1
|
Schmitt FJ, Friedrich T. Adaptation processes in Halomicronema hongdechloris, an example of the light-induced optimization of the photosynthetic apparatus on hierarchical time scales. FRONTIERS IN PLANT SCIENCE 2024; 15:1359195. [PMID: 39049856 PMCID: PMC11266139 DOI: 10.3389/fpls.2024.1359195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Oxygenic photosynthesis in Halomicronema hongdechloris, one of a series of cyanobacteria producing red-shifted Chl f, is adapted to varying light conditions by a range of diverse processes acting over largely different time scales. Acclimation to far-red light (FRL) above 700 nm over several days is mirrored by reversible changes in the Chl f content. In several cyanobacteria that undergo FRL photoacclimation, Chl d and Chl f are directly involved in excitation energy transfer in the antenna system, form the primary donor in photosystem I (PSI), and are also involved in electron transfer within photosystem II (PSII), most probably at the ChlD1 position, with efficient charge transfer happening with comparable kinetics to reaction centers containing Chl a. In H. hongdechloris, the formation of Chl f under FRL comes along with slow adaptive proteomic shifts like the rebuilding of the D1 complex on the time scale of days. On shorter time scales, much faster adaptation mechanisms exist involving the phycobilisomes (PBSs), which mainly contain allophycocyanin upon adaptation to FRL. Short illumination with white, blue, or red light leads to reactive oxygen species-driven mobilization of the PBSs on the time scale of seconds, in effect recoupling the PBSs with Chl f-containing PSII to re-establish efficient excitation energy transfer within minutes. In summary, H. hongdechloris reorganizes PSII to act as a molecular heat pump lifting excited states from Chl f to Chl a on the picosecond time scale in combination with a light-driven PBS reorganization acting on the time scale of seconds to minutes depending on the actual light conditions. Thus, structure-function relationships in photosynthetic energy and electron transport in H. hongdechloris including long-term adaptation processes cover 10-12 to 106 seconds, i.e., 18 orders of magnitude in time.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Technische Universität Berlin, Institute of Chemistry PC 14, Berlin, Germany
| |
Collapse
|
2
|
Elias E, Oliver TJ, Croce R. Oxygenic Photosynthesis in Far-Red Light: Strategies and Mechanisms. Annu Rev Phys Chem 2024; 75:231-256. [PMID: 38382567 DOI: 10.1146/annurev-physchem-090722-125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
3
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
4
|
Schmitt FJ, Hüls A, Moldenhauer M, Friedrich T. How electron tunneling and uphill excitation energy transfer support photochemistry in Halomicronema hongdechloris. PHOTOSYNTHESIS RESEARCH 2024; 159:273-289. [PMID: 38198121 DOI: 10.1007/s11120-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Halomicronema hongdechloris, the first cyanobacterium reported to produce the red-shifted chlorophyll f (Chl f) upon acclimation to far-red light, demonstrates remarkable adaptability to diverse light conditions. The photosystem II (PS II) of this organism undergoes reversible changes in its Chl f content, ranging from practically zero under white-light culture conditions to a Chl f: Chl a ratio of up to 1:8 when exposed to far-red light (FRL) of 720-730 nm for several days. Our ps time- and wavelength-resolved fluorescence data obtained after excitation of living H. hongdechloris cells indicate that the Soret band of a far-red (FR) chlorophyll involved in charge separation absorbs around 470 nm. At 10 K, the fluorescence decay at 715-720 nm is still fast with a time constant of 165 ps indicating an efficient electron tunneling process. There is efficient excitation energy transfer (EET) from 715-720 nm to 745 nm with the latter resulting from FR Chl f, which mainly functions as light-harvesting pigment upon adaptation to FRL. From there, excitation energy reaches the primary donor in the reaction center of PS II with an energetic uphill EET mechanism inducing charge transfer. The fluorescence data are well explained with a secondary donor PD1 represented by a red-shifted Chl a molecule with characteristic fluorescence around 715 nm and a more red-shifted FR Chl f with fluorescence around 725 nm as primary donor at the ChlD1 or PD2 position.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Department of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle (Saale), Germany.
| | - Anne Hüls
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Marcus Moldenhauer
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Thomas Friedrich
- Department of Bioenergetics, Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
5
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
6
|
Shen LQ, Zhang ZC, Shang JL, Li ZK, Chen M, Li R, Qiu BS. Kovacikia minuta sp. nov. (Leptolyngbyaceae, Cyanobacteria), a new freshwater chlorophyll f-producing cyanobacterium. JOURNAL OF PHYCOLOGY 2022; 58:424-435. [PMID: 35279831 DOI: 10.1111/jpy.13248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A few groups of cyanobacteria have been characterized as having far-red light photoacclimation (FaRLiP) that results from chlorophyll f (Chl f) production. In this study, using a polyphasic approach, we taxonomically transferred the Cf. Leptolyngbya sp. CCNUW1 isolated from a shaded freshwater pond, which produces Chl f under far-red light, to the genus Kovacikia and named this taxon Kovacikia minuta sp. nov. This strain was morphologically similar to Leptolyngbya-like strains. The thin filaments were purplish-brown under white light but became grass green under far-red light. The 31-gene phylogeny grouped K. minuta CCNU0001 into order Synechococcales and family Leptolyngbyaceae. Phylogenetic analysis based on 16S rRNA gene sequences further showed that K. minuta CCNU0001 was clustered into Kovacikia with similarities of 97.2-97.4% to the recently reported type species of Kovacikia muscicola HA7619-LM3. Additionally, the internal transcribed spacer region between 16S-23S rRNA genes had a unique sequence and secondary structure compared with other Kovacikia strains and phylogenetically related taxa. Draft genome sequences of K. minuta CCNU0001 (8,564,336 bp) were assembled into one circular chromosome and two circular plasmids. A FaRLiP 20-gene cluster comprised two operons with the unique organization. In sum, K. minuta was established as a new species, and it is the first species reported to produce Chl f and for which a draft genome was produced in genus Kovacikia. This study expanded our knowledge regarding the diversity of Chl f-producing cyanobacteria in far-red light-enriched environments and provides important foundational information for future investigations of FaRLiP evolution in cyanobacteria.
