1
|
Stańczyk M, Szubart N, Maslanka R, Zadrag-Tecza R. Mitochondrial Dysfunctions: Genetic and Cellular Implications Revealed by Various Model Organisms. Genes (Basel) 2024; 15:1153. [PMID: 39336744 PMCID: PMC11431519 DOI: 10.3390/genes15091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the energy status and redox homeostasis of eukaryotic cells. They are responsible for the metabolic efficiency of cells, providing both ATP and intermediate metabolic products. They also regulate cell survival and death under stress conditions by controlling the cell response or activating the apoptosis process. This functional diversity of mitochondria indicates their great importance for cellular metabolism. Hence, dysfunctions of these structures are increasingly recognized as an element of the etiology of many human diseases and, therefore, an extremely promising therapeutic target. Mitochondrial dysfunctions can be caused by mutations in both nuclear and mitochondrial DNA, as well as by stress factors or replication errors. Progress in knowledge about the biology of mitochondria, as well as the consequences for the efficiency of the entire organism resulting from the dysfunction of these structures, is achieved through the use of model organisms. They are an invaluable tool for analyzing complex cellular processes, leading to a better understanding of diseases caused by mitochondrial dysfunction. In this work, we review the most commonly used model organisms, discussing both their advantages and limitations in modeling fundamental mitochondrial processes or mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (M.S.); (N.S.); (R.M.)
| |
Collapse
|
2
|
Li CL, Mao W, Zhang LD, Ji HS, Tong TT, Wang JL, Wu XQ, Li KW, Wu HY, Zhang GQ, Zhang JY, Han W, Wang Y. Electroacupuncture protects against cerebral ischemia-reperfusion injury through mitochondrial dynamics. Heliyon 2024; 10:e34986. [PMID: 39148973 PMCID: PMC11325383 DOI: 10.1016/j.heliyon.2024.e34986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Background Electroacupuncture (EA) has been shown to promote functional recovery after cerebral ischemia-reperfusion (I/R) injury. However, the contribution of mitochondrial dynamics to recovery remains unclear. The aim of this study was to investigate whether mitochondrial dynamics are involved in the effects of EA on cerebral I/R injury. Methods The rats with cerebral I/R injury were established by the middle cerebral artery occlusion/reperfusion. Subsequently, EA was applied to Baihui (GV20) and Dazhui (GV14) acupoints, with 2 Hz/5 Hz in frequency, 1.0 mA in intensity, 20 min each time, once a day for seven consecutive days. The therapeutic outcomes were assessed by modified neurological severity score (mNSS), 2,3,5-Triphenyte-trazolium chloride (TTC) staining, and hematoxylin-eosin (HE) staining. Mitochondrial morphology was observed under transmission electron microscopy. Adenosine triphosphate (ATP) content and ATP synthases (ATPases) activity were evaluated to measure mitochondrial function using ELISA. Finally, mitochondrial dynamics-related molecules, including dynamin-related protein 1 (Drp1), fission 1 (Fis1), mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and optic atrophy 1 (OPA1), were detected by Western blot and immunofluorescence staining. Results Cerebral I/R injury induced neurological dysfunction, cerebral infarction and neuronal injury, all of which were ameliorated by EA. And EA improved mitochondrial morphology and function. Moreover, EA altered the balance of mitochondrial dynamics. Specifically, the data showed a significant decrease in the expression of Drp1 and Fis1, leading to the inhibition of mitochondrial fission. Additionally, Mfn1, Mfn2 and Opa1, which are related to mitochondrial fusion, were effectively promoted after EA treatment. However, sham EA did not show any neuroprotective effects in rats with cerebral I/R injury. Conclusions In summary, our study indicates that the balance of mitochondrial dynamics is crucial for EA therapy to treat cerebral I/R injury.
