1
|
Yang F, Zhao LY, Yang WQ, Chao S, Ling ZX, Sun BY, Wei LP, Zhang LJ, Yu LM, Cai GY. Quantitative proteomics and multi-omics analysis identifies potential biomarkers and the underlying pathological molecular networks in Chinese patients with multiple sclerosis. BMC Neurol 2024; 24:423. [PMID: 39478468 PMCID: PMC11526627 DOI: 10.1186/s12883-024-03926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder caused by chronic inflammatory reactions in the central nervous system. Currently, little is known about the changes of plasma proteomic profiles in Chinese patients with MS (CpwMS) and its relationship with the altered profiles of multi-omics such as metabolomics and gut microbiome, as well as potential molecular networks that underlie the etiology of MS. To uncover the characteristics of proteomics landscape and potential multi-omics interaction networks in CpwMS, Plasma samples were collected from 22 CpwMS and 22 healthy controls (HCs) and analyzed using a Tandem Mass Tag (TMT)-based quantitative proteomics approach. Our results showed that the plasma proteomics pattern was significantly different in CpwMS compared to HCs. A total of 90 differentially expressed proteins (DEPs), such as LAMP1 and FCG2A, were identified in CpwMS plasma comparing to HCs. Furthermore, we also observed extensive and significant correlations between the altered proteomic profiles and the changes of metabolome, gut microbiome, as well as altered immunoinflammatory responses in MS-affected patients. For instance, the level of LAMP1 and ERN1 were significantly and positively correlated with the concentrations of metabolite L-glutamic acid and pro-inflammatory factor IL-17 (Padj < 0.05). However, they were negatively correlated with the amounts of other metabolites such as L-tyrosine and sphingosine 1-phosphate, as well as the concentrations of IL-8 and MIP-1α. This study outlined the underlying multi-omics integrated mechanisms that might regulate peripheral immunoinflammatory responses and MS progression. These findings are potentially helpful for developing new assisting diagnostic biomarker and therapeutic strategies for MS.
Collapse
Affiliation(s)
- Fan Yang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Long-You Zhao
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Wen-Qi Yang
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shan Chao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Xin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo-Yao Sun
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Ping Wei
- Department of Clinical Laboratory & Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li-Juan Zhang
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Guang-Yong Cai
- Lishui Key Laboratory of Brain Health and Severe Brain Disorders, Department of Rehabilitation & Clinical Laboratory, Lishui Second People's Hospital, Lishui, China.
| |
Collapse
|
2
|
Kennedy PGE, George W, Yu X. The elusive nature of the oligoclonal bands in multiple sclerosis. J Neurol 2024; 271:116-124. [PMID: 37945762 DOI: 10.1007/s00415-023-12081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Intrathecal immunoglobulin G (IgG) and oligoclonal bands (OCBs) detected in both the brain and cerebrospinal fluid (CSF) are seminal features of multiple sclerosis (MS). The presence of OCBs correlates with elevated disease burden and severity and supports the diagnosis of MS. Despite numerous investigations into the potential viral and autoantigen targets, the precise antigenic specificity of OCBs has remained elusive. We have little knowledge of the nature regarding these oligoclonal IgG bands. Here, we present compelling evidence highlighting the key findings that both OCBs and intrathecal IgG antibodies are under genetic control and that OCBs originate from clonal B-cells in both the periphery and CNS. We propose that MS OCBs are IgG immune complexes composed of IgG1 and IgG3 antibodies and that the pathological role of OCB stems from the IgG effector functions of these complexes, leading to demyelination and axonal injuries. We present additional evidence regarding the nature of MS OCBs: (1) disease-modifying therapies have been shown to affect CSF OCB; (2) OCBs have also been detected in several neuroinfectious diseases; (3) Epstein-Barr virus (EBV) has been particularly linked with MS pathogenesis, and its association with OCB is an important area of study. Although OCBs are closely associated with MS, more meticulously planned research is necessary to clarify the precise role of OCB in MS, both in terms of disease pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Woro George
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Roshan HM, Valadan R, Hosseini SA, Ajami A. Specific antibodies to EBNA1 epitopes as risk factors for multiple sclerosis, a systematic review. J Neuroimmunol 2023; 383:578202. [PMID: 37751637 DOI: 10.1016/j.jneuroim.2023.578202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Seroprevalence of anti-EBV antibodies was found to be almost 100% and 90% for multiple sclerosis patients and normal people, respectively. Furthermore, anti EBNA1 antibody which is an indicator of past EBV infection has a higher titer in the serum of Persons with MS (pwMS) compared to the EBV-infected subjects without MS. Though, this difference in anti-EBNA1 antibody titer between pwMS and non-MS controls is not a reliable marker to be used for discriminating pwMS and non-MS individuals. Some Studies have revealed specific epitopes on EBNA1 as the target for anti-EBNA1 antibodies in pwMS. Measuring antibody response against such specific epitopes can help better discriminate pwMS and non-MS individuals. This systematic review aims to obtain conclusive data from the studies which have sought to identify and map such epitopes on EBNA1. Five databases, including PubMed, Google Scholar, web of Science, Scopus, and Elsevier were searched for this purpose. Overall, 12 articles were finally included. Despite different articles describing not exactly the same epitopes, most of the epitopes described are within the amino acid sequence 385-420 of EBNA1. Among these epitopes, most of the epitopes have overlapping amino acid sequences with one another. The most highly overlapping sequence is RRPFF, which encompasses the amino acid 402 to 406 of EBNA1.
Collapse
Affiliation(s)
- Hani Mosayebzadeh Roshan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Abdollah Hosseini
- Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Shimojima Y, Sekijima Y. Hypertrophic pachymeningitis in ANCA-associated vasculitis: Clinical and immunopathological features and insights. Autoimmun Rev 2023; 22:103338. [PMID: 37062439 DOI: 10.1016/j.autrev.2023.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Hypertrophic pachymeningitis (HP) is an inflammatory disorder characterized by intracranial and spinal thickened dura mater, leading to several neurological manifestations including headaches, cranial neuropathies, seizures, and sensorimotor disorders. Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a crucial disease that is implicated in the development of immune-mediated HP. HP is observed throughout the clinical course of AAV, and 3%-4% of patients with AAV experience HP as the initial clinical episode. However, patients with ANCA-related HP are unclassifiable in the classification criteria of AAV when HP is the only manifestation, suggesting that ANCA-related HP can be identified as a central nervous system-limited type of AAV. Among patients with AAV, those who develop HP have predominantly been classified as having granulomatosis with polyangiitis (GPA). Myeloperoxidase-ANCA positivity has been more frequently demonstrated than proteinase 3-ANCA positivity in patients with ANCA-related HP. The ear, nose, and throat manifestations, such as otitis media, sinusitis, and mastoiditis, as well as mucous membranes/eyes manifestations including sudden visual loss, are robustly associated with HP in AAV. The histology of thickened dura mater tissues includes fibrotic changes and infiltration of several immunocompetent cells, but the typical findings of GPA, such as granulomatous inflammation with necrotizing vasculitis, are not observed in all patients with ANCA-related HP. Corticosteroids are the first-line therapy for ANCA-related HP, while the concomitant use of immunosuppressive agents including cyclophosphamide, methotrexate, and mycophenolate mofetil, is an ideal strategy for achieving remission. Rituximab is a useful agent in refractory ANCA-related HP.
Collapse
Affiliation(s)
- Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
5
|
Puranik N, Yadav D, Song M. Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers. Curr Pharm Des 2023; 29:2534-2544. [PMID: 37921136 DOI: 10.2174/0113816128247471231018053737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
6
|
A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med 2022; 12:jpm12091430. [PMID: 36143216 PMCID: PMC9501898 DOI: 10.3390/jpm12091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system, presenting with different clinical forms, including clinically isolated syndrome (CIS), which is a first clinical episode suggestive of demyelination. Several molecules have been proposed as prognostic biomarkers in MS. We aimed to perform a scoping review of the potential use of prognostic biomarkers in MS clinical practice. We searched MEDLINE up to 25 November 2021 for review articles assessing body fluid biomarkers for prognostic purposes, including any type of biomarkers, cell types and tissues. Original articles were obtained to confirm and detail the data reported by the review authors. We evaluated the reliability of the biomarkers based on the sample size used by various studies. Fifty-two review articles were included. We identified 110 molecules proposed as prognostic biomarkers. Only six studies had an adequate sample size to explore the risk of conversion from CIS to MS. These confirm the role of oligoclonal bands, immunoglobulin free light chain and chitinase CHI3L1 in CSF and of serum vitamin D in the prediction of conversion from CIS to clinically definite MS. Other prognostic markers are not yet explored in adequately powered samples. Serum and CSF levels of neurofilaments represent a promising biomarker.