Collapse
Affiliation(s)
- Li-Qin Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhong-Chun Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jin-Long Shang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zheng-Ke Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Bao-Sheng Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
7
|
Viola S, Roseby W, Santabarbara S, Nürnberg D, Assunção R, Dau H, Sellés J, Boussac A, Fantuzzi A, Rutherford AW. Impact of energy limitations on function and resilience in long-wavelength Photosystem II. eLife 2022; 11:79890. [PMID: 35852834 PMCID: PMC9439682 DOI: 10.7554/elife.79890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 01/06/2023] Open
Abstract
Photosystem II (PSII) uses the energy from red light to split water and reduce quinone, an energy-demanding process based on chlorophyll a (Chl-a) photochemistry. Two types of cyanobacterial PSII can use chlorophyll d (Chl-d) and chlorophyll f (Chl-f) to perform the same reactions using lower energy, far-red light. PSII from Acaryochloris marina has Chl-d replacing all but one of its 35 Chl-a, while PSII from Chroococcidiopsis thermalis, a facultative far-red species, has just 4 Chl-f and 1 Chl-d and 30 Chl-a. From bioenergetic considerations, the far-red PSII were predicted to lose photochemical efficiency and/or resilience to photodamage. Here, we compare enzyme turnover efficiency, forward electron transfer, back-reactions and photodamage in Chl-f-PSII, Chl-d-PSII, and Chl-a-PSII. We show that: (i) all types of PSII have a comparable efficiency in enzyme turnover; (ii) the modified energy gaps on the acceptor side of Chl-d-PSII favour recombination via PD1+Phe- repopulation, leading to increased singlet oxygen production and greater sensitivity to high-light damage compared to Chl-a-PSII and Chl-f-PSII; (iii) the acceptor-side energy gaps in Chl-f-PSII are tuned to avoid harmful back reactions, favouring resilience to photodamage over efficiency of light usage. The results are explained by the differences in the redox tuning of the electron transfer cofactors Phe and QA and in the number and layout of the chlorophylls that share the excitation energy with the primary electron donor. PSII has adapted to lower energy in two distinct ways, each appropriate for its specific environment but with different functional penalties.
Collapse
Affiliation(s)
- Stefania Viola
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - William Roseby
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | | | | | | | - Holger Dau
- Physics Department, Freie Universität BerlinBerlinGermany
| | - Julien Sellés
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 and Sorbonne UniversitéParisFrance
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR9198, CEA SaclayGif-Sur-YvetteFrance
| | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | | |
Collapse
|
8
|
Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. PLANT PHYSIOLOGY 2021; 185:34-48. [PMID: 33631812 PMCID: PMC8133579 DOI: 10.1093/plphys/kiaa006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Plant stands in nature differ markedly from most seen in modern agriculture. In a dense mixed stand, plants must vie for resources, including light, for greater survival and fitness. Competitive advantages over surrounding plants improve fitness of the individual, thus maintaining the competitive traits in the gene pool. In contrast, monoculture crop production strives to increase output at the stand level and thus benefits from cooperation to increase yield of the community. In choosing plants with higher yields to propagate and grow for food, humans may have inadvertently selected the best competitors rather than the best cooperators. Here, we discuss how this selection for competitiveness has led to overinvestment in characteristics that increase light interception and, consequently, sub-optimal light use efficiency in crop fields that constrains yield improvement. Decades of crop canopy modeling research have provided potential strategies for improving light distribution in crop canopies, and we review the current progress of these strategies, including balancing light distribution through reducing pigment concentration. Based on recent research revealing red-shifted photosynthetic pigments in algae and photosynthetic bacteria, we also discuss potential strategies for optimizing light interception and use through introducing alternative pigment types in crops. These strategies for improving light distribution and expanding the wavelengths of light beyond those traditionally defined for photosynthesis in plant canopies may have large implications for improving crop yield and closing the yield gap.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Plant Biology & Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication:
| |
Collapse
|
9
|
|
10
|
Femtosecond visible transient absorption spectroscopy of chlorophyll- f-containing photosystem II. Proc Natl Acad Sci U S A 2020; 117:23158-23164. [PMID: 32868421 DOI: 10.1073/pnas.2006016117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recently discovered, chlorophyll-f-containing, far-red photosystem II (FR-PSII) supports far-red light photosynthesis. Participation and kinetics of spectrally shifted far-red pigments are directly observable and separated from that of bulk chlorophyll-a We present an ultrafast transient absorption study of FR-PSII, investigating energy transfer and charge separation processes. Results show a rapid subpicosecond energy transfer from chlorophyll-a to the long-wavelength chlorophylls-f/d The data demonstrate the decay of an ∼720-nm negative feature on the picosecond-to-nanosecond timescales, coinciding with charge separation, secondary electron transfer, and stimulated emission decay. An ∼675-nm bleach attributed to the loss of chl-a absorption due to the formation of a cation radical, PD1 +•, is only fully developed in the nanosecond spectra, indicating an unusually delayed formation. A major spectral feature on the nanosecond timescale at 725 nm is attributed to an electrochromic blue shift of a FR-chlorophyll among the reaction center pigments. These time-resolved observations provide direct experimental support for the model of Nürnberg et al. [D. J. Nürnberg et al., Science 360, 1210-1213 (2018)], in which the primary electron donor is a FR-chlorophyll and the secondary donor is chlorophyll-a (PD1 of the central chlorophyll pair). Efficient charge separation also occurs using selective excitation of long-wavelength chlorophylls-f/d, and the localization of the excited state on P720* points to a smaller (entropic) energy loss compared to conventional PSII, where the excited state is shared over all of the chlorin pigments. This has important repercussions on understanding the overall energetics of excitation energy transfer and charge separation reactions in FR-PSII.
