nature and the synthesis methods. The factors affecting the production of microbial-derived GABA and its isolation and purification methods are further elucidated. Moreover, the main physiological functions of GABA and its application in different fields are also reviewed. By advancing our understanding of GABA, we can unlock its full potential and further utilize it in various fields to improve human health and well-being.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
9
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Function of the GABAergic System in Diabetic Encephalopathy. Cell Mol Neurobiol 2023; 43:605-619. [PMID: 35460435 DOI: 10.1007/s10571-022-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Diabetes is a common metabolic disease characterized by loss of blood sugar control and a high rate of complications. γ-Aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter in the adult mammalian brain. The normal function of the GABAergic system is affected in diabetes. Herein, we summarize the role of the GABAergic system in diabetic cognitive dysfunction, diabetic blood sugar control disorders, diabetes-induced peripheral neuropathy, diabetic central nervous system damage, maintaining diabetic brain energy homeostasis, helping central control of blood sugar and attenuating neuronal oxidative stress damage. We show the key regulatory role of the GABAergic system in multiple comorbidities in patients with diabetes and hope that further studies elucidating the role of the GABAergic system will yield benefits for the treatment and prevention of comorbidities in patients with diabetes.
Collapse
|
11
|
Yang Y, Ren L, Li W, Zhang Y, Zhang S, Ge B, Yang H, Du G, Tang B, Wang H, Wang J. GABAergic signaling as a potential therapeutic target in cancers. Biomed Pharmacother 2023; 161:114410. [PMID: 36812710 DOI: 10.1016/j.biopha.2023.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
GABA is the most common inhibitory neurotransmitter in the vertebrate central nervous system. Synthesized by glutamic acid decarboxylase, GABA could specifically bind with two GABA receptors to transmit inhibition signal stimuli into cells: GABAA receptor and GABAB receptor. In recent years, emerging studies revealed that GABAergic signaling not only participated in traditional neurotransmission but was involved in tumorigenesis as well as regulating tumor immunity. In this review, we summarize the existing knowledge of the GABAergic signaling pathway in tumor proliferation, metastasis, progression, stemness, and tumor microenvironment as well as the underlying molecular mechanism. We also discussed the therapeutical advances in targeting GABA receptors to provide the theoretical basis for pharmacological intervention of GABAergic signaling in cancer treatment especially immunotherapy.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Bo Tang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Zhang H, Wang Y, Gao F, Liu R, Chen W, Zhao X, Sun Q, Sun X, Li J, Liu C, Ma X. GABA increases susceptibility to DSS-induced colitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Nayak AP, An SS. Anxiolytics for Bronchodilation: Refinements to GABA A Agonists for Asthma Relief. Am J Respir Cell Mol Biol 2022; 67:419-420. [PMID: 35901197 PMCID: PMC9564927 DOI: 10.1165/rcmb.2022-0287ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ajay P Nayak
- Center for Translational Medicine
- Department of Medicine Thomas Jefferson University Philadelphia, Pennsylvania
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science New Brunswick, New Jersey
- Rutgers-Robert Wood Johnson Medical School The State University of New Jersey Piscataway, New Jersey
| |
Collapse
|
14
|
Liu X, Jiang L, Pang J, Wu Y, Pi Y, Zang J, Wang J, Han D. Maternal Dietary Supplementation with γ-Aminobutyric Acid Alleviated Oxidative Stress in Gestating Sows and Their Offspring by Regulating GABRP. Animals (Basel) 2022; 12:ani12192539. [PMID: 36230278 PMCID: PMC9558543 DOI: 10.3390/ani12192539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
Sows usually suffer oxidative stress during gestation, and this limits the growth of fetuses via placenta. Gamma-aminobutyric acid (GABA) is a functional nonessential amino acid engaged in regulating the physiological status of animals. However, the effects of GABA on the oxidative homeostasis of sows and their offspring remain unclear. Eighteen late gestating sows (85 d) were divided into the CON and GABA groups and fed the basal diet and the GABA diet (200 mg/kg GABA), respectively, until farrowing. At parturition, the sows’ litter characteristics, the plasma antioxidant parameters of sows, and their offspring were evaluated. The results showed that GABA supplementation had no marked effect on the reproductive performance of sows (p > 0.10) but had a trend of reducing the amount of intrauterine growth restriction (IUGR) in piglets (0.05 < p < 0.10). At the same time, the addition of GABA elevated the plasma superoxide dismutase (SOD) level of sows and enhanced the glutathione peroxidase (GSH-Px) activity of newborn piglets (p < 0.05). Based on the H2O2-induced oxidative stress in pTr-2 cells, GABA elevated intracellular GSH-Px, SOD, catalase (CAT), and total antioxidant capacity (T-AOC, p < 0.01) and upregulated the gene expressions of CAT, gamma-aminobutyric acid receptor (GABRP), and nuclear factor-erythroid 2-related factor-2 (Nrf2) in H2O2-treated pTr-2 cells (p < 0.05). Taken together, GABA improved the antioxidant capacity of sows and alleviated the placental oxidative stress by upregulating the GABRP and Nrf2 genes, which have the potential to promote oxidative homeostasis in newborn piglets.
Collapse
|
15
|
Mao Y, Ma Z, Xu C, Lv Z, Dong W, Liu X. Pathogenesis of ventilator-induced lung injury: metabolomics analysis of the lung and plasma. Metabolomics 2022; 18:66. [PMID: 35925420 DOI: 10.1007/s11306-022-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Nowadays,the mechanical ventilation (MV) aims to rest the respiratory muscles while providing adequate gas exchange, and it has been a part of basic life support during general anesthesia as well as in critically ill patients with and without respiratory failure. However, MV itself has the potential to cause or worsen lung injury, which is also known as ventilator-induced lung injury (VILI). Thus, the early diagnosis of VILI is of great importance for the prevention and treatment of VILI. OBJECTIVE This study aimed to investigate the metabolomes in the lung and plasma of mice receiving mechanical ventilation (MV). METHODS Healthy mice were randomly assigned into control group; (2) high volume tidal (HV) group (30 ml/kg); (3) low volume tidal (LV) group (6 ml/kg). After ventilation for 4 h, mice were sacrificed and the lung tissue and plasma were collected. The lung and plasma were processed for the metabolomics analysis. We also performed histopathological examination on the lung tissue. RESULTS We detected moderate inflammatory damage with alveolar septal thickening in the HV group compared with the normal and LV groups.The metabolomics analysis results showed MV altered the metabolism which was characterized by the dysregulation of γ-amino butyric acid (GABA) system and urea cycle (desregulations in plasma and lung guanidinosuccinic acid, argininosuccinic acid, succinic acid semialdehyde and lung GABA ), Disturbance of citric acid cycle (CAC) (increased plasma glutamine and lung phosphoenol pyruvate) and redox imbalance (desregulations in plasma and/or lung ascorbic acid, chenodeoxycholic acid, uric acid, oleic acid, stearidonic acid, palmitoleic acid and docosahexaenoic acid). Moreover, the lung and plasma metabolomes were also significantly different between LV and HV groups. CONCLUSIONS Some lung and plasma metabolites related to the GABA system and urea cycle, citric acid cycle and redox balance were significantly altered, and they may be employed for the evaluation of VILI and serve as targets in the treatment of VILI.
