1
|
Wankhede NL, Koppula S, Ballal S, Doshi H, Kumawat R, Raju SS, Arora I, Sammeta SS, Khalid M, Zafar A, Taksande BG, Upaganlawar AB, Gulati M, Umekar MJ, Kopalli SR, Kale MB. Virtual reality modulating dynamics of neuroplasticity: Innovations in neuro-motor rehabilitation. Neuroscience 2024; 566:97-111. [PMID: 39722287 DOI: 10.1016/j.neuroscience.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Virtual reality (VR) technology has emerged as a ground-breaking tool in neuroscience, revolutionizing our understanding of neuroplasticity and its implications for neurological rehabilitation. By immersing individuals in simulated environments, VR induces profound neurobiological transformations, affecting neuronal connectivity, sensory feedback mechanisms, motor learning processes, and cognitive functions. These changes highlight the dynamic interplay between molecular events, synaptic adaptations, and neural reorganization, emphasizing the potential of VR as a therapeutic intervention in various neurological disorders. This comprehensive review delves into the therapeutic applications of VR, focusing on its role in addressing multiple conditions such as stroke, traumatic brain injuries, phobias, and post-traumatic stress disorder. It highlights how VR can enhance motor recovery, cognitive rehabilitation, and emotional resilience, showcasing its potential as an innovative and effective tool in neurological rehabilitation. Integrating molecular neuroscience with VR technology allows for a deeper understanding of the molecular mechanisms underlying neuroplasticity, opening doors to personalized interventions and precise treatment strategies for individuals with neurological impairments. Moreover, the review emphasizes the ethical considerations and challenges that come with implementing VR-based interventions in clinical practice, stressing the importance of data privacy, informed consent, and collaborative interdisciplinary efforts. By leveraging advanced molecular imaging techniques, VR-based research methodologies, and computational modelling, the review envisions a future where VR technology plays a central role in revolutionizing neuroscience research and clinical neurorehabilitation, ultimately providing tailored and impactful solutions for individuals facing neurological challenges.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Hardik Doshi
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rohit Kumawat
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - SSrinadh Raju
- Department of Computer Science and Engineering, Raghu Engineering College, Vishakhapatnam 531162, Andhra Pradesh, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Shivkumar S Sammeta
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Tang T, Samaha J, Peters MAK. Behavioral and neural measures of confidence using a novel auditory pitch identification task. PLoS One 2024; 19:e0299784. [PMID: 38950011 PMCID: PMC11216601 DOI: 10.1371/journal.pone.0299784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/16/2024] [Indexed: 07/03/2024] Open
Abstract
Observers can discriminate between correct versus incorrect perceptual decisions with feelings of confidence. The centro-parietal positivity build-up rate (CPP slope) has been suggested as a likely neural signature of accumulated evidence, which may guide both perceptual performance and confidence. However, CPP slope also covaries with reaction time, which also covaries with confidence in previous studies, and performance and confidence typically covary; thus, CPP slope may index signatures of perceptual performance rather than confidence per se. Moreover, perceptual metacognition-including neural correlates-has largely been studied in vision, with few exceptions. Thus, we lack understanding of domain-general neural signatures of perceptual metacognition outside vision. Here we designed a novel auditory pitch identification task and collected behavior with simultaneous 32-channel EEG in healthy adults. Participants saw two tone labels which varied in tonal distance on each trial (e.g., C vs D, C vs F), then heard a single auditory tone; they identified which label was correct and rated confidence. We found that pitch identification confidence varied with tonal distance, but performance, metacognitive sensitivity (trial-by-trial covariation of confidence with accuracy), and reaction time did not. Interestingly, however, while CPP slope covaried with performance and reaction time, it did not significantly covary with confidence. We interpret these results to mean that CPP slope is likely a signature of first-order perceptual processing and not confidence-specific signals or computations in auditory tasks. Our novel pitch identification task offers a valuable method to examine the neural correlates of auditory and domain-general perceptual confidence.
