1
|
Odendaal C, Reijngoud DJ, Bakker BM. How lipid transfer proteins and the mitochondrial membrane shape the kinetics of β-oxidation the liver. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149519. [PMID: 39428049 DOI: 10.1016/j.bbabio.2024.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required. Setting up and interpreting such proper assays requires a good understanding of what influences the enzymes' kinetics. Often, knowing the buffer composition, pH, and temperature is considered to be sufficient. Many mFAO enzymes are membrane-bound, however, and their kinetic properties depend on the composition and curvature of the mitochondrial membranes. These properties are, in turn, affected by metabolite concentrations, but are rarely accounted for in kinetic assays. Especially for carnitine palmitoyltransferase 1 (CPT1), this has been shown to be of great consequence. Moreover, the enzymes of the mFAO metabolise water-insoluble acyl-CoA derivatives, which become toxic at high concentrations. In vivo, these are carried across the cytosol by intracellular lipid transfer proteins (iLTPs), such as the fatty-acid and acyl-CoA-binding proteins (FABP and ACBP, respectively). In vitro, this is often mimicked by using bovine serum albumin (BSA), which differs from the iLPTs in terms of its binding behaviour and subcellular localisation patterns. In this review, we argue that the iLTPs and membrane properties cannot be ignored when measuring or interpreting the kinetics of mFAO enzymes. They should be considered fundamental to the activity of mFAO enzymes just as pH, buffer composition, and temperature are.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
2
|
Giangregorio N, Tonazzi A, Pierri CL, Indiveri C. Insights into Transient Dimerisation of Carnitine/Acylcarnitine Carrier (SLC25A20) from Sarkosyl/PAGE, Cross-Linking Reagents, and Comparative Modelling Analysis. Biomolecules 2024; 14:1158. [PMID: 39334924 PMCID: PMC11430254 DOI: 10.3390/biom14091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The carnitine/acylcarnitine carrier (CAC) is a crucial protein for cellular energy metabolism, facilitating the exchange of acylcarnitines and free carnitine across the mitochondrial membrane, thereby enabling fatty acid β-oxidation and oxidative phosphorylation (OXPHOS). Although CAC has not been crystallised, structural insights are derived from the mitochondrial ADP/ATP carrier (AAC) structures in both cytosolic and matrix conformations. These structures underpin a single binding centre-gated pore mechanism, a common feature among mitochondrial carrier (MC) family members. The functional implications of this mechanism are well-supported, yet the structural organization of the CAC, particularly the formation of dimeric or oligomeric assemblies, remains contentious. Recent investigations employing biochemical techniques on purified and reconstituted CAC, alongside molecular modelling based on crystallographic AAC dimeric structures, suggest that CAC can indeed form dimers. Importantly, this dimerization does not alter the transport mechanism, a phenomenon observed in various other membrane transporters across different protein families. This observation aligns with the ping-pong kinetic model, where the dimeric form potentially facilitates efficient substrate translocation without necessitating mechanistic alterations. The presented findings thus contribute to a deeper understanding of CAC's functional dynamics and its structural parallels with other MC family members.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
3
|
Giangregorio N, Tonazzi A, Console L, Scalise M, Indiveri C. Inhibition of the Mitochondrial Carnitine/Acylcarnitine Carrier by Itaconate through Irreversible Binding to Cysteine 136: Possible Pathophysiological Implications. Biomolecules 2023; 13:993. [PMID: 37371573 DOI: 10.3390/biom13060993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid β-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and H2S. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses. The possible interaction between the CAC and itaconate has been investigated. METHODS the modulatory effects of itaconate on the transport activity of the native and recombinant CAC were tested using the proteoliposome experimental model together with site-directed mutagenesis and computational analysis. RESULTS Itaconate reacts with the CAC causing irreversible inhibition. Dose-response experiment performed with the native and recombinant protein showed IC50 for itaconate of 11 ± 4.6 mM and 8.4 ± 2.9 mM, respectively. The IC50 decreased to 3.8 ± 1.0 mM by lowering the pH from pH 7.0 to pH 6.5. Inhibition kinetics revealed a non-competitive type of inhibition. C136 is the main target of itaconate, as demonstrated by the increased IC50 of mutants in which this Cys was substituted by Val. The central role of C136 was confirmed by covalent docking. Administration of dimethyl itaconate to HeLa cells inhibited the CAC transport activity, suggesting that itaconate could react with the CAC also in intact cells.