Collapse
Affiliation(s)
- Cheng-Long Li
- First Affiliated Hospital (First Clinical Medical College) of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Wei Mao
- Brain Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
| | - Li-da Zhang
- Brain Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
| | - Hai-Sheng Ji
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
| | - Ting-Ting Tong
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
| | - Jun-Li Wang
- Brain Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
| | - Xiao-Qing Wu
- First Affiliated Hospital (First Clinical Medical College) of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Kui-Wu Li
- First Affiliated Hospital (First Clinical Medical College) of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hai-Yang Wu
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
| | - Guo-Qing Zhang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
| | - Jun-Yu Zhang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
| | - Wei Han
- Brain Hospital Affiliated to Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
| | - Ying Wang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230061, Anhui, China
- Famous TCM Studio of Ying WANG, Hefei, 230001, Anhui, China
| |
Collapse
|
3
|
Lou P, Liu S, Wang Y, Lv K, Zhou X, Li L, Zhang Y, Chen Y, Cheng J, Lu Y, Liu J. Neonatal-Tissue-Derived Extracellular Vesicle Therapy (NEXT): A Potent Strategy for Precision Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300602. [PMID: 37148469 DOI: 10.1002/adma.202300602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Extracellular vesicle (EV)-based therapies have emerged as a promising means in regenerative medicine. However, the conventional EV therapy strategy displays some limitations, such as inefficient EV production and lack of tissue-specific repair effects. Here, it is reported that neonatal-tissue-derived EV therapy (NEXT) is a potent strategy for precision tissue repair. In brief, large amounts of EVs with higher yield/purity can be readily isolated from desired tissues with less production time/cost compared to the conventional cell-culture-based method. Moreover, source factors, such as age and tissue type, can affect the repair efficacy of such tissue-derived EVs in different tissue injury models (skin wounds and acute kidney injury), and neonatal-tissue-derived EVs show superior tissue repair potency compared with adult-tissue-derived EVs. Different age- or tissue-type-derived EVs have distinct composition (e.g., protein) signatures that are likely due to the diverse metabolic patterns of the donor tissues, which may contribute to the specific repair action modes of NEXT in different types of tissue injury. Furthermore, neonatal-tissue-derived EVs can be incorporated with bioactive materials for advanced tissue repair. This study highlights that the NEXT strategy may provide a new avenue for precision tissue repair in many types of tissue injury.
Collapse
Affiliation(s)
- Peng Lou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuyun Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yizhuo Wang
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Lv
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiyue Zhou
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lan Li
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Younan Chen
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanrong Lu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingping Liu
- Department of Nephrology and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Steiner P, Arlt E, Boekhoff I, Gudermann T, Zierler S. TPC Functions in the Immune System. Handb Exp Pharmacol 2023; 278:71-92. [PMID: 36639434 DOI: 10.1007/164_2022_634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels (TPCs) are novel intracellular cation channels, which play a key role in numerous (patho-)physiological and immunological processes. In this chapter, we focus on their function in immune cells and immune reactions. Therefore, we first give an overview of the cellular immune response and the partaking immune cells. Second, we concentrate on ion channels which in the past have been shown to play an important role in the regulation of immune cells. The main focus is then directed to TPCs, which are primarily located in the membranes of acidic organelles, such as lysosomes or endolysosomes but also certain other vesicles. They regulate Ca2+ homeostasis and thus Ca2+ signaling in immune cells. Due to this important functional role, TPCs are enjoying increasing attention within the field of immunology in the last few decades but are also becoming more pertinent as pharmacological targets for the treatment of pro-inflammatory diseases such as allergic hypersensitivity. However, to uncover the precise molecular mechanism of TPCs in immune cell responses, further molecular, genetic, and ultrastructural investigations on TPCs are necessary, which then may pave the way to develop novel therapeutic strategies to treat diseases such as anaphylaxis more specifically.
Collapse
Affiliation(s)
- Philip Steiner
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanna Zierler
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria.
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Annisa N, Barliana MI, Santoso P, Ruslami R. Transporter and metabolizer gene polymorphisms affect fluoroquinolone pharmacokinetic parameters. Front Pharmacol 2022; 13:1063413. [PMID: 36588725 PMCID: PMC9798452 DOI: 10.3389/fphar.2022.1063413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease that occurs globally. Treatment of TB has been hindered by problems with multidrug-resistant strains (MDR-TB). Fluoroquinolones are one of the main drugs used for the treatment of MDR-TB. The success of therapy can be influenced by genetic factors and their impact on pharmacokinetic parameters. This review was conducted by searching the PubMed database with keywords polymorphism and fluoroquinolones. The presence of gene polymorphisms, including UGT1A1, UGT1A9, SLCO1B1, and ABCB1, can affect fluoroquinolones pharmacokinetic parameters such as area under the curve (AUC), creatinine clearance (CCr), maximum plasma concentration (Cmax), half-life (t1/2) and peak time (tmax) of fluoroquinolones.