Collapse
Affiliation(s)
- Yanfei Mao
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Zhixin Ma
- Translational Medical Institute, Shanghai University, Shanghai, 200444, China
| | - Chufan Xu
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Zhou Lv
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Wenwen Dong
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Xinru Liu
- Translational Medical Institute, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
16
|
Yazdanimoghaddam F, Ghasemi M, Teamparvar H, Soltani N, Aghaei M, Rezazadeh H, Zadhoush F. Long-term GABA administration improves FNDC5, TFAM, and UCP3 mRNA expressions in the skeletal muscle and serum irisin levels in chronic type 2 diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:417-428. [PMID: 35106626 DOI: 10.1007/s00210-022-02211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
In this study, we aimed to investigate whether the anti-diabetic effects of γ-aminobutyric acid (GABA) and insulin can be mediated through the regulation of gene expression related to irisin production and mitochondrial biogenesis in type 2 diabetic mellitus (T2DM) rats. Four groups (n = 6) were used in this study: control, T2DM, T2DM + insulin, and T2DM + GABA groups. After T2DM induction for 3 months (high-fat diet + 35 mg/kg streptozotocin) and treatment with GABA or insulin for 3 months, circulating levels of FBG, triglyceride, LDL, Ox-LDL, and insulin as well as hepatic and serum irisin levels were measured. The mRNA expressions of fibronectin type III domain-containing protein 5 (FNDC5), mitochondrial transcription factor A (TFAM), and mitochondrial uncoupling protein 3 (UCP3) were also evaluated in the skeletal muscle of all groups. GABA therapy improved the FBG and insulin levels in diabetic rats. Insulin treatment significantly reduced FBG and failed to maintain glucose close to the control level. Insulin or GABA therapy significantly decreased the levels of LDL, Ox-LDL, and HOMA-IR index. Circulating irisin levels were markedly decreased in insulin-treated group, while irisin levels did not show significant changes in GABA-treated group compared with control group. GABA or insulin therapy increased mRNA expressions of TFAM and UCP3 in diabetic rats. GABA therapy also led to a significant increase in FNDC5 mRNA. Our findings suggest that the anti-diabetic effect of GABA may be mediated, in part, by a decrease in Ox-LDL levels and an increase in the levels of irisin as well as FNDC5, TFAM, and UCP3 gene expression in T2DM rats.
Collapse
Affiliation(s)
- Farzaneh Yazdanimoghaddam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hanif Teamparvar
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fouzieh Zadhoush
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Kim JK, Park EJ, Jo EK. Itaconate, Arginine, and Gamma-Aminobutyric Acid: A Host Metabolite Triad Protective Against Mycobacterial Infection. Front Immunol 2022; 13:832015. [PMID: 35185924 PMCID: PMC8855927 DOI: 10.3389/fimmu.2022.832015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Immune metabolic regulation shapes the host-pathogen interaction during infection with Mycobacterium tuberculosis (Mtb), the pathogen of human tuberculosis (TB). Several immunometabolites generated by metabolic remodeling in macrophages are implicated in innate immune protection against Mtb infection by fine-tuning defensive pathways. Itaconate, produced by the mitochondrial enzyme immunoresponsive gene 1 (IRG1), has antimicrobial and anti-inflammatory effects, restricting intracellular mycobacterial growth. L-arginine, a component of the urea cycle, is critical for the synthesis of nitric oxide (NO) and is implicated in M1-mediated antimycobacterial responses in myeloid cells. L-citrulline, a by-product of NO production, contributes to host defense and generates L-arginine in myeloid cells. In arginase 1-expressing cells, L-arginine can be converted into ornithine, a polyamine precursor that enhances autophagy and antimicrobial protection against Mtb in Kupffer cells. Gamma-aminobutyric acid (GABA), a metabolite and neurotransmitter, activate autophagy to induce antimycobacterial host defenses. This review discusses the recent updates of the functions of the three metabolites in host protection against mycobacterial infection. Understanding the mechanisms by which these metabolites promote host defense will facilitate the development of novel host-directed therapeutics against Mtb and drug-resistant bacteria.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
18
|
Bizzozzero-Hiriart M, Di Giorgio NP, Libertun C, Lux-Lantos VAR. GABAB Receptor Antagonism from Birth to Weaning Permanently Modifies Kiss1 Expression in the Hypothalamus and Gonads in Mice. Neuroendocrinology 2022; 112:998-1026. [PMID: 34963114 DOI: 10.1159/000521649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.
Collapse
Affiliation(s)
- Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria A R Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Activation of the α1β2γ2L GABA A Receptor by Physiological Agonists. Biomolecules 2021; 11:biom11121864. [PMID: 34944508 PMCID: PMC8699469 DOI: 10.3390/biom11121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
The Cl− permeable GABAA receptor is a major contributor to cellular inhibition in the brain. The receptor is normally activated by synaptically-released or ambient GABA but is sensitive to a number of physiological compounds such as β-alanine, taurine, and neurosteroids that, to various degrees, activate the receptor and modulate responses either to the transmitter or to each other. Here, we describe α1β2γ2L GABAA receptor activation and modulation by combinations of orthosteric and allosteric activators. The overall goal was to gain insight into how changes in the levels of endogenous agonists modulate receptor activity and influence cellular inhibition. Experimental observations and simulations are described in the framework of a cyclic concerted transition model. We also provide general analytical solutions for the analysis of electrophysiological data collected in the presence of combinations of active compounds.
Collapse
|
20
|
United States Pharmacopeia (USP) Safety Review of Gamma-Aminobutyric Acid (GABA). Nutrients 2021; 13:nu13082742. [PMID: 34444905 PMCID: PMC8399837 DOI: 10.3390/nu13082742] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Gamma-amino butyric acid (GABA) is marketed in the U.S. as a dietary supplement. USP conducted a comprehensive safety evaluation of GABA by assessing clinical studies, adverse event information, and toxicology data. Clinical studies investigated the effect of pure GABA as a dietary supplement or as a natural constituent of fermented milk or soy matrices. Data showed no serious adverse events associated with GABA at intakes up to 18 g/d for 4 days and in longer studies at intakes of 120 mg/d for 12 weeks. Some studies showed that GABA was associated with a transient and moderate drop in blood pressure (<10% change). No studies were available on effects of GABA during pregnancy and lactation, and no case reports or spontaneous adverse events associated with GABA were found. Chronic administration of GABA to rats and dogs at doses up to 1 g/kg/day showed no signs of toxicity. Because some studies showed that GABA was associated with decreases in blood pressure, it is conceivable that concurrent use of GABA with anti-hypertensive medications could increase risk of hypotension. Caution is advised for pregnant and lactating women since GABA can affect neurotransmitters and the endocrine system, i.e., increases in growth hormone and prolactin levels.
Collapse
|
21
|
GABAergic signaling by cells of the immune system: more the rule than the exception. Cell Mol Life Sci 2021; 78:5667-5679. [PMID: 34152447 PMCID: PMC8316187 DOI: 10.1007/s00018-021-03881-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.
