1
|
K. K, M. D, B. VS, A. L, M. L. Down-modulation of functional ventral striatum activation for emotional face stimuli in patients with insula damage. PLoS One 2024; 19:e0301940. [PMID: 39018294 PMCID: PMC11253967 DOI: 10.1371/journal.pone.0301940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/25/2024] [Indexed: 07/19/2024] Open
Abstract
Insula damage results in substantial impairments in facial emotion recognition. In particular, left hemispheric damage appears to be associated with poorer recognition of aversively rated facial expressions. Functional imaging can provide information on differences in the processing of these stimuli in patients with insula lesions when compared to healthy matched controls (HCs). We therefore investigated 17 patients with insula lesions in the chronic stage following stroke and 13 HCs using a passive-viewing task with pictures of facial expressions testing the blood oxygenation dependent (BOLD) effect in predefined regions of interest (ROIs). We expected a decrease in functional activation in an area modulating emotional response (left ventral striatum) but not in the facial recognition areas in the left inferior fusiform gyrus. Quantification of BOLD-response in ROIs but also voxel-based statistics confirmed this hypothesis. The voxel-based analysis demonstrated that the decrease in BOLD in the left ventral striatum was driven by left hemispheric damaged patients (n = 10). In our patient group, insula activation was strongly associated with the intensity rating of facial expressions. In conclusion, the combination of performance testing and functional imaging in patients following circumscribed brain damage is a challenging method for understanding emotion processing in the human brain.
Collapse
Affiliation(s)
- Klepzig K.
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Domin M.
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - von Sarnowski B.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Lischke A.
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- Institute of Clinical Psychology and Psychotherapy, Medical School Hamburg, Hamburg, Germany
| | - Lotze M.
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Burgio F, Menardi A, Benavides-Varela S, Danesin L, Giustiniani A, Van den Stock J, De Mitri R, Biundo R, Meneghello F, Antonini A, Vallesi A, de Gelder B, Semenza C. Facial emotion recognition in individuals with mild cognitive impairment: An exploratory study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01160-5. [PMID: 38316707 DOI: 10.3758/s13415-024-01160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Understanding facial emotions is fundamental to interact in social environments and modify behavior accordingly. Neurodegenerative processes can progressively transform affective responses and affect social competence. This exploratory study examined the neurocognitive correlates of face recognition, in individuals with two mild cognitive impairment (MCI) etiologies (prodromal to dementia - MCI, or consequent to Parkinson's disease - PD-MCI). Performance on the identification and memorization of neutral and emotional facial expressions was assessed in 31 individuals with MCI, 26 with PD-MCI, and 30 healthy controls (HC). Individuals with MCI exhibited selective impairment in recognizing faces expressing fear, along with difficulties in remembering both neutral and emotional faces. Conversely, individuals with PD-MCI showed no differences compared with the HC in either emotion recognition or memory. In MCI, no significant association emerged between the memory for facial expressions and cognitive difficulties. In PD-MCI, regression analyses showed significant associations with higher-level cognitive functions in the emotional memory task, suggesting the presence of compensatory mechanisms. In a subset of participants, voxel-based morphometry revealed that the performance on emotional tasks correlated with regional changes in gray matter volume. The performance in the matching of negative expressions was predicted by volumetric changes in brain areas engaged in face and emotional processing, in particular increased volume in thalamic nuclei and atrophy in the right parietal cortex. Future studies should leverage on neuroimaging data to determine whether differences in emotional recognition are mediated by pathology-specific atrophic patterns.
Collapse
Affiliation(s)
| | - Arianna Menardi
- Department of Neuroscience, University of Padova, 35128, Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
| | - Silvia Benavides-Varela
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | | | | | - Jan Van den Stock
- Department of Neuroscience, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, 3000, Leuven, Belgium
| | | | - Roberta Biundo
- Department of General Psychology (DPG), University of Padua, 35131, Padua, Italy
- Study Center for Neurodegeneration (CESNE), University of Padua, 35131, Padua, Italy
| | - Francesca Meneghello
- Unità Operativa Complessa Cure Primarie Distretto 3 Mirano-Dolo, Aulss 3, Serenissima, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Antonino Vallesi
- Department of Neuroscience, University of Padova, 35128, Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Carlo Semenza
- Department of Neuroscience, University of Padova, 35128, Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129, Padova, Italy
| |
Collapse
|
3
|
Dang Q, Ma F, Yuan Q, Fu Y, Chen K, Zhang Z, Lu C, Guo T. Processing negative emotion in two languages of bilinguals: Accommodation and assimilation of the neural pathways based on a meta-analysis. Cereb Cortex 2023:7133665. [PMID: 37083264 DOI: 10.1093/cercor/bhad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Numerous functional magnetic resonance imaging (fMRI) studies have examined the neural mechanisms of negative emotional words, but scarce evidence is available for the interactions among related brain regions from the functional brain connectivity perspective. Moreover, few studies have addressed the neural networks for negative word processing in bilinguals. To fill this gap, the current study examined the brain networks for processing negative words in the first language (L1) and the second language (L2) with Chinese-English bilinguals. To identify objective indicators associated with negative word processing, we first conducted a coordinate-based meta-analysis on contrasts between negative and neutral words (including 32 contrasts from 1589 participants) using the activation likelihood estimation method. Results showed that the left medial prefrontal cortex (mPFC), the left inferior frontal gyrus (IFG), the left posterior cingulate cortex (PCC), the left amygdala, the left inferior temporal gyrus (ITG), and the left thalamus were involved in processing negative words. Next, these six clusters were used as regions of interest in effective connectivity analyses using extended unified structural equation modeling to pinpoint the brain networks for bilingual negative word processing. Brain network results revealed two pathways for negative word processing in L1: a dorsal pathway consisting of the left IFG, the left mPFC, and the left PCC, and a ventral pathway involving the left amygdala, the left ITG, and the left thalamus. We further investigated the similarity and difference between brain networks for negative word processing in L1 and L2. The findings revealed similarities in the dorsal pathway, as well as differences primarily in the ventral pathway, indicating both neural assimilation and accommodation across processing negative emotion in two languages of bilinguals.