Collapse
|
7
|
Su Y, Li Z, Rang X, Wang Y, Fu J. Integrated Analysis and Identification of CSF-Derived Risk miRNAs and Pivotal Genes in Multiple Sclerosis. J Mol Neurosci 2022; 72:1916-1928. [PMID: 35819635 DOI: 10.1007/s12031-022-02007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) is a common chronic autoimmune disorder of the central nervous system that predominantly affects young adults. Mounting evidence indicates that deregulation of microRNAs (miRNAs) in cerebrospinal fluid (CSF) has been implicated in MS as a potential biomarker. However, comprehensive assessments of CSF miRNAs and their target genes are lacking. Here, aberrantly expressed CSF miRNAs of MS patients were obtained from numerous studies by manual search. With detailed information on these miRNAs, we utilized online databases to screen out immune-related target genes and further performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. To identify MS high-risk pathways and pivotal genes, pathway crosstalk and pathway-gene networks were constructed, followed by the establishment of a protein-protein interaction (PPI) network. The datasets collected from ArrayExpress were used to assess pivotal genes. Overall, 21 MS-related CSF miRNAs were included in this study. Subsequently, we identified 469 MS-related genes and 14 high-risk pathways. In the pathway-gene network, 27 critical MS-related genes participated in at least half of the high-risk pathways, and these genes were used to identify pivotal genes. Finally, miR-150, miR-328, and miR-34c-5p were determined to be risk miRNAs via the regulation of the pivotal risk genes MAPK1, AKT1, and VEGFA. Among them, VEGFA was validated to be significantly decreased in the CSF cells of MS patients by transcriptomic datasets. These findings may provide potential biomarkers or therapeutic targets and help elucidate the molecular mechanisms underlying the pathogenesis of MS.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Xinming Rang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Yifei Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin, 150086, China.
| |
Collapse
|
8
|
Seals MR, Moran MM, Leavenworth JD, Leavenworth JW. Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis. Front Immunol 2022; 13:900117. [PMID: 35784370 PMCID: PMC9243362 DOI: 10.3389/fimmu.2022.900117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), a debilitating autoimmune inflammatory disease that affects the brain and spinal cord, causes demyelination of neurons, axonal damage, and neurodegeneration. MS and the murine experimental autoimmune encephalomyelitis (EAE) model have been viewed mainly as T-cell-mediated diseases. Emerging data have suggested the contribution of B-cells and autoantibodies to the disease progression. However, the underlying mechanisms by which dysregulated B-cells and antibody response promote MS and EAE remain largely unclear. Here, we provide an updated review of this specific subject by including B-cell biology and the role of B-cells in triggering autoimmune neuroinflammation with a focus on the regulation of antibody-producing B-cells. We will then discuss the role of a specific type of antibody, IgE, as it relates to the potential regulation of microglia and macrophage activation, autoimmunity and MS/EAE development. This knowledge can be utilized to develop new and effective therapeutic approaches to MS, which fits the scope of the Research Topic "Immune Mechanism in White Matter Lesions: Clinical and Pathophysiological Implications".
Collapse
Affiliation(s)
- Malik R. Seals
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Multidisciplinary Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica M. Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D. Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Luo W, Deng X, Xu X, Song R, Luo M, Moss HE, Du Y. Development of a Prognostic Model for Predicting Multiple Sclerosis After Optic Neuritis: A Secondary Analysis of Data From the Optic Neuritis Treatment Trial. J Neuroophthalmol 2022; 42:88-96. [PMID: 34860745 PMCID: PMC9159903 DOI: 10.1097/wno.0000000000001424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Optic neuritis can be the initial manifestation of multiple sclerosis (MS). The purpose of this study was to develop a prognostic model for predicting the risk of MS development among patients with optic neuritis. METHODS The data from 388 patients with optic neuritis were retrieved from the Optic Neuritis Treatment Trial (ONTT). Cox proportional hazards regression analysis was used to develop a prognostic model. The performance of the model was assessed by using Harrell's C-index and calibration curves. The rates of MS development were estimated using the Kaplan-Meier method. RESULTS Among the enrolled subjects, a total of 154 (39.7%) patients developed clinically definite MS during a median follow-up period of 15.8 years (interquartile range, 7.2-16.9 years). The factors associated with the development of MS were the presence of brain lesions as on baseline MRI, previous nonspecific neurologic symptoms, commencing low-dose corticosteroids treatment, ocular pain, and absence of optic disc/peripapillary hemorrhage. After incorporating these 5 factors into the prognostic model, a C-index of 0.72 (95% confidence interval [CI], 0.69-0.76) and good calibration curves were obtained. The C-index of the model was significantly higher than the C-indexes of any single factor (P < 0.001 in all cases). The model was able to stratify the ONTT patient cohort into 3 risk groups with significantly different intergroup rates of developing MS (rates for developing MS within a 15-year period: high-risk group, 75.7% [95% CI, 65.6%-82.9%], intermediate-risk group, 44.7% [95% CI, 31.4%-55.4%]; and low-risk group, 20.8% [95% CI, 14.2%-26.8%]; log-rank P < 0.001). CONCLUSIONS This prognostic model had a better prediction ability when compared with the standard practice that relies solely on using brain lesions on MRI. It can, therefore, help guide decision-making to initiate earlier disease-modifying therapy for patients with optic neuritis at risk of developing MS.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Geriatrics Neurology Ward, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xinlei Deng
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Xiaoyu Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruitong Song
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meifeng Luo
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Heather E. Moss
- Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yi Du
- Department of Ophthalmology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Podbielska M, O’Keeffe J, Pokryszko-Dragan A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int J Mol Sci 2021; 22:ijms22147319. [PMID: 34298940 PMCID: PMC8303889 DOI: 10.3390/ijms22147319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a central nervous system disease with complex pathogenesis, including two main processes: immune-mediated inflammatory demyelination and progressive degeneration with axonal loss. Despite recent progress in our understanding and management of MS, availability of sensitive and specific biomarkers for these both processes, as well as neuroprotective therapeutic options targeted at progressive phase of disease, are still being sought. Given their abundance in the myelin sheath, lipids are believed to play a central role in underlying immunopathogenesis in MS and seem to be a promising subject of investigation in this field. On the basis of our previous research and a review of the literature, we discuss the current understanding of lipid-related mechanisms involved in active relapse, remission, and progression of MS. These insights highlight potential usefulness of lipid markers in prediction or monitoring the course of MS, particularly in its progressive stage, still insufficiently addressed. Furthermore, they raise hope for new, effective, and stage-specific treatment options, involving lipids as targets or carriers of therapeutic agents.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-9912
| | - Joan O’Keeffe
- Department of Analytical, Biopharmaceutical and Medical Sciences, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland;
| | | |
Collapse
|
11
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Luo L, Hu X, Dixon ML, Pope BJ, Leavenworth JD, Raman C, Meador WR, Leavenworth JW. Dysregulated follicular regulatory T cells and antibody responses exacerbate experimental autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:27. [PMID: 33468194 PMCID: PMC7814531 DOI: 10.1186/s12974-021-02076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Follicular regulatory T (TFR) cells are essential for the regulation of germinal center (GC) response and humoral self-tolerance. Dysregulated follicular helper T (TFH) cell-GC-antibody (Ab) response secondary to dysfunctional TFR cells is the root of an array of autoimmune disorders. The contribution of TFR cells to the pathogenesis of multiple sclerosis (MS) and murine experimental autoimmune encephalomyelitis (EAE) remains largely unclear. Methods To determine the impact of dysregulated regulatory T cells (Tregs), TFR cells, and Ab responses on EAE, we compared the MOG-induced EAE in mice with a FoxP3-specific ablation of the transcription factor Blimp1 to control mice. In vitro co-culture assays were used to understand how Tregs and Ab regulate the activity of microglia and central nervous system (CNS)-infiltrating myeloid cells. Results Mice with a FoxP3-specific deletion of Blimp1 developed severe EAE and failed to recover compared to control mice, reflecting conversion of Tregs into interleukin (IL)-17A/granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector T cells associated with increased TFH-Ab responses, more IgE deposition in the CNS, and inability to regulate CNS CD11b+ myeloid cells. Notably, serum IgE titers were positively correlated with EAE scores, and culture of CNS CD11b+ cells with sera from these EAE mice enhanced their activation, while transfer of Blimp1-deficient TFR cells promoted Ab production, activation of CNS CD11b+ cells, and EAE. Conclusions Blimp1 is essential for the maintenance of TFR cells and Ab responses in EAE. Dysregulated TFR cells and Ab responses promote CNS autoimmunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02076-4.