Collapse
|
11
|
Wolf BM, Blankenship RE. Far-red light acclimation in diverse oxygenic photosynthetic organisms. PHOTOSYNTHESIS RESEARCH 2019; 142:349-359. [PMID: 31222688 DOI: 10.1007/s11120-019-00653-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Oxygenic photosynthesis has historically been considered limited to be driven by the wavelengths of visible light. However, in the last few decades, various adaptations have been discovered that allow algae, cyanobacteria, and even plants to utilize longer wavelength light in the far-red spectral range. These adaptations provide distinct advantages to the species possessing them, allowing the effective utilization of shade light under highly filtered light environments. In prokaryotes, these adaptations include the production of far-red-absorbing chlorophylls d and f and the remodeling of phycobilisome antennas and reaction centers. Eukaryotes express specialized light-harvesting pigment-protein complexes that use interactions between pigments and their protein environment to spectrally tune the absorption of chlorophyll a. If these adaptations could be applied to crop plants, a potentially significant increase in photon utilization in lower shaded leaves could be realized, improving crop yields.
Collapse
Affiliation(s)
- Benjamin M Wolf
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
12
|
Kurashov V, Ho MY, Shen G, Piedl K, Laremore TN, Bryant DA, Golbeck JH. Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. PHOTOSYNTHESIS RESEARCH 2019; 141:151-163. [PMID: 30710189 DOI: 10.1007/s11120-019-00616-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Certain cyanobacteria can thrive in environments enriched in far-red light (700-800 nm) due to an acclimation process known as far-red light photoacclimation (FaRLiP). During FaRLiP, about 8% of the Chl a molecules in the photosystems are replaced by Chl f and a very small amount of Chl d. We investigated the spectroscopic properties of Photosystem I (PSI) complexes isolated from wild-type (WT) Synechococcus sp. PCC 7335 and a chlF mutant strain (lacking Chl f synthase) grown in white and far-red light (WL-PSI and FRL-PSI, respectively). WT-FRL-PSI complexes contain Chl f and Chl a but not Chl d. The light-minus dark difference spectrum of the trapping center at high spectral resolution indicates that the special pair in WT-FRL-PSI consists of Chl a molecules with maximum bleaching at 703-704 nm. The action spectrum for photobleaching of the special pair showed that Chl f molecules absorbing at wavelengths up to 800 nm efficiently transfer energy to the trapping center in FRL-PSI complexes to produce a charge-separated state. This is ~ 50 nm further into the near IR than WL-PSI; Chl f has a quantum yield equivalent to that of Chl a in the antenna, i.e., ~ 1.0. PSI complexes from Synechococcus 7002 carrying 3.8 Chl f molecules could promote photobleaching of the special pair by energy transfer at wavelengths longer than WT PSI complexes. Results from these latter studies are directly relevant to the issue of whether introduction of Chl f synthase into plants could expand the wavelength range available for oxygenic photosynthesis in crop plants.
Collapse
Affiliation(s)
- Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Karla Piedl
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- 328 South Frear Laboratory, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Schmitt FJ, Campbell ZY, Bui MV, Hüls A, Tomo T, Chen M, Maksimov EG, Allakhverdiev SI, Friedrich T. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. PHOTOSYNTHESIS RESEARCH 2019; 139:185-201. [PMID: 30039357 DOI: 10.1007/s11120-018-0556-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The phototrophic cyanobacterium Halomicronema hongdechloris shows far-red light-induced accumulation of chlorophyll (Chl) f, but the involvement of the pigment in photosynthetic energy harvesting by photosystem (PS) II is controversially discussed. While H. hongdechloris contains negligible amounts of Chl f in white-light culture conditions, the ratio of Chl f to Chl a is reversibly changed up to 1:8 under illumination with far-red light (720-730 nm). We performed UV-Vis absorption spectroscopy, time-integrated and time-resolved fluorescence spectroscopy for the calculation of decay-associated spectra (DAS) to determine excitation energy transfer (EET) processes between photosynthetic pigments in intact H. hongdechloris filaments. In cells grown under white light, highly efficient EET occurs from phycobilisomes (PBSs) to Chl a with an apparent time constant of about 100 ps. Charge separation occurs with a typical apparent time constant of 200-300 ps from Chl a. After 3-4 days of growth under far-red light, robust Chl f content was observed in H. hongdechloris and EET from PBSs reached Chl f efficiently within 200 ps. It is proposed based on mathematical modeling by rate equation systems for EET between the PBSs and PSII and subsequent electron transfer (ET) that charge separation occurs from Chl a and excitation energy is funneled from Chl f to Chl a via an energetically uphill EET driven by entropy, which is effective because the number of Chl a molecules coupled to Chl f is at least eight- to tenfold larger than the corresponding number of Chl f molecules. The long lifetime of Chl f molecules in contact to a tenfold larger pool of Chl a molecules allows Chl f to act as an intermediate energy storage level, from which the Gibbs free energy difference between Chl f and Chl a can be overcome by taking advantage from the favorable ratio of degeneracy coefficients, which formally represents a significant entropy gain in the Eyring formulation of the Arrhenius law. Direct evidence for energetically uphill EET and charge separation in PSII upon excitation of Chl f via anti-Stokes fluorescence in far-red light-adapted H. hongdechloris cells was obtained: Excitation by 720 nm laser light resulted in robust Chl a fluorescence at 680 nm that was distinctly temperature-dependent and, notably, increased upon DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) treatment in far-red light-adapted cells. Thus, rather than serving as an excitation energy trap, Chl f in far-red light-adapted H. hongdechloris cells is directly contributing to oxygenic photosynthesis at PSII.
Collapse
Affiliation(s)
- Franz-Josef Schmitt
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Züleyha Yenice Campbell
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mai Vi Bui
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anne Hüls
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku‑Ku, Tokyo, 162‑8601, Japan
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1, bld. 24, Moscow, Russian Federation, 119991
| | - Suleyman I Allakhverdiev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119992
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, Russian Federation, 141700
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russian Federation, 127276
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation, 142290
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
14
|
Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AW. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 2018; 360:1210-1213. [PMID: 29903971 DOI: 10.1126/science.aar8313] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/18/2018] [Indexed: 11/02/2022]
Abstract
Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.