Collapse
|
22
|
Kaewman P, Nudmamud-Thanoi S, Amatyakul P, Thanoi S. High mRNA expression of GABA receptors in human sperm with oligoasthenoteratozoospermia and teratozoospermia and its association with sperm parameters and intracytoplasmic sperm injection outcomes. Clin Exp Reprod Med 2021; 48:50-60. [PMID: 33648045 PMCID: PMC7943344 DOI: 10.5653/cerm.2020.03972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/17/2020] [Indexed: 11/25/2022] Open
Abstract
Objective This study investigated the mRNA expression of gamma-aminobutyric acid (GABA) receptors in the sperm of oligoasthenoteratozoospermic (OAT) and teratozoospermic (TER) men compared to normozoospermic (NOR) men, as well as the relationships between GABA receptor expression and sperm parameters, fertilization rate, and embryo quality. Methods The mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm was examined using reverse transcription–polymerase chain reaction in three groups of patients: NOR (n=32), OAT (n=22), and TER (n=45). The fertilization rate and embryo quality were assessed in 35 patients undergoing intracytoplasmic sperm injection (ICSI; 10 NOR, 10 OAT, and 15 TER men). Results OAT men had significantly higher mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm than NOR men; however, the difference between TER and NOR men was not significant. High levels of these receptors were significantly correlated with low sperm concentration, motility, and morphology, as well as the rate of good-quality embryos (GQEs) at the cleavage stage after ICSI. Patients whose female partners had a >50% GQE rate at the cleavage stage had significantly lower levels of GABA A-α1 receptor expression than those whose partners had a ≤50% GQE rate. Conclusion Our findings indicate that mRNA levels of GABA receptors in human sperm are correlated with poor sperm quality and associated with embryo development after ICSI treatment. The GABA A-α1 receptor in sperm has a stronger relationship with embryo quality at the cleavage stage than the GABA B-R2 receptor.
Collapse
Affiliation(s)
- Paweena Kaewman
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Patcharada Amatyakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand.,Naresuan Infertility Centre, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
23
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
24
|
de Bie TH, Witkamp RF, Jongsma MA, Balvers MGJ. Development and validation of a UPLC-MS/MS method for the simultaneous determination of gamma-aminobutyric acid and glutamic acid in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122519. [PMID: 33454439 DOI: 10.1016/j.jchromb.2020.122519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 11/15/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamic acid are important neurotransmitters. Both are also present in peripheral tissues and the circulation, where abnormal plasma concentrations have been linked to specific mental disorders. In addition to endogenous synthesis, GABA and glutamic acid can be obtained from dietary sources. An increasing number of studies suggest beneficial cardio-metabolic effects of GABA intake, and therefore GABA is being marketed as a food supplement. The need for further research into their health effects merits accurate and sensitive methods to analyze GABA and glutamic acid in plasma. To this end, an ultra-pressure liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of GABA and glutamic acid in human plasma. Samples were prepared by a protein precipitation step and subsequent solid phase extraction using acetonitrile. Chromatographic separation was achieved on an Acquity UPLC HSS reversed phase C18 column using gradient elution. Analytes were detected using electrospray ionization and selective reaction monitoring. Standard curve concentrations for GABA ranged from 3.4 to 2500 ng/mL and for glutamic acid from 30.9 ng/mL to 22,500 ng/mL. Within- and between-day accuracy and precision were <10% in quality control samples at low, medium and high concentrations for both GABA and glutamic acid. GABA and glutamic acid were found to be stable in plasma after freeze-thaw cycles and up to 12 months of storage. The validated method was applied to human plasma from 17 volunteers. The observed concentrations ranged between 11.5 and 20.0 ng/ml and 2269 and 7625 ng/ml for respectively GABA and glutamic acid. The reported method is well suited for the measurement of plasma GABA and glutamic acid in pre-clinical or clinical studies.
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
25
|
Mouton JC, Duckworth RA. Maternally derived hormones, neurosteroids and the development of behaviour. Proc Biol Sci 2021; 288:20202467. [PMID: 33499795 DOI: 10.1098/rspb.2020.2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a wide range of taxa, there is evidence that mothers adaptively shape the development of offspring behaviour by exposing them to steroids. These maternal effects have major implications for fitness because, by shaping early development, they can permanently alter how offspring interact with their environment. However, theory on parent-offspring conflict and recent physiological studies showing that embryos rapidly metabolize maternal steroids have placed doubt on the adaptive significance of these hormone-mediated maternal effects. Reconciling these disparate perspectives requires a mechanistic understanding of the pathways by which maternal steroids can influence neural development. Here, we highlight recent advances in developmental neurobiology and psychiatric pharmacology to show that maternal steroid metabolites can have direct neuro-modulatory effects potentially shaping the development of neural circuitry underlying ecologically relevant behavioural traits. The recognition that maternal steroids can act through a neurosteroid pathway has critical implications for our understanding of the ecology and evolution of steroid-based maternal effects. Overall, compared to the classic view, a neurosteroid mechanism may reduce the evolutionary lability of hormone-mediated maternal effects owing to increased pleiotropic constraints and frequently influence long-term behavioural phenotypes in offspring.
Collapse
Affiliation(s)
- James C Mouton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, MRC 5503, Washington, DC 20013-7012, USA
| | - Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
26
|
Simeone X, Koniuszewski F, Müllegger M, Smetka A, Steudle F, Puthenkalam R, Ernst M, Scholze P. A Benzodiazepine Ligand with Improved GABA A Receptor α5-Subunit Selectivity Driven by Interactions with Loop C. Mol Pharmacol 2020; 99:39-48. [PMID: 33268553 DOI: 10.1124/molpharm.120.000067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/20/2020] [Indexed: 01/30/2023] Open
Abstract
The family of GABAA receptors is an important drug target group in the treatment of sleep disorders, anxiety, epileptic seizures, and many others. The most frequent GABAA receptor subtype is composed of two α-, two β-, and one γ2-subunit, whereas the nature of the α-subunit critically determines the properties of the benzodiazepine binding site of those receptors. Nearly all of the clinically relevant drugs target all GABAA receptor subtypes equally. In the past years, however, drug development research has focused on studying α5-containing GABAA receptors. Beyond the central nervous system, α5-containing GABAA receptors in airway smooth muscles are considered as an emerging target for bronchial asthma. Here, we investigated a novel compound derived from the previously described imidazobenzodiazepine SH-053-2'F-R-CH3 (SH53d-ester). Although SH53d-ester is only moderately selective for α5-subunit-containing GABAA receptors, the derivative SH53d-acid shows superior (>40-fold) affinity selectivity and is a positive modulator. Using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes and radioligand displacement assays with human embryonic kidney 293 cells, we demonstrated that an acid group as substituent on the imidazobenzodiazepine scaffold leads to large improvements of functional and binding selectivity for α5β3γ2 over other αxβ3γ2 GABAA receptors. Atom level structural studies provide hypotheses for the improved affinity to this receptor subtype. Mutational analysis confirmed the hypotheses, indicating that loop C of the GABAA receptor α-subunit is the dominant molecular determinant of drug selectivity. Thus, we characterize a promising novel α5-subunit-selective drug candidate. SIGNIFICANCE STATEMENT: In the current study we present the detailed pharmacological characterization of a novel compound derived from the previously described imidazobenzodiazepine SH-053-2'F-R-CH3. We describe its superior (>40-fold) affinity selectivity for α5-containing GABAA receptors and show atom-level structure predictions to provide hypotheses for the improved affinity to this receptor subtype. Mutational analysis confirmed the hypotheses, indicating that loop C of the GABAA receptor α-subunit is the dominant molecular determinant of drug selectivity.