Collapse
Affiliation(s)
- Qinpu Dang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Fengyang Ma
- School of Education, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yongben Fu
- The Psychological Education and Counseling Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyue Chen
- Division of Psychology and Language Sciences, University College London, London WC1E 6BT, UK
| | - Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Venkataraman A, Dias BG. Expanding the canon: An inclusive neurobiology of thalamic and subthalamic fear circuits. Neuropharmacology 2023; 226:109380. [PMID: 36572176 PMCID: PMC9984284 DOI: 10.1016/j.neuropharm.2022.109380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Appropriate expression of fear in the face of threats in the environment is essential for survival. The sustained expression of fear in the absence of threat signals is a central pathological feature of trauma- and anxiety-related disorders. Our understanding of the neural circuitry that controls fear inhibition coalesces around the amygdala, hippocampus, and prefrontal cortex. By discussing thalamic and sub-thalamic influences on fear-related learning and expression in this review, we suggest a more inclusive neurobiological framework that expands our canonical view of fear. First, we visit how fear-related learning and expression is influenced by the aforementioned canonical brain regions. Next, we review emerging data that shed light on new roles for thalamic and subthalamic nuclei in fear-related learning and expression. Then, we highlight how these neuroanatomical hubs can modulate fear via integration of sensory and salient stimuli, gating information flow and calibrating behavioral responses, as well as maintaining and updating memory representations. Finally, we propose that the presence of this thalamic and sub-thalamic neuroanatomy in parallel with the tripartite prefrontal cortex-amygdala-hippocampus circuit allows for dynamic modulation of information based on interoceptive and exteroceptive signals. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Archana Venkataraman
- Department of Cellular & Molecular Pharmacology, University of San Francisco, San Francisco, CA, United States
| | - Brian George Dias
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States; Division of Endocrinology, Children's Hospital Los Angeles, Los Angeles, CA, United States; Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Inagaki M, Inoue KI, Tanabe S, Kimura K, Takada M, Fujita I. Rapid processing of threatening faces in the amygdala of nonhuman primates: subcortical inputs and dual roles. Cereb Cortex 2023; 33:895-915. [PMID: 35323915 PMCID: PMC9890477 DOI: 10.1093/cercor/bhac109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
A subcortical pathway through the superior colliculus and pulvinar has been proposed to provide the amygdala with rapid but coarse visual information about emotional faces. However, evidence for short-latency, facial expression-discriminating responses from individual amygdala neurons is lacking; even if such a response exists, how it might contribute to stimulus detection is unclear. Also, no definitive anatomical evidence is available for the assumed pathway. Here we showed that ensemble responses of amygdala neurons in monkeys carried robust information about open-mouthed, presumably threatening, faces within 50 ms after stimulus onset. This short-latency signal was not found in the visual cortex, suggesting a subcortical origin. Temporal analysis revealed that the early response contained excitatory and suppressive components. The excitatory component may be useful for sending rapid signals downstream, while the sharpening of the rising phase of later-arriving inputs (presumably from the cortex) by the suppressive component might improve the processing of facial expressions over time. Injection of a retrograde trans-synaptic tracer into the amygdala revealed presumed monosynaptic labeling in the pulvinar and disynaptic labeling in the superior colliculus, including the retinorecipient layers. We suggest that the early amygdala responses originating from the colliculo-pulvino-amygdalar pathway play dual roles in threat detection.
Collapse
Affiliation(s)
- Mikio Inagaki
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Soshi Tanabe
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Kei Kimura
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Ichiro Fujita
- Laboratory for Cognitive Neuroscience, Graduate School of Frontier Biosciences, Osaka University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Yang Y, Li Q, Wang J, Liu Y, Xiao M, Luo L, Yi H, Yan Q, Li W, Chen H. The powerful brain: Neural correlates of sense of power and hope. Neuropsychologia 2022; 174:108317. [PMID: 35810881 DOI: 10.1016/j.neuropsychologia.2022.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022]
Abstract
A sense of power refers to the perception that one can control and influence others' states by providing or withholding valued resources in an asymmetrical way, and which has been associated with greater hope. However, little is known about the neural bases underlying this association. The present study aimed to examine these phenomena in 261 healthy adolescent students by assessing resting-state brain activity (i.e., the amplitude of low-frequency fluctuations, ALFF) and connectivity (i.e., resting-state functional connectivity, RSFC). Whole-brain correlation analyses revealed that higher levels of perceived power were linked with reduced ALFF in the left thalamus and increased RSFC between the left thalamus and left superior temporal gyrus. Mediation analyses further showed that perceived power mediated the influence of the left thalamus activity on hope. Our results remained significant even after controlling for the head motion, age, and gender. Our findings contribute to the neurobiological basis of a sense of power and the neural mechanism underlying the relationship between a sense of power and hope.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Qingqing Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Junjie Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Lin Luo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Haijing Yi
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Qiaoling Yan