Collapse
Affiliation(s)
| | | | - Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alison Telfer
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Pierre Joliot
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura A Antonaru
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tanai Cardona
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elmars Krausz
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
15
|
A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and lifestyle. Sci Rep 2018; 8:9142. [PMID: 29904088 PMCID: PMC6002478 DOI: 10.1038/s41598-018-27542-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscoff (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It differs from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confirmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. is likely related to its specific lifestyle.
Collapse
|
16
|
Badshah SL, Mabkhot Y, Al-Showiman SS. Photosynthesis at the far-red region of the spectrum in Acaryochloris marina. Biol Res 2017; 50:16. [PMID: 28526061 PMCID: PMC5438491 DOI: 10.1186/s40659-017-0120-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakhtunkhwa, Pakistan.
| | - Yahia Mabkhot
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| | - Salim S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| |
Collapse
|
17
|
Allakhverdiev SI, Kreslavski VD, Zharmukhamedov SK, Voloshin RA, Korol'kova DV, Tomo T, Shen JR. Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria. BIOCHEMISTRY (MOSCOW) 2017; 81:201-12. [PMID: 27262189 DOI: 10.1134/s0006297916030020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.
Collapse
Affiliation(s)
- S I Allakhverdiev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gan F, Bryant DA. Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 2015; 17:3450-65. [DOI: 10.1111/1462-2920.12992] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Fei Gan
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA 16802 USA
- Department of Chemistry and Biochemistry; Montana State University; Bozeman MT 59717 USA
| |
Collapse
|
19
|
Sano Y, Endo K, Tomo T, Noguchi T. Modified molecular interactions of the pheophytin and plastoquinone electron acceptors in photosystem II of chlorophyll D-containing Acaryochloris marina as revealed by FTIR spectroscopy. PHOTOSYNTHESIS RESEARCH 2015; 125:105-114. [PMID: 25560630 DOI: 10.1007/s11120-014-0073-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Acaryochloris marina is a unique cyanobacterium that contains chlorophyll (Chl) d as a major pigment. Because Chl d has smaller excitation energy than Chl a used in ordinary photosynthetic organisms, the energetics of the photosystems of A. marina have been the subject of interest. It was previously shown that the redox potentials (E m's) of the redox-active pheophytin a (Pheo) and the primary plastoquinone electron acceptor (QA) in photosystem II (PSII) of A. marina are higher than those in Chl a-containing PSII, to compensate for the smaller excitation energy of Chl d (Allakhverdiev et al., Proc Natl Acad Sci USA 107: 3924-3929, 2010; ibid. 108: 8054-8058, 2011). To clarify the mechanisms of these E m increases, in this study, we have investigated the molecular interactions of Pheo and QA in PSII core complexes from A. marina using Fourier transform infrared (FTIR) spectroscopy. Light-induced FTIR difference spectra upon single reduction of Pheo and QA showed that spectral features in the regions of the keto and ester C=O stretches and the chlorin ring vibrations of Pheo and in the CO/CC stretching region of the Q A (-) semiquinone anion in A. marina are significantly different from those of the corresponding spectra in Chl a-containing cyanobacteria. These observations indicate that the molecular interactions, including the hydrogen bond interactions at the C=O groups, of these cofactors are modified in their binding sites of PSII proteins. From these results, along with the sequence information of the D1 and D2 proteins, it is suggested that A. marina tunes the E m's of Pheo and QA by altering nearby hydrogen bond networks to modify the structures of the binding pockets of these cofactors.
Collapse
Affiliation(s)
- Yuko Sano
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | | | |
Collapse
|
20
|
Natural strategies for photosynthetic light harvesting. Nat Chem Biol 2014; 10:492-501. [PMID: 24937067 DOI: 10.1038/nchembio.1555] [Citation(s) in RCA: 595] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022]
Abstract
Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation to the spectral composition of light in their habitat, they acclimate to slowly varying light intensities and they rapidly respond to fast changes in light quality and quantity. This is particularly important for oxygen-producing organisms because an overdose of light in combination with oxygen can be lethal. Rapid progress is being made in understanding how different organisms maximize light harvesting and minimize deleterious effects. Here we summarize the latest findings and explain the main design principles used in nature. The available knowledge can be used for optimizing light harvesting in both natural and artificial photosynthesis to improve light-driven production processes.
Collapse
|
21
|
Loughlin P, Lin Y, Chen M. Chlorophyll d and Acaryochloris marina: current status. PHOTOSYNTHESIS RESEARCH 2013; 116:277-93. [PMID: 23615924 DOI: 10.1007/s11120-013-9829-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/14/2013] [Indexed: 05/03/2023]
Abstract
The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.
Collapse
Affiliation(s)
- Patrick Loughlin
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
22
|
Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:255-65. [DOI: 10.1016/j.bbabio.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/08/2012] [Accepted: 11/02/2012] [Indexed: 12/27/2022]
|
23
|
Larkum AWD, Chen M, Li Y, Schliep M, Trampe E, West J, Salih A, Kühl M. A Novel Epiphytic Chlorophyll d-containing Cyanobacterium Isolated from a Mangrove-associated Red Alga. JOURNAL OF PHYCOLOGY 2012; 48:1320-1327. [PMID: 27009985 DOI: 10.1111/j.1529-8817.2012.01233.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/05/2012] [Indexed: 06/05/2023]
Abstract
A new habitat and a new chlorophyll (Chl) d-containing cyanobacterium belonging to the genus Acaryochloris are reported in this study. Hyperspectral microscopy showed the presence of Chl d-containing microorganisms in epiphytic biofilms on a red alga (Gelidium caulacantheum) colonizing the pneumato-phores of a temperate mangrove (Avicennia marina). The presence of Chl d was further proven by high performance liquid chromatography (HPLC)-based pigment analysis and by confocal imaging of cultured cells. Enrichment of mangrove biofilm samples under near-infrared radiation (NIR) yielded the new Acaryochloris sp. MPGRS1, which was closely related in terms of 16S rRNA gene sequence to an isolate from the hypertrophic Salton Sea, USA. The new isolate used Chl d as its major photopigment; Chl d and Chl a contents were ~98% and 1%-2% of total cellular chlorophyll, respectively. These findings expand the variety of ecological niches known to harbor Chl d-containing cyanobacteria and support our working hypothesis that such oxyphototrophs may be ubiquitous in habitats depleted of visible light, but with sufficient NIR exposure.