Collapse
Affiliation(s)
- Xenia Simeone
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Müllegger
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Andreas Smetka
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Friederike Steudle
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roshan Puthenkalam
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Beta-Blockers and Cancer: Where Are We? Pharmaceuticals (Basel) 2020; 13:ph13060105. [PMID: 32466499 PMCID: PMC7345088 DOI: 10.3390/ph13060105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. After diagnosis, cancer treatment may involve radiotherapy, chemotherapy, and surgery. Several of the approaches used to treat cancer also attack normal cells and, thus, there is the need for more effective treatments that decrease the toxicity to normal cells and increase the success rates of treatment. The use of beta-blockers in cancer has been studied for their antagonist action on the adrenergic system through inhibition of beta-adrenergic receptors. Besides regulating processes such as blood pressure, heart rate, and airway strength or reactivity, beta-blockers block mechanisms that trigger tumorigenesis, angiogenesis, and tumor metastasis. This study presents a literature review of the available studies addressing cancer treatments and beta-blockers. Overall, data suggest that propranolol may be used as a complement for the treatment of several types of cancer due to its ability to improve cancer outcomes by decreasing cancer cell proliferation rates. Nonetheless, additional in vitro studies should be performed to fully understand the protective role of BBs in cancer patients.
Collapse
|
28
|
Lee YY, Lin CW, Chen IW. Exogenous Insulin Injection-Induced Stiff-Person Syndrome in a Patient With Latent Autoimmune Diabetes: A Case Report and Literature Review. Front Endocrinol (Lausanne) 2020; 11:594. [PMID: 32982980 PMCID: PMC7492528 DOI: 10.3389/fendo.2020.00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
Stiff-person syndrome (SPS) is highly associated with anti-glutamic acid decarboxylase (GAD) antibody. However, GAD antibodies alone appear to be insufficient to cause SPS, and they possibly are involved in only part of its pathophysiology. It is suspected that the symptoms of SPS get precipitated by external stimuli. Here, we briefly introduce the case of a patient with latent autoimmune diabetes who developed SPS through the action of subcutaneously injected insulin. A 43-year-old man was diagnosed with diabetes and initially well-controlled with oral hypoglycemic agents but progressed to requiring insulin within 1 year of diagnosis. Two months after the initiation of basal insulin therapy, he presented with abdominal stiffness and painful muscle spasms, involving the lower limbs, which resulted in walking difficulty, and thus, he refused insulin injections thereafter. He had been treated with oral anti-diabetic agents instead of insulin for 10 years until premixed insulin twice daily was started again due to poor diabetes control. Immediately after insulin injection, abdominal muscle rigidity and spasms were noted. When insulin was not administered, frequent episodes of diabetic ketoacidosis occurred. Serum GAD antibody test was positive and there was no positivity for islet antigen-2 antibody. A glucagon stimulation test demonstrated relative insulin deficiency, indicative of latent autoimmune diabetes in adults (LADA). Tolerable muscle rigidity was achieved when the dosage of basal insulin was split into two separate daily injections with lower amounts of units per injection. This case highlights a different form of autoimmune diabetes in SPS. To our knowledge, this is the first report of SPS described shortly after the initiation of insulin therapy that required basal insulin to achieve tolerable muscle symptoms and better glucose control, without the development of diabetic ketoacidosis.
Collapse
|
29
|
Wang K, Zhao XH, Liu J, Zhang R, Li JP. Nervous system and gastric cancer. Biochim Biophys Acta Rev Cancer 2019; 1873:188313. [PMID: 31647986 DOI: 10.1016/j.bbcan.2019.188313] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
The nervous system has been recently shown to exert impact on gastric cancer directly and indirectly. Gastric cancer cells invade nerve fibers to induce outgrowth and branching of neural cells, and nerve fibers in turn infiltrate into tumor microenvironment to promote progression of gastric cancer. Additionally, the neuro-immune interaction also plays an important role in gastric cancer development. The interplay of nerves and gastric cancer is mediated by many nervous system-associated factors, which can not only be synthesized and released by both cancer cells and nerve terminals, but also participate in regulation of many aspects of gastric cancer such as cell proliferation, angiogenesis, metastasis and recurrence. Furthermore, clinical researches indicate that some of these factors are significant diagnosis and prognosis biomarkers for gastric cancer. Herein, we reviewed recent advances and future prospects of the interaction between nervous system and gastric cancer.
Collapse
Affiliation(s)
- Ke Wang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xin-Hui Zhao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China.
| | - Ji-Peng Li
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an, China; Department of Experimental Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
30
|
Xing A, Li X, Jiang C, Chen Y, Wu S, Zhang J, An L. As a Histone Deacetylase Inhibitor, γ-Aminobutyric Acid Upregulates GluR2 Expression: An In Vitro and In Vivo Study. Mol Nutr Food Res 2019; 63:e1900001. [PMID: 31090246 DOI: 10.1002/mnfr.201900001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/20/2019] [Indexed: 12/13/2022]
Abstract
SCOPE γ-Aminobutyric acid (GABA) possesses extensive physiological functions and can be directly obtained from foods. GABA-enriched functional foods have been developed and the commercial demands for GABA are increasing. GABA is widely recognized as a central nervous system inhibitory neurotransmitter and plays an important role in some diseases by binding to its receptors. However, some of the functions of GABA are not explained by neurotransmission or GABA receptor pathways. Therefore, this study investigates whether GABA has the potential to inhibit histone deacetylase (HDAC). METHODS AND RESULTS It is found that GABA inhibits HDAC1/2/3 expression and upregulates histone acetylation levels (Ace-H3K9/Ace-H4K12) in SH-SY5Y cells (which express GABA receptors), 3T3-L1 cells (which do not express GABA receptors), and the cerebral cortex in mice. Glutamate receptor 2 (GluR2) is a subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor and is implicated in the pathogenesis of some neurological diseases. It is also found that GABA increases GluR2 expression by inhibiting HDAC1/2 but not HDAC3. CONCLUSION A novel role for GABA is demonstrated in which it acts as an HDAC inhibitor. The present study expands the horizons for exploring the non-neurotransmitter functions of GABA.
Collapse
Affiliation(s)
- Aiping Xing
- The School of Public Health, China Medical University, Shenyang, China
| | - Xinhui Li
- The School of Public Health, China Medical University, Shenyang, China
| | - Congmin Jiang
- The School of Public Health, China Medical University, Shenyang, China
| | - Yanqiu Chen
- The School of Public Health, China Medical University, Shenyang, China
| | - Sining Wu
- The School of Public Health, China Medical University, Shenyang, China
| | - Jingzhu Zhang
- The School of Public Health, China Medical University, Shenyang, China
| | - Li An
- The School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Dehydroepiandrosterone sulfate improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Eur J Pharmacol 2019; 852:198-206. [DOI: 10.1016/j.ejphar.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
32
|
Bhandage AK, Barragan A. Calling in the Ca Valry- Toxoplasma gondii Hijacks GABAergic Signaling and Voltage-Dependent Calcium Channel Signaling for Trojan horse-Mediated Dissemination. Front Cell Infect Microbiol 2019; 9:61. [PMID: 30949456 PMCID: PMC6436472 DOI: 10.3389/fcimb.2019.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are regarded as the gatekeepers of the immune system but can also mediate systemic dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we review the current knowledge on how T. gondii hijacks the migratory machinery of DCs and microglia. Shortly after active invasion by the parasite, infected cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) and activate GABA-A receptors, which sets on a hypermigratory phenotype in parasitized DCs in vitro and in vivo. The signaling molecule calcium plays a central role for this migratory activation as signal transduction following GABAergic activation is mediated via the L-type voltage-dependent calcium channel (L-VDCC) subtype Cav1.3. These studies have revealed that DCs possess a GABA/L-VDCC/Cav1.3 motogenic signaling axis that triggers migratory activation upon T. gondii infection. Moreover, GABAergic migration can cooperate with chemotactic responses. Additionally, the parasite-derived protein Tg14-3-3 has been associated with hypermigration of DCs and microglia. We discuss the interference of T. gondii infection with host cell signaling pathways that regulate migration. Altogether, T. gondii hijacks non-canonical signaling pathways in infected immune cells to modulate their migratory properties, and thereby promote its own dissemination.