Collapse
Affiliation(s)
- Tamara Tang
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States of America
| | - Jason Samaha
- Department of Psychology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Megan A. K. Peters
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States of America
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States of America
- Program in Brain, Mind, & Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
3
|
Ko YH, Zhou A, Niessen E, Stahl J, Weiss PH, Hester R, Bode S, Feuerriegel D. Neural correlates of confidence during decision formation in a perceptual judgment task. Cortex 2024; 173:248-262. [PMID: 38432176 DOI: 10.1016/j.cortex.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
When we make a decision, we also estimate the probability that our choice is correct or accurate. This probability estimate is termed our degree of decision confidence. Recent work has reported event-related potential (ERP) correlates of confidence both during decision formation (the centro-parietal positivity component; CPP) and after a decision has been made (the error positivity component; Pe). However, there are several measurement confounds that complicate the interpretation of these findings. More recent studies that overcome these issues have so far produced conflicting results. To better characterise the ERP correlates of confidence we presented participants with a comparative brightness judgment task while recording electroencephalography. Participants judged which of two flickering squares (varying in luminance over time) was brighter on average. Participants then gave confidence ratings ranging from "surely incorrect" to "surely correct". To elicit a range of confidence ratings we manipulated both the mean luminance difference between the brighter and darker squares (relative evidence) and the overall luminance of both squares (absolute evidence). We found larger CPP amplitudes in trials with higher confidence ratings. This association was not simply a by-product of differences in relative evidence (which covaries with confidence) across trials. We did not identify postdecisional ERP correlates of confidence, except when they were artificially produced by pre-response ERP baselines. These results provide further evidence for neural correlates of processes that inform confidence judgments during decision formation.
Collapse
Affiliation(s)
- Yiu Hong Ko
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany; Department of Psychology, Faculty of Human Sciences, University of Cologne, Germany
| | - Andong Zhou
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Eva Niessen
- Department of Psychology, Faculty of Human Sciences, University of Cologne, Germany
| | - Jutta Stahl
- Department of Psychology, Faculty of Human Sciences, University of Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany; Department of Neurology, University Hospital Cologne and Faculty of Medicine, University of Cologne, Germany
| | - Robert Hester
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Stefan Bode
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Daniel Feuerriegel
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia.
| |
Collapse
|
4
|
Grogan JP, Rys W, Kelly SP, O’Connell RG. Confidence is predicted by pre- and post-choice decision signal dynamics. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-23. [PMID: 37719838 PMCID: PMC10503486 DOI: 10.1162/imag_a_00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 09/19/2023]
Abstract
It is well established that one's confidence in a choice can be influenced by new evidence encountered after commitment has been reached, but the processes through which post-choice evidence is sampled remain unclear. To investigate this, we traced the pre- and post-choice dynamics of electrophysiological signatures of evidence accumulation (Centro-parietal Positivity, CPP) and motor preparation (mu/beta band) to determine their sensitivity to participants' confidence in their perceptual discriminations. Pre-choice CPP amplitudes scaled with confidence both when confidence was reported simultaneously with choice, and when reported 1 second after the initial direction decision with no intervening evidence. When additional evidence was presented during the post-choice delay period, the CPP exhibited sustained activation after the initial choice, with a more prolonged build-up on trials with lower certainty in the alternative that was finally endorsed, irrespective of whether this entailed a change-of-mind from the initial choice or not. Further investigation established that this pattern was accompanied by later lateralisation of motor preparation signals toward the ultimately chosen response and slower confidence reports when participants indicated low certainty in this response. These observations are consistent with certainty-dependent stopping theories according to which post-choice evidence accumulation ceases when a criterion level of certainty in a choice alternative has been reached, but continues otherwise. Our findings have implications for current models of choice confidence, and predictions they may make about EEG signatures.
Collapse
Affiliation(s)
- John P. Grogan
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Wouter Rys
- School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Simon P. Kelly
- School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Redmond G. O’Connell
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Zakrzewski AC, Maniscalco B, Wisniewski MG. Late ERP correlates of confidence for auditory categorization of complex sounds. Neurosci Lett 2023; 808:137294. [PMID: 37172774 PMCID: PMC10330643 DOI: 10.1016/j.neulet.2023.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Recent research suggests that confidence judgments relate to the quality of early sensory representations and later modality independent processing stages. It is not known whether the nature of this finding might vary based on task and/or stimulus characteristics (e.g., detection vs. categorization). The present study investigated the neural correlates of confidence using electroencephalography (EEG) in an auditory categorization task. This allowed us to examine whether the early event-related potentials (ERPs) related to confidence in detection also apply to a more complex auditory task. Participants listened to frequency-modulated (FM) tonal stimuli going up or down in pitch. The rate of FM tones ranged from slow to fast, making the stimuli harder or easier to categorize. Tone-locked late posterior positivity (LPP) but not N1 or P2 amplitudes were larger for (correct-only) trials rated with high than low confidence. These results replicated for trials presenting stimuli at individually identified threshold levels (rate of change producing ∼71.7% correct performance). This finding suggests that, in this task, neural correlates of confidence do not vary based on difficulty level. We suggest that the LPP is a task general indication of the confidence for an upcoming judgment in a variety of paradigms.