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Wei Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Jaillard A, Zeffiro TA. Phylogeny of Neurological Disorders/Anatomy and Disorders of Basic Emotion in Stroke: In Clinical Neuroanatomy, Brain Structure and Function. ENCYCLOPEDIA OF BEHAVIORAL NEUROSCIENCE, 2ND EDITION 2022:251-259. [DOI: 10.1016/b978-0-12-819641-0.00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Sheppard SM, Meier EL, Zezinka Durfee A, Walker A, Shea J, Hillis AE. Characterizing subtypes and neural correlates of receptive aprosodia in acute right hemisphere stroke. Cortex 2021; 141:36-54. [PMID: 34029857 PMCID: PMC8489691 DOI: 10.1016/j.cortex.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Speakers naturally produce prosodic variations depending on their emotional state. Receptive prosody has several processing stages. We aimed to conduct lesion-symptom mapping to determine whether damage (core infarct or hypoperfusion) to specific brain areas was associated with receptive aprosodia or with impairment at different processing stages in individuals with acute right hemisphere stroke. We also aimed to determine whether different subtypes of receptive aprosodia exist that are characterized by distinctive behavioral performance patterns. METHODS Twenty patients with receptive aprosodia following right hemisphere ischemic stroke were enrolled within five days of stroke; clinical imaging was acquired. Participants completed tests of receptive emotional prosody, and tests of each stage of prosodic processing (Stage 1: acoustic analysis; Stage 2: analyzing abstract representations of acoustic characteristics that convey emotion; Stage 3: semantic processing). Emotional facial recognition was also assessed. LASSO regression was used to identify predictors of performance on each behavioral task. Predictors entered into each model included 14 right hemisphere regions, hypoperfusion in four vascular territories as measured using FLAIR hyperintense vessel ratings, lesion volume, age, and education. A k-medoid cluster analysis was used to identify different subtypes of receptive aprosodia based on performance on the behavioral tasks. RESULTS Impaired receptive emotional prosody and impaired emotional facial expression recognition were both predicted by greater percent damage to the caudate. The k-medoid cluster analysis identified three different subtypes of aprosodia. One group was primarily impaired on Stage 1 processing and primarily had frontotemporal lesions. The second group had a domain-general emotion recognition impairment and maximal lesion overlap in subcortical areas. Finally, the third group was characterized by a Stage 2 processing deficit and had lesion overlap in posterior regions. CONCLUSIONS Subcortical structures, particularly the caudate, play an important role in emotional prosody comprehension. Receptive aprosodia can result from impairments at different processing stages.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Communication Sciences & Disorders, Chapman University, Irvine, CA, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Alex Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Shea
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Tang Y, Ren C, Wang M, Dai G, Xiao Y, Wang S, Han F, Chen G. Altered gray matter volume and functional connectivity in patients with herpes zoster and postherpetic neuralgia. Brain Res 2021; 1769:147608. [PMID: 34343527 DOI: 10.1016/j.brainres.2021.147608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/29/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Numerous neuroimaging studies on postherpetic neuralgia (PHN) and herpes zoster (HZ) have revealed abnormalities in brain structure/microstructure and function. However, few studies have focused on changes in gray matter (GM) volume and intrinsic functional connectivity (FC) in the transition from HZ to PHN. This study combined voxel-based morphometry and FC analysis methods to investigate GM volume and FC differences in 28 PHN patients, 25 HZ patients, and 21 well-matched healthy controls (HCs). Compared to HCs, PHN patients exhibited a reduction in GM volume in the bilateral putamen. Compared with HZ patients, PHN patients showed decreased GM volume in the left parahippocampal gyrus, putamen, anterior cingulate cortex, and right caudate and increased GM volume in the right thalamus. However, no regions with significant GM volume changes were found between the HZ and HC groups. Correlation analysis revealed that GM volume in the right putamen was positively associated with illness duration in PHN patients. Furthermore, lower FCs between the right putamen and right middle frontal gyrus/brainstem were observed in PHN patients than in HCs. These results indicate that aberrant GM volumes and FC in several brain regions, especially in the right putamen, are closely associated with chronification from HZ to PHN; moreover, these changes profoundly affect multiple dimensions of pain processing. These findings may provide new insights into the pathophysiological mechanisms of PHN.
Collapse
Affiliation(s)
- Yu Tang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Changhe Ren
- Department of Pain, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Maohua Wang
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guidong Dai
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yan Xiao
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fugang Han
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Guangxiang Chen
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
10
|
Morningstar M, Mattson WI, Singer S, Venticinque JS, Nelson EE. Children and adolescents' neural response to emotional faces and voices: Age-related changes in common regions of activation. Soc Neurosci 2020; 15:613-629. [PMID: 33017278 DOI: 10.1080/17470919.2020.1832572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The perception of facial and vocal emotional expressions engages overlapping regions of the brain. However, at a behavioral level, the ability to recognize the intended emotion in both types of nonverbal cues follows a divergent developmental trajectory throughout childhood and adolescence. The current study a) identified regions of common neural activation to facial and vocal stimuli in 8- to 19-year-old typically-developing adolescents, and b) examined age-related changes in blood-oxygen-level dependent (BOLD) response within these areas. Both modalities elicited activation in an overlapping network of subcortical regions (insula, thalamus, dorsal striatum), visual-motor association areas, prefrontal regions (inferior frontal cortex, dorsomedial prefrontal cortex), and the right superior temporal gyrus. Within these regions, increased age was associated with greater frontal activation to voices, but not faces. Results suggest that processing facial and vocal stimuli elicits activation in common areas of the brain in adolescents, but that age-related changes in response within these regions may vary by modality.