Collapse
Affiliation(s)
- Nicola Giangregorio
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Annamaria Tonazzi
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Giangregorio N, Pierri CL, Tonazzi A, Incampo G, Tragni V, De Grassi A, Indiveri C. Proline/Glycine residues of the PG-levels guide conformational changes along the transport cycle in the mitochondrial carnitine/acylcarnitine carrier (SLC25A20). Int J Biol Macromol 2022; 221:1453-1465. [PMID: 36122779 DOI: 10.1016/j.ijbiomac.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy.
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Incampo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Vincenzo Tragni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
5
|
Tonazzi A, Giangregorio N, Console L, Palmieri F, Indiveri C. The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs. Biomolecules 2021; 11:biom11040521. [PMID: 33807231 PMCID: PMC8066319 DOI: 10.3390/biom11040521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
| | - Ferdinando Palmieri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| | - Cesare Indiveri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| |
Collapse
|
6
|
Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020; 10:E1611. [PMID: 33260588 PMCID: PMC7761412 DOI: 10.3390/biom10121611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial carriers facilitate the transfer of small molecules across the inner mitochondrial membrane (IMM) to support mitochondrial function and core cellular processes. In addition to the classical SLC25 (solute carrier family 25) mitochondrial carriers, the past decade has led to the discovery of additional protein families with numerous members that exhibit IMM localization and transporter-like properties. These include mitochondrial pyruvate carriers, sideroflexins, and mitochondrial cation/H+ exchangers. These transport proteins were linked to vital physiological functions and disease. Their structures and transport mechanisms are, however, still largely unknown and understudied. Protein sequence analysis per se can often pinpoint hotspots that are of functional or structural importance. In this review, we summarize current knowledge about the sequence features of mitochondrial transporters with a special focus on the newly included SLC54, SLC55 and SLC56 families of the SLC solute carrier superfamily. Taking a step further, we combine sequence conservation analysis with transmembrane segment and secondary structure prediction methods to extract residue positions and sequence motifs that likely play a role in substrate binding, binding site gating or structural stability. We hope that our review will help guide future experimental efforts by the scientific community to unravel the transport mechanisms and structures of these novel mitochondrial carriers.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, CH-3010 Bern, Switzerland;
| | | |
Collapse
|
7
|
Nozawa A, Ito D, Ibrahim M, Santos HJ, Tsuboi T, Tozawa Y. Characterization of mitochondrial carrier proteins of malaria parasite Plasmodium falciparum based on in vitro translation and reconstitution. Parasitol Int 2020; 79:102160. [PMID: 32574727 DOI: 10.1016/j.parint.2020.102160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Members of the mitochondrial carrier (MC) family of membrane transporters play important roles in cellular metabolism. We previously established an in vitro reconstitution system for membrane transporters based on wheat germ cell-free translation system. We have now applied this reconstitution system to the comparative analysis of MC proteins from the malaria parasite Plasmodium falciparum and Saccharomyces cerevisiae. We synthesized twelve putative P. falciparum MCs and determined the transport activities of four of these proteins including PF3D7_1037300 protein (ADP/ATP translocator), PF3D7_1004800 protein (ADP/ATP translocator), PF3D7_1202200 protein (phosphate carrier), and PF3D7_1241600 protein (S-adenosylmethionine transporter). In addition, we tested the effect of cardiolipin on the activity of MC proteins. The transport activities of the yeast MCs, ScAac2p, ScGgc1p, ScDic1p, ScPic1p, and ScSam5p, which localize to the mitochondrial inner membrane, were increased by cardiolipin supplementation, whereas that of ScAnt1p, which localizes to the peroxisome membrane, was not significantly affected. Together, this indicates that the functional properties of the reconstituted MCs reflect the lipid content of their native membranes. Except for PF3D7_1241600 protein, these P. falciparum proteins manifested cardiolipin-dependent transport activities. Immunofluorescence analysis showed that PF3D7_1241600 protein is not mainly localized to the mitochondria of P. falciparum cells. We thus revealed the functions of four MC proteins of the malaria parasite and the effects of cardiolipin on their activities.
