1
|
Chen J, Bendowski KT, Bizanti A, Zhang Y, Ma J, Hoover DB, Gozal D, Shivkumar K, Cheng ZJ. Distribution and morphology of calcitonin gene-related peptide (CGRP) innervation in flat mounts of whole rat atria and ventricles. Auton Neurosci 2024; 251:103127. [PMID: 38211380 DOI: 10.1016/j.autneu.2023.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 01/13/2024]
Abstract
Calcitonin gene-related peptide (CGRP) is widely used as a marker for nociceptive afferent axons. However, the distribution of CGRP-IR axons has not been fully determined in the whole rat heart. Immunohistochemically labeled flat-mounts of the right and left atria and ventricles, and the interventricular septum (IVS) in rats for CGRP were assessed with a Zeiss imager to generate complete montages of the entire atria, ventricles, and septum, and a confocal microscope was used to acquire detailed images of selected regions. We found that 1) CGRP-IR axons extensively innervated all regions of the atrial walls including the sinoatrial node region, auricles, atrioventricular node region, superior/inferior vena cava, left pre-caval vein, and pulmonary veins. 2) CGRP-IR axons formed varicose terminals around individual neurons in some cardiac ganglia but passed through other ganglia without making appositions with cardiac neurons. 3) Varicose CGRP-IR axons innervated the walls of blood vessels. 4) CGRP-IR axons extensively innervated the right/left ventricular walls and IVS. Our data shows the rather ubiquitous distribution of CGRP-IR axons in the whole rat heart at single-cell/axon/varicosity resolution for the first time. This study lays the foundation for future studies to quantify the differences in CGRP-IR axon innervation between sexes, disease models, and species.
Collapse
Affiliation(s)
- Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - David Gozal
- Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, CA 90095, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
2
|
Bizanti A, Zhang Y, Toledo Z, Bendowski KT, Harden SW, Mistareehi A, Chen J, Gozal D, Heal M, Christie R, Hunter PJ, Paton JFR, Cheng ZJ. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. J Physiol 2024; 602:49-71. [PMID: 38156943 PMCID: PMC10842556 DOI: 10.1113/jp284961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - David Gozal
- Joan C. Edwards School of medicine, Marshall University, Huntington, WV, USA
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department Physiology, Manaaki Manawa-the Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
3
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng Z(J. Organization and morphology of calcitonin gene-related peptide-immunoreactive axons in the whole mouse stomach. J Comp Neurol 2023; 531:1608-1632. [PMID: 37694767 PMCID: PMC10593087 DOI: 10.1002/cne.25519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 09/12/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g., substance P [SP] and calcitonin gene-related peptide [CGRP]). We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: (1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. (2) CGRP-IR axons densely innervated the blood vessels. (3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. (4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. (5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. (6) CGRP-IR axons did not colocalize with tyrosine hydroxylase or vesicular acetylcholine transporter axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. (7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mabelle Lin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | | | | | - John B. Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Pauziene N, Ranceviene D, Rysevaite-Kyguoliene K, Ragauskas T, Inokaitis H, Sabeckis I, Plekhanova K, Khmel O, Pauza DH. Neurochemical alterations of intrinsic cardiac ganglionated nerve plexus caused by arterial hypertension developed during ageing in spontaneously hypertensive and Wistar Kyoto rats. J Anat 2023; 243:630-647. [PMID: 37083051 PMCID: PMC10485580 DOI: 10.1111/joa.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
The acknowledged hypothesis of the cause of arterial hypertension is the emerging disbalance in sympathetic and parasympathetic regulations of the cardiovascular system. This disbalance manifests in a disorder of sustainability of endogenous autonomic and sensory neural substances including calcitonin gene-related peptide (CGRP). This study aimed to examine neurochemical alterations of intrinsic cardiac ganglionated nerve plexus (GP) triggered by arterial hypertension during ageing in spontaneously hypertensive rats of juvenile (prehypertensive, 8-9 weeks), adult (early hypertensive, 12-18 weeks) and elderly (persistent hypertensive, 46-60 weeks) age in comparison with the age-matched Wistar-Kyoto rats as controls. Parasympathetic, sympathetic and sensory neural structures of GP were analysed and evaluated morphometrically in tissue sections and whole-mount cardiac preparations. Both the elevated blood pressure and the evident ultrasonic signs of heart failure were identified for spontaneously hypertensive rats and in part for the aged control rats. The amount of adrenergic and immunoreactive to CGRP neural structures was increased in the adult group of spontaneously hypertensive rats along with the significant alterations that occurred during ageing. In conclusion, the revealed chemical alterations of GP support the hypothesis about the possible disbalance of efferent and afferent heart innervation and may be considered as the basis for the emergence and progression of arterial hypertension and perhaps even as a consequence of hypertension in the aged spontaneously hypertensive rats. The determined anatomical changes in the ageing Wistar-Kyoto rats suggest this breed being as inappropriate for its use as control animals for hypertension studies in older animal age.