Collapse
Affiliation(s)
- Lin Luo
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA
| | - Xianzhen Hu
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA
| | - Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA
| | - Brandon J Pope
- NIH Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William R Meador
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA. .,Department of Microbiology, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.
| |
Collapse
|
13
|
Cerebrospinal Fluid Neurofilament Light Chain Is Associated with Kynurenine Pathway Metabolite Changes in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21082665. [PMID: 32290514 PMCID: PMC7216195 DOI: 10.3390/ijms21082665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofilament light (NFL) has proved to be a good prognostic factor in multiple sclerosis (MS), as its level is proportionally elevated with extended neuraxonal damage. The involvement of the kynurenine pathway in neuroinflammation has been proved. The precursor of this pathway is the essential amino acid tryptophan, which is catabolized 95% towards kynurenine metabolites. Quinolinic acid (QUIN) within the brain is only produced in activated microglia and macrophages, leading to axonal degeneration via the activation of N-Methyl-D-aspartate receptors. Neopterin is a biomarker for inflammation produced by macrophages. The association of these biomarkers has not previously been investigated. Our aim was to assess whether there is an association of the neurodegenerative biomarker NFL with the markers of neuroinflammation, e.g., kynurenine metabolites and neopterin, in the cerebrospinal fluid (CSF). CSF samples of patients with MS (pwMS; n = 37) and age-matched controls (n = 22) were compared for NFL levels by ELISA, while the kynurenine pathway metabolites tryptophan and neopterin were detected with mass spectrometry. Spearman’s correlation showed that NFL is an independent predictor of neurological disability in the MS group. Significant correlations were found between NFL, neopterin, and QUIN, and between kynurenine and neopterin. Receiver operating characteristic (ROC) curve analysis was used to plot the top three best predictors of MS-related disability that yielded the best specificity and sensitivity. Normalized NFL (AUC: 0.923), QUIN (AUC: 0.803), and neopterin (AUC: 0.843) were the best independent predictors of neurological disability in pwMS. The CSF NFL and CSF QUIN, together with neopterin, were elevated in the CSF of pwMS compared to controls. The combination of the neurodegenerative biomarkers together with biomarkers of neuroinflammation could provide additional information on the underlying pathomechanism of disease activity, which is essential for the identification of patients at risk of developing cumulative disabilities.
Collapse
|
14
|
Puthenparampil M, Stropparo E, Zywicki S, Bovis F, Cazzola C, Federle L, Grassivaro F, Rinaldi F, Perini P, Sormani MP, Gallo P. Wide Cytokine Analysis in Cerebrospinal Fluid at Diagnosis Identified CCL-3 as a Possible Prognostic Factor for Multiple Sclerosis. Front Immunol 2020; 11:174. [PMID: 32194540 PMCID: PMC7066207 DOI: 10.3389/fimmu.2020.00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Apart from IgG oligoclonal bands, no other biomarker has, to date, been validated for diagnostic and/or prognostic purposes in multiple sclerosis (MS). Aim: To investigate a wide panel of cytokines and chemokines in the cerebrospinal fluid (CSF) of relapsing-remitting MS (RRMS) patients and evaluate their association with clinical and magnetic resonance imaging (MRI) parameters, as well as their predictive clinical value. Methods: Fifty-one RRMS at clinical onset and 17 other not inflammatory neurological disorders (ONINDs) underwent brain MRI (including 3D-T1, 3D-FLAIR, and 3-DIR sequences) and CSF examination. Eighty-seven cytokines and chemokines were analyzed in CSF by Multiplex technology. Results: Compared to ONIND, CXCL-10, CXCL-11, CXCL-13, CCL-1, CCL-2, CCL-3, CCL-22, IL-16, and BAFF were significantly (p < 0.05) increased in RRMS CSF. However, only CCL-3 was associated with both MS diagnosis and IgGOB detection. Based on a 95%CI in ONIND (cut-off value: 0.798 pg/ml) and ROC analysis (cut-off value: 0.495 pg/ml), RRMS patients were stratified in CCL-3high (>0.736 pg/mL), CCL-3medium, and CCL-3low (<0.495 pg/ml). Survival analysis disclosed a strong association between high CCL-3 values and disease reactivation (OR = 4.9, 95%CI: 1.8-13.3, p < 0.005) in the following 2 years. Conclusions: CCL-3 deserves further investigation as a candidate prognostic biomarker for RRMS.
Collapse
Affiliation(s)
- Marco Puthenparampil
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Erica Stropparo
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Sofia Zywicki
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Francesca Bovis
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Chiara Cazzola
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Lisa Federle
- Multiple Sclerosis Centre, ULSS8 Berica, Ospedale San Bortolo, Vicenza, Italy
| | - Francesca Grassivaro
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Francesca Rinaldi
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Paola Perini
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Paolo Gallo
- Department of Neurosciences DNS, Multiple Sclerosis Centre, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
15
|
Graner M, Pointon T, Manton S, Green M, Dennison K, Davis M, Braiotta G, Craft J, Edwards T, Polonsky B, Fringuello A, Vollmer T, Yu X. Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides. PLoS One 2020; 15:e0228883. [PMID: 32084151 PMCID: PMC7034880 DOI: 10.1371/journal.pone.0228883] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/24/2020] [Indexed: 12/04/2022] Open
Abstract
IgG oligoclonal bands (OCBs) are present in the cerebrospinal fluid (CSF) of more than 95% of patients with multiple sclerosis (MS), and are considered to be the immunological hallmark of disease. However, the target specificities of the IgG in MS OCBs have remained undiscovered. Nevertheless, evidence that OCBs are associated with increased levels of disease activity and disability support their probable pathological role in MS. We investigated the antigen specificity of individual MS CSF IgG from 20 OCB-positive patients and identified 40 unique peptides by panning phage-displayed random peptide libraries. Utilizing our unique techniques of phage-mediated real-time Immuno-PCR and phage-probed isoelectric focusing immunoblots, we demonstrated that these peptides were targeted by intrathecal oligoclonal IgG antibodies of IgG1 and IgG3 subclasses. In addition, we showed that these peptides represent epitopes sharing sequence homologies with proteins of viral origin, and proteins involved in cell stress, apoptosis, and inflammatory processes. Although homologous peptides were found within individual patients, no shared peptide sequences were found among any of the 42 MS and 13 inflammatory CSF control specimens. The distinct sets of oligoclonal IgG-reactive peptides identified by individual MS CSF suggest that the elevated intrathecal antibodies may target patient-specific antigens.
Collapse
Affiliation(s)
- Michael Graner
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Tiffany Pointon
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sean Manton
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Miyoko Green
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathryn Dennison
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mollie Davis
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Gino Braiotta
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Julia Craft
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Taylor Edwards
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Bailey Polonsky
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Timothy Vollmer
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cerebrospinal fluid biomarkers implicated in the pathogenesis of anti-neutrophil cytoplasmic antibody-related hypertrophic pachymeningitis. Clin Rheumatol 2020; 39:1803-1811. [PMID: 32036585 DOI: 10.1007/s10067-020-04971-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Hypertrophic pachymeningitis (HP) related to anti-neutrophil cytoplasmic antibody (ANCA) is the most frequently seen immune-mediated HP. We investigated cerebrospinal fluid (CSF) biomarkers related to the pathogenesis of ANCA-related HP (ANCA-HP). METHODS The levels of B cell activation factor of the tumor necrosis factor family (BAFF), a proliferation-inducing ligand (APRIL), and transforming growth factor beta 1 (TGF-β1) in the CSF were compared between patients with ANCA-HP (n = 12), other types of immune-mediated HP (other HP; n = 12), multiple sclerosis (MS; n = 14), and non-inflammatory neurological disorders (NIND; n = 10). In addition, we evaluated whether ANCA would be detected in CSF. RESULTS CSF levels of BAFF, APRIL, and TGF-β1 were significantly increased in ANCA-HP and other HP. In particular, BAFF and APRIL levels were significantly correlated with the IgG index in ANCA-HP. In other HP, BAFF and APRIL levels were significantly correlated with cell counts and protein levels in CSF. Of 12 patients with ANCA-HP, the CSF of 7 patients (58%) tested positive for myeloperoxidase (MPO)- or proteinase 3 (PR3)-ANCA, while none of the CSF samples from other HP, MS, or NIND patients tested positive. CONCLUSION The levels of BAFF, APRIL, and TGF-β1 may serve as useful CSF biomarkers for assessing the disease activity of immune-mediated HP. Moreover, BAFF and APRIL in the CSF may be implicated in the pathogenesis of ANCA-HP via promoting autoreactive B cells, while detecting MPO- or PR3-ANCA in the CSF may be found in some patients with ANCA-HP.Key Points• CSF BAFF, APRIL, and TGF-β1 levels increase significantly in immune-mediated HP.• CSF BAFF and APRIL levels are significantly correlated with IgG index in ANCA-HP.• Detection of MPO- or PR3-ANCA in the CSF is found in some patients with ANCA-HP.• BAFF, APRIL, and ANCA in the CSF may be implicated in the pathogenesis of ANCA-HP.