Collapse
Affiliation(s)
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
33
|
Shim K, Gulhar R, Jialal I. Exploratory metabolomics of nascent metabolic syndrome. J Diabetes Complications 2019; 33:212-216. [PMID: 30611573 DOI: 10.1016/j.jdiacomp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a disorder defined by having three of five features: increased waist circumference (WC), hypertriglyceridemia, decreased high-density lipoprotein-cholesterol, hypertension and an elevated blood glucose (BG). Metabolic Syndrome ( MetS) affects 35% of American adults and significantly increases risk for Atherosclerotic cardiovascular disease (ASCVD) and type-2 diabetes (T2DM). An understanding of the metabolome will help elucidate the pathogenesis of MetS and lead to better management. We hypothesize that the metabolites, gamma-aminobutyric acid (GABA), d-pyroglutamic acid (PGA) and N-acetyl-d-tryptophan (NAT) will be altered in nascent MetS patients without the confounding of ASCVD or T2DM. We also correlated these metabolites with biomarkers of inflammation. PATIENTS AND METHODS This was an exploratory study of 30 patients with nascent MetS and 20 matched controls undertaken in 2018. Metabolites were evaluated from patient's frozen early morning urine samples and were correlated with biomarkers of inflammation and adipokines. They were assayed by the NIH Western Metabolomics Center using liquid chromatography/mass spectrometry and standardized to urinary creatinine. All patients had normal hepatic and renal function. RESULTS GABA and PGA levels were significantly increased in MetS patients compared to controls: 2.8-fold and 2.9-fold median increases respectively with p < 0.0001 and p = 0.004, possibly deriving from glutamate. NAT was significantly decreased by 90% in MetS patients compared to controls, p < 0.001. GABA correlates significantly with cardio-metabolic (CM) features including WC, blood pressure systolic (BP-S) while NAT correlated inversely with WC, BP-S, blood glucose (BG) and triglycerides (TG). GABA correlated positively with chemerin, leptin, Fetuin A and endotoxin. NAT correlated inversely with WC, BP-S, BG, TG, high sensitivity C - reactive protein (hsCRP), toll-like receptor-4 (TLR-4), lipopolysaccharide binding protein (LBP), chemerin and retinol binding protein-4 (RBP-4). CONCLUSIONS We make the novel observation of increased GABA and PGA with decreased NAT in patients with MetS. While GABA and PGA correlates positively with CM features and biomediators of inflammation, the metabolite NAT correlated inversely. Thus, GABA and PGA could contribute to the pro-inflammatory state of MetS while NAT could mitigate this pro-inflammatory response.
Collapse
Affiliation(s)
- Kyumin Shim
- California North-state University College of Medicine, United States of America
| | - Radhika Gulhar
- California North-state University College of Medicine, United States of America
| | - Ishwarlal Jialal
- California North-state University College of Medicine, United States of America.
| |
Collapse
|
34
|
Söderhielm PC, Klein AB, Bomholtz SH, Jensen AA. Profiling of GABA A and GABA B receptor expression in the myometrium of the human uterus. Life Sci 2018; 214:145-152. [PMID: 30343129 DOI: 10.1016/j.lfs.2018.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
AIMS γ-aminobutyric acid (GABA) mediates its physiological effects through the GABAA and GABAB receptors. In this study the putative expression of GABAAR and GABABR subunits in human myometrium tissue was investigated. MAIN METHODS The expression levels of the 19 GABAAR subunits (α1-α6, β1-β3, γ1-γ3, δ, ε, π, θ, ρ1-ρ3) and the three GABABR subunits (GABAB1a, GABAB1b, GABAB2) were characterized by RT-qPCR analysis on two commercial samples and six samples derived from surgically removed myometrial tissues from different women. We probed for functional GABAAR expression in primary human myometrial smooth muscle cells (HMSMCs) by whole-cell patch-clamp electrophysiology. KEY FINDINGS The absolute mRNA levels of the 22 GABAAR and GABABR genes varied considerably across the eight samples, but a pronounced overlap existed between the specific subunits detected in the samples, with α2, β2, β3, ε, π, θ, GABAB1a and GABAB1b mRNAs being detected in most samples. The expression profile of GABAAR and GABABR subunit mRNAs in HMSMCs correlated with that observed in the eight tissue samples, albeit the subunit transcripts were detected at lower relative levels. Neither muscimol nor GABA evoked significant currents in these cells in the patch-clamp recordings. SIGNIFICANCE While the expression of the GABAB1 subunits on their own is unlikely to give rise to functional GABABR expression, the GABAAR subunits identified at mRNA level would be able to form functional receptors in the human myometrial tissue. Although GABAAR-mediated currents could not be recorded from HMSMCs in this study, this suggests a role for GABAergic transmission in the human myometrium.
Collapse
Affiliation(s)
- Pella Cecilia Söderhielm
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Anders Bue Klein
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Sofia Hammami Bomholtz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, N, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
35
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
36
|
Ikegami R, Shimizu I, Sato T, Yoshida Y, Hayashi Y, Suda M, Katsuumi G, Li J, Wakasugi T, Minokoshi Y, Okamoto S, Hinoi E, Nielsen S, Jespersen NZ, Scheele C, Soga T, Minamino T. Gamma-Aminobutyric Acid Signaling in Brown Adipose Tissue Promotes Systemic Metabolic Derangement in Obesity. Cell Rep 2018; 24:2827-2837.e5. [DOI: 10.1016/j.celrep.2018.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
|
37
|
Ma X, Sun Q, Sun X, Chen D, Wei C, Yu X, Liu C, Li Y, Li J. Activation of GABA A Receptors in Colon Epithelium Exacerbates Acute Colitis. Front Immunol 2018; 9:987. [PMID: 29867964 PMCID: PMC5949344 DOI: 10.3389/fimmu.2018.00987] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that gamma-aminobutyric acid (GABA) has many beneficial effects such as ameliorating immune and inflammatory response. But, here we reported that activation of GABAA receptors (GABAA Rs) aggravated dextran sulfate sodium (DSS)-induced colitis, although the expression of pro-inflammatory cytokines was inhibited. By contrast, blocking of GABAA Rs markedly alleviated DSS-induced colitis. Notably, GABAA Rs and glutamic acid decarboxylase 65/67 were significantly increased in colon mucosa of ulcerative colitis patients and the mouse model of colitis. Further studies showed that GABA treatment resulted in an increment of serum FITC-dextran following its oral administration, a decrement of transepithelial electrical resistance, and an increment of bacterial invasion, effects which were blocked by bicuculline. In addition, GABA inhibited the expression of tight junction proteins and mucin secretion in colitis colon. GABA also decreased the expression of ki-67 and increased cleaved-caspase 3 expression in intestinal epithelia. Our data indicate that the GABAA Rs activation within colon mucosa disrupts the intestinal barrier and increases the intestinal permeability which facilitates inflammatory reaction in colon. Meanwhile, the suppression effect of GABA on pro-inflammatory cytokines leads to insufficient bacteria elimination and further aggravated the bacteria invasion and inflammatory damage.