Collapse
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Ranceviene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Tomas Ragauskas
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ignas Sabeckis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Khrystyna Plekhanova
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olena Khmel
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
5
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng ZJ. Mapping the Organization and Morphology of Calcitonin Gene-Related Peptide (CGRP)-IR Axons in the Whole Mouse Stomach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541811. [PMID: 37398245 PMCID: PMC10312482 DOI: 10.1101/2023.05.23.541811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
|
6
|
Zhang Y, Bizanti A, Harden SW, Chen J, Bendowski K, Hoover DB, Gozal D, Shivkumar K, Heal M, Tappan S, Cheng ZJ. Topographical mapping of catecholaminergic axon innervation in the flat-mounts of the mouse atria: a quantitative analysis. Sci Rep 2023; 13:4850. [PMID: 37029119 PMCID: PMC10082215 DOI: 10.1038/s41598-023-27727-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/06/2023] [Indexed: 04/09/2023] Open
Abstract
The sympathetic nervous system is crucial for controlling multiple cardiac functions. However, a comprehensive, detailed neuroanatomical map of the sympathetic innervation of the heart is unavailable. Here, we used a combination of state-of-the-art techniques, including flat-mount tissue processing, immunohistochemistry for tyrosine hydroxylase (TH, a sympathetic marker), confocal microscopy and Neurolucida 360 software to trace, digitize, and quantitatively map the topographical distribution of the sympathetic postganglionic innervation in whole atria of C57Bl/6 J mice. We found that (1) 4-5 major extrinsic TH-IR nerve bundles entered the atria at the superior vena cava, right atrium (RA), left precaval vein and the root of the pulmonary veins (PVs) in the left atrium (LA). Although these bundles projected to different areas of the atria, their projection fields partially overlapped. (2) TH-IR axon and terminal density varied considerably between different sites of the atria with the greatest density of innervation near the sinoatrial node region (P < 0.05, n = 6). (3) TH-IR axons also innervated blood vessels and adipocytes. (4) Many principal neurons in intrinsic cardiac ganglia and small intensely fluorescent cells were also strongly TH-IR. Our work provides a comprehensive topographical map of the catecholaminergic efferent axon morphology, innervation, and distribution in the whole atria at single cell/axon/varicosity scale that may be used in future studies to create a cardiac sympathetic-brain atlas.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, CA, 90095, USA
| | - Maci Heal
- MBF Bioscience, Williston, VT, 05495, USA
| | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA.
| |
Collapse
|
7
|
Bizanti A, Zhang Y, Harden SW, Chen J, Hoover DB, Gozal D, Shivkumar K, Cheng ZJ. Catecholaminergic axon innervation and morphology in flat-mounts of atria and ventricles of mice. J Comp Neurol 2023; 531:596-617. [PMID: 36591925 PMCID: PMC10499115 DOI: 10.1002/cne.25444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/03/2023]
Abstract
Sympathetic efferent axons regulate cardiac functions. However, the topographical distribution and morphology of cardiac sympathetic efferent axons remain insufficiently characterized due to the technical challenges involved in immunohistochemical labeling of the thick walls of the whole heart. In this study, flat-mounts of the left and right atria and ventricles of FVB mice were immunolabeled for tyrosine hydroxylase (TH), a marker of sympathetic nerves. Atrial and ventricular flat-mounts were scanned using a confocal microscope to construct montages. We found (1) In the atria: A few large TH-immunoreactive (IR) axon bundles entered both atria, branched into small bundles and then single axons that eventually formed very dense terminal networks in the epicardium, myocardium and inlet regions of great vessels to the atria. Varicose TH-IR axons formed close contact with cardiomyocytes, vessels, and adipocytes. Multiple intrinsic cardiac ganglia (ICG) were identified in the epicardium of both atria, and a subpopulation of the neurons in the ICG were TH-IR. Most TH-IR axons in bundles traveled through ICG before forming dense varicose terminal networks in cardiomyocytes. We did not observe varicose TH-IR terminals encircling ICG neurons. (2) In the left and right ventricles and interventricular septum: TH-IR axons formed dense terminal networks in the epicardium, myocardium, and vasculature. Collectively, TH labeling is achievable in flat-mounts of thick cardiac walls, enabling detailed mapping of catecholaminergic axons and terminal structures in the whole heart at single-cell/axon/varicosity scale. This approach provides a foundation for future quantification of the topographical organization of the cardiac sympathetic innervation in different pathological conditions.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, and Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, California, USA