Collapse
Affiliation(s)
- Akira Nozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Daisuke Ito
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Mohamed Ibrahim
- Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takafumi Tsuboi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Yuzuru Tozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan.
| |
Collapse
|
8
|
Effect of Copper on the Mitochondrial Carnitine/Acylcarnitine Carrier Via Interaction with Cys136 and Cys155. Possible Implications in Pathophysiology. Molecules 2020; 25:molecules25040820. [PMID: 32070004 PMCID: PMC7070283 DOI: 10.3390/molecules25040820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. The mechanism of inhibition was studied by using the recombinant WT or Cys site-directed mutants of CAC. From the dose-response curve of the effect of Cu2+ on the recombinant protein, an IC50 of 0.28 µM was derived. Inhibition kinetics revealed a non-competitive type of inhibition by Cu2+. However, a substrate protection experiment indicated that the interaction of Cu2+ with the protein occurred in the vicinity of the substrate-binding site. Dose-response analysis on Cys mutants led to much higher IC50 values for the mutants C136S or C155S. The highest value was obtained for the C136/155S double mutant, indicating the involvement of both Cys residues in the interaction with Cu2+. Computational analysis performed on the WT CAC and on Cys mutants showed a pattern of the binding energy mostly overlapping the binding affinity derived from the dose-response analysis. All the data concur with bridging of Cu2+ with the two Cys residues, which blocks the conformational changes required for transport cycle.
Collapse
|
9
|
Tonazzi A, Giangregorio N, Console L, De Palma A, Indiveri C. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:475-482. [PMID: 28438511 DOI: 10.1016/j.bbabio.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022]
Abstract
S-nitrosylation of the mitochondrial carnitine/acylcarnitine transporter (CACT) has been investigated on the native and the recombinant proteins reconstituted in proteoliposomes, and on intact mitochondria. The widely-used NO-releasing compound, GSNO, strongly inhibited the antiport measured in proteoliposomes reconstituted with the native CACT from rat liver mitochondria or the recombinant rat CACT over-expressed in E. coli. Inhibition was reversed by the reducing agent dithioerythritol, indicating a reaction mechanism based on nitrosylation of Cys residues of the CACT. The half inhibition constant (IC50) was very similar for the native and recombinant proteins, i.e., 74 and 71μM, respectively. The inhibition resulted to be competitive with respect the substrate, carnitine. NO competed also with NEM, correlating well with previous data showing interference of NEM with the substrate transport path. Using a site-directed mutagenesis approach on Cys residues of the recombinant CACT, the target of NO was identified. C136 plays a major role in the reaction mechanism. The occurrence of S-nitrosylation was demonstrated in intact mitochondria after treatment with GSNO, immunoprecipitation and immunostaining of CACT with a specific anti NO-Cys antibody. In parallel samples, transport activity of CACT measured in intact mitochondria, was strongly inhibited after GSNO treatment. The possible physiological and pathological implications of the post-translational modification of CACT are discussed.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Annalisa De Palma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
10
|
Post-translational modification by acetylation regulates the mitochondrial carnitine/acylcarnitine transport protein. Mol Cell Biochem 2016; 426:65-73. [PMID: 27864727 DOI: 10.1007/s11010-016-2881-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022]
Abstract
The carnitine/acylcarnitine transporter (CACT; SLC25A20) mediates an antiport reaction allowing entry of acyl moieties in the form of acylcarnitines into the mitochondrial matrix and exit of free carnitine. The transport function of CACT is crucial for the β-oxidation pathway. In this work, it has been found that CACT is partially acetylated in rat liver mitochondria as demonstrated by anti-acetyl-lys antibody immunostaining. Acetylation was reversed by the deacetylase Sirtuin 3 in the presence of NAD+. After treatment of the mitochondrial extract with the deacetylase, the CACT activity, assayed in proteoliposomes, increased. The half-saturation constant of the CACT was not influenced, while the V max was increased by deacetylation. Sirtuin 3 was not able to deacetylate the CACT when incubation was performed in intact mitoplasts, indicating that the acetylation sites are located in the mitochondrial matrix. Prediction on the localization of acetylated residues by bioinformatics correlates well with the experimental data. Recombinant CACT treated with acetyl-CoA was partially acetylated by non-enzymatic mechanism with a corresponding decrease of transport activity. The experimental data indicate that acetylation of CACT inhibits its transport activity, and thus may contribute to the regulation of the mitochondrial β-oxidation pathway.