Collapse
Affiliation(s)
- Nurul Annisa
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia,Unit of Clinical Pharmacy and Community, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Melisa I. Barliana
- Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia,Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia,*Correspondence: Melisa I. Barliana,
| | - Prayudi Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Guo J, Zhang L, Bu Y, Li W, Hu J, Li J. Ras-related protein Rab-20 inhibition alleviates cerebral ischemia/reperfusion injury by inhibiting mitochondrial fission and dysfunction. Front Mol Neurosci 2022; 15:986710. [PMID: 36385754 PMCID: PMC9640763 DOI: 10.3389/fnmol.2022.986710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 10/27/2024] Open
Abstract
Ras-related protein Rab-20 (Rab20) is induced in hypoxia and contributes to hypoxia-induced apoptosis. However, the role and mechanism of Rab20 in cerebral ischemia/reperfusion (I/R) injury need to be elucidated. We established a cerebral I/R injury model in the mice and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in HT22 cells to determine the effects of Rab20 in cerebral I/R injury. Rab20 expression was upregulated in mice after I/R and in HT22 cells after OGD/R. Upregulated Rab20 was mainly located in neurons. Rab20 inhibition significantly alleviated brain infarct volume, neurological deficits, and neuronal apoptosis in mice after I/R. Moreover, Rab20 knockdown significantly ameliorated the OGD/R-induced inhibition of cell viability and apoptotic cell death in HT22 cells. Rab20 knockdown significantly alleviated OGD/R-induced mitochondrial fission by repressing mitochondrial dynamin-related protein 1 (Drp-1) recruitment and increasing Drp-1 (Ser637) phosphorylation and ameliorated mitochondrial dysfunction by reducing the mitochondrial reactive oxygen species (ROS) and cellular calcium accumulation and increasing the mitochondrial membrane potential. In addition, Rab20 knockdown significantly alleviated cytochrome c release from the mitochondria into the cytosol in HT22 cells after OGD/R. Rab20 contributes to cerebral I/R injury by regulating mitochondria-associated apoptosis pathways. Targeting Rab20 may be an attractive strategy for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Jia Guo
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
7
|
Identification of novel differentially expressed genes in type 1 diabetes mellitus complications using transcriptomic profiling of UAE patients: a multicenter study. Sci Rep 2022; 12:16316. [PMID: 36175575 PMCID: PMC9523055 DOI: 10.1038/s41598-022-18997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disorder that mainly affects children and young adults. It is associated with debilitating and long-life complications. Therefore, understanding the factors that lead to the onset and development of these complications is crucial. To our knowledge this is the first study that attempts to identify the common differentially expressed genes (DEGs) in T1DM complications using whole transcriptomic profiling in United Arab Emirates (UAE) patients. The present multicenter study was conducted in different hospitals in UAE including University Hospital Sharjah, Dubai Hospital and Rashid Hospital. A total of fifty-eight Emirati participants aged above 18 years and with a BMI < 25 kg/m2 were recruited and forty-five of these participants had a confirmed diagnosis of T1DM. Five groups of complications associated with the latter were identified including hyperlipidemia, neuropathy, ketoacidosis, hypothyroidism and polycystic ovary syndrome (PCOS). A comprehensive whole transcriptomic analysis using NGS was conducted. The outcomes of the study revealed the common DEGs between T1DM without complications and T1DM with different complications. The results revealed seven common candidate DEGs, SPINK9, TRDN, PVRL4, MYO3A, PDLIM1, KIAA1614 and GRP were upregulated in T1DM complications with significant increase in expression of SPINK9 (Fold change: 5.28, 3.79, 5.20, 3.79, 5.20) and MYO3A (Fold change: 4.14, 6.11, 2.60, 4.33, 4.49) in hyperlipidemia, neuropathy, ketoacidosis, hypothyroidism and PCOS, respectively. In addition, functional pathways of ion transport, mineral absorption and cytosolic calcium concentration were involved in regulation of candidate upregulated genes related to neuropathy, ketoacidosis and PCOS, respectively. The findings of this study represent a novel reference warranting further studies to shed light on the causative genetic factors that are involved in the onset and development of T1DM complications.