Collapse
Affiliation(s)
- Anthony W D Larkum
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | - Min Chen
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | - Yaqiong Li
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | - Martin Schliep
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | - Erik Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, Helsingør, DK-3000, Denmark
| | - John West
- School of Botany, University of Melbourne, Parkville, Victoria, 3024, Australia
| | - Anya Salih
- Confocal Bio-Imaging Facility, School of Science and Health, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, Helsingør, DK-3000, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
24
|
Tsuchiya T, Akimoto S, Mizoguchi T, Watabe K, Kindo H, Tomo T, Tamiaki H, Mimuro M. Artificially produced [7-formyl]-chlorophyll d functions as an antenna pigment in the photosystem II isolated from the chlorophyllide a oxygenase-expressing Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1285-91. [PMID: 22402227 DOI: 10.1016/j.bbabio.2012.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/17/2022]
Abstract
Acaryochloris marina, a chlorophyll (Chl) d-dominated cyanobacterium, is a model organism for studying photosynthesis driven by far-red light using Chl d. Furthermore, studies on A. marina may provide insights into understanding how the oxygenic photosynthetic organisms adapt after the acquisition of new Chl. To solve the reaction mechanism of its unique photosynthesis, photosystem (PS) II complexes were isolated from A. marina and analyzed. However, the lack of a molecular genetic method for A. marina prevented us from conducting further studies. We recently developed a transformation system for A. marina and we introduced a chlorophyllide a oxygenase gene into A. marina. The resultant transformant accumulated [7-formyl]-Chl d, which has never been found in nature. In the current study, we isolated PS II complexes that contained [7-formyl]-Chl d. The pigment composition of the [7-formyl]-Chl d-containing PS II complexes was 1.96±0.04 Chl a, 53.21±1.00 Chl d, and 5.48±0.33 [7-formyl]-Chl d per two pheophytin a molecules. In contrast, the composition of the control PS II complexes was 2.01±0.06 Chl a and 62.96±2.49 Chl d. The steady-state fluorescence and excitation spectra of the PS II complexes revealed that energy transfer occurred from [7-formyl]-Chl d to the major Chl d species; however, the electron transfer was not affected by the presence of [7-formyl]-Chl d. These findings demonstrate that artificially produced [7-formyl]-Chl d molecules that are incorporated into PS II replace part of the Chl d molecules and function as the antenna. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Tohru Tsuchiya
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kargul J, Barber J. Structure and Function of Photosynthetic Reaction Centres. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extensive biochemical, biophysical, molecular biological and structural studies on a wide range of prokaryotic and eukaryotic photosynthetic organisms has revealed common features of their reaction centres where light induced charge separation and stabilization occurs. There is little doubt that all reaction centres have evolved from a common ancestor and have been optimized to maximum efficiency. As such they provide principles that can be used as a blueprint for developing artificial photo-electrochemical catalytic systems to generate solar fuels. This chapter summarises the common features of the organization of cofactors, electron transfer pathways and protein environments of reaction centres of anoxygenic and oxygenic phototrophs. In particular, the latest molecular details derived from X-ray crystallography are discussed in context of the specific catalytic functions of the Type I and Type II reaction centres.
Collapse
Affiliation(s)
- Joanna Kargul
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| | - James Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
26
|
Saito K, Shen JR, Ishikita H. Cationic state distribution over the chlorophyll d-containing P(D1)/P(D2) pair in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1191-5. [PMID: 22192718 DOI: 10.1016/j.bbabio.2011.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 11/25/2022]
Abstract
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(•+)/P(D2)(•+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-Å resolution, while considering all possibilities for the Chld-containing P(D1)/P(D2) pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large P(D1)(•+) population relative to P(D2)(•+), as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a P(D1)(•+)/P(D2)(•+) ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as P(D1)/P(D2) in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Keisuke Saito
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
27
|
Neverov KV, Santabarbara S, Krasnovsky AA. Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization. PHOTOSYNTHESIS RESEARCH 2011; 108:101-106. [PMID: 21573948 DOI: 10.1007/s11120-011-9657-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/13/2011] [Indexed: 05/28/2023]
Abstract
Chlorophyll d (Chl d) is the major pigment in both photosystems (PSI and II) of the cyanobacterium Acaryochloris marina, whose pigment composition represents an interesting alternative in oxygenic photosynthesis. While abundant information is available relative to photophysical properties of Chl a , the understanding of Chl d photophysics is still incomplete. In this paper, we present for the first time a characterization of Chl d phosphorescence, which accompanies radiative deactivation of the photoexcited triplet state of this pigment. Reliable information was obtained on the energy and lifetime of the Chl d triplet state in frozen solutions at 77 K using diethyl ether and aqueous dispersions of Triton X100 as solvents. It is shown that triplet Chl d is effectively populated upon photoexcitation of pigment molecules and efficiently sensitizes singlet oxygen phosphorescence in aerobic solutions under ambient conditions. The data obtained are compared with the previous results of the phosphorescence studies of Chl a and Pheo a, and their possible biological implications are discussed.
Collapse
Affiliation(s)
- Konstantin V Neverov
- A.N. Bach Institute of Biochemistry, Russian Academy of Science, Leninskii pr., 33, Moscow, 119071, Russian Federation
| | | | | |
Collapse
|
28
|
Theiss C, Schmitt FJ, Pieper J, Nganou C, Grehn M, Vitali M, Olliges R, Eichler HJ, Eckert HJ. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1473-1487. [PMID: 21396735 DOI: 10.1016/j.jplph.2011.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
The cyanobacterium Acaryochloris marina is unique because it mainly contains Chlorophyll d (Chl d) in the core complexes of PS I and PS II instead of the usually dominant Chl a. Furthermore, its light harvesting system has a structure also different from other cyanobacteria. It has both, a membrane-internal chlorophyll containing antenna and a membrane-external phycobiliprotein (PBP) complex. The first one binds Chl d and is structurally analogous to CP43. The latter one has a rod-like structure consisting of three phycocyanin (PC) homohexamers and one heterohexamer containing PC and allophycocyanin (APC). In this paper, we give an overview on the investigations of excitation energy transfer (EET) in this PBP-light-harvesting system and of charge separation in the photosystem II (PS II) reaction center of A. marina performed at the Technische Universität Berlin. Due to the unique structure of the PBP antenna in A. marina, this EET occurs on a much shorter overall time scale than in other cyanobacteria. We also briefly discuss the question of the pigment composition in the reaction center (RC) of PS II and the nature of the primary donor of the PS II RC.