Collapse
Affiliation(s)
- M Morningstar
- Center for Biobehavioral Health, Nationwide Children's Hospital , Columbus, OH, USA.,Department of Pediatrics, The Ohio State University , Columbus, OH, USA.,Department of Psychology, Queen's University , Kingston, ON, Canada
| | - W I Mattson
- Center for Biobehavioral Health, Nationwide Children's Hospital , Columbus, OH, USA
| | - S Singer
- Center for Biobehavioral Health, Nationwide Children's Hospital , Columbus, OH, USA
| | - J S Venticinque
- Center for Biobehavioral Health, Nationwide Children's Hospital , Columbus, OH, USA
| | - E E Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital , Columbus, OH, USA.,Department of Pediatrics, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
11
|
Zhang Y, Liu W, Lebowitz ER, Zhang F, Hu Y, Liu Z, Yang H, Wu J, Wang Y, Silverman WK, Yang Z, Cheng W. Abnormal asymmetry of thalamic volume moderates stress from parents and anxiety symptoms in children and adolescents with social anxiety disorder. Neuropharmacology 2020; 180:108301. [PMID: 32910952 DOI: 10.1016/j.neuropharm.2020.108301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/24/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Social anxiety disorder (SAD) usually onsets in childhood or adolescence and is associated with brain development and chronic family stress during this period. As an information hub, the thalamus plays a crucial role in the development of emotion processing and stress regulation. Its structural and functional lateralization have been related to mental disorders. This study examined the age-dependent asymmetry of the thalamic volume in children and adolescents with SAD. We further examined the role of the thalamic asymmetry in moderating the relationships between parental alienation, which is a main source of familial stress for children and adolescents, and anxiety symptoms in this population. Fifty-three medication-free children and adolescents with SAD and 53 typical developing controls (age: 8-17) were included. Anxiety severity was measured using the Screen for Child Anxiety-Related Emotional Disorders (SCARED). We estimated the bilateral thalamic volume and examined diagnosis effect and age-group difference on the thalamic asymmetry. We further examined the moderation of the thalamic asymmetry on the associations between scores on the parental alienation, social phobia, and total SCARED. Compared with controls, the SAD group exhibited significantly abnormal asymmetry in thalamic volume. This asymmetry became more evident in the older age group. Furthermore, this asymmetry significantly weakened the relationships between parental attachment and total SCARED score. The asymmetry of the thalamic volume and its age-group difference provide novel evidence to support brain developmental abnormalities in children and adolescents with SAD. The findings further revealed interactions between physiological and chronic stress in children and adolescents with SAD. This article is part of the special issue on 'Stress, Addiction and Plasticity'.
Collapse
Affiliation(s)
- Yiwen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Fang Zhang
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanshu Yang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Wu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyi Wang
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Aben HP, Visser-Meily JMA, Biessels GJ, de Kort PLM, Spikman JM. High occurrence of impaired emotion recognition after ischemic stroke. Eur Stroke J 2020; 5:262-270. [PMID: 33072880 PMCID: PMC7538761 DOI: 10.1177/2396987320918132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/05/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Deficits of emotion recognition after ischemic stroke are often overlooked by clinicians, and are mostly not spontaneously reported by patients. However, impaired emotion recognition after stroke negatively affects the ability to return to work and the quality of life. It is still unknown how often impairments of emotion recognition occur shortly after ischemic stroke. We aimed to estimate the occurrence of impaired emotion recognition after ischemic stroke and to characterise these patients with impaired emotion recognition. PATIENTS AND METHODS Two hundred thirty patients were included, derived from a prospective study of cognitive recovery. Five weeks after ischemic stroke a neuropsychological assessment was performed, including an emotion recognition task (i.e. Ekman 60-faces test). Emotion recognition was regarded as impaired if the total score was below the fifth percentile for a large independent reference sample. RESULTS Emotion recognition was impaired in 33.5% of patients. Patients with impaired emotion recognition were more likely to have an abnormal Montreal Cognitive Assessment during hospitalisation, and 5 weeks after their stroke, a higher proportion of them had a vascular cognitive disorder (VCD). Even 20% of patients without VCD had impaired emotion recognition.Discussion: Emotion recognition was often impaired after ischemic stroke. This is clinically relevant, since impaired emotion recognition negatively impacts social functioning.Conclusion: Even when there was no cognitive disorder in traditional cognitive domains, emotion recognition was impaired in 1 out of 5 patients. Clinicians should systematically ask patients and their caregivers about deficits in emotion recognition, and, if needed, test for these deficits.
Collapse
Affiliation(s)
- Hugo P Aben
- Department of Neurology, Elisabeth Tweesteden Hospital, Tilburg,
the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain
Center, Utrecht, the Netherlands
| | - Johanna MA Visser-Meily
- Department of Rehabilitation, Physical Therapy Science &
Sports, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain
Center, Utrecht, the Netherlands
| | - Paul LM de Kort
- Department of Neurology, Elisabeth Tweesteden Hospital, Tilburg,
the Netherlands
| | - Jacoba M Spikman
- Department of Clinical and Experimental Neuropsychology,
University of Groningen, Groningen, the Netherlands
| | - on behalf of the PROCRAS study group
- Department of Neurology, Elisabeth Tweesteden Hospital, Tilburg,
the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain
Center, Utrecht, the Netherlands
- Department of Rehabilitation, Physical Therapy Science &
Sports, UMC Utrecht Brain Center, Utrecht, the Netherlands
- Department of Clinical and Experimental Neuropsychology,
University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Pralus A, Belfi A, Hirel C, Lévêque Y, Fornoni L, Bigand E, Jung J, Tranel D, Nighoghossian N, Tillmann B, Caclin A. Recognition of musical emotions and their perceived intensity after unilateral brain damage. Cortex 2020; 130:78-93. [PMID: 32645502 DOI: 10.1016/j.cortex.2020.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
For the hemispheric laterality of emotion processing in the brain, two competing hypotheses are currently still debated. The first hypothesis suggests a greater involvement of the right hemisphere in emotion perception whereas the second hypothesis suggests different involvements of each hemisphere as a function of the valence of the emotion. These hypotheses are based on findings for facial and prosodic emotion perception. Investigating emotion perception for other stimuli, such as music, should provide further insight and potentially help to disentangle between these two hypotheses. The present study investigated musical emotion perception in patients with unilateral right brain damage (RBD, n = 16) or left brain damage (LBD, n = 16), as well as in matched healthy comparison participants (n = 28). The experimental task required explicit recognition of musical emotions as well as ratings on the perceived intensity of the emotion. Compared to matched comparison participants, musical emotion recognition was impaired only in LBD participants, suggesting a potential specificity of the left hemisphere for explicit emotion recognition in musical material. In contrast, intensity ratings of musical emotions revealed that RBD patients underestimated the intensity of negative emotions compared to positive emotions, while LBD patients and comparisons did not show this pattern. To control for a potential generalized emotion deficit for other types of stimuli, we also tested facial emotion recognition in the same patients and their matched healthy comparisons. This revealed that emotion recognition after brain damage might depend on the stimulus category or modality used. These results are in line with the hypothesis of a deficit of emotion perception depending on lesion laterality and valence in brain-damaged participants. The present findings provide critical information to disentangle the currently debated competing hypotheses and thus allow for a better characterization of the involvement of each hemisphere for explicit emotion recognition and their perceived intensity.