Collapse
|
11
|
The mitochondrial carnitine/acylcarnitine carrier is regulated by hydrogen sulfide via interaction with C136 and C155. Biochim Biophys Acta Gen Subj 2015; 1860:20-7. [PMID: 26459002 DOI: 10.1016/j.bbagen.2015.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The carnitine/acylcarnitine carrier (CAC or CACT) mediates transport of acylcarnitines into mitochondria for the β-oxidation. CAC possesses Cys residues which respond to redox changes undergoing to SH/disulfide interconversion. METHODS The effect of H2S has been investigated on the [(3)H]carnitine/carnitine antiport catalyzed by recombinant or native CAC reconstituted in proteoliposomes. Site-directed mutagenesis was employed for identifying Cys reacting with H2S. RESULTS H2S led to transport inhibition, which was dependent on concentration, pH and time of incubation. Best inhibition with IC50 of 0.70 μM was observed at physiological pH after 30-60 min incubation. At longer times of incubation, inhibition was reversed. After oxidation of the carrier by O2, transport activity was rescued by H2S indicating that the inhibition/activation depends on the initial redox state of the protein. The observed effects were more efficient on the native rat liver transporter than on the recombinant protein. Only the protein containing both C136 and C155 responded to the reagent as the WT. While reduced responses were observed in the mutants containing C136 or C155. Multi-alignment of known mitochondrial carriers, highlighted that only the CAC possesses both Cys residues. This correlates well with the absence of effects of H2S on carriers which does not contain the Cys couple. CONCLUSIONS Altogether, these data demonstrate that H2S regulates the CAC by inhibiting or activating transport on the basis of the redox state of the protein. GENERAL SIGNIFICANCE CAC represents a specific target of H2S among mitochondrial carriers in agreement with the presence of a reactive Cys couple.
Collapse
|
12
|
Tonazzi A, Giangregorio N, Console L, Scalise M, La Russa D, Notaristefano C, Brunelli E, Barca D, Indiveri C. Mitochondrial carnitine/acylcarnitine transporter, a novel target of mercury toxicity. Chem Res Toxicol 2015; 28:1015-22. [PMID: 25849418 DOI: 10.1021/acs.chemrestox.5b00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of Hg(2+) and CH3Hg(+) on the mitochondrial carnitine/acylcarnitine transporter (CACT) has been studied on the recombinant protein and on the CACT extracted from HeLa cells or Zebrafish and reconstituted in proteoliposomes. Transport was abolished upon treatment of the recombinant CACT in proteoliposomes by Hg(2+) or CH3Hg(+). Inhibition was reversed by the SH reducing agent 1,4-dithioerythritol, GSH, and N-acetylcysteine. IC50 for Hg(2+) and CH3Hg(+) of 90 nM and 137 nM, respectively, were measured by dose-response analyses. Inhibition was abolished in the C-less CACT mutant. Strong reduction of inhibition by both reagents was observed in the C136A and some reduction in the C155A mutants. Inhibition similar to that of the WT was observed in the C23V/C58V/C89S/C155V/C283S mutant, containing only C136. Optimal inhibition by Hg(2+)was found in the four replacement mutants C23V/C58V/C89S/C283S containing both C136 and C155 indicating cross-reaction of Hg(2+) with the two Cys residues. Inhibition kinetic analysis showed mixed inhibition by Hg(2+) or competitive inhibition by CH3Hg(+). HeLa cells or Zebrafish were treated with the more potent inhibitor. Ten micromolar HgCl2 caused clear impairment of viability of HeLa cells. The transport assay in proteoliposomes with CACT extracted from treated cells showed that the transporter was inactivated and that DTE rescued the activity. Nearly identical results were observed with Zebrafish upon extraction of the CACT from the liver of the treated animals that, indeed, showed accumulation of the mercurial compound.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- †CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.,‡Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Nicola Giangregorio
- †CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.,‡Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lara Console
- §Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- §Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Daniele La Russa
- §Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Caterina Notaristefano
- ‡Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Elvira Brunelli
- §Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Donatella Barca
- §Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- †CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126 Bari, Italy.,§Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
13
|