Collapse
|
8
|
Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021; 51:71-127. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the biological importance of mitochondrial energy metabolism and the applications of multiple optical/electrochemical approaches to determine energy metabolites. Mitochondria, the main sites of oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis, provide the majority of energy required by aerobic cells for maintaining their physiological activity. They also participate in cell growth, differentiation, information transmission, and apoptosis. Multiple mitochondrial diseases, caused by internal or external factors, including oxidative stress, intense fluctuations of the ionic concentration, abnormal oxidative phosphorylation, changes in electron transport chain complex enzymes and mutations in mitochondrial DNA, can occur during mitochondrial energy metabolism. Therefore, developing accurate, sensitive, and specific methods for the in vivo and in vitro detection of mitochondrial energy metabolites is of great importance. In this review, we summarise the mitochondrial structure, functions, and crucial energy metabolic signalling pathways. The mechanism and applications of different optical/electrochemical methods are thoroughly reviewed. Finally, future research directions and challenges are proposed.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Zhou X, Chen H, Wang L, Lenahan C, Lian L, Ou Y, He Y. Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke. Front Aging Neurosci 2021; 13:721428. [PMID: 34557086 PMCID: PMC8452989 DOI: 10.3389/fnagi.2021.721428] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Brain injury after ischemic stroke involves multiple pathophysiological mechanisms, such as oxidative stress, mitochondrial dysfunction, excitotoxicity, calcium overload, neuroinflammation, neuronal apoptosis, and blood-brain barrier (BBB) disruption. All of these factors are associated with dysfunctional energy metabolism after stroke. Mitochondria are organelles that provide adenosine triphosphate (ATP) to the cell through oxidative phosphorylation. Mitochondrial dynamics means that the mitochondria are constantly changing and that they maintain the normal physiological functions of the cell through continuous division and fusion. Mitochondrial dynamics are closely associated with various pathophysiological mechanisms of post-stroke brain injury. In this review, we will discuss the role of the molecular mechanisms of mitochondrial dynamics in energy metabolism after ischemic stroke, as well as new strategies to restore energy homeostasis and neural function. Through this, we hope to uncover new therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wang
- Department of Operating Room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
11
|
Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion 2020; 53:224-233. [PMID: 32540403 DOI: 10.1016/j.mito.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.
Collapse
|
12
|
Feng JH, Wei KZ, Gao JP, Xu X. Determination of adenosine phosphates in mouse myocardium tissue by HPLC with UV detection and using porous graphite carbon column. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122110. [PMID: 32315974 DOI: 10.1016/j.jchromb.2020.122110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
A high-performance liquid chromatography (HPLC) method with UV detection was established and validated for the simultaneous determination of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) in mouse myocardial tissues. After protein precipitation and compound extraction with pre-cooled perchloric acid and the supernatant was centrifuged with the pH value adjusted to 6.5-7.5, the analytes were separated on a porous graphitic carbon LC column (4.6 mm × 100 mm, 5 μm) using gradient elution with a mobile phase of 10 mmol/L borax solution, pH 9.18(A) and acetonitrile-tetrahydrofuran (1:1, v/v) (B). The LC flow rate was 0.8 mL/min; the UV detection wavelength was 254 nm and the column temperature was maintained at 35 °C. ATP, ADP, and AMP were separated and the intra-day relative standard deviations (RSDs) of peak area repeatability were 1.3-2.5% (n = 6). The correlation coefficients of the linearity between UV responses and adenosine phosphate concentrations were larger than 0.9998 in all cases, within concentration ranges of 0.71-91.6 μg/mL for ATP, 1.3-81.5 μg/mL for ADP and 1.69-108.1 μg/mL for AMP. The limits of detection were within 0.17-0.21 μg/mL. The average standard substance spiked-in recoveries were 93.6-104.7% (n = 3). The established HPLC method was successfully applied to quantitate ATP, ADP, and AMP in mouse myocardial tissues.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke-Zhao Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian-Ping Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
13
|