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Ma J, Mistareehi A, Madas J, Kwiat AM, Bendowski K, Nguyen D, Chen J, Li DP, Furness JB, Powley TL, Cheng Z(J. Topographical organization and morphology of substance P (SP)-immunoreactive axons in the whole stomach of mice. J Comp Neurol 2023; 531:188-216. [PMID: 36385363 PMCID: PMC10499116 DOI: 10.1002/cne.25386] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Nociceptive afferents innervate the stomach and send signals centrally to the brain and locally to stomach tissues. Nociceptive afferents can be detected with a variety of different markers. In particular, substance P (SP) is a neuropeptide and is one of the most commonly used markers for nociceptive nerves in the somatic and visceral organs. However, the topographical distribution and morphological structure of SP-immunoreactive (SP-IR) axons and terminals in the whole stomach have not yet been fully determined. In this study, we labeled SP-IR axons and terminals in flat mounts of the ventral and dorsal halves of the stomach of mice. Flat-mount stomachs, including the longitudinal and circular muscular layers and the myenteric ganglionic plexus, were processed with SP primary antibody followed by fluorescent secondary antibody and then scanned using confocal microscopy. We found that (1) SP-IR axons and terminals formed an extensive network of fibers in the muscular layers and within the ganglia of the myenteric plexus of the whole stomach. (2) Many axons that ran in parallel with the long axes of the longitudinal and circular muscles were also immunoreactive for the vesicular acetylcholine transporter (VAChT). (3) SP-IR axons formed very dense terminal varicosities encircling individual neurons in the myenteric plexus; many of these were VAChT immunoreactive. (4) The regional density of SP-IR axons and terminals in the muscle and myenteric plexus varied in the following order from high to low: antrum-pylorus, corpus, fundus, and cardia. (5) In only the longitudinal and circular muscles, the regional density of SP-IR axon innervation from high to low were: antrum-pylorus, corpus, cardia, and fundus. (6) The innervation patterns of SP-IR axons and terminals in the ventral and dorsal stomach were comparable. Collectively, our data provide for the first time a map of the distribution and morphology of SP-IR axons and terminals in the whole stomach with single-cell/axon/synapse resolution. This work will establish an anatomical foundation for functional mapping of the SP-IR axon innervation of the stomach and its pathological remodeling in gastrointestinal diseases.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri
| | - John B Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47906
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
9
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
10
|
Leung C, Robbins S, Moss A, Heal M, Osanlouy M, Christie R, Farahani N, Monteith C, Chen J, Hunter P, Tappan S, Vadigepalli R, Cheng Z(J, Schwaber JS. 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. iScience 2021; 24:102795. [PMID: 34355144 PMCID: PMC8324857 DOI: 10.1016/j.isci.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
We developed and analyzed a single cell scale anatomical map of the rat intrinsic cardiac nervous system (ICNS) across four male and three female hearts. We find the ICNS has a reliable structural organizational plan across individuals that provide the foundation for further analyses of the ICNS in cardiac function and disease. The distribution of the ICNS was evaluated by 3D visualization and data-driven clustering. The pattern, distribution, and clustering of ICNS neurons across all male and female rat hearts is highly conserved, demonstrating a coherent organizational plan where distinct clusters of neurons are consistently localized. Female hearts had fewer neurons, lower packing density, and slightly reduced distribution, but with identical localization. We registered the anatomical data from each heart to a geometric scaffold, normalizing their 3D coordinates for standardization of common anatomical planes and providing a path where multiple experimental results and data types can be integrated and compared.