Collapse
Affiliation(s)
- Xuelian Ma
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qian Sun
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaotong Sun
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Dawei Chen
- Laboratory of Medical Chemistry, GIGA-Molecular Biology of Diseases, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Chuanfei Wei
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Centre for Stem Cell and Regenerative Medicine, Liaocheng People's Hospital, Liaocheng, China
| | - Xin Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
38
|
Nurullin LF, Nikolsky EE, Malomouzh AI. Elements of molecular machinery of GABAergic signaling in the vertebrate cholinergic neuromuscular junction. Acta Histochem 2018; 120:298-301. [PMID: 29496267 DOI: 10.1016/j.acthis.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
It is generally accepted that gamma-aminobutyric acid (GABA) is a signaling molecule abundant in central synapses. In a number of studies though, it has been shown that GABA signaling functions in the peripheral nervous system as well, in particular, in the synapses of sympathetic ganglia. However, there exists no firm evidence on the presence of GABAergic signaling cascade in the intercellular junctions of the somatic nerve system. By the use of immunohistochemistry methods, in the synaptic area of cholinergic neuromuscular contact in rat diaphragm, we have detected glutamate decarboxylase, the enzyme involved in synthesis of GABA, molecules of GABA, and also GAT-2, a protein responsible for transmembrane transport of GABA. Earlier we have also shown that metabotropic GABAB receptors have overlapping localization in the same compartment. Moreover, activation of GABAB receptors affects the intensity of acetylcholine release. These data taken together, allows us to suggest that in the mammalian cholinergic neuromuscular junction, GABA is synthesized and performs certain synaptic signaling function.
Collapse
Affiliation(s)
- Leniz F Nurullin
- Kazan Institute of Biochemistry and Biophysics, Subdivision of the Federal State Budgetary Institution of Science "Kazan Scientific Center of the Russian Academy of Sciences", P.O. Box 30, Kazan 420111, Russia; Kazan Medical University, 49 Butlerova St., Kazan 420012, Russia; Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia
| | - Evgeny E Nikolsky
- Kazan Institute of Biochemistry and Biophysics, Subdivision of the Federal State Budgetary Institution of Science "Kazan Scientific Center of the Russian Academy of Sciences", P.O. Box 30, Kazan 420111, Russia; Kazan Medical University, 49 Butlerova St., Kazan 420012, Russia; Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia
| | - Artem I Malomouzh
- Kazan Institute of Biochemistry and Biophysics, Subdivision of the Federal State Budgetary Institution of Science "Kazan Scientific Center of the Russian Academy of Sciences", P.O. Box 30, Kazan 420111, Russia; Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia.
| |
Collapse
|
39
|
Liu Y, Weng W, Wang S, Long R, Li H, Li H, Li T, Wu M. Effect of γ-Aminobutyric Acid-Chitosan Nanoparticles on Glucose Homeostasis in Mice. ACS OMEGA 2018; 3:2492-2497. [PMID: 30023835 PMCID: PMC6044756 DOI: 10.1021/acsomega.7b01988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Diabetes mellitus is the most common endocrine disease worldwide; hyperglycemia is a hallmark of this disease. To alleviate the pain caused by diabetes, developing and utilizing effective diabetic drugs to maintain or recover the function of the residual β-cells is an attractive therapeutic approach. γ-aminobutyric acid (GABA) has been shown to have such effects, but it is easy to have reduced GABA activity under physiological conditions. In the present study, GABA-chitosan nanoparticles (GABA-CS NPs) were prepared, and glucose homeostasis, pancreatic β-cell protection, and anti-inflammatory effects of GABA-CS NPs were investigated in vivo. The results showed that blood glucose levels and IL-1β levels in the GABA-CS NP-administered group were both significantly lower, whereas the PDX1 expression was significantly higher than that of the impaired group (p < 0.01). This indicates that GABA-CS NPs can efficiently maintain glucose homeostasis, protect β-cells, and inhibit inflammation. These nanoparticles have the potential to be applied for future diabetes theranostics.
Collapse
Affiliation(s)
- Yuangang Liu
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
- Fujian
Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Weiji Weng
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
- Fujian
Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
| | - Ruimin Long
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hanwen Li
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Huihui Li
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Tengteng Li
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Mengyi Wu
- College
of Chemical Engineering, Institutes of Pharmaceutical Engineering, and College of Materials
Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
40
|
Udumyan R, Montgomery S, Fang F, Almroth H, Valdimarsdottir U, Ekbom A, Smedby KE, Fall K. Beta-Blocker Drug Use and Survival among Patients with Pancreatic Adenocarcinoma. Cancer Res 2017; 77:3700-3707. [PMID: 28473530 DOI: 10.1158/0008-5472.can-17-0108] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Preclinical studies have suggested that β-adrenergic signaling is involved in pancreatic cancer progression. Prompted by such studies, we investigated an association between beta-blocker drug use with improved cancer-specific survival in a large, general population-based cohort of patients with pancreatic ductal adenocarcinoma (PDAC). All patients diagnosed with a first primary PDAC in Sweden between 2006 and 2009 were identified through the Swedish Cancer Register (n = 2,394). We obtained information about use of beta-blockers and other medications through linkage with the national Prescribed Drug Register. Cancer-specific mortality was assessed using the Swedish Cause of Death Register. We used multivariable Cox regression adjusted for sociodemographic factors, tumor characteristics, comorbidity score, and other medications to estimate HRs and 95% confidence intervals (CI) for cancer-specific mortality associated with beta-blocker use during the 90-day period before cancer diagnosis. A total of 2,054 (86%) died, with pancreatic cancer recorded as the underlying cause of death during a maximum of 5-year follow-up (median 5 months). Patients who used beta-blockers (n = 522) had a lower cancer-specific mortality rate than nonusers (adjusted HR, 0.79; 95% CI, 0.70-0.90; P < 0.001). This observed rate reduction was more pronounced among patients with localized disease at diagnosis (n = 517; adjusted HR, 0.60; 95% CI, 0.43-0.83; P = 0.002), especially for users with higher daily doses (HR, 0.54; 95% CI, 0.35-0.83; P = 0.005). No clear rate differences were observed by beta-blocker receptor selectivity. Our results support the concept that beta-blocker drugs may improve the survival of PDAC patients, particularly among those with localized disease. Cancer Res; 77(13); 3700-7. ©2017 AACR.