Aghanoori MR, Smith DR, Shariati-Ievari S, Ajisebutu A, Nguyen A, Desmond F, Jesus CHA, Zhou X, Calcutt NA, Aliani M, Fernyhough P. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol Metab 2019; 20:149-165. [PMID: 30545741 PMCID: PMC6358538 DOI: 10.1016/j.molmet.2018.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Diabetic sensorimotor polyneuropathy (DSPN) affects approximately half of diabetic patients leading to significant morbidity. There is impaired neurotrophic growth factor signaling, AMP-activated protein kinase (AMPK) activity and mitochondrial function in dorsal root ganglia (DRG) of animal models of type 1 and type 2 diabetes. We hypothesized that sub-optimal insulin-like growth factor 1 (IGF-1) signaling in diabetes drives loss of AMPK activity and mitochondrial function, both contributing to development of DSPN. METHODS Age-matched control Sprague-Dawley rats and streptozotocin (STZ)-induced type 1 diabetic rats with/without IGF-1 therapy were used for in vivo studies. For in vitro studies, DRG neurons from control and STZ-diabetic rats were cultured and treated with/without IGF-1 in the presence or absence of inhibitors or siRNAs. RESULTS Dysregulation of mRNAs for IGF-1, AMPKα2, ATP5a1 (subunit of ATPase), and PGC-1β occurred in DRG of diabetic vs. control rats. IGF-1 up-regulated mRNA levels of these genes in cultured DRGs from control or diabetic rats. IGF-1 treatment of DRG cultures significantly (P < 0.05) increased phosphorylation of Akt, P70S6K, AMPK and acetyl-CoA carboxylase (ACC). Mitochondrial gene expression and oxygen consumption rate (spare respiratory capacity), ATP production, mtDNA/nDNA ratio and neurite outgrowth were augmented (P < 0.05). AMPK inhibitor, Compound C, or AMPKα1-specific siRNA suppressed IGF-1 elevation of mitochondrial function, mtDNA and neurite outgrowth. Diabetic rats treated with IGF-1 exhibited reversal of thermal hypoalgesia and, in a separate study, reversed the deficit in corneal nerve profiles. In diabetic rats, IGF-1 elevated the levels of AMPK and P70S6K phosphorylation, raised Complex IV-MTCO1 and Complex V-ATP5a protein expression, and restored the enzyme activities of Complex IV and I in the DRG. IGF-1 prevented TCA metabolite build-up in nerve. CONCLUSIONS In DRG neuron cultures IGF-1 signals via AMPK to elevate mitochondrial function and drive axonal outgrowth. We propose that this signaling axis mediates IGF-1-dependent protection from distal dying-back of fibers in diabetic neuropathy.
Collapse
Affiliation(s)
- Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Shiva Shariati-Ievari
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Andrew Ajisebutu
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Annee Nguyen
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Fiona Desmond
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Carlos H A Jesus
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Xiajun Zhou
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michel Aliani
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
14
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Wang X, Chen J, Rong C, Pan F, Zhao X, Hu Y. GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells via the PI3K-AKT-mTOR signaling pathway. Biochem Biophys Res Commun 2018; 506:976-982. [PMID: 30404729 DOI: 10.1016/j.bbrc.2018.10.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE In this study, we investigated whether the GLP-1RA, liraglutide, affected differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to mature brown adipocytes and involvement of PI3K/AKT/mTOR signaling pathway in this process. METHODS C3H10T1/2 MSCs were induced to differentiate into brown adipocytes and treated with liraglutide (10 nM and 100 nM) for 0, 2, 4, 6 and 8 days with or without PI3K inhibitor LY294002. Oil red O staining was used for lipid droplet staining and cell proliferation was determined by cell counts. Quantitative realtime PCR was employed to determine the expression of adipogenic and mitochondrial genes, mitochondrial DNA (mtDNA). Western blot analyses were used for quantification of protein levels in PI3K/AKT/mTOR signaling pathway. RESULTS Liraglutide increased proliferation of C3H10T1/2 MSCs and formation of multilocular lipid droplets during differentiation. Adipogenic and mitochondrial genes, mtDNA were promoted by liraglutide. Moreover, liraglutide treatment increased the levels of phosphorylated AKT and mTOR. LY294002 not only attenuated differentiation of C3H10T1/2 MSCs into brown adipocytes, but also reduced phosphorylated AKT and mTOR levels. However, co-treatment with liraglutide and LY294002 decreased the expression of adipogenic and mitochondrial genes, mtDNA, and phosphorylated AKT and mTOR levels compared to C3H10T1/2 MSCs treated with liraglutide 100 nM. CONCLUSION GLP-1RA promotes brown adipogenesis of C3H10T1/2 mesenchymal stem cells, and PI3K/AKT/mTOR signaling pathway is involved in GLP-1RA-mediated promotion of differentiation.