Giangregorio N, Console L, Tonazzi A, Palmieri F, Indiveri C. Identification of amino acid residues underlying the antiport mechanism of the mitochondrial carnitine/acylcarnitine carrier by site-directed mutagenesis and chemical labeling. Biochemistry 2014; 53:6924-33. [PMID: 25325845 DOI: 10.1021/bi5009112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mitochondrial carnitine/acylcarnitine carrier catalyzes the transport of carnitine and acylcarnitines by antiport as well as by uniport with a rate slower than the rate of antiport. The mechanism of antiport resulting from coupling of two opposed uniport reactions was investigated by site-directed mutagenesis. The transport reaction was followed as [(3)H]carnitine uptake in or efflux from proteoliposomes reconstituted with the wild type or mutants, in the presence or absence of a countersubstrate. The ratio between the antiport and uniport rates for the wild type was 3.0 or 2.5, using the uptake or efflux procedure, respectively. This ratio did not vary substantially in mutants H29A, K35R, G121A, E132A, K135A, R178A, D179E, E191A, K194A, K234A, and E288A. A ratio of 1.0 was measured for mutant K35A, indicating a loss of antiport function by this mutant. Ratios of >1.0 but significantly lower than that of the wild type were measured for mutants D32A, K97A, and D231A, indicating the involvement of these residues in the antiport mechanism. To investigate the role of the countersubstrate in the conformational changes underlying the transport reaction, the m-state of the transporter (opened toward the matrix side) was specifically labeled with N-ethylmaleimide while the c-state of the carrier (opened toward the cytosolic side) was labeled with fluorescein maleimide. The labeling results indicated that the addition of an external substrate, on one hand, reduced the amount of protein in the m-state and, on the other, increased the protein fraction in the c-state. This substrate-induced conformational change was abolished in the protein lacking K35, pointing to the role of this residue as a sensor in the mechanism of the antiport reaction.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes and Bioenergetics , via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
14
|
Console L, Giangregorio N, Indiveri C, Tonazzi A. Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 form a complex in the inner mitochondrial membrane. Mol Cell Biochem 2014; 394:307-14. [DOI: 10.1007/s11010-014-2098-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
15
|
Go YM, Roede JR, Orr M, Liang Y, Jones DP. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of cd toxicity. Toxicol Sci 2014; 139:59-73. [PMID: 24496640 DOI: 10.1093/toxsci/kfu018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) exposure contributes to human diseases affecting liver, kidney, lung, and other organ systems, but mechanisms underlying the pleotropic nature of these toxicities are poorly understood. Cd accumulates in humans from dietary, environmental (including cigarette smoke), and occupational sources, and has a twenty-year biologic half-life. Our previous mouse and cell studies showed that environmental low-dose Cd exposure altered protein redox states resulting in stimulation of inflammatory signaling and disruption of the actin cytoskeleton system, suggesting that Cd could impact multiple mechanisms of disease. In the current study, we investigated the effects of acute Cd exposure on the redox proteome and metabolome of mouse liver mitochondria to gain insight into associated toxicological mechanisms and functions. We analyzed redox states of liver mitochondrial proteins by redox proteomics using isotope coded affinity tag (ICAT) combined mass spectrometry. Redox ICAT identified 2687 cysteine-containing peptides (peptidyl Cys) of which 1667 peptidyl Cys (657 proteins) were detected in both control and Cd-exposed samples. Of these, 46% (1247 peptidyl Cys, 547 proteins) were oxidized by Cd more than 1.5-fold relative to controls. Bioinformatics analysis using MetaCore software showed that Cd affected 86 pathways, including 24 Cys in proteins functioning in branched chain amino acid (BCAA) and 14 Cys in proteins functioning in fatty acid (acylcarnitine/carnitine) metabolism. Consistently, high-resolution metabolomics data showed that Cd treatment altered levels of BCAA and carnitine metabolites. Together, these results show that mitochondrial protein redox and metabolites are targets in Cd-induced hepatotoxicity. The results further indicate that redox proteomics and metabolomics can be used in an integrated systems approach to investigate complex disease mechanisms.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | | | | | | | |
Collapse
|
16
|
Tonazzi A, Eberini I, Indiveri C. Molecular mechanism of inhibition of the mitochondrial carnitine/acylcarnitine transporter by omeprazole revealed by proteoliposome assay, mutagenesis and bioinformatics. PLoS One 2013; 8:e82286. [PMID: 24349247 PMCID: PMC3857281 DOI: 10.1371/journal.pone.0082286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 11/20/2022] Open
Abstract
The effect of omeprazole on the mitochondrial carnitine/acylcarnitine transporter has been studied in proteoliposomes. Externally added omeprazole inhibited the carnitine/carnitine antiport catalysed by the transporter. The inhibition was partially reversed by DTE indicating that it was caused by the covalent reaction of omeprazole with Cys residue(s). Inhibition of the C-less mutant transporter indicated also the occurrence of an alternative non-covalent mechanism. The IC50 of the inhibition of the WT and the C-less CACT by omeprazole were 5.4 µM and 29 µM, respectively. Inhibition kinetics showed non competitive inhibition of the WT and competitive inhibition of the C-less. The presence of carnitine or acylcarnitines during the incubation of the proteoliposomes with omeprazole increased the inhibition. Using site-directed Cys mutants it was demonstrated that C283 and C136 were essential for covalent inhibition. Molecular docking of omeprazole with CACT indicated the formation of both covalent interactions with C136 and C283 and non-covalent interactions in agreement with the experimental data.