Collapse
|
17
|
Cristiano E, Rojas JI, Alonso R, Alvez Pinheiro A, Bacile EA, Balbuena ME, Barboza AG, Bestoso S, Burgos M, Cáceres F, Carnero Contentti E, Curbelo MC, Deri N, Fernandez Liguori N, Gaitán MI, Garcea O, Giunta D, Halfon MJ, Hryb JP, Jacobo M, Kohler E, Luetic GG, Maglio I, Martínez AD, Míguez J, Nofal PG, Patrucco L, Piedrabuena R, Rotta Escalante R, Saladino ML, Silva BA, Sinay V, Tkachuk V, Villa A, Vrech C, Ysrraelit MC, Correale J. Consensus recommendations on the management of multiple sclerosis patients in Argentina. J Neurol Sci 2020; 409:116609. [DOI: 10.1016/j.jns.2019.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
18
|
Garcia PS, Brum DG, Oliveira ON, Higa AM, Ierich JCM, Moraes ADS, Shimizu FM, Okuda-Shinagawa NM, Peroni LA, da Gama PD, Machini MT, Leite FL. Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy 2020; 211:112946. [PMID: 32028099 DOI: 10.1016/j.ultramic.2020.112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/02/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disorder in the central nervous system for which biomarkers for diagnosis still remain unknown. One potential biomarker is the myelin basic protein. Here, a nanoimmunosensor based on atomic force spectroscopy (AFS) successfully detected autoantibodies against the MBP85-99 peptide from myelin basic protein. The nanoimmunosensor consisted of an atomic force microscope tip functionalization with MBP85-99 peptide, which was made to interact with a mica surface coated either with a layer of anti-MBP85-99 (positive control) or samples of cerebrospinal fluid (CSF) from five multiple sclerosis (MS) patients at different stages of the disease and five non-MS subjects. The adhesion forces obtained from AFS pointed to a high concentration of anti-MBP85-99 for the two patients at early stages of relapsing-remitting multiple sclerosis (RRMS), which were indistinguishable from the positive control. In contrast, considerably lower adhesion forces were measured for all the other eight subjects, including three MS patients with longer history of the disease and under treatment, without episodes of acute MS activity. We have also shown that the average adhesion force between MBP85-99 and anti-MBP85-99 is compatible with the value estimated using steered molecular dynamics. Though further tests will be required with a larger cohort of patients, the present results indicate that the nanoimmunosensor may be a simple tool to detect early-stage MS patients and be useful to understand the molecular mechanisms behind MS.
Collapse
Affiliation(s)
- Pâmela Soto Garcia
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Doralina Guimarães Brum
- Department of Neurology, Psychology and Psychiatry, São Paulo State University, 18618-687, Botucatu, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Akemi Martins Higa
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Jéssica Cristiane Magalhães Ierich
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Ariana de Souza Moraes
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil; Institute of Tropical Medicine, University of São Paulo, 05403-000, São Paulo, SP, Brazil
| | - Flávio Makoto Shimizu
- São Carlos Institute of Physics, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Nancy M Okuda-Shinagawa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Luís Antonio Peroni
- Rheabiotech Laboratory Research and Development, 13084-791, Campinas, SP, Brazil
| | | | - M Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Fabio Lima Leite
- Department of Physics, Chemistry and Mathematics, Nanoneurobiophysics Research Group, Federal University of São Carlos, Sorocaba, São Paulo 18052780, Brazil.
| |
Collapse
|
19
|
Bai Z, Chen D, Wang L, Zhao Y, Liu T, Yu Y, Yan T, Cheng Y. Cerebrospinal Fluid and Blood Cytokines as Biomarkers for Multiple Sclerosis: A Systematic Review and Meta-Analysis of 226 Studies With 13,526 Multiple Sclerosis Patients. Front Neurosci 2019; 13:1026. [PMID: 31636528 PMCID: PMC6787166 DOI: 10.3389/fnins.2019.01026] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Multiple sclerosis (MS) biomarker identification is important for pathogenesis research and diagnosis in routine clinical practice. Cerebrospinal fluid (CSF) and blood cytokines as potential biomarkers that can inform MS pathogenesis, diagnosis and response to treatment have been assessed in numerous studies. However, there have been no comprehensive meta-analyses to pool cytokine data and to address their diagnostic performance. We systematically reviewed literature with meta-analyses to assess the alteration levels of cytokines and chemokines in MS. Methods: We searched PubMed and Web of Science for articles published between January 1, 1990 and April 30, 2018 for this systematic review and meta-analysis. Data were extracted from 226 included studies encompassing 13,526 MS patients and 8,428 controls. Biomarker performance was rated by a random-effects meta-analysis based on the standard mean difference between cytokine concentration in patients with MS and controls, or patients before and after treatments. Results: Of the 26 CSF cytokines and 37 blood cytokines for potential differentiation between MS patients and controls, the random-effects meta-analysis showed that 13 CSF cytokines and 21 blood cytokines were significantly increased in MS patients in comparison to the controls. Interestingly, TNF-α, CXCL8, IL-15, IL-12p40, and CXCL13 were increased in both blood and CSF of MS patients. For those cytokines analyzed in at least 10 studies, differentiation between case and control was strong for CSF CXCL13, blood IL-2R, and blood IL-23; CSF CXCL8, blood IL-2, and blood IL-17 also performed well in differentiating between MS patients and controls, whereas those of CSF TNF-α and blood TNF-α, CXCL8, IL-12, IFN-γ were moderate. Furthermore, CSF IL-15, CCL19, CCL11, CCL-3, and blood CCL20, IL-12p40, IL-21, IL-17F, IL-22 had large effective sizes when differentiating between MS patients and controls but had a relatively small number of studies (three to seven studies). Conclusion: Our findings clarified the circulating cytokine profile in MS, which provide targets for disease modifying treatments, and suggest that cytokines have the potential to be used as biomarkers for MS.
Collapse
Affiliation(s)
- Zhile Bai
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Luyao Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Zhao
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tiantian Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yun Yu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
20
|
OLIVEIRA EMLD, MONTANI DA, OLIVEIRA-SILVA D, RODRIGUES-OLIVEIRA AF, MATAS SLDA, FERNANDES GBP, SILVA IDCGD, LO TURCO EG. Multiple sclerosis has a distinct lipid signature in plasma and cerebrospinal fluid. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:696-704. [DOI: 10.1590/0004-282x20190122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 11/22/2022]
Abstract
ABSTRACT The diagnosis of multiple sclerosis (MS) has changed over the last decade, but remains a composite of clinical assessment and magnetic resonance imaging to prove dissemination of lesions in time and space. The intrathecal synthesis of immunoglobulin may be a nonspecific marker and there are no plasma biomarkers that are useful in the diagnosis of MS, presenting additional challenges to their early detection. Methods We performed a preliminary untargeted qualitative lipidomics mass spectrometry analysis, comparing cerebrospinal fluid (CSF) and plasma samples from patients with MS, other inflammatory neurological diseases and idiopathic intracranial hypertension. Results Lipid identification revealed that fatty acids and sphingolipids were the most abundant classes of lipids in the CSF and that glycerolipids and fatty acids were the main class of lipids in the plasma of patients with MS. The area under the curve was 0.995 (0.912–1) and 0.78 (0.583–0.917), respectively. The permutation test indicated that this ion combination was useful for distinguishing MS from other inflammatory diseases (p < 0.001 and 0.055, respectively). Conclusion This study concluded that the CSF and plasma from patients with MS bear a unique lipid signature that can be useful as a diagnostic biomarker.
Collapse
|
21
|
Parker KJ, Garner JP, Oztan O, Tarara ER, Li J, Sclafani V, Del Rosso LA, Chun K, Berquist SW, Chez MG, Partap S, Hardan AY, Sherr EH, Capitanio JP. Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Sci Transl Med 2019; 10:10/439/eaam9100. [PMID: 29720452 DOI: 10.1126/scitranslmed.aam9100] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 11/03/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by core social impairments. ASD remains poorly understood because of the difficulty in studying disease biology directly in patients and the reliance on mouse models that lack clinically relevant, complex social cognition abilities. We use ethological observations in rhesus macaques to identify male monkeys with naturally occurring low sociality. These monkeys showed differences in specific neuropeptide and kinase signaling pathways compared to socially competent male monkeys. Using a discovery and replication design, we identified arginine vasopressin (AVP) in cerebrospinal fluid (CSF) as a key marker of group differences in monkey sociality; we replicated these findings in an independent monkey cohort. We also confirmed in an additional monkey cohort that AVP concentration in CSF is a stable trait-like measure. Next, we showed in a small pediatric cohort that CSF AVP concentrations were lower in male children with ASD compared to age-matched male children without ASD (but with other medical conditions). We demonstrated that CSF AVP concentration was sufficient to accurately distinguish ASD cases from medical controls. These data suggest that AVP and its signaling pathway warrant consideration in future research studies investigating new targets for diagnostics and drug development in ASD.