Collapse
Affiliation(s)
- Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Mahyar Osanlouy
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Shenton FC, Campbell T, Jones JFX, Pyner S. Distribution and morphology of sensory and autonomic fibres in the subendocardial plexus of the rat heart. J Anat 2021; 238:36-52. [PMID: 32783212 PMCID: PMC7754995 DOI: 10.1111/joa.13284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Cardiac reflexes originating from sensory receptors in the heart ensure blood supply to vital tissues and organs in the face of constantly changing demands. Atrial volume receptors are mechanically sensitive vagal afferents which relay to the medulla and hypothalamus, affecting vasopressin release and renal sympathetic activity. To date, two anatomically distinct sensory endings have been identified which may subserve cardiac mechanosensation: end-nets and flower-spray endings. To map the distribution of atrial receptors in the subendocardial space, we have double-labelled rat right atrial whole mounts for neurofilament heavy chain (NFH) and synaptic vesicle protein 2 (SV2) and generated high-resolution maps of the rat subendocardial neural plexus at the cavo-atrial region. In order to elucidate the nature of these fibres, double labelling with synaptophysin (SYN) and either NFH, calcitonin gene-related peptide (CGRP), choline acetyltransferase (ChAT) or tyrosine hydroxylase (TH) was performed. The findings show that subendocardial nerve nets are denser at the superior cavo-atrial junction than the mid-atrial region. Adluminal plexuses had the finest diameters and stained positively for synaptic vesicles (SV2 and SYN), CGRP and TH. These plexuses may represent sympathetic post-ganglionic fibres and/or sensory afferents. The latter are candidate substrates for type B volume receptors which are excited by stretch during atrial filling. Deeper nerve fibres appeared coarser and may be cholinergic (positive staining for ChAT). Flower-spray endings were never observed using immunohistochemistry but were delineated clearly with the intravital stain methylene blue. We suggest that differing nerve fibre structures form the basis by which atrial deformation and hence atrial filling is reflected to the brain.
Collapse
Affiliation(s)
| | - Thomas Campbell
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - James F. X. Jones
- Discipline of AnatomySchool of MedicineUniversity College DublinDublin 4Ireland
| | - Susan Pyner
- Department of BiosciencesDurham UniversityDurhamUK
| |
Collapse
|
12
|
Achanta S, Gorky J, Leung C, Moss A, Robbins S, Eisenman L, Chen J, Tappan S, Heal M, Farahani N, Huffman T, England S, Cheng ZJ, Vadigepalli R, Schwaber JS. A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. iScience 2020; 23:101140. [PMID: 32460006 PMCID: PMC7327996 DOI: 10.1016/j.isci.2020.101140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
We have developed and integrated several technologies including whole-organ imaging and software development to support an initial precise 3D neuroanatomical mapping and molecular phenotyping of the intracardiac nervous system (ICN). While qualitative and gross anatomical descriptions of the anatomy of the ICN have each been pursued, we here bring forth a comprehensive atlas of the entire rat ICN at single-cell resolution. Our work precisely integrates anatomical and molecular data in the 3D digitally reconstructed whole heart with resolution at the micron scale. We now display the full extent and the position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The development of these approaches needed for this work has produced method pipelines that provide the means for mapping other organs. Comprehensive single-neuron-scale mapping of the intrinsic cardiac nervous system Whole-organ high-throughput imaging and reconstruction at a cellular resolution 3D anatomical framework for spatially tracked single-neuron molecular phenotypes Integrated histology, neuron mapping, and molecular profiles for 3D organ reconstruction
Collapse
Affiliation(s)
- Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alison Moss
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Eisenman
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | | | | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057017040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Kuncová J, Jirkovská A, Švíglerová J, Marková M, Meireles D, Čedíková M. Neonatal capsaicin administration impairs postnatal development of the cardiac chronotropy and inotropy in rats. Physiol Res 2016; 65:S633-S642. [PMID: 28006945 DOI: 10.33549/physiolres.933540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present study evaluated the impact of neonatal administration of capsaicin (neurotoxin from red hot pepper used for sensory denervation) on postnatal development of the heart rate and ventricular contractility. In the rats subjected to capsaicin administration (100 mg/kg) on postnatal days 2 and 3 and their vehicle-treated controls at the ages of 10 to 90 days, function of the sympathetic innervation of the developing heart was characterized by evaluation of chronotropic responses to metipranolol and atropine, norepinephrine concentrations in the heart, and norepinephrine release from the heart atria. Sensory denervation was verified by determination of calcitonin gene-related peptide levels in the heart. Direct cytotoxic effects of capsaicin were assessed on cultured neonatal cardiomyocytes. Capsaicin-treated rats displayed higher resting heart rates, lower atropine effect, but no difference in the effect of metipranolol. Norepinephrine tissue levels and release did not differ from controls. Contraction force of the right ventricular papillary muscle was lower till the age of 60 days. Significantly reduced viability of neonatal cardiomyocytes was demonstrated at capsaicin concentration 100 micromol/l. Our study suggests that neonatal capsaicin treatment leads to impaired maturation of the developing cardiomyocytes. This effect cannot be attributed exclusively to sensory denervation of the rat heart since capsaicin acts also directly on the cardiac cells.
Collapse
Affiliation(s)
- J Kuncová
- Department of Physiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | | | | | | | |
Collapse
|
15
|
Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci 2016; 199:3-16. [DOI: 10.1016/j.autneu.2016.08.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|