Collapse
Affiliation(s)
| | - Ivano Eberini
- Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Università degli Studi di Milano, Milano, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes and Bioenergetics, Bari, Italy
- Department BEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
- * E-mail:
| |
Collapse
|
17
|
Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim Biophys Acta Gen Subj 2013; 1830:5299-304. [PMID: 23948593 DOI: 10.1016/j.bbagen.2013.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches. METHODS The effect of GSH and GSSG on the [(3)H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody. RESULTS GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37°C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC. CONCLUSIONS CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation. GENERAL SIGNIFICANCE CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.
Collapse
|
18
|
Tonazzi A, Console L, Indiveri C. Inhibition of mitochondrial carnitine/acylcarnitine transporter by H2O2: Molecular mechanism and possible implication in pathophysiology. Chem Biol Interact 2013; 203:423-9. [DOI: 10.1016/j.cbi.2013.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 12/29/2022]
|
19
|
Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation. BIOLOGY 2013; 2:284-303. [PMID: 24832661 PMCID: PMC4009865 DOI: 10.3390/biology2010284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
Abstract
Transcriptional regulation of genes involved in fatty acid metabolism is considered the major long-term regulatory mechanism controlling lipid homeostasis. By means of this mechanism, transcription factors, nutrients, hormones and epigenetics control not only fatty acid metabolism, but also many metabolic pathways and cellular functions at the molecular level. The regulation of the expression of many genes at the level of their transcription has already been analyzed. This review focuses on the transcriptional control of two genes involved in fatty acid biosynthesis and oxidation: the citrate carrier (CIC) and the carnitine/ acylcarnitine/carrier (CAC), which are members of the mitochondrial carrier gene family, SLC25. The contribution of tissue-specific and less tissue-specific transcription factors in activating or repressing CIC and CAC gene expression is discussed. The interaction with drugs of some transcription factors, such as PPAR and FOXA1, and how this interaction can be an attractive therapeutic approach, has also been evaluated. Moreover, the mechanism by which the expression of the CIC and CAC genes is modulated by coordinated responses to hormonal and nutritional changes and to epigenetics is highlighted.