Collapse
Affiliation(s)
- Agathe Pralus
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France.
| | - Amy Belfi
- Department of Psychological Science, Missouri University of Science and Technology, Rolla, MO, USA
| | - Catherine Hirel
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Yohana Lévêque
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| | - Emmanuel Bigand
- LEAD, CNRS, UMR 5022, University of Bourgogne, Dijon, France
| | - Julien Jung
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Daniel Tranel
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Norbert Nighoghossian
- University Lyon 1, Lyon, France; Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France; CREATIS, CNRS, UMR5220, INSERM, U1044, University Lyon 1, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center; CNRS, UMR5292; INSERM, U1028; Lyon, France; University Lyon 1, Lyon, France
| |
Collapse
|
14
|
Kim EJ, Son JW, Park SK, Chung S, Ghim HR, Lee S, Lee SI, Shin CJ, Kim S, Ju G, Park H, Lee J. Cognitive and Emotional Empathy in Young Adolescents: an fMRI Study. Soa Chongsonyon Chongsin Uihak 2020; 31:121-130. [PMID: 32665756 PMCID: PMC7350548 DOI: 10.5765/jkacap.200020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022] Open
Abstract
Objectives We investigated the differences in cognitive and emotional empathic ability between adolescents and adults, and the differences of the brain activation during cognitive and emotional empathy tasks. Methods Adolescents (aged 13–15 years, n=14) and adults (aged 19–29 years, n=17) completed a range of empathic ability questionnaires and were scanned functional magnetic resonance imaging (fMRI) during both cognitive and emotional empathy task. Differences in empathic ability and brain activation between the groups were analyzed. Results Both cognitive and emotional empathic ability were significantly lower in the adolescent compared to the adult group. Comparing the adolescent to the adult group showed that brain activation was significantly greater in the right transverse temporal gyrus (BA 41), right insula (BA 13), right superior parietal lobule (BA 7), right precentral gyrus (BA 4), and right thalamus whilst performing emotional empathy tasks. No brain regions showed significantly greater activation in the adolescent compared to the adult group while performing cognitive empathy task. In the adolescent group, scores of the Fantasy Subscale in the Interpersonal Reactivity Index, which reflects cognitive empathic ability, negatively correlated with activity of right superior parietal lobule during emotional empathic situations (r=-0.739, p=0.006). Conclusion These results strongly suggest that adolescents possess lower cognitive and emotional empathic abilities than adults do and require compensatory hyperactivation of the brain regions associated with emotional empathy or embodiment in emotional empathic situation. Compensatory hyperactivation in the emotional empathy-related brain areas among adolescents are likely associated with their lower cognitive empathic ability.
Collapse
Affiliation(s)
- Eun Jin Kim
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Jung-Woo Son
- Department of Neuropsychiatry, College of Medicine, Chungbuk National University, Cheongju, Korea
| | | | - Seungwon Chung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Hei-Rhee Ghim
- Department of Psychology, Chungbuk National University, Cheongju, Korea
| | - Seungbok Lee
- Department of Psychology, Chungbuk National University, Cheongju, Korea
| | - Sang-Ick Lee
- Department of Neuropsychiatry, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Chul-Jin Shin
- Department of Neuropsychiatry, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Siekyeong Kim
- Department of Neuropsychiatry, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Gawon Ju
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Hyemi Park
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
15
|
Wagenbreth C, Kuehne M, Heinze HJ, Zaehle T. Deep Brain Stimulation of the Subthalamic Nucleus Influences Facial Emotion Recognition in Patients With Parkinson's Disease: A Review. Front Psychol 2019; 10:2638. [PMID: 31849760 PMCID: PMC6901782 DOI: 10.3389/fpsyg.2019.02638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor symptoms following dopaminergic depletion in the substantia nigra. Besides motor impairments, however, several non-motor detriments can have the potential to considerably impact subjectively perceived quality of life in patients. Particularly emotion recognition of facial expressions has been shown to be affected in PD, and especially the perception of negative emotions like fear, anger, or disgust is impaired. While emotion processing generally refers to automatic implicit as well as conscious explicit processing, the focus of most previous studies in PD was on explicit recognition of emotions only, while largely ignoring implicit processing deficits. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is widely accepted as a therapeutic measure in the treatment of PD and has been shown to advantageously influence motor problems. Among various concomitant non-motor effects of STN-DBS, modulation of facial emotion recognition under subthalamic stimulation has been investigated in previous studies with rather heterogeneous results. Although there seems to be a consensus regarding the processing of disgust, which significantly deteriorates under STN stimulation, findings concerning emotions like fear or happiness report heterogeneous data and seem to depend on various experimental settings and measurements. In the present review, we summarized previous investigations focusing on STN-DBS influence on recognition of facial emotional expressions in patients suffering from PD. In a first step, we provide a synopsis of disturbances and problems in facial emotion processing observed in patients with PD. Second, we present findings of STN-DBS influence on facial emotion recognition and especially highlight different impacts of stimulation on implicit and explicit emotional processing.