Collapse
Affiliation(s)
- Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA. .,California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Erna R Tarara
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Jiang Li
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Valentina Sclafani
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Katie Chun
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| | - Sean W Berquist
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael G Chez
- Sutter Neuroscience Medical Group, Sacramento, CA 95816, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John P Capitanio
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
22
|
D'Amico E, Zanghì A, Chisari CG, Zappia M, Patti F. Are oligoclonal bands associated to lower retinal layer thickness at the time of relapsing remitting multiple sclerosis diagnosis? Evidence from an exploratory study. Autoimmun Rev 2019; 18:102365. [PMID: 31404700 DOI: 10.1016/j.autrev.2019.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/27/2022]
Affiliation(s)
| | - Aurora Zanghì
- Department G. F. Ingrassia, University of Catania, Italy
| | | | - Mario Zappia
- Department G. F. Ingrassia, University of Catania, Italy
| | | |
Collapse
|
23
|
Hecker M, Rüge A, Putscher E, Boxberger N, Rommer PS, Fitzner B, Zettl UK. Aberrant expression of alternative splicing variants in multiple sclerosis - A systematic review. Autoimmun Rev 2019; 18:721-732. [PMID: 31059848 DOI: 10.1016/j.autrev.2019.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alternative splicing is an important form of RNA processing that affects nearly all human genes. The differential expression of specific transcript and protein isoforms holds the potential of novel biomarkers for complex diseases. In this systematic review, we compiled the existing literature on aberrant alternative splicing events in multiple sclerosis (MS). METHODS A systematic literature search in the PubMed database was carried out and supplemented by screening the reference lists of the identified articles. We selected only MS-related original research studies which compared the levels of different isoforms of human protein-coding genes. A narrative synthesis of the research findings was conducted. Additionally, we performed a case-control analysis using high-density transcriptome microarray data to reevaluate the genes that were examined in the reviewed studies. RESULTS A total of 160 records were screened. Of those, 36 studies from the last two decades were included. Most commonly, peripheral blood samples were analyzed (32 studies), and PCR-based techniques were usually employed (27 studies) for measuring the expression of selected genes. Two studies used an exploratory genome-wide approach. Overall, 27 alternatively spliced genes were investigated. Nine of these genes appeared in at least two studies (CD40, CFLAR, FOXP3, IFNAR2, IL7R, MOG, PTPRC, SP140 and TNFRSF1A). The microarray data analysis confirmed differential alternative pre-mRNA splicing for 19 genes. CONCLUSIONS An altered RNA processing of genes mediating immune signaling pathways has been repeatedly implicated in MS. The analysis of individual exon-level expression patterns is stimulated by the advancement of transcriptome profiling technologies. In particular, the examination of genes encoded in MS-associated genetic regions may provide important insights into the pathogenesis of the disease and help to identify new biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | - Annelen Rüge
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Elena Putscher
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Nina Boxberger
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Paulus Stefan Rommer
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; Medical University of Vienna, Department of Neurology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Brit Fitzner
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Uwe Klaus Zettl
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
24
|
Çakır M, Sabah-Özcan S, Saçmacı H. Increased level of plasma salusin-α and salusin-β in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 30:76-80. [DOI: 10.1016/j.msard.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 11/16/2022]
|
25
|
Vickers A, Donnelly JP, Moore JX, Barnum SR, Schein TN, Wang HE. Epidemiology of lumbar punctures in hospitalized patients in the United States. PLoS One 2018; 13:e0208622. [PMID: 30543645 PMCID: PMC6292631 DOI: 10.1371/journal.pone.0208622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives Lumbar puncture (LP) is an important technique for assessing and treating neurological symptoms. The objective of this study was to describe the characteristics of diagnostic lumbar punctures performed on hospitalized patients in the United States. Methods We analyzed data from the 2010 National Inpatient Sample (NIS) and the National Emergency Department Survey (NEDS). We included patients treated in the Emergency Department (ED) as well as those admitted to an inpatient bed through the ED. We identified patients undergoing LPs from ICD-9 procedural code 03.31 and CPT code 62270. We generated nationally weighted estimates of the total number of LPs. We also assessed patient and hospital characteristics of cases undergoing LP. Results Of an estimated 135 million hospitalizations (ED + admission, or ED only), there were an estimated 362,718 LPs (331,248–394,188), including 273,612 (251,850–295,375) among adults and 89,106 (71,870–106,342) among children (<18 years old). Of the 362,718 LPs, 136,764 (122,117–151,410) were performed in the ED without admission. The most common conditions associated with LP among children were fever of unknown origin, meningitis, seizures and other perinatal conditions. The most common conditions associated with LP among adults were headache and meningitis. Conclusions Lumbar Puncture remains an important procedure for diagnostic and therapeutic uses in United States Hospitals.
Collapse
Affiliation(s)
- Adrienne Vickers
- University of South Alabama School of Medicine, Mobile, Alabama, United States of America
| | - John P. Donnelly
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Justin Xavier Moore
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Scott R. Barnum
- CNine Biosolutions, LLC., Birmingham, Alabama, United States of America
| | - Theresa N. Schein
- CNine Biosolutions, LLC., Birmingham, Alabama, United States of America
| | - Henry E. Wang
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- Department of Emergency Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Pachner AR, DiSano K, Royce DB, Gilli F. Clinical utility of a molecular signature in inflammatory demyelinating disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e520. [PMID: 30568998 PMCID: PMC6278854 DOI: 10.1212/nxi.0000000000000520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Objective We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies. Methods We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis. Results A CSF molecular signature consisting of elevated CXCL13, elevated immunoglobulins, normal albumin CSF/serum ratio (Qalbumin), and minimal elevation of cytokines other than CXCL13 provided diagnostic and prognostic value; absence of the signature in IDD predicted lack of subsequent inflammatory events. The signature outperformed oligoclonal bands, which were frequently false positive for active neuroinflammation. Conclusions A CSF IAMS may prove useful in the diagnosis and management of patients with IDD and other neuroinflammatory syndromes. Classification of evidence This study provides Class IV evidence that a CSF IAMS identifies patients with IDD.
Collapse
Affiliation(s)
- Andrew R Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Krista DiSano
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Darlene B Royce
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| |
Collapse
|
27
|
Oztan O, Garner JP, Partap S, Sherr EH, Hardan AY, Farmer C, Thurm A, Swedo SE, Parker KJ. Cerebrospinal fluid vasopressin and symptom severity in children with autism. Ann Neurol 2018; 84:611-615. [PMID: 30152888 DOI: 10.1002/ana.25314] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 11/12/2022]
Abstract
Autism is a brain disorder characterized by social impairments. Progress in understanding autism has been hindered by difficulty in obtaining brain-relevant tissues (eg, cerebrospinal fluid [CSF]) by which to identify markers of disease and targets for treatment. Here, we overcome this barrier by providing evidence that mean CSF concentration of the "social" neuropeptide arginine vasopressin (AVP) is lower in children with autism versus controls. CSF AVP concentration also significantly differentiates individual cases from controls and is associated with greater social symptom severity in children with autism. These findings indicate that AVP may be a promising CSF marker of autism's social deficits. Ann Neurol 2018;84:611-615.