Collapse
Affiliation(s)
- Christoph Theiss
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Strasse des 17. Juni 135, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mielke SP, Kiang NY, Blankenship RE, Gunner MR, Mauzerall D. Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1231-6. [PMID: 21708123 DOI: 10.1016/j.bbabio.2011.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells, and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.
Collapse
Affiliation(s)
- S P Mielke
- NASA Goddard Institute for Space Studies, Columbia University, New York, NY, USA.
| | | | | | | | | |
Collapse
|
30
|
Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci U S A 2011; 108:8054-8. [PMID: 21521792 DOI: 10.1073/pnas.1100173108] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured the redox potentials of the primary electron acceptor quinone molecule (Q(A)), i.e., E(m)(Q(A)/Q(A)(-)), of PS II and the energy difference between [P680·Phe a(-)·Q(A)] and [P680·Phe a·Q(A)(-)], i.e., ΔG(PhQ). The E(m)(Q(A)/Q(A)(-)) of A. marina was determined to be +64 mV without the Mn cluster and was estimated to be -66 to -86 mV with a Mn-depletion shift (130-150 mV), as observed with other organisms. The E(m)(Phe a/Phe a(-)) in Synechocystis was measured to be -525 mV with the Mn cluster, which is consistent with our previous report. The Mn-depleted downshift of the potential was measured to be approximately -77 mV in Synechocystis, and this value was applied to A. marina (-478 mV); the E(m)(Phe a/Phe a(-)) was estimated to be approximately -401 mV. These values gave rise to a ΔG(PhQ) of -325 mV for A. marina and -383 mV for Synechocystis. In the two cyanobacteria, the energetics in PS II were conserved, even though the potentials of Q(A)(-) and Phe a(-) were relatively shifted depending on the special pair, indicating a common strategy for electron transfer in oxygenic photosynthetic organisms.
Collapse
|
31
|
Renger T, Schlodder E. Optical properties, excitation energy and primary charge transfer in photosystem II: theory meets experiment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:126-41. [PMID: 21531572 DOI: 10.1016/j.jphotobiol.2011.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/04/2011] [Accepted: 03/21/2011] [Indexed: 11/29/2022]
Abstract
In this review we discuss structure-function relationships of the core complex of photosystem II, as uncovered from analysis of optical spectra of the complex and its subunits. Based on descriptions of optical difference spectra including site directed mutagenesis we propose a revision of the multimer model of the symmetrically arranged reaction center pigments, described by an asymmetric exciton Hamiltonian. Evidence is provided for the location of the triplet state, the identity of the primary electron donor, the localization of the cation and the secondary electron transfer pathway in the reaction center. We also discuss the stationary and time-dependent optical properties of the CP43 and CP47 subunits and the excitation energy transfer and trapping-by-charge-transfer kinetics in the core complex.
Collapse
Affiliation(s)
- Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität, Abteilung Theoretische Biophysik, Austria.
| | | |
Collapse
|
32
|
Tomo T, Allakhverdiev SI, Mimuro M. Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:333-40. [PMID: 21530298 DOI: 10.1016/j.jphotobiol.2011.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
This mini review presents current topics of discussion about photosystem (PS) I and PS II of photosynthesis in the Acaryochloris marina. A. marina is a photosynthetic cyanobacterium in which chlorophyll (Chl) d is the major antenna pigment (>95%). However, Chl a is always present in a few percent. Chl d absorbs light with a wavelength up to 30 nm red-shifted from Chl a. Therefore, the chlorophyll species of the special pair in PS II has been a matter of debate because if Chl d was the special pair component, the overall energetics must be different in A. marina. The history of this field indicates that a purified sample is necessary for the reliable identification and characterization of the special pair. In view of the spectroscopic data and the redox potential of pheophytin, we discuss the nature of special pair constituents and the localization of the enigmatic Chl a.
Collapse
Affiliation(s)
- Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Sciences, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | |
Collapse
|
33
|
Di Valentin M, Ceola S, Agostini G, Telfer A, Barber J, Böhles F, Santabarbara S, Carbonera D. The photo-excited triplet state of chlorophylldin methyl-tetrahydrofuran studied by optically detected magnetic resonance and time-resolved EPR. Mol Phys 2010. [DOI: 10.1080/00268970701627797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Renger T, Schlodder E. Primary Photophysical Processes in Photosystem II: Bridging the Gap between Crystal Structure and Optical Spectra. Chemphyschem 2010; 11:1141-53. [DOI: 10.1002/cphc.200900932] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M. Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci U S A 2010; 107:3924-9. [PMID: 20142495 PMCID: PMC2840487 DOI: 10.1073/pnas.0913460107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water oxidation by photosystem (PS) II in oxygenic photosynthetic organisms is a major source of energy on the earth, leading to the production of a stable reductant. Mechanisms generating a high oxidation potential for water oxidation have been a major focus of photosynthesis research. This potential has not been estimated directly but has been measured by the redox potential of the primary electron acceptor, pheophytin (Phe) a. However, the reported values for Phe a are still controversial. Here, we measured the redox potential of Phe a under physiological conditions (pH 7.0; 25 degrees C) in two cyanobacteria with different special pair chlorophylls (Chls): Synechocystis sp. PCC 6803, whose special pair for PS II consists of Chl a, and Acaryochloris marina MBIC 11017, whose special pair for PS II consists of Chl d. We obtained redox potentials of -536 +/- 8 mV for Synechocystis sp. PCC 6803 and -478 +/- 24 mV for A. marina on PS II complexes in the presence of 1.0 M betaine. The difference in the redox potential of Phe a between the two species closely corresponded with the difference in the light energy absorbed by Chl a versus Chl d. We estimated the potentials of the special pair of PS II to be 1.20 V and 1.18 V for Synechocystis sp. PCC 6803 (P680) and A. marina (P713), respectively. This clearly indicates conservation in the properties of water-oxidation systems in oxygenic photosynthetic organisms, irrespective of the special-pair chlorophylls.