Collapse
Affiliation(s)
- Caroline Wagenbreth
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Maria Kuehne
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
16
|
Valdés Hernández MDC, Abu-Hussain J, Qiu X, Priller J, Parra Rodríguez M, Pino M, Báez S, Ibáñez A. Structural neuroimaging differentiates vulnerability from disease manifestation in colombian families with Huntington's disease. Brain Behav 2019; 9:e01343. [PMID: 31276317 PMCID: PMC6710228 DOI: 10.1002/brb3.1343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION The volume of the striatal structures has been associated with disease progression in individuals with Huntington's disease (HD) from North America, Europe, and Australia. However, it is not known whether the gray matter (GM) volume in the striatum is also sensitive in differentiating vulnerability from disease manifestation in HD families from a South-American region known to have high incidence of the disease. In addition, the association of enlarged brain perivascular spaces (PVS) with cognitive, behavioral, and motor symptoms of HD is unknown. MATERIALS AND METHODS We have analyzed neuroimaging indicators of global atrophy, PVS burden, and GM tissue volume in the basal ganglia and thalami, in relation to behavioral, motor, and cognitive scores, in 15 HD patients with overt disease manifestation and 14 first-degree relatives not genetically tested, which represent a vulnerable group, from the region of Magdalena, Colombia. RESULTS Poor fluid intelligence as per the Raven's Standard Progressive Matrices was associated with global brain atrophy (p = 0.002) and PVS burden (p ≤ 0.02) in HD patients, where the GM volume in all subcortical structures, with the exception of the right globus pallidus, was associated with motor or cognitive scores. Only the GM volume in the right putamen was associated with envy and MOCA scores (p = 0.008 and 0.015 respectively) in first-degree relatives. CONCLUSION Striatal GM volume, global brain atrophy and PVS burden may serve as differential indicators of disease manifestation in HD. The Raven's Standard Progressive Matrices could be a cognitive test worth to consider in the differentiation of vulnerability versus overt disease in HD.
Collapse
Affiliation(s)
- Maria Del C Valdés Hernández
- Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Janna Abu-Hussain
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Xinyi Qiu
- Glan Clwyd Hospital, North Wales, UK
| | - Josef Priller
- Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Parra Rodríguez
- School of Psychological Sciences and Health, Strathclyde University, Glasgow, UK.,Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Mariana Pino
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia
| | - Sandra Báez
- Department of Psychology, Universidad de Los Andes, Bogotá, Colombia
| | - Agustín Ibáñez
- Department of Psychology, Universidad Autónoma del Caribe, Barranquilla, Colombia.,Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, NSW, Australia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
17
|
Adams AG, Schweitzer D, Molenberghs P, Henry JD. A meta-analytic review of social cognitive function following stroke. Neurosci Biobehav Rev 2019; 102:400-416. [DOI: 10.1016/j.neubiorev.2019.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/20/2023]
|
18
|
Tippett DC, Godin BR, Oishi K, Oishi K, Davis C, Gomez Y, Trupe LA, Kim EH, Hillis AE. Impaired Recognition of Emotional Faces after Stroke Involving Right Amygdala or Insula. Semin Speech Lang 2018; 39:87-100. [PMID: 29359308 PMCID: PMC5837057 DOI: 10.1055/s-0037-1608859] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite its basic and translational importance, the neural circuitry supporting the perception of emotional faces remains incompletely understood. Functional imaging studies and chronic lesion studies indicate distinct roles of the amygdala and insula in recognition of fear and disgust in facial expressions, whereas intracranial encephalography studies, which are not encumbered by variations in human anatomy, indicate a somewhat different role of these structures. In this article, we leveraged lesion-mapping techniques in individuals with acute right hemisphere stroke to investigate lesions associated with impaired recognition of prototypic emotional faces before significant neural reorganization can occur during recovery from stroke. Right hemisphere stroke patients were significantly less accurate than controls on a test of emotional facial recognition for both positive and negative emotions. Patients with right amygdala or anterior insula lesions had significantly lower scores than other right hemisphere stroke patients on recognition of angry and happy faces. Lesion volume within several regions, including the right amygdala and anterior insula, each independently contributed to the error rate in recognition of individual emotions. Results provide additional support for a necessary role of the right amygdala and anterior insula within a network of regions underlying recognition of facial expressions, particularly those that have biological importance or motivational relevance and have implications for clinical practice.
Collapse
Affiliation(s)
- Donna C. Tippett
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
- Department of Physical Medicine & Rehabilitation, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
- Department of Otolaryngology--Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
| | - Brittany R. Godin
- Rehabilitation Services, University of Maryland Charles Regional Medical Center, La Plata, Maryland
| | - Kumiko Oishi
- Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
| | - Cameron Davis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
| | - Yessenia Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
| | - Lydia A. Trupe
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
| | - Eun Hye Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
- Department of Otolaryngology--Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore MD, USA, 21287
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
19
|
Impaired Emotion Recognition after Left Hemispheric Stroke: A Case Report and Brief Review of the Literature. Case Rep Neurol Med 2017; 2017:1045039. [PMID: 28555167 PMCID: PMC5438834 DOI: 10.1155/2017/1045039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
Impaired recognition of emotion after stroke can have important implications for social competency, social participation, and consequently quality of life. We describe a case of left hemispheric ischemic stroke with impaired recognition of specifically faces expressing fear. Three months later, the patient's spouse reports that the patient was irritable and slow in communication, which may be caused by the impaired emotion recognition. The case is discussed in relation to the literature concerning emotion recognition and its neural correlates. Our case supports the notion that emotion recognition, including fear recognition, is regulated by a network of interconnected brain regions located in both hemispheres. We conclude that impaired emotion recognition is not uncommon after stroke and can be caused by dysfunction of this emotion-network.