Collapse
|
20
|
Tonazzi A, Console L, Giangregorio N, Indiveri C, Palmieri F. Identification by site-directed mutagenesis of a hydrophobic binding site of the mitochondrial carnitine/acylcarnitine carrier involved in the interaction with acyl groups. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:697-704. [PMID: 22365929 DOI: 10.1016/j.bbabio.2012.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
The role of hydrophobic residues of the mitochondrial carnitine/acylcarnitine carrier (CAC) in the inhibition by acylcarnitines has been investigated by site-directed mutagenesis. According to the homology model of CAC in cytosolic opened conformation (c-state), L14, G17, G21, V25, P78, V82, M85, C89, F93, A276, A279, C283, F287 are located in the 1st (H1), 2nd (H2) and 6th (H6) transmembrane α-helices and exposed in the central cavity, forming a hydrophobic half shell. These residues have been substituted with A (or G) and in some cases with M. Mutants have been assayed for transport activity measured as [(3)H]carnitine/carnitine antiport in proteoliposomes. With the exception of G17A and G21M, mutants exhibited activity from 20% to 100% of WT. Among the active mutants only G21A, V25M, P78A and P78M showed Vmax lower than half and/or Km more than two fold respect to WT. Acylcarnitines competitively inhibited carnitine antiport. The extent of inhibition of the mutants by acylcarnitines with acyl chain length of 2, 4, 8, 12, 14 and 16 has been compared with the WT. V25A, P78A, P78M and A279G showed reduced extent of inhibition by all the acylcarnitines; V25M showed reduced inhibition by shorter acylcarnitines; V82A, V82M, M85A, C89A and A276G showed reduced inhibition by longer acylcarnitines, respect to WT. C283A showed increased extent of inhibition by acylcarnitines. Variations of Ki of mutants for acylcarnitines reflected variations of the inhibition profiles. The data demonstrated that V25, P78, V82, M85 and C89 are involved in the acyl chain binding to the CAC in c-state.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Department of Biosciences, Biotechnology and Pharmacological Sciences, Laboratory of Biochemistry and Molecular Biology, University of Bari, 70125 Bari, Italy
| | | | | | | | | |
Collapse
|
21
|
Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, Console L, Palmieri F. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol Aspects Med 2011; 32:223-33. [DOI: 10.1016/j.mam.2011.10.008] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/11/2011] [Indexed: 01/01/2023]
|
22
|
Site-directed mutagenesis of charged amino acids of the human mitochondrial carnitine/acylcarnitine carrier: Insight into the molecular mechanism of transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:839-45. [DOI: 10.1016/j.bbabio.2010.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/03/2010] [Accepted: 03/19/2010] [Indexed: 11/19/2022]
|
23
|
Site-directed mutagenesis of the His residues of the rat mitochondrial carnitine/acylcarnitine carrier: Implications for the role of His-29 in the transport pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1009-15. [DOI: 10.1016/j.bbabio.2009.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 11/21/2022]
|
24
|
Marobbio CMT, Giannuzzi G, Paradies E, Pierri CL, Palmieri F. alpha-Isopropylmalate, a leucine biosynthesis intermediate in yeast, is transported by the mitochondrial oxalacetate carrier. J Biol Chem 2008; 283:28445-53. [PMID: 18682385 DOI: 10.1074/jbc.m804637200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, alpha-isopropylmalate (alpha-IPM), which is produced in mitochondria, must be exported to the cytosol where it is required for leucine biosynthesis. Recombinant and reconstituted mitochondrial oxalacetate carrier (Oac1p) efficiently transported alpha-IPM in addition to its known substrates oxalacetate, sulfate, and malonate and in contrast to other di- and tricarboxylate transporters as well as the previously proposed alpha-IPM transporter. Transport was saturable with a half-saturation constant of 75 +/- 4 microm for alpha-IPM and 0.31 +/- 0.04 mm for beta-IPM and was inhibited by the substrates of Oac1p. Though not transported, alpha-ketoisocaproate, the immediate precursor of leucine in the biosynthetic pathway, inhibited Oac1p activity competitively. In contrast, leucine, alpha-ketoisovalerate, valine, and isoleucine neither inhibited nor were transported by Oac1p. Consistent with the function of Oac1p as an alpha-IPM transporter, cells lacking the gene for this carrier required leucine for optimal growth on fermentable carbon sources. Single deletions of other mitochondrial carrier genes or of LEU4, which is the only other enzyme that can provide the cytosol with alpha-IPM (in addition to Oac1p) exhibited no growth defect, whereas the double mutant DeltaOAC1DeltaLEU4 did not grow at all on fermentable substrates in the absence of leucine. The lack of growth of DeltaOAC1DeltaLEU4 cells was partially restored by adding the leucine biosynthetic cytosolic intermediates alpha-ketoisocaproate and alpha-IPM to these cells as well as by complementing them with one of the two unknown human mitochondrial carriers SLC25A34 and SLC25A35. Oac1p is important for leucine biosynthesis on fermentable carbon sources catalyzing the export of alpha-IPM, probably in exchange for oxalacetate.
Collapse
Affiliation(s)
- Carlo M T Marobbio
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|