Collapse
Affiliation(s)
- Xinlei Wang
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Chen
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Can Rong
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; The Department of Clinical Medicine, Jiangsu Health Vacational College, Nanjing, China
| | - Fenghui Pan
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaoqin Zhao
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China; Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Gurgul S, Buyukakilli B, Komur M, Okuyaz C, Balli E, Ozcan T. Does Levetiracetam Administration Prevent Cardiac Damage in Adulthood Rats Following Neonatal Hypoxia/Ischemia-Induced Brain Injury? ACTA ACUST UNITED AC 2018; 54:medicina54020012. [PMID: 30344243 PMCID: PMC6037241 DOI: 10.3390/medicina54020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular abnormalities are widespread when a newborn is exposed to a hypoxic-ischemic injury in the neonatal period. Although the neuroprotective effects of levetiracetam (LEV) have been reported after hypoxia, the cardioprotective effects of LEV have not been documented. Therefore, we aimed to investigate whether levetiracetam (LEV) has a protective effect on cardiac-contractility and ultrastructure of heart muscle in rats exposed to hypoxia-ischemia (HI) during the neonatal period. A total of 49 seven-day-old rat pups were separated into four groups. For HI induction, a combination of right common carotid artery ligation with 8% oxygen in seven-day-old rat pups for 2 h was performed for saline, LEV100, and LEV200 groups. Just after hypoxia, LEV100 and LEV200 groups were administered with 100 mg/kg and 200 mg/kg of LEV, respectively. The arteries of rats in the control group were only detected; no ligation or hypoxia was performed. At the end of the 16th week after HI, cardiac mechanograms were recorded, and samples of tissue were explored by electronmicroscopy.While ventricular contractility in the control group was similar to LEV100, there were significant decreases in both saline and LEV200 groups (p < 0.05). Although ventricular contractile duration of the control and saline groups was found to be similar, durations in the LEV100 and LEV200 groups were significantly higher (p < 0.05). After HI, mitochondrial damage and ultrastructural deteriorative alterations in ventricles and atriums of the LEV-administered groups were significantly less severe than the saline group. The present study showed that neonatal HI caused long-term cardiac dysfunction and ultrastructural deteriorations in cardiac muscles. LEV administration just after HI might possess some protective effects against myocardial damage and contractility.
Collapse
Affiliation(s)
- Serkan Gurgul
- Department of Biophysics, Faculty of Medicine, Gaziantep University, TR-27310 Gaziantep, Turkey.
| | - Belgin Buyukakilli
- Department of Biophysics, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Mustafa Komur
- Department of Child Health and Disease, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Cetin Okuyaz
- Department of Child Health and Disease, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Ebru Balli
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, TR-33343 Mersin, Turkey.
| | - Tuba Ozcan
- Department of Histology and Embryology, Faculty of Medicine, K. Sütcü Imam University, TR-46040 Kahramanmaraş, Turkey.