Collapse
|
20
|
Hou J, Song B, Chen ACN, Sun C, Zhou J, Zhu H, Beauchaine TP. Review on Neural Correlates of Emotion Regulation and Music: Implications for Emotion Dysregulation. Front Psychol 2017; 8:501. [PMID: 28421017 PMCID: PMC5376620 DOI: 10.3389/fpsyg.2017.00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have examined the neural correlates of emotion regulation and the neural changes that are evoked by music exposure. However, the link between music and emotion regulation is poorly understood. The objectives of this review are to (1) synthesize what is known about the neural correlates of emotion regulation and music-evoked emotions, and (2) consider the possibility of therapeutic effects of music on emotion dysregulation. Music-evoked emotions can modulate activities in both cortical and subcortical systems, and across cortical-subcortical networks. Functions within these networks are integral to generation and regulation of emotions. Since dysfunction in these networks are observed in numerous psychiatric disorders, a better understanding of neural correlates of music exposure may lead to more systematic and effective use of music therapy in emotion dysregulation.
Collapse
Affiliation(s)
- Jiancheng Hou
- Center for Educational Neuroscience, School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China.,Department of Radiology, School of Medicine and Public Health, University of Wisconsin-MadisonMadison, WI, USA
| | - Bei Song
- Center for Educational Neuroscience, School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China.,Music Conservatory of HarbinHarbin, China
| | - Andrew C N Chen
- Center for Higher Brain Functions and Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| | - Changan Sun
- School of Education and Public Administration, Suzhou University of Science and TechnologySuzhou, China
| | - Jiaxian Zhou
- Center for Educational Neuroscience, School of Psychology and Cognitive Science, East China Normal UniversityShanghai, China
| | - Haidong Zhu
- Department of Psychology, Shihezi UniversityShihezi, China
| | | |
Collapse
|
21
|
Kucharska K, Wilkos E, Stefanski R, Makowicz G, Ryglewicz D, Slawinska K, Piatkowska-Janko E. Behavioural and Neurophysiological Effects of a Stroke Rehabilitation Program on Emotional Processing in Tuberothalamic Infarct—Case Study. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbbs.2016.61006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Wilkos E, Brown TJ, Slawinska K, Kucharska KA. Social cognitive and neurocognitive deficits in inpatients with unilateral thalamic lesions - pilot study. Neuropsychiatr Dis Treat 2015; 11:1031-8. [PMID: 25914535 PMCID: PMC4401357 DOI: 10.2147/ndt.s78037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The essential role of the thalamus in neurocognitive processes has been well documented. In contrast, relatively little is known about its involvement in social cognitive processes such as recognition of emotion, mentalizing, or empathy. THE AIM OF THE STUDY This study was designed to compare the performance of eight patients (five males, three females, mean age ± SD: 63.7±7.9 years) at early stage of unilateral thalamic lesions and eleven healthy controls (six males, five females, 49.6±12.2 years) in neurocognitive tests (CogState Battery: Groton Maze Learning Test, GML; Groton Maze Learning Test-Delayed Recall, GML-DR; Detection Task, DT; Identification Task, IT; One Card Learning Task, OCLT; One Back Task, OBT; Two Back Task, TBT; Set-Shifting Task, S-ST) and other well-known tests (Benton Visual Retention Test, BVRT; California Verbal Learning Test, CVLT; The Rey-Osterrieth Complex Figure Test, ROCF; Trail Making Test, TMT part A and B; Color - Word Stroop Task, CWST; Verbal Fluency Test, VFT), and social cognitive tasks (The Penn Emotion Recognition Test, ER40; Penn Emotion Discrimination Task, EmoDiff40; The Penn Emotional Acuity Test, PEAT40; Reading the Mind in the Eyes Test, revised version II; Toronto Alexithymia Scale, TAS-20). METHODS Thalamic-damaged subjects were included if they experienced a single-episode ischemic stroke localized in right or left thalamus. The patients were examined at 3 weeks after the stroke onset. All were right handed. In addition, the following clinical scales were used: the Mini-Mental State Examination (MMSE), Spielberger State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI II). An inclusion criteria was a minimum score of 23/30 in MMSE. RESULTS Compared with the healthy controls, patients revealed significantly lower scores in CVLT, GML-DR, and VFT. Furthermore, compared to healthy controls, patients showed significantly delayed recognition of "happiness" in EmoDiff40 and significantly worse performance on Reading the Mind in the Eyes Test, revised version II. Neuropsychological assessment demonstrated some statistically significant deficits in learning and remembering both verbal and visual material, long-term information storing, problem solving, and executive functions such as verbal fluency. CONCLUSION Patients at early stage of unilateral thalamic stroke showed both neurocognitive and social cognitive deficits. Further research is needed to increase understanding about diagnosis, early treatment, and prognosis of patients with thalamic lesions.