Collapse
|
6
|
Ngan VSH, Cheung LYT, Ng HTY, Yip KHM, Wong YK, Wong ACN. An early perceptual locus of absolute pitch. Psychophysiology 2023; 60:e14170. [PMID: 36094011 DOI: 10.1111/psyp.14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 01/04/2023]
Abstract
Absolute pitch (AP) refers to the naming of musical tone without external reference. The influential two-component model states that AP is limited by the late-emerging pitch labeling process only and not the earlier perceptual and memory processes. Over the years, however, support for this model at the neural level has been mixed with various methodological limitations. Here, the electroencephalography responses of 27 AP possessors and 27 non-AP possessors were recorded. During both name verification and passive listening, event-related potential analyses showed a difference between AP and non-AP possessors at about 200 ms in their response toward tones compared with noise stimuli. Multivariate pattern analyses suggested that pitch naming was subserved by a series of transient processes for the first 250 ms, followed by a stage-like process for both AP and non-AP possessors with no group differences between them. These findings are inconsistent with the predictions of the two-component model, and instead suggest the existence of an early perceptual locus of AP.
Collapse
Affiliation(s)
- Vince S H Ngan
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Leo Y T Cheung
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hezul T Y Ng
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ken H M Yip
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alan C-N Wong
- Department of Psychology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
7
|
Rahnev D, Balsdon T, Charles L, de Gardelle V, Denison R, Desender K, Faivre N, Filevich E, Fleming SM, Jehee J, Lau H, Lee ALF, Locke SM, Mamassian P, Odegaard B, Peters M, Reyes G, Rouault M, Sackur J, Samaha J, Sergent C, Sherman MT, Siedlecka M, Soto D, Vlassova A, Zylberberg A. Consensus Goals in the Field of Visual Metacognition. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1746-1765. [PMID: 35839099 PMCID: PMC9633335 DOI: 10.1177/17456916221075615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the tangible progress in psychological and cognitive sciences over the last several years, these disciplines still trail other more mature sciences in identifying the most important questions that need to be solved. Reaching such consensus could lead to greater synergy across different laboratories, faster progress, and increased focus on solving important problems rather than pursuing isolated, niche efforts. Here, 26 researchers from the field of visual metacognition reached consensus on four long-term and two medium-term common goals. We describe the process that we followed, the goals themselves, and our plans for accomplishing these goals. If this effort proves successful within the next few years, such consensus building around common goals could be adopted more widely in psychological science.
Collapse
Affiliation(s)
| | - Tarryn Balsdon
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Lucie Charles
- Institute of Cognitive Neuroscience, University College London, UK
| | | | - Rachel Denison
- Department of Psychological and Brain Sciences, Boston University, USA
| | | | - Nathan Faivre
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | - Elisa Filevich
- Bernstein Center for Computational Neuroscience Berlin, Philippstraβe 13 Haus 6, 10115 Berlin, Germany
| | - Stephen M. Fleming
- Department of Experimental Psychology and Wellcome Centre for Human Neuroimaging, University College London, UK
| | | | | | - Alan L. F. Lee
- Department of Applied Psychology and Wofoo Joseph Lee Consulting and Counselling Psychology Research Centre, Lingnan University, Hong Kong
| | - Shannon M. Locke
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Pascal Mamassian
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Brian Odegaard
- Department of Psychology, University of Florida, Gainesville, FL USA
| | - Megan Peters
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA USA
| | - Gabriel Reyes
- Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - Marion Rouault
- Département d’Études Cognitives, École Normale Supérieure, Université Paris Sciences & Lettres (PSL University), Paris, France
| | - Jerome Sackur
- Département d’Études Cognitives, École Normale Supérieure, Université Paris Sciences & Lettres (PSL University), Paris, France
| | - Jason Samaha
- Department of Psychology, University of California, Santa Cruz
| | - Claire Sergent
- Université de Paris, INCC UMR 8002, 75006, Paris, France
| | - Maxine T. Sherman
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| | - Marta Siedlecka
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - David Soto
- Basque Center on Cognition Brain and Language, San Sebastián, Spain. Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alexandra Vlassova
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Ariel Zylberberg
- Department of Brain and Cognitive Sciences, University of Rochester, USA
| |
Collapse
|
8
|