Collapse
Affiliation(s)
- Ozge Oztan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Joseph P Garner
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA.,Department of Comparative Medicine, Stanford University, Stanford, CA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Institute of Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Cristan Farmer
- Section on Behavioral Pediatrics, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Audrey Thurm
- Section on Behavioral Pediatrics, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Susan E Swedo
- Section on Behavioral Pediatrics, Intramural Research Program, National Institute of Mental Health, Bethesda, MD
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| |
Collapse
|
28
|
Cai L, Huang J. Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat 2018; 14:2241-2254. [PMID: 30214214 PMCID: PMC6126505 DOI: 10.2147/ndt.s173280] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE There is a need for biomarkers in multiple sclerosis (MS) to make an early diagnosis and monitor its progression. This study was designed to evaluate the value of neurofilament light (NFL) chain levels as cerebrospinal fluid (CSF) or blood biomarker in patients with MS by using a quantitative meta-analysis. METHODS The PubMed, Embase, and Web of Science databases were systematically searched for relevant studies. Articles in English that evaluated the utility of NFL in CSF and blood in the diagnosis of MS were included. Data were extracted by two independent researchers. Mean (± SD) NFL concentration for MS patients and control subjects were extracted. Review Manager version 5.3 software with a continuous-variable random-effects model was used to summarize the diagnostic indexes from eligible studies. The Newcastle-Ottawa Scale was used for assessing the quality and risk of bias of included studies. In addition, subgroup analysis and meta-regression were performed to assess potential heterogeneity sources. RESULTS The meta-analysis included 13 articles containing results from 15 studies. A total of 10 studies measured NFL levels in CSF and five studies measured NFL levels in blood. Data were available on 795 participants in CSF and 1,856 participants in blood. Moreover, CSF NFL in MS patients was higher than that in healthy control groups (pooled standard mean difference [Std.MD]=0.88, 95% CI [0.50, 1.26], P<0.00001) and serum NFL in MS patients was higher than that in control subjects (pooled Std.MD=0.47, 95% CI [0.24, 0.71], P<0.0001). CONCLUSION NFL chain has significantly increased in MS patients, which substantially strengthens the clinical evidence of the NFL in MS. The NFL may be used as a prognostic biomarker to monitor disease progression, disease activity, and treatment efficacy in the future.
Collapse
Affiliation(s)
- Laisheng Cai
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| | - Jingwei Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| |
Collapse
|
29
|
Puthenparampil M, Zito A, Pantano G, Federle L, Stropparo E, Miante S, De Silvestro G, Plebani M, Gallo P. Peripheral imbalanced TFH/TFR ratio correlates with intrathecal IgG synthesis in multiple sclerosis at clinical onset. Mult Scler 2018; 25:918-926. [PMID: 29882478 DOI: 10.1177/1352458518779951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alteration of T-follicular helper (TFH) and regulatory (TFR) subpopulations may contribute to the development of auto-reactive B-cell. OBJECTIVE To investigate whether changes in TFH and TFR subsets are associated with abnormal IgG synthesis in blood and cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients. METHODS Paired blood and CSF samples were obtained from 31 untreated relapsing-remitting multiple sclerosis (RRMS) patients at diagnosis. Peripheral blood TFH (CD3+CD4+CXCR5+CD25-CD127+), TFR (CD3+CD4+CXCR5+CD25+CD127dim), conventional T-Helper (TH, CD3+CD4+CXCR5-CD25-CD127+), and regulatory T-cells (T-Reg, CD3+CD4+CXCR5-CD25+CD127dim) were analyzed in all RRMS patients and in 13 healthy controls (HCs). Qualitative and quantitative intrathecal IgG synthesis was evaluated in RRMS patients, who were then further subclassified according to the presence of IgG oligoclonal bands in blood and/or CSF. RESULTS Compared to HC, RRMS had lower TFR percentage ( p < 0.01) and higher TFH/TFR ratio ( p < 0.001). In RRMS, TFH/TFR ratio correlated with both qualitative ( r = 0.56, p < 0.005) and quantitative intrathecal IgG synthesis (IgG Index: r = 0.78; IgGLoc: r = 0.79; IgGIF: r = 0.76, all p < 0.001). Patients with the highest TFH/TFR ratios had higher percentages of circulating B-cells (36.1 ± 35.2%, p < 0.05). CONCLUSION In RRMS, increased TFH/TFR ratio associates with abnormal IgG production in blood and CSF, suggesting that antibody-producing cells, derived from deregulated peripheral germinal center reaction, colonize the CNS.
Collapse
Affiliation(s)
- Marco Puthenparampil
- Multiple Sclerosis Centre, Department of Neuroscience DNS, Università degli Studi di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Antonio Zito
- Multiple Sclerosis Centre, Department of Neuroscience DNS, Università degli Studi di Padova, Padova, Italy
| | - Giorgia Pantano
- Central Laboratory, Azienda Ospedaliera di Padova, Padova, Italy
| | - Lisa Federle
- Multiple Sclerosis Centre, Ospedale San Bortolo di Vicenza, Azienda ULSS 8 Berica, Vicenza, Italy
| | - Erica Stropparo
- Multiple Sclerosis Centre, Department of Neuroscience DNS, Università degli Studi di Padova, Padova, Italy
| | - Silvia Miante
- Multiple Sclerosis Centre, Department of Neuroscience DNS, Università degli Studi di Padova, Padova, Italy
| | | | - Mario Plebani
- Central Laboratory, Azienda Ospedaliera di Padova, Padova, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre, Department of Neuroscience DNS, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
30
|
Increased BAFF and APRIL levels in the cerebrospinal fluid of patients with anti-neutrophil cytoplasmic antibody-related hypertrophic pachymeningitis. Cytokine 2017; 99:305-309. [DOI: 10.1016/j.cyto.2017.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022]
|
31
|
Faissner S, Mahjoub Y, Mishra M, Haupeltshofer S, Hahn JN, Gold R, Koch M, Metz LM, Ben-Hur T, Yong VW. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease? Mult Scler 2017; 24:1543-1556. [DOI: 10.1177/1352458517728811] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Most multiple sclerosis (MS) patients succumb to a progressive phenotype. Continued lymphocyte activity in the brain, microglia-mediated injury, iron deposition, and oxidative stress are characteristics of progressive MS. Objective: As minocycline and hydroxychloroquine have been shown to inhibit microglia, we evaluated their effects on other outcomes relevant for progression. Methods: Medications were evaluated in culture and in mice with acute and chronic experimental autoimmune encephalomyelitis (EAE). Results: Both medications individually reduced iron neurotoxicity and a combination effect was not observed. Hydroxyl radical scavenging activity was manifested by minocycline only. Minocycline reduced T-cell proliferation more prominently than hydroxychloroquine; an aggregate effect occurred at low but not high concentrations. B-cell proliferation was mitigated to a greater extent by hydroxychloroquine and an additive effect was not evident. In EAE, suboptimal doses of minocycline and hydroxychloroquine individually delayed onset of clinical signs, while their combination suppressed clinical manifestations until treatment was stopped. In Biozzi ABH mice, a model of progressive MS, the chronic phase was beneficially altered using the combination. Conclusion: While minocycline and hydroxychloroquine did not manifest additive effects in most culture assays, their combination at suboptimal doses in EAE unexpectedly exceeded their individual activity. Minocycline and hydroxychloroquine combined are candidate treatments for progressive MS.
Collapse
Affiliation(s)
- Simon Faissner
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada/St. Josef-Hospital and Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Yasamin Mahjoub
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Manoj Mishra
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Steffen Haupeltshofer
- St. Josef-Hospital and Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Jennifer Nancy Hahn
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ralf Gold
- St. Josef-Hospital and Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Koch
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Luanne M Metz
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Tamir Ben-Hur
- Department of Neurology, Hadassah Medical Center and The Hebrew University of Jerusalem, Jerusalem, Israel
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Hares K, Wilkins A. Axonal transport proteins as biomarkers of neurodegeneration? Biomark Med 2017; 11:589-591. [PMID: 28770630 DOI: 10.2217/bmm-2017-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol, Southmead Hospital, Bristol, Bristol, UK BS 10 5NB
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol, Southmead Hospital, Bristol, Bristol, UK BS 10 5NB
| |
Collapse
|
33
|
Zavialova MG, Shevchenko VE, Nikolaev EN, Zgoda VG. Is myelin basic protein a potential biomarker of brain cancer? EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:192-196. [PMID: 29028399 DOI: 10.1177/1469066717719810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Myelin basic protein is a potential biomarker for the central nervous system diseases in which the myelin sheath is destroyed. Using pseudo-selected reaction monitoring and the method of standard additions, we have measured the myelin basic protein level in the cerebrospinal fluid of patients with neurotrauma (n = 6), chronic neurodegenerative diseases (n = 2) and brain cancer (n = 5). Myelin basic protein was detected only in four out of five cerebrospinal fluid samples of patients with brain cancer. The cerebrospinal fluid myelin basic protein level ranged from 3.7 to 8.8 ng ml-1. We suggest that monitoring of myelin basic protein in cerebrospinal fluid can serve as a diagnostic test for the brain cancer.