| |
Collapse
|
17
|
Liu X, Liu Y, Yang Y, Xu J, Dai D, Yan C, Li X, Tang R, Yu C, Ren H. Antioxidative Stress Effects of Salvia przewalskii Extract in Experimentally Injured Podocytes. Nephron Clin Pract 2016; 134:253-271. [PMID: 27529846 DOI: 10.1159/000448223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxidative stress is a leading cause of puromycin aminonucleoside (PAN)-induced nephrosis. As the inhibition of oxidative stress may improve injury of podocyte, we aimed at examining the effect of total phenolic acid extract of Salvia przewalskii (SPE) on PAN-induced oxidative stress in vivo and in vitro. METHODS Seventy-two male Sprague-Dawley rats were randomly assigned into 6 groups (n = 12), PAN alone, tacrolimus (TAC), SPE (50, 100 and 200 mg/kg) and normal control group. Salvianolic acid B (SalB, 5.52%) and rosmarinic acid (RA, 31.58%) were isolated from SPE. The intensities of 8-oxo-2'-deoxyguanosine (8-OHdG) were evaluated by immunofluorescence. In vitro, the podocytes were assigned into groups of control, PAN alone, TAC (1 μg/ml), SPE (158, 316 μg/ml), SalB (8.5, 17 μg/ml) and RA (25, 50 μg/ml). The intracellular reactive oxygen species (ROS) production and cell apoptosis rate were measured by flow cytometry. Form factor and aspect ratio were calculated to assess mitochondrial morphology. RESULTS In vivo, PAN increased the intensity of 8-OHdG in the renal tissue in the PAN group (p < 0.05). The high-dose SPE reduced 8-OHdG significantly at levels comparable to TAC alone (p > 0.05) on day 15. The intracellular ROS production, podocytes apoptosis rate and mitochondrial fragmentation increased significantly following PAN exposure in podocytes (p < 0.05). Treatment with high-dose SalB significantly ameliorated the increase in the expression of ROS and revised the structure of mitochondria. The percentage of apoptotic cells was decreased compared with the PAN group after SPE, SalB, RA, and TAC treatment for 24 h (p < 0.05). CONCLUSION These findings suggest that high-dose SPE significantly attenuated 8-OHdG in PAN nephrosis. Antioxidative stress effects of high-dose SPE, SalB against PAN-stimulated cultured podocyte via mechanisms include suppression of ROS expression and mitochondria fission. In addition, SPE, SalB and RA can suppress PAN-induced apoptosis.
Collapse
|
18
|
C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016; 157:60-9. [PMID: 27473404 DOI: 10.1016/j.mad.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug.
Collapse
|
19
|
Checchetto V, Teardo E, Carraretto L, Leanza L, Szabo I. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1258-1266. [PMID: 26970213 DOI: 10.1016/j.bbabio.2016.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vanessa Checchetto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131 Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luca Carraretto
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, Padova 35131, Italy; CNR Institute of Neuroscience, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
20
|
The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2016; 240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms as well as the development of new therapeutic strategies and as a tool for gauging disease progression in neurodegeneration, diabetes, cancer, and cardiovascular disease. The view is emerging that inner mitochondrial membrane (IMM) cation channels have a profound effect on mitochondrial function and, consequently, on the metabolic state and survival of the whole cell. Since disruption of the sustained integrity of mitochondria is strongly linked to human disease, pharmacological intervention offers a new perspective concerning neurodegenerative and cardiovascular diseases as well as cancer. This review summarizes our current knowledge regarding IMM cation channels and their roles under physiological conditions as well as in cancer, with special emphasis on potassium channels and the mammalian mitochondrial calcium uniporter.
Collapse
|
21
|
Mello JC, Gonzalez MVD, Moraes VWR, Prieto T, Nascimento OR, Rodrigues T. Protective Effect of Plantago major Extract against t-BOOH-Induced Mitochondrial Oxidative Damage and Cytotoxicity. Molecules 2015; 20:17747-59. [PMID: 26404215 PMCID: PMC6332108 DOI: 10.3390/molecules201017747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022] Open
Abstract
Plantago major L. produces several chemical substances with anti-inflammatory and analgesic activities and its use in the treatment of oral and throat inflammation in popular medicine is well described. In this study, the antioxidant potential of the Plantago major hydroethanolic extract was screened and its protective action was evaluated against t-BOOH-induced oxidative stress. The extract was obtained by fractionated percolation using 50% ethanolic solution and, after drying, suspended in dimethyl sulfoxide. The chromatographic profile of crude extract was obtained with the identification of some phytochemical markers and the total phenols and flavonoids were quantified. The scavenger activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals was determined and the antioxidant activity in biological systems was evaluated in isolated rat liver mitochondria and HepG2 cells. The extract exhibited a significant free radical scavenger activity at 0.1 mg/mL, and decreased the ROS (reactive oxygen species) generation in succinate-energized mitochondria. Such an effect was associated with the preservation of the intrinsic antioxidant defenses (reduced glutathione and NAD(P)H) against the oxidation by t-BOOH, and also to the protection of membranes from lipid oxidation. The cytoprotective effect of PmHE against t-BOOH induced cell death was also shown. These findings contribute to the understanding of the health benefits attributed to P. major.