Feuerriegel D, Murphy M, Konski A, Mepani V, Sun J, Hester R, Bode S. Electrophysiological correlates of confidence differ across correct and erroneous perceptual decisions. Neuroimage 2022; 259:119447. [DOI: 10.1016/j.neuroimage.2022.119447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/03/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022] Open
|
9
|
Polychroni N, Herrojo Ruiz M, Terhune DB. Introspection confidence predicts EEG decoding of self-generated thoughts and meta-awareness. Hum Brain Mapp 2022; 43:2311-2327. [PMID: 35122359 PMCID: PMC8996352 DOI: 10.1002/hbm.25789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 01/22/2023] Open
Abstract
The neurophysiological bases of mind wandering (MW)-an experiential state wherein attention is disengaged from the external environment in favour of internal thoughts-and state meta-awareness are poorly understood. In parallel, the relationship between introspection confidence in experiential state judgements and neural representations remains unclear. Here, we recorded EEG while participants completed a listening task within which they made experiential state judgements and rated their confidence. Alpha power was reliably greater during MW episodes, with unaware MW further associated with greater delta and theta power. Multivariate pattern classification analysis revealed that MW and meta-awareness can be decoded from the distribution of power in these three frequency bands. Critically, we show that individual decoding accuracies positively correlate with introspection confidence. Our results reaffirm the role of alpha oscillations in MW, implicate lower frequencies in meta-awareness, and are consistent with the proposal that introspection confidence indexes neurophysiological discriminability of representational states.
Collapse
Affiliation(s)
- Naya Polychroni
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths, University of London, London, UK.,Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London, UK
| |
Collapse
|
10
|
Balsdon T, Mamassian P, Wyart V. Separable neural signatures of confidence during perceptual decisions. eLife 2021; 10:e68491. [PMID: 34488942 PMCID: PMC8423440 DOI: 10.7554/elife.68491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Perceptual confidence is an evaluation of the validity of perceptual decisions. While there is behavioural evidence that confidence evaluation differs from perceptual decision-making, disentangling these two processes remains a challenge at the neural level. Here, we examined the electrical brain activity of human participants in a protracted perceptual decision-making task where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory evidence for evaluating confidence. Premature decision commitments were revealed by patterns of spectral power overlying motor cortex, followed by an attenuation of the neural representation of perceptual decision evidence. A distinct neural representation was associated with the computation of confidence, with sources localised in the superior parietal and orbitofrontal cortices. In agreement with a dissociation between perception and confidence, these neural resources were recruited even after observers committed to their perceptual decisions, and thus delineate an integral neural circuit for evaluating perceptual decision confidence.
Collapse
Affiliation(s)
- Tarryn Balsdon
- Laboratoire des Systèmes Perceptifs (CNRS UMR 8248), DEC, ENS, PSL UniversityParisFrance
- Laboratoire de Neurosciences Cognitives et Computationnelles (Inserm U960), DEC, ENS, PSL UniversityParisFrance
| | - Pascal Mamassian
- Laboratoire des Systèmes Perceptifs (CNRS UMR 8248), DEC, ENS, PSL UniversityParisFrance
| | - Valentin Wyart
- Laboratoire de Neurosciences Cognitives et Computationnelles (Inserm U960), DEC, ENS, PSL UniversityParisFrance
| |
Collapse
|
11
|
Wisniewski MG, Ball NJ, Zakrzewski AC, Iyer N, Thompson ER, Spencer N. Auditory detection learning is accompanied by plasticity in the auditory evoked potential. Neurosci Lett 2020; 721:134781. [PMID: 32004657 DOI: 10.1016/j.neulet.2020.134781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/01/2022]
Abstract
Auditory detection can improve with practice. These improvements are often assumed to arise from selective attention processes, but longer-term plasticity as a result of training may also play a role. Here, listeners were trained to detect either an 861-Hz or 1058-Hz tone (counterbalanced across participants) presented in noise at SNRs varying from -10 to -24 dB. On the following day, they were tasked with detecting 861-Hz and 1058-Hz tones at an SNR of -21 dB. In between blocks of this active task, EEG was recorded during passive presentation of trained and untrained frequency tones in quiet. Detection accuracy and confidence ratings were higher for trials at listeners' trained, than untrained-frequency (i.e., learning occurred). During passive exposure to sounds, the P2 component of the auditory evoked potential (∼150 - 200 ms post tone onset) was larger in amplitude for the trained compared to the untrained frequency. An analysis of global field power similarly yielded a stronger response for trained tones in the P2 time window. These effects were obtained during passive exposure, suggesting that training induced improvements in detection are not solely related to changes in selective attention. Rather, there may be an important role for changes in the long-term neural representations of sounds.