Collapse
Affiliation(s)
- Ruzan Udumyan
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Clinical Epidemiology Unit, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Almroth
- Department of Cardiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Unnur Valdimarsdottir
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Center of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Anders Ekbom
- Clinical Epidemiology Unit, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Karin E Smedby
- Clinical Epidemiology Unit, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Ravasz D, Kacso G, Fodor V, Horvath K, Adam-Vizi V, Chinopoulos C. Catabolism of GABA, succinic semialdehyde or gamma-hydroxybutyrate through the GABA shunt impair mitochondrial substrate-level phosphorylation. Neurochem Int 2017; 109:41-53. [PMID: 28300620 DOI: 10.1016/j.neuint.2017.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
GABA is catabolized in the mitochondrial matrix through the GABA shunt, encompassing transamination to succinic semialdehyde followed by oxidation to succinate by the concerted actions of GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH), respectively. Gamma-hydroxybutyrate (GHB) is a neurotransmitter and a psychoactive drug that could enter the citric acid cycle through transhydrogenation with α-ketoglutarate to succinic semialdehyde and d-hydroxyglutarate, a reaction catalyzed by hydroxyacid-oxoacid transhydrogenase (HOT). Here, we tested the hypothesis that the elevation in matrix succinate concentration caused by exogenous addition of GABA, succinic semialdehyde or GHB shifts the equilibrium of the reversible reaction catalyzed by succinate-CoA ligase towards ATP (or GTP) hydrolysis, effectively negating substrate-level phosphorylation (SLP). Mitochondrial SLP was addressed by interrogating the directionality of the adenine nucleotide translocase during anoxia in isolated mouse brain and liver mitochondria. GABA eliminated SLP, and this was rescued by the GABA-T inhibitors vigabatrin and aminooxyacetic acid. Succinic semialdehyde was an extremely efficient substrate energizing mitochondria during normoxia but mimicked GABA in abolishing SLP in anoxia, in a manner refractory to vigabatrin and aminooxyacetic acid. GHB could moderately energize liver but not brain mitochondria consistent with the scarcity of HOT expression in the latter. In line with these results, GHB abolished SLP in liver but not brain mitochondria during anoxia and this was unaffected by either vigabatrin or aminooxyacetic acid. It is concluded that when mitochondria catabolize GABA or succinic semialdehyde or GHB through the GABA shunt, their ability to perform SLP is impaired.
Collapse
Affiliation(s)
- Dora Ravasz
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Gergely Kacso
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Viktoria Fodor
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Kata Horvath
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary
| | - Vera Adam-Vizi
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Laboratory for Neurobiochemistry, Hungary
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary; MTA-SE Lendület Neurobiochemistry Research Group, Hungary.
| |
Collapse
|
42
|
Agarwal S, Chaudhary B, Bist R. Protective propensity of bacoside A and bromelain on renal cholinesterases, γ-Aminobutyric acid and serotonin level of Mus musculus intoxicated with dichlorvos. Chem Biol Interact 2017; 261:139-144. [DOI: 10.1016/j.cbi.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
|
43
|
Dai H, Hao C, Huang X, Liu Z, Lian H, Liu C. Different transcriptional levels of GABA A receptor subunits in mouse cumulus cells around oocytes at different mature stage. Gynecol Endocrinol 2016; 32:1009-1013. [PMID: 27345459 DOI: 10.1080/09513590.2016.1197198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is a principal inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. However, GABA and its receptor are found not only in peripheral neuronal tissue but also in many peripheral nonneuronal tissues, and thought to have multiple physiological functions. The bidirectional communication between oocytes and cumulus cells (CCs) plays a significant role in oocyte maturation and metabolism. In our previously study, the expression level of α5 subunit in CCs isolated from oocytes of patients with polycystic ovary syndrome had been found to be associated with oocyte nuclear maturity. In this study, we investigated the transcriptional levels of GABAA receptor subunits in germinal vesicle (GV) and metaphase II (MII) mouse CCs, and explored the role of GABA-A receptor subunits during ovarian follicular development and oocyte maturation. We found that GABAA receptor subunits exhibited differential transcriptional levels in CCs at different oocyte nuclear maturity stages. It suggested an involvement of GABA-A receptor subunits related to oocyte maturation and certain functions.
Collapse
Affiliation(s)
- Huangguan Dai
- a Department of Reproductive Medicine , Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College of Qingdao University , Yantai , Shandong , China and
| | - Cuifang Hao
- a Department of Reproductive Medicine , Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College of Qingdao University , Yantai , Shandong , China and
| | - Xin Huang
- a Department of Reproductive Medicine , Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College of Qingdao University , Yantai , Shandong , China and
| | - Zhenteng Liu
- a Department of Reproductive Medicine , Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College of Qingdao University , Yantai , Shandong , China and
| | - Huayu Lian
- a Department of Reproductive Medicine , Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College of Qingdao University , Yantai , Shandong , China and
| | - Chang Liu
- b Medical College of Shandong University, Jinan , Shandong , China
| |
Collapse
|
44
|
Yang L, Ge Y, Lin S, Fang X, Zhou L, Gao J. Sevoflurane inhibits the self-renewal of mouse embryonic stem cells via the GABAAR-ERK signaling pathway. Mol Med Rep 2016; 14:2119-26. [DOI: 10.3892/mmr.2016.5466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
|
45
|
Sen S, Roy S, Bandyopadhyay G, Scott B, Xiao D, Ramadoss S, Mahata SK, Chaudhuri G. γ-Aminobutyric Acid Is Synthesized and Released by the Endothelium: Potential Implications. Circ Res 2016; 119:621-34. [PMID: 27354210 DOI: 10.1161/circresaha.116.308645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Gamma aminobutyric acid (GABA), a neurotransmitter of the central nervous system, is found in the systemic circulation of humans at a concentration between 0.5 and 3 μmol/L. However, the potential source of circulating GABA and its significance on the vascular system remains unknown. We hypothesized that endothelial cells (ECs) may synthesize and release GABA to modulate some functions in the EC and after its release into the circulation. OBJECTIVE To assess whether GABA is synthesized and released by the EC and its potential functions. METHODS AND RESULTS Utilizing the human umbilical vein ECs and aortic ECs, we demonstrated for the first time that ECs synthesize and release GABA from [1-(14)C]glutamate. Localization of GABA and the presence of the GABA-synthesizing enzyme, glutamic acid decarboxylase in EC were confirmed by immunostaining and immunoblot analysis, respectively. The presence of GABA was further confirmed by immunohistochemistry in the EC lining the human coronary vessel. EC-derived GABA regulated the key mechanisms of ATP synthesis, fatty acid, and pyruvate oxidation in EC. GABA protected EC by inhibiting the reactive oxygen species generation and prevented monocyte adhesion by attenuating vascular cell adhesion molecule -1 and monocyte chemoattractant protein-1 expressions. GABA had no relaxing effect on rat aortic rings. GABA exhibited a dose-dependent fall in blood pressure. However, the fall in BP was abolished after pretreatment with pentolinium. CONCLUSIONS Our findings indicate novel potential functions of endothelium-derived GABA.
Collapse
Affiliation(s)
- Suvajit Sen
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.).
| | - Sohini Roy
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.)
| | - Gautam Bandyopadhyay
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.)
| | - Bari Scott
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.)
| | - Daliao Xiao
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.)
| | - Sivakumar Ramadoss
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.)
| | - Sushil K Mahata
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.)
| | - Gautam Chaudhuri
- From the Department of Obstetrics and Gynecology (S.S., S.R., B.S., S.R., G.C.) and Department of Molecular and Medical Pharmacology (G.C.) David Geffen School of Medicine at University of California at Los Angeles; Jonsson Comprehensive Cancer Center, Los Angeles, CA (S.S., G.C.); Department of Medicine, University of California San Diego, VA San Diego Health Care System (G.B., S.K.M.); and Division of Pharmacology, Department of Basic Sciences, Center for Perinatal Biology, Loma Linda University School of Medicine, CA (D.X.).