Collapse
Affiliation(s)
- Suleyman I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuya Tomo
- Faculty of Science, Tokyo University of Sciences, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; and
| | - Yuichiro Shimada
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Hayato Kindo
- Faculty of Science, Tokyo University of Sciences, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; and
| | - Ryo Nagao
- Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Vyacheslav V. Klimov
- Institute of Basic Biological Problems, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
36
|
Björn LO, Papageorgiou GC, Blankenship RE. A viewpoint: why chlorophyll a? PHOTOSYNTHESIS RESEARCH 2009; 99:85-98. [PMID: 19125349 DOI: 10.1007/s11120-008-9395-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/09/2008] [Indexed: 05/21/2023]
Abstract
Chlorophyll a (Chl a) serves a dual role in oxygenic photosynthesis: in light harvesting as well as in converting energy of absorbed photons to chemical energy. No other Chl is as omnipresent in oxygenic photosynthesis as is Chl a, and this is particularly true if we include Chl a(2), (=[8-vinyl]-Chl a), which occurs in Prochlorococcus, as a type of Chl a. One exception to this near universal pattern is Chl d, which is found in some cyanobacteria that live in filtered light that is enriched in wavelengths >700 nm. They trap the long wavelength electronic excitation, and convert it into chemical energy. In this Viewpoint, we have traced the possible reasons for the near ubiquity of Chl a for its use in the primary photochemistry of Photosystem II (PS II) that leads to water oxidation and of Photosystem I (PS I) that leads to ferredoxin reduction. Chl a appears to be unique and irreplaceable, particularly if global scale oxygenic photosynthesis is considered. Its uniqueness is determined by its physicochemical properties, but there is more. Other contributing factors include specially tailored protein environments, and functional compatibility with neighboring electron transporting cofactors. Thus, the same molecule, Chl a in vivo, is capable of generating a radical cation at +1 V or higher (in PS II), a radical anion at -1 V or lower (in PS I), or of being completely redox silent (in antenna holochromes).
Collapse
Affiliation(s)
- Lars Olof Björn
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
37
|
Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1400-8. [DOI: 10.1016/j.bbabio.2008.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/16/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
|
38
|
Ohashi S, Miyashita H, Okada N, Iemura T, Watanabe T, Kobayashi M. Unique photosystems in Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 98:141-149. [PMID: 18985431 DOI: 10.1007/s11120-008-9383-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
A short overview is given on the discovery of the chlorophyll d-dominated cyanobacterium Acaryochloris marina and the minor pigments that function as key components therein. In photosystem I, chlorophyll d', chlorophyll a, and phylloquinone function as the primary electron donor, the primary electron acceptor and the secondary electron acceptor, respectively. In photosystem II, pheophytin a serves as the primary electron acceptor. The oxidation potential of chlorophyll d was higher than that of chlorophyll a in vitro, while the oxidation potential of P740 was almost the same as that of P700. These results help us to broaden our view on the questions about the unique photosystems in Acaryochloris marina.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Wydrzynski TJ. Water splitting by Photosystem II--where do we go from here? PHOTOSYNTHESIS RESEARCH 2008; 98:43-51. [PMID: 19037741 DOI: 10.1007/s11120-008-9391-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/10/2008] [Indexed: 05/27/2023]
Abstract
As this special issue shows, we know quite a lot about the workings of Photosystem II and the oxidation of water to molecular O(2). However, there are still many questions and details that remain to be answered. In this article, I very briefly outline some aspects of Photosystem II electron transport that are crucial for the efficient oxidation of water and require further studies. To fully understand Photosystem II reactions is not only a satisfying intellectual pursuit, but is also an important goal as we develop new solar technologies for the splitting of water into pure O(2) and H(2) for use as a potential fuel source. "As Students of the Past, We Send Greetings to the Students of the Future".
Collapse
Affiliation(s)
- Thomas J Wydrzynski
- School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberrra, ACT 0200, Australia.
| |
Collapse
|
40
|
Cser K, Deák Z, Telfer A, Barber J, Vass I. Energetics of Photosystem II charge recombination in Acaryochloris marina studied by thermoluminescence and flash-induced chlorophyll fluorescence measurements. PHOTOSYNTHESIS RESEARCH 2008; 98:131-40. [PMID: 18839331 DOI: 10.1007/s11120-008-9373-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/17/2008] [Indexed: 05/08/2023]
Abstract
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.
Collapse
Affiliation(s)
- Krisztián Cser
- Institute of Plant Biology, Biological Resarch Center, Szeged, Hungary
| | | | | | | | | |
Collapse
|
41
|
Bailleul B, Johnson X, Finazzi G, Barber J, Rappaport F, Telfer A. The Thermodynamics and Kinetics of Electron Transfer between Cytochrome b6f and Photosystem I in the Chlorophyll d-dominated Cyanobacterium, Acaryochloris marina. J Biol Chem 2008; 283:25218-25226. [DOI: 10.1074/jbc.m803047200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Mimuro M, Tomo T, Tsuchiya T. Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis. PHOTOSYNTHESIS RESEARCH 2008; 97:167-176. [PMID: 18568415 DOI: 10.1007/s11120-008-9311-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
The evolutionary route from anoxygenic photosynthetic bacteria to oxygenic cyanobacteria is discontinuous in terms of photochemical/photophysical reaction systems. It is difficult to describe this transition process simply because there are no recognized intermediary organisms between the two bacterial groups. Gloeobacter violaceus PCC 7421 might be a model organism that is suitable for analysis because it still possesses primordial characteristics such as the absence of thylakoid membranes. Whole genome analysis and biochemical and biophysical surveys of G. violaceus have favored the hypothesis that it is an intermediary organism. On the other hand, species differentiation is an evolutionary process that could be driven by changes in a small number of genes, and this process might give fair information more in details by monitoring of those genes. Comparative studies of genes, including those in Acaryochloris marina MBIC 11017, have provided information relevant to species differentiation; in particular, the acquisition of a new pigment, chlorophyll d, and changes in amino acid sequences have been informative. Here, based on experimental evidence from these two species, we discuss some of the evolutionary pathways for the appearance and differentiation of cyanobacteria.