Collapse
Affiliation(s)
| | | | | | - Nandini Iyer
- U.S. Air Force Research Laboratory, United States
| | | | | |
Collapse
|
12
|
Hansen NE, Harel A, Iyer N, Simpson BD, Wisniewski MG. Pre-stimulus brain state predicts auditory pattern identification accuracy. Neuroimage 2019; 199:512-520. [PMID: 31129305 DOI: 10.1016/j.neuroimage.2019.05.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies show that pre-stimulus band-specific power and phase in the electroencephalogram (EEG) can predict accuracy on tasks involving the detection of near-threshold stimuli. However, results in the auditory modality have been mixed, and few works have examined pre-stimulus features when more complex decisions are made (e.g. identifying supra-threshold sounds). Further, most auditory studies have used background sounds known to induce oscillatory EEG states, leaving it unclear whether phase predicts accuracy without such background sounds. To address this gap in knowledge, the present study examined pre-stimulus EEG as it relates to accuracy in a tone pattern identification task. On each trial, participants heard a triad of 40-ms sinusoidal tones (separated by 40-ms intervals), one of which was at a different frequency than the other two. Participants' task was to indicate the tone pattern (low-low-high, low-high-low, etc.). No background sounds were employed. Using a phase opposition measure based on inter-trial phase consistencies, pre-stimulus 7-10 Hz phase was found to differ between correct and incorrect trials ∼200 to 100 ms prior to tone-pattern onset. After sorting trials into bins based on phase, accuracy was found to be lowest at around π-+ relative to individuals' most accurate phase bin. No significant effects were found for pre-stimulus power. In the context of the literature, findings suggest an important relationship between the complexity of task demands and pre-stimulus activity within the auditory domain. Results also raise interesting questions about the role of induced oscillatory states or rhythmic processing modes in obtaining pre-stimulus effects of phase in auditory tasks.
Collapse
Affiliation(s)
- Natalie E Hansen
- U.S. Air Force Research Laboratory, 45433, USA; Wright State University, 45435, USA
| | | | | | | | | |
Collapse
|
13
|
Gustafson SJ, Billings CJ, Hornsby BWY, Key AP. Effect of competing noise on cortical auditory evoked potentials elicited by speech sounds in 7- to 25-year-old listeners. Hear Res 2019; 373:103-112. [PMID: 30660965 DOI: 10.1016/j.heares.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/27/2022]
Abstract
Child listeners have particular difficulty with speech perception when competing speech noise is present; this challenge is often attributed to their immature top-down processing abilities. The purpose of this study was to determine if the effects of competing speech noise on speech-sound processing vary with age. Cortical auditory evoked potentials (CAEPs) were measured during an active speech-syllable discrimination task in 58 normal-hearing participants (age 7-25 years). Speech syllables were presented in quiet and embedded in competing speech noise (4-talker babble, +15 dB signal-to-noise ratio; SNR). While noise was expected to similarly reduce amplitude and delay latencies of N1 and P2 peaks in all listeners, it was hypothesized that effects of noise on the P3b peak would be inversely related to age due to the maturation of top-down processing abilities throughout childhood. Consistent with previous work, results showed that a +15 dB SNR reduces amplitudes and delays latencies of CAEPs for listeners of all ages, affecting speech-sound processing, delaying stimulus evaluation, and causing a reduction in behavioral speech-sound discrimination. Contrary to expectations, findings suggest that competing speech noise at a +15 dB SNR may have similar effects on various stages of speech-sound processing for listeners of all ages. Future research directions should examine how more difficult listening conditions (poorer SNRs) might affect results across ages.
Collapse
Affiliation(s)
- Samantha J Gustafson
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Curtis J Billings
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA; National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Benjamin W Y Hornsby
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexandra P Key
- Department of Hearing and Speech Sciences, Vanderbilt Bill Wilkerson Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|