Collapse
Affiliation(s)
- M G Zavialova
- 1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| | - V E Shevchenko
- 2 Blokhin Russian Cancer Research Center, Moscow, Russia
| | - E N Nikolaev
- 1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia
- 3 Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia
| | - V G Zgoda
- 1 Institute of Biomedical Chemistry (IBMC), Moscow, Russia
| |
Collapse
|
34
|
How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr Opin Rheumatol 2017; 28:398-404. [PMID: 26986247 DOI: 10.1097/bor.0000000000000289] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is caused by a combination of genetic and acquired immunodeficiencies and environmental factors including infections. An association with Epstein-Barr virus (EBV) has been established by numerous studies over the past decades. Here, we review recent experimental studies on EBV, and present our integrated theory of SLE development. RECENT FINDINGS SLE patients have dysfunctional control of EBV infection resulting in frequent reactivations and disease progression. These comprise impaired functions of EBV-specific T-cells with an inverse correlation to disease activity and elevated serum levels of antibodies against lytic cycle EBV antigens. The presence of EBV proteins in renal tissue from SLE patients with nephritis suggests direct involvement of EBV in SLE development. As expected for patients with immunodeficiencies, studies reveal that SLE patients show dysfunctional responses to other viruses as well. An association with EBV infection has also been demonstrated for other autoimmune diseases, including Sjögren's syndrome, rheumatoid arthritis, and multiple sclerosis. SUMMARY Collectively, the interplay between an impaired immune system and the cumulative effects of EBV and other viruses results in frequent reactivation of EBV and enhanced cell death, causing development of SLE and concomitant autoreactivities.
Collapse
|
35
|
Ziemssen T, Medin J, Couto CAM, Mitchell CR. Multiple sclerosis in the real world: A systematic review of fingolimod as a case study. Autoimmun Rev 2017; 16:355-376. [DOI: 10.1016/j.autrev.2017.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 02/02/2023]
|
36
|
Håkansson I, Tisell A, Cassel P, Blennow K, Zetterberg H, Lundberg P, Dahle C, Vrethem M, Ernerudh J. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur J Neurol 2017; 24:703-712. [PMID: 28261960 DOI: 10.1111/ene.13274] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Improved biomarkers are needed to facilitate clinical decision-making and as surrogate endpoints in clinical trials in multiple sclerosis (MS). We assessed whether neurodegenerative and neuroinflammatory markers in cerebrospinal fluid (CSF) at initial sampling could predict disease activity during 2 years of follow-up in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS. METHODS Using multiplex bead array and enzyme-linked immunosorbent assay, CXCL1, CXCL8, CXCL10, CXCL13, CCL20, CCL22, neurofilament light chain (NFL), neurofilament heavy chain, glial fibrillary acidic protein, chitinase-3-like-1, matrix metalloproteinase-9 and osteopontin were analysed in CSF from 41 patients with CIS or relapsing-remitting MS and 22 healthy controls. Disease activity (relapses, magnetic resonance imaging activity or disability worsening) in patients was recorded during 2 years of follow-up in this prospective longitudinal cohort study. RESULTS In a logistic regression analysis model, NFL in CSF at baseline emerged as the best predictive marker, correctly classifying 93% of patients who showed evidence of disease activity during 2 years of follow-up and 67% of patients who did not, with an overall proportion of 85% (33 of 39 patients) correctly classified. Combining NFL with either neurofilament heavy chain or osteopontin resulted in 87% overall correctly classified patients, whereas combining NFL with a chemokine did not improve results. CONCLUSIONS This study demonstrates the potential prognostic value of NFL in baseline CSF in CIS and relapsing-remitting MS and supports its use as a predictive biomarker of disease activity.
Collapse
Affiliation(s)
- I Håkansson
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - A Tisell
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - P Cassel
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - K Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - P Lundberg
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - C Dahle
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Vrethem
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - J Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
37
|
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020353. [PMID: 28208701 PMCID: PMC5343888 DOI: 10.3390/ijms18020353] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity, seem to play an important role in the pathogenesis of MS. The alteration of mitochondrial homeostasis leads to the formation of excitotoxins and redox disturbances. Mitochondrial dysfunction (energy disposal failure, apoptosis, etc.), redox disturbances (oxidative stress and enhanced reactive oxygen and nitrogen species production), and excitotoxicity (Glu mediated toxicity) may play an important role in the progression of the disease, causing axonal and neuronal damage. This review focuses on the mechanisms of mitochondrial dysfunction (including mitochondrial DNA (mtDNA) defects and mitochondrial structural/functional changes), oxidative stress (including reactive oxygen and nitric species), and excitotoxicity that are involved in MS and also discusses the potential targets and tools for therapeutic approaches in the future.
Collapse
Affiliation(s)
- Cecilia Rajda
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Dániel Pukoli
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- Department of Neurology, Vaszary Kolos Hospital, 2500 Esztergom, Hungary.
| | - Zsuzsanna Bende
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, 6725 Szeged, Hungary.
| |
Collapse
|
38
|
Feng JJ, Ontaneda D. Treating primary-progressive multiple sclerosis: potential of ocrelizumab and review of B-cell therapies. Degener Neurol Neuromuscul Dis 2017; 7:31-45. [PMID: 30050376 PMCID: PMC6053100 DOI: 10.2147/dnnd.s100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) therapy has evolved rapidly with an increased availability of several immunomodulating therapies over the past two decades. Disease-modifying therapies have proven to be effective in treating relapse-remitting MS (RRMS). However, clinical trials involving some of the same agents for secondary-progressive and primary-progressive MS (SPMS and PPMS) have been largely negative. The pathogenesis of progressive MS remains unclear, but B-cells may play a significant role in chronic compartmentalized inflammation, likely contributing to disease progression. Biologics targeted at B-cells, such as rituximab, are effective in treating RRMS. Ocrelizumab is a humanized monoclonal antibody to CD20+ B-cells that has shown positive results in PPMS with a significant reduction in disease progression. This review aims to discuss in detail the involvement of B-cells in MS pathogenesis, current progress of currently available and investigational biologics, with focus on ocrelizumab, and future prospects for B-cell therapy in PPMS.
Collapse
Affiliation(s)
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA,
| |
Collapse
|
39
|
Chen D, Ireland SJ, Remington G, Alvarez E, Racke MK, Greenberg B, Frohman EM, Monson NL. CD40-Mediated NF-κB Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4257-4265. [PMID: 27798157 PMCID: PMC5312703 DOI: 10.4049/jimmunol.1600782] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022]
Abstract
CD40 interacts with CD40L and plays an essential role in immune regulation and homeostasis. Recent research findings, however, support a pathogenic role of CD40 in a number of autoimmune diseases. We previously showed that memory B cells from relapsing-remitting multiple sclerosis (RRMS) patients exhibited enhanced proliferation with CD40 stimulation compared with healthy donors. In this study, we used a multiparameter phosflow approach to analyze the phosphorylation status of NF-κB and three major MAPKs (P38, ERK, and JNK), the essential components of signaling pathways downstream of CD40 engagement in B cells from MS patients. We found that memory and naive B cells from RRMS and secondary progressive MS patients exhibited a significantly elevated level of phosphorylated NF-κB (p-P65) following CD40 stimulation compared with healthy donor controls. Combination therapy with IFN-β-1a (Avonex) and mycophenolate mofetil (Cellcept) modulated the hyperphosphorylation of P65 in B cells of RRMS patients at levels similar to healthy donor controls. Lower disease activity after the combination therapy correlated with the reduced phosphorylation of P65 following CD40 stimulation in treated patients. Additionally, glatiramer acetate treatment also significantly reduced CD40-mediated P65 phosphorylation in RRMS patients, suggesting that reducing CD40-mediated p-P65 induction may be a general mechanism by which some current therapies modulate MS disease.
Collapse
Affiliation(s)
- Ding Chen
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara J Ireland
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gina Remington
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Enrique Alvarez
- Department of Neurology, University of Colorado, Aurora, CO 80045
| | - Michael K Racke
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210; and
| | - Benjamin Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Elliot M Frohman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
40
|
Mitsdoerffer M, Peters A. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity. Front Immunol 2016; 7:451. [PMID: 27826298 PMCID: PMC5078318 DOI: 10.3389/fimmu.2016.00451] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS), which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease; however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines, and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs) were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function, and clinical significance. Mechanistic studies in patients are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE) recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation, and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.