| |
Collapse
|
46
|
Lu J, Zhang Q, Tan D, Luo W, Zhao H, Ma J, Liang H, Tan Y. GABA A receptor π subunit promotes apoptosis of HTR-8/SVneo trophoblastic cells: Implications in preeclampsia. Int J Mol Med 2016; 38:105-12. [PMID: 27221053 PMCID: PMC4899026 DOI: 10.3892/ijmm.2016.2608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/10/2016] [Indexed: 12/26/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter through its receptors in the mature central nervous system. The GABA type A receptor π subunit (GABRP) has been identified in the tissues of the reproductive system, particularly in the uterus. In addition, we have previously detected GABRP expression in both human and mouse placentas. To examine the role of GABRP in trophoblastic cell invasion, we constructed a pIRES2-GABRP-EGFP plasmid which was used for the transfection of a human placental cell line derived from first trimester extravillous trophoblasts (HTR-8/SVneo). The number of invaded cells was decreased by GABRP overexpression. Notably, the decrease in the invasive cell number may be due to the increased apoptosis of the HTR-8/SVneo cells following GABRP transfection, which was further confirmed by flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Based on the increased apoptosis of trophoblastic cells in pregnancies complicated by preeclampsia (PE) and the fact that GABRP promotes the apoptosis of trophoblastic cells, we hypothesized that GABRP expression is increased in the placental tissues from patients with PE compared with that in the normal groups and this hypothesis was confirmed by RT-qPCR and immunohistochemical analysis. Taken together, these findings imply that GABRP plays an important role in placentation and this pathway may be a promising molecular target for the development of novel therapeutic strategies for PE.
Collapse
Affiliation(s)
- Junjie Lu
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Wenping Luo
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Hai Zhao
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Jing Ma
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Hao Liang
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
47
|
Kharazmi F, Soltani N, Rezaei S, Keshavarz M, Farsi L. Role of GABAB receptor and L-Arg in GABA-induced vasorelaxation in non-diabetic and streptozotocin-induced diabetic rat vessels. IRANIAN BIOMEDICAL JOURNAL 2016; 19:91-5. [PMID: 25864813 PMCID: PMC4412919 DOI: 10.6091/ibj.1461.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background: Hypertension is considered an independent risk factor for cardiovascular mortality in diabetic patients. The present study was designed to determine the role of gamma amino butyric acid B (GABAB) receptor and L-arginine (L-Arg) in GABA-induced vasorelaxation in normal and streptozotocin-induced diabetic rat vessels. Methods: Diabetes was induced by a single i.p. injection of streptozotocin (STZ, 60 mg/kg). Eight weeks later, superior mesenteric arteries of all groups were isolated and perfused according to the McGregor method. Results: Baseline perfusion pressure of STZ diabetic rats was significantly higher than non-diabetic rats in both intact and denuded endothelium. In the presence of faclofen, a selective GABAB receptor blocker, GABA-induced relaxation in intact and denuded endothelium mesenteric beds of STZ diabetic rats was suppressed, but this response in non-diabetic rats was not suppressed. Our results showed that in the presence of L-Arg, a nitric oxide precursor, GABA induced vasorelaxation in both diabetic and non-diabetic vessels. Conclusion: From the results of this study, it may be concluded that the vasorelaxatory effect of GABA in diabetic vessel is mediated by the GABAB receptor and nitric oxide, but it seems that in non-diabetic vessel GABAB receptor does not play any role in GABA-induced vasorelaxation, but nitric oxide induced GABA relaxation in non-diabetic vessel.
Collapse
Affiliation(s)
- Fatemah Kharazmi
- Dept. of Physiology, Faculty of Medicine, Molecular Medicine Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Nepton Soltani
- Dept. of Physiology, Faculty of Medicine, Molecular Medicine Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Sana Rezaei
- Dept. of Physiology, Faculty of Medicine, Molecular Medicine Research Center, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Mansoor Keshavarz
- Dept. of Physiology, Faculty of Medicine, Tehran University
of Medical Science, Tehran, Iran
| | - Leila Farsi
- Dept. of Physiology, Faculty of Medicine, Tehran University
of Medical Science, Tehran, Iran
| |
Collapse
|
48
|
Ernst M, Sieghart W. GABAA receptor subtypes: structural variety raises hope for new therapy concepts. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13295-015-0016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Vafapour M, Nematbakhsh M, Monajemi R, Mazaheri S, Talebi A, Talebi N, Shirdavani S. Effect of Γ-aminobutyric acid on kidney injury induced by renal ischemia-reperfusion in male and female rats: Gender-related difference. Adv Biomed Res 2015; 4:158. [PMID: 26380243 PMCID: PMC4550949 DOI: 10.4103/2277-9175.161585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/17/2015] [Indexed: 11/25/2022] Open
Abstract
Background: The most important cause of kidney injury is renal ischemia/reperfusion injury (IRI), which is gender-related. This study was designed to investigate the protective role of Γ-aminobutyric acid (GABA (against IRI in male and female rats. Materials and Methods: Thirty-six female and male wistar rats were assigned to six experimental groups. The IRI was induced by clamping renal vessels for 45 min then was performed reperfusion for 24 h. The group sex posed to IRI were pretreated with GABA and were compared with the control groups. Results: Serum levels of creatinine and blood urea nitrogen, kidney weight, and kidney tissue damage score increased in the IRI alone groups, (P < 0.05), while GABA decreased these parameters in female significantly (P < 0.05), but not in male rats. Uterus weight decreased significantly in female rats treated with GABA. Testis weight did not alter in male rats. Serum level of nitrite and kidney level of malondialdehyde (MDA) had no significant change in both female and male rats. Kidney level of nitrite increased significantly in female rats experienced IRI and serum level of MDA increased significantly in males that were exposed to IRI (P < 0.05). Conclusion: GABA could ameliorate kidney injury induced by renal IRI in a gender dependent manner.
Collapse
Affiliation(s)
- Marzieh Vafapour
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan-MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Safoora Mazaheri
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Soheyla Shirdavani
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
50
|
Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B. GABAergic signalling in the immune system. Acta Physiol (Oxf) 2015; 213:819-27. [PMID: 25677654 DOI: 10.1111/apha.12467] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/12/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023]
Abstract
The GABAergic system is the main inhibitory neurotransmitter system in the central nervous system (CNS) of vertebrates. Signalling of the transmitter γ-aminobutyric acid (GABA) via GABA type A receptor channels or G-protein-coupled type B receptors is implicated in multiple CNS functions. Recent findings have implicated the GABAergic system in immune cell functions, inflammatory conditions and diseases in peripheral tissues. Interestingly, the specific effects may vary between immune cell types, with stage of activation and be altered by infectious agents. GABA/GABA-A receptor-mediated immunomodulatory functions have been unveiled in immune cells, being present in T lymphocytes and regulating the migration of Toxoplasma-infected dendritic cells. The GABAergic system may also play a role in the regulation of brain resident immune cells, the microglial cells. Activation of microglia appears to regulate the function of GABAergic neurotransmission in neighbouring neurones through changes induced by secretion of brain-derived neurotrophic factor. The neurotransmitter-driven immunomodulation is a new but rapidly growing field of science. Herein, we review the present knowledge of the GABA signalling in immune cells of the periphery and the CNS and raise questions for future research.
Collapse
Affiliation(s)
- A. Barragan
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - J. M. Weidner
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
- Department of Medicine; Center for Infectious Medicine; Karolinska Institutet; Stockholm Sweden
| | - Z. Jin
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - E. R. Korpi
- Department of Pharmacology; Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University Health System; Neurobiology and Ageing Programme; Life Sciences Institute; National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology; Singapore
| | - B. Birnir
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|