Collapse
Affiliation(s)
- Ewelina Wilkos
- Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Timothy Jb Brown
- Department of Medical Education, Hull York Medical School, Hull, UK
| | - Ksenia Slawinska
- Department of Neurology, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna A Kucharska
- Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland ; Department of Medical Education, Hull York Medical School, Hull, UK
| |
Collapse
|
23
|
Jongen S, Axmacher N, Kremers NA, Hoffmann H, Limbrecht-Ecklundt K, Traue HC, Kessler H. An investigation of facial emotion recognition impairments in alexithymia and its neural correlates. Behav Brain Res 2014; 271:129-39. [DOI: 10.1016/j.bbr.2014.05.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 12/21/2022]
|
24
|
Cooper CL, Phillips LH, Johnston M, Radlak B, Hamilton S, McLeod MJ. Links between emotion perception and social participation restriction following stroke. Brain Inj 2013; 28:122-6. [DOI: 10.3109/02699052.2013.848379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Sacher J, Neumann J, Okon-Singer H, Gotowiec S, Villringer A. Sexual dimorphism in the human brain: evidence from neuroimaging. Magn Reson Imaging 2013; 31:366-75. [PMID: 22921939 DOI: 10.1016/j.mri.2012.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Julia Sacher
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1A, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
26
|
Dondaine T, Péron J. [Emotion and basal ganglia (I): what can we learn from Parkinson's disease?]. Rev Neurol (Paris) 2012; 168:634-41. [PMID: 22898560 DOI: 10.1016/j.neurol.2012.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/09/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022]
Abstract
Parkinson's disease provides a useful model for studying the neural substrates of emotional processing. The striato-thalamo-cortical circuits, like the mesolimbic dopamine system that modulates their function, are thought to be involved in emotional processing. As Parkinson's disease is histopathologically characterized by the selective, progressive and chronic degeneration of the nigrostriatal and mesocorticolimbic dopamine systems, it can therefore serve as a model for assessing the functional role of these circuits in humans. In the present review, after a definition of emotional processing from a multicomponential perspective, a synopsis of the emotional disturbances observed in Parkinson's disease is proposed. Note that the studies on the affective consequences of subthalamic nucleus deep brain stimulation in Parkinson's disease were excluded from this review because the subject of a companion paper in this issue. This review leads to the conclusion that several emotional components would be disrupted in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. We then discuss the functional roles of the striato-thalamo-cortical and mesolimbic circuits, ending with the conclusion that both these pathways are indeed involved in emotional processing.
Collapse
Affiliation(s)
- T Dondaine
- EA 4712 « behavior and basal ganglia », université Rennes, Rennes, France.
| | | |
Collapse
|
27
|
Péron J, Dondaine T, Le Jeune F, Grandjean D, Vérin M. Emotional processing in Parkinson's disease: a systematic review. Mov Disord 2011; 27:186-99. [PMID: 22162004 DOI: 10.1002/mds.24025] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease provides a useful model for studying the neural substrates of emotional processing. The striato-thalamo-cortical circuits, like the mesolimbic dopamine system that modulates their function, are thought to be involved in emotional processing. As Parkinson's disease is histopathologically characterized by the selective, progressive, and chronic degeneration of the nigrostriatal and mesocorticolimbic dopamine systems, it can therefore serve as a model for assessing the functional role of these circuits in humans. In the present review, we begin by providing a synopsis of the emotional disturbances observed in Parkinson's disease. We then discuss the functional roles of the striato-thalamo-cortical and mesolimbic circuits, ending with the conclusion that both these pathways are indeed involved in emotional processing.
Collapse
Affiliation(s)
- Julie Péron
- Behavior and Basal Ganglia Research Unit (EM 425), University of Rennes 1, Hôpital Pontchaillou, CHU de Rennes, Rennes, France.
| | | | | | | | | |
Collapse
|
28
|
Suslow T, Kugel H, Reber H, Bauer J, Dannlowski U, Kersting A, Arolt V, Heindel W, Ohrmann P, Egloff B. Automatic brain response to facial emotion as a function of implicitly and explicitly measured extraversion. Neuroscience 2010; 167:111-23. [PMID: 20144695 DOI: 10.1016/j.neuroscience.2010.01.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 01/23/2023]
Affiliation(s)
- T Suslow
- Department of Psychiatry, University of Münster, Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lotze M, Reimold M, Heymans U, Laihinen A, Patt M, Halsband U. Reduced Ventrolateral fMRI Response during Observation of Emotional Gestures Related to the Degree of Dopaminergic Impairment in Parkinson Disease. J Cogn Neurosci 2009; 21:1321-31. [DOI: 10.1162/jocn.2009.21087] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Recent findings point to a perceptive impairment of emotional facial expressions in patients diagnosed with Parkinson disease (PD). In these patients, administration of dopamine can modulate emotional facial recognition. We used fMRI to investigate differences in the functional activation in response to emotional and nonemotional gestures between PD patients and age-matched healthy controls (HC). In addition, we used PET to evaluate the striatal dopamine transporter availability (DAT) with [11C]d-threo-methylphenidate in the patient group. Patients showed an average decrease to 26% in DAT when compared to age-corrected healthy references. Reduction in the DAT of the left putamen correlated not only with motor impairment but also with errors in emotional gesture recognition. In comparison to HC, PD patients showed a specific decrease in activation related to emotional gesture observation in the left ventrolateral prefrontal cortex (VLPFC) and the right superior temporal sulcus. Moreover, the less DAT present in the left putamen, the lower the activation in the left VLPFC. We conclude that a loss of dopaminergic neurotransmission in the putamen results in a reduction of ventrolateral prefrontal access involved in the recognition of emotional gestures.
Collapse
Affiliation(s)
- Martin Lotze
- 1University of Greifswald, Germany
- 2University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Increased neural response related to neutral faces in individuals at risk for psychosis. Neuroimage 2008; 40:289-97. [DOI: 10.1016/j.neuroimage.2007.11.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/21/2022] Open
|
31
|
Vocal emotion processing in Parkinson's disease: Reduced sensitivity to negative emotions. Brain Res 2008; 1188:100-11. [DOI: 10.1016/j.brainres.2007.10.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 09/04/2007] [Accepted: 10/16/2007] [Indexed: 11/23/2022]
|