Collapse
Affiliation(s)
- Meike Mitsdoerffer
- Klinikum Rechts der Isar, Department of Neurology, Technical University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anneli Peters
- Department of Neuroimmunology, Max Planck Institute of Neurobiology , Martinsried , Germany
| |
Collapse
|
41
|
Fraussen J, de Bock L, Somers V. B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression. Autoimmun Rev 2016; 15:896-9. [DOI: 10.1016/j.autrev.2016.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/17/2023]
|
42
|
|
43
|
Olsen JA, Kenna LA, Tipon RC, Spelios MG, Stecker MM, Akirav EM. A Minimally-invasive Blood-derived Biomarker of Oligodendrocyte Cell-loss in Multiple Sclerosis. EBioMedicine 2016; 10:227-35. [PMID: 27381476 PMCID: PMC5006601 DOI: 10.1016/j.ebiom.2016.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). Minimally invasive biomarkers of MS are required for disease diagnosis and treatment. Differentially methylated circulating-free DNA (cfDNA) is a useful biomarker for disease diagnosis and prognosis, and may offer to be a viable approach for understanding MS. Here, methylation-specific primers and quantitative real-time PCR were used to study methylation patterns of the myelin oligodendrocyte glycoprotein (MOG) gene, which is expressed primarily in myelin-producing oligodendrocytes (ODCs). MOG-DNA was demethylated in O4+ ODCs in mice and in DNA from human oligodendrocyte precursor cells (OPCs) when compared with other cell types. In the cuprizone-fed mouse model of demyelination, ODC derived demethylated MOG cfDNA was increased in serum and was associated with tissue-wide demyelination, demonstrating the utility of demethylated MOG cfDNA as a biomarker of ODC death. Collected sera from patients with active (symptomatic) relapsing-remitting MS (RRMS) demonstrated a higher signature of demethylated MOG cfDNA when compared with patients with inactive disease and healthy controls. Taken together, these results offer a minimally invasive approach to measuring ODC death in the blood of MS patients that may be used to monitor disease progression. Currently, there are no molecular biomarkers of multiple sclerosis (MS). A minimally invasive assay for measuring oligodendrocyte (ODC) cell loss in relapsing-remitting MS is described. DNA methylation of the myelin oligodendrocyte glycoprotein gene is used as a measure of ODC loss in the blood.
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system. Currently, there are no molecular biomarkers of MS, thereby limiting disease diagnosis, prognosis, and assessment of new clinical interventions. Myelin oligodendrocyte glycoprotein (MOG) is expressed solely by oligodendrocytes (ODCs) as an integral part of the myelin sheath. This report describes a minimally invasive biomarker assay for measuring ODC-derived DNA in the blood of MS patients. It describes the presence of unique DNA methylation patterns in the MOG gene in ODCs, which is used to design methylation-specific primers. Analysis of sera from patients with active relapsing-remitting MS shows an increase in levels of ODC-derived circulating free DNA when compared with inactive disease and healthy controls.
Collapse
Affiliation(s)
- John A Olsen
- Research Institute, Islet Biology, Winthrop-University Hospital, Mineola, NY, USA
| | - Lauren A Kenna
- Research Institute, Islet Biology, Winthrop-University Hospital, Mineola, NY, USA
| | - Regine C Tipon
- Research Institute, Islet Biology, Winthrop-University Hospital, Mineola, NY, USA
| | - Michael G Spelios
- Research Institute, Islet Biology, Winthrop-University Hospital, Mineola, NY, USA
| | - Mark M Stecker
- Department of Neuroscience, Winthrop-University Hospital Mineola, NY, USA
| | - Eitan M Akirav
- Research Institute, Islet Biology, Winthrop-University Hospital, Mineola, NY, USA; Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
44
|
Patejdl R, Penner IK, Noack TK, Zettl UK. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration. Autoimmun Rev 2016; 15:210-20. [DOI: 10.1016/j.autrev.2015.11.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/13/2015] [Indexed: 02/02/2023]
|
45
|
Anoctamin 2 identified as an autoimmune target in multiple sclerosis. Proc Natl Acad Sci U S A 2016; 113:2188-93. [PMID: 26862169 DOI: 10.1073/pnas.1518553113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system and also is regarded as an autoimmune condition. However, the antigenic targets of the autoimmune response in MS have not yet been deciphered. In an effort to mine the autoantibody repertoire within MS, we profiled 2,169 plasma samples from MS cases and population-based controls using bead arrays built with 384 human protein fragments selected from an initial screening with 11,520 antigens. Our data revealed prominently increased autoantibody reactivity against the chloride-channel protein anoctamin 2 (ANO2) in MS cases compared with controls. This finding was corroborated in independent assays with alternative protein constructs and by epitope mapping with peptides covering the identified region of ANO2. Additionally, we found a strong interaction between the presence of ANO2 autoantibodies and the HLA complex MS-associated DRB1*15 allele, reinforcing a potential role for ANO2 autoreactivity in MS etiopathogenesis. Furthermore, immunofluorescence analysis in human MS brain tissue showed ANO2 expression as small cellular aggregates near and inside MS lesions. Thus this study represents one of the largest efforts to characterize the autoantibody repertoire within MS. The findings presented here demonstrate that an ANO2 autoimmune subphenotype may exist in MS and lay the groundwork for further studies focusing on the pathogenic role of ANO2 autoantibodies in MS.
Collapse
|
46
|
Hecker M, Fitzner B, Wendt M, Lorenz P, Flechtner K, Steinbeck F, Schröder I, Thiesen HJ, Zettl UK. High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Mol Cell Proteomics 2016; 15:1360-80. [PMID: 26831522 DOI: 10.1074/mcp.m115.051664] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g.MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (pvalues <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392-411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS.
Collapse
Affiliation(s)
- Michael Hecker
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany;
| | - Brit Fitzner
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany
| | - Matthias Wendt
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Peter Lorenz
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Kristin Flechtner
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Felix Steinbeck
- ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; ‖Gesellschaft für Individualisierte Medizin mbH (IndyMED), Lessingstr. 17, 18055 Rostock, Germany
| | - Ina Schröder
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Hans-Jürgen Thiesen
- §Steinbeis Transfer Center for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany; ¶University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany; ‖Gesellschaft für Individualisierte Medizin mbH (IndyMED), Lessingstr. 17, 18055 Rostock, Germany
| | - Uwe Klaus Zettl
- From the ‡University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
47
|
Menéndez-Valladares P, García-Sánchez MI, Cuadri Benítez P, Lucas M, Adorna Martínez M, Carranco Galán V, García De Veas Silva JL, Bermudo Guitarte C, Izquierdo Ayuso G. Free kappa light chains in cerebrospinal fluid as a biomarker to assess risk conversion to multiple sclerosis. Mult Scler J Exp Transl Clin 2015; 1:2055217315620935. [PMID: 28607709 PMCID: PMC5433434 DOI: 10.1177/2055217315620935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/13/2015] [Indexed: 01/21/2023] Open
Abstract
Background Multiple sclerosis (MS) initiates with a first attack or clinically isolated syndrome (CIS). The importance of an early treatment in MS leads to the search, as soon as possible, for novel biomarkers which can predict conversion from CIS to MS. Objective The purpose of this study was to assess the predictive value of the kappa index (κ index), using kappa free light light chains (κFLCs) in cerebrospinal fluid (CSF), for the conversion of CIS patients to MS, and compare its accuracy with other parameters used in clinical practice. Methods FLC levels were analysed in CSF from 176 patients: 70 as control group, 77 CIS, and 29 relapsing–remitting MS. FLC levels were quantified by nephelometry. Results κ Index sensitivity and specificity (93.1%; 95.7%) was higher than those from the immunoglobulin G (IgG) index (75.9%; 94.3%), and lower than those from oligoclonal IgG bands (OCGBs) (96.5%; 98.6%). The optimal cut-off for κ index was 10.62. Most of the CIS patients with κ index >10.62 presented OCGBs, IgG index >0.56 and fulfilled magnetic resonance imaging (MRI) criteria. Conclusion CIS patients above κ index cut-off of 10.62 present 7.34-fold risk of conversion to MS than CIS below this value. The κ index correlated with positive OCGBs, IgG index above 0.56 and MRI criteria.
Collapse
Affiliation(s)
- P Menéndez-Valladares
- Unidad de Gestión Clínica Bioquímica Clínica, Hospital Universitario Virgen Macarena, Spain
| | - M I García-Sánchez
- Biobanco Hospitalario Virgen Macarena, Biobanco del Sistema Sanitario Público de Andalucía, Spain
| | - P Cuadri Benítez
- Biobanco Hospitalario Virgen Macarena, Biobanco del Sistema Sanitario Público de Andalucía, Spain
| | - M Lucas
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Spain
| | - M Adorna Martínez
- Unidad de Gestión Clínica Neurociencias, Hospital Universitario Virgen Macarena, Spain
| | - V Carranco Galán
- Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, Spain
| | | | - C Bermudo Guitarte
- Unidad de Gestión Clínica Bioquímica Clínica, Hospital Universitario Virgen Macarena, Spain
| | - G Izquierdo Ayuso
- Unidad de Gestión Clínica Neurociencias, Hospital Universitario Virgen Macarena, Spain
| |
Collapse
|