Collapse
Affiliation(s)
- Mamoru Mimuro
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
43
|
Tamiaki H, Fukai K, Shimazu H, Nishide K, Shibata Y, Itoh S, Kunieda M. Covalently linked zinc chlorophyll dimers as a model of a chlorophyllous pair in photosynthetic reaction centers. Photochem Photobiol Sci 2008; 7:1231-7. [PMID: 18846288 DOI: 10.1039/b802353k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterodimer, where zinc pyropheophorbide-a was linked with zinc pyropheophorbide-d through ethylene glycol diester, was prepared, as well as the corresponding homodimers. The synthetic dimers were complexed with methanol in benzene to give folded dimers by mutual Zn...O(Me)-H...O=C13(1) bonding. Such complexes had furthest red (Qy) absorption bands at longer wavelengths than the monomeric species. These red-shifts were ascribable to excitonic coupling of the Qy transition states in the chlorin pi-pi stacking conformer. In the heterodimeric system, a minor band was observed at the shorter wavelength side of the main Qy band. This observation can be explained by an additional contribution of Qy vibronic state to the exciton-coupled states. Based on the experimental results, a pair of chlorophyll(Chl)-d with Chl-a as well as a Chl-d homopair were proposed as dimers in reaction centers of Chl-d dominating cyanobacteria.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Renger T, Schlodder E. The Primary Electron Donor of Photosystem II of the Cyanobacterium Acaryochloris marina Is a Chlorophyll d and the Water Oxidation Is Driven by a Chlorophyll a/Chlorophyll d Heterodimer. J Phys Chem B 2008; 112:7351-4. [DOI: 10.1021/jp801900e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Renger
- Institute of Chemistry and Biochemistry, Free University Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - E. Schlodder
- Institute of Chemistry and Biochemistry, Free University Berlin, Fabeckstrasse 36a, D-14195 Berlin, Germany, and Max Volmer Laboratory for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
45
|
Hastings G, Wang R. Vibrational mode frequency calculations of chlorophyll-d for assessing (P740(+)-P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina. PHOTOSYNTHESIS RESEARCH 2008; 95:55-62. [PMID: 17710563 DOI: 10.1007/s11120-007-9228-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/16/2007] [Indexed: 05/16/2023]
Abstract
Acaryochloris marina is an oxygen-evolving organism that utilizes chlorophyll-d for light induced photochemistry. In photosystem I particles from Acaryochloris marina, the primary electron donor is called P740, and it is thought that P740 consist of two chlorophyll-d molecules. (P740(+)-P740) FTIR difference spectra have been produced, and vibrational features that are specific to chlorophyll-d (and not chlorophyll-a) were observed, supporting the idea that P740 consists chlorophyll-d molecules. Although bands in the (P740(+)-P740) FTIR difference spectra were assigned specifically to chlorophyll-d, how these bands shifted, and how their intensities changed, upon cation formation was never considered. Without this information it is difficult to draw unambiguous conclusions from the FTIR difference spectra. To gain a more detailed understanding of cation induced shifting of bands associated with vibrational modes of P740 we have used density functional theory to calculate the vibrational properties of a chlorophyll-d model in the neutral, cation and anion states. These calculations are shown to be of considerable use in interpreting bands in (P740(+)-P740) FTIR difference spectra. Our calculations predict that the 3(1) formyl C-H mode of chlorophyll-d upshifts/downshifts upon cation/anion formation, respectively. The mode intensity also decreases/increases upon cation/anion formation, respectively. The cation induced bandshift of the 3(1) formyl C-H mode of chlorophyll-d is also strongly dependant on the dielectric environment of the chlorophyll-d molecules. With this new knowledge we reassess the interpretation of bands that were assigned to 3(1) formyl C-H modes of chlorophyll-d in (P740(+)-P740) FTIR difference spectra. Considering our calculations in combination with (P740(+)-P740) FTIR DS we find that the most likely conclusions are that P740 is a dimeric Chl-d species, in an environment of low effective dielectric constant ( approximately 2-8). In the P740(+) state, charge is asymmetrically distributed over the two Chl-d pigments in a roughly 60:40 ratio.
Collapse
Affiliation(s)
- Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| | | |
Collapse
|
46
|
Raven JA, Larkum AWD. Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? PHOTOSYNTHESIS RESEARCH 2007; 94:31-42. [PMID: 17611812 DOI: 10.1007/s11120-007-9211-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/31/2007] [Indexed: 05/16/2023]
Abstract
It has recently been shown that, in subthylakoid particles prepared using detergent, there is inhibition of oxygen production reactions in photosynthesis by thermodynamic feedback from oxygen build-up, with 50% inhibition at 230 kPa partial pressure of oxygen. This article presents a comprehensive analysis of laboratory data on the effects of high oxygen partial pressures on photosynthesis, and on photo-lithotrophic and chemo-organotrophic growth, of oxygen-producing organisms. The article also contains an analysis of the extent to which high oxygen concentrations occur at the site of photosystem II (PSII) activity under natural conditions today and in the past. The conclusion is that the oxygen concentrations found in nature are very unlikely to reach that needed to cause 50% inhibition of the photosynthetic oxygen production reaction in subthylakoid particles, but that it is just possible that a small part of the inhibition of photosynthesis and of photo-lithotrophic growth by oxygen can be attributed to inhibition of oxygen production by PSII.
Collapse
Affiliation(s)
- J A Raven
- Plant Research Unit, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | | |
Collapse
|