Collapse
Affiliation(s)
- Joyce C Mello
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-170, Brazil.
| | - Mariano V D Gonzalez
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP 08780-911, Brazil.
| | - Vivian W R Moraes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-170, Brazil.
| | - Tatiana Prieto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-170, Brazil.
| | - Otaciro R Nascimento
- Grupo de Biofísica Molecular "Sergio Mascarenhas", Departamento de Física e Ciência Interdisciplinar, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, SP 13566-590, Brazil.
| | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-170, Brazil.
| |
Collapse
|
22
|
Petruş A, Duicu OM, Sturza A, Noveanu L, Kiss L, Dănilă M, Baczkó I, Muntean DM, Jost N. Modulation of mitochondrial respiratory function and ROS production by novel benzopyran analogues. Can J Physiol Pharmacol 2015; 93:811-8. [DOI: 10.1139/cjpp-2015-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A substantial body of evidence indicates that pharmacological activation of mitochondrial ATP-sensitive potassium channels (mKATP) in the heart is protective in conditions associated with ischemia/reperfusion injury. Several mechanisms have been postulated to be responsible for cardioprotection, including the modulation of mitochondrial respiratory function. The aim of the present study was to characterize the dose-dependent effects of novel synthetic benzopyran analogues, derived from a BMS-191095, a selective mKATP opener, on mitochondrial respiration and reactive oxygen species (ROS) production in isolated rat heart mitochondria. Mitochondrial respiratory function was assessed by high-resolution respirometry, and H2O2 production was measured by the Amplex Red fluorescence assay. Four compounds, namely KL-1487, KL-1492, KL-1495, and KL-1507, applied in increasing concentrations (50, 75, 100, and 150 μmol/L, respectively) were investigated. When added in the last two concentrations, all compounds significantly increased State 2 and 4 respiratory rates, an effect that was not abolished by 5-hydroxydecanoate (5-HD, 100 μmol/L), the classic mKATP inhibitor. The highest concentration also elicited an important decrease of the oxidative phosphorylation in a K+ independent manner. Both concentrations of 100 and 150 μmol/L for KL-1487, KL-1492, and KL-1495, and the concentration of 150 μmol/L for KL-1507, respectively, mitigated the mitochondrial H2O2 release. In isolated rat heart mitochondria, the novel benzopyran analogues act as protonophoric uncouplers of oxidative phosphorylation and decrease the generation of reactive oxygen species in a dose-dependent manner.
Collapse
Affiliation(s)
- Alexandra Petruş
- Department of Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, 14, Tudor Vladimirescu st. 300173 Timisoara, Romania
| | - Oana M. Duicu
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, Romania
| | - Adrian Sturza
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, Romania
| | - Lavinia Noveanu
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, Romania
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Maria Dănilă
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, Romania
| | - István Baczkó
- Department of Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, 14, Tudor Vladimirescu st. 300173 Timisoara, Romania
| | - Danina M. Muntean
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, Romania
| | - Norbert Jost
- Department of Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy of Timişoara, Romania
| |
Collapse
|
23
|
Scarpelli M, Todeschini A, Rinaldi F, Rota S, Padovani A, Filosto M. Strategies for treating mitochondrial disorders: an update. Mol Genet Metab 2014; 113:253-60. [PMID: 25458518 DOI: 10.1016/j.ymgme.2014.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain due to both nuclear and mitochondrial DNA mutations. The wide heterogeneity of biochemical dysfunctions and pathogenic mechanisms typical of this group of diseases has hindered therapy trials; therefore, available treatment options remain limited. Therapeutic strategies aimed at increasing mitochondrial functions (by enhancing biogenesis and electron transport chain function), improving the removal of reactive oxygen species and noxious metabolites, modulating aberrant calcium homeostasis and repopulating mitochondrial DNA could potentially restore the respiratory chain dysfunction. The challenge that lies ahead is the translation of some promising laboratory results into safe and effective therapies for patients. In this review we briefly update and discuss the most feasible therapeutic approaches for mitochondrial diseases.
Collapse
Affiliation(s)
- Mauro Scarpelli
- Section of Neurology, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Todeschini
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Fabrizio Rinaldi
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Silvia Rota
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Alessandro Padovani
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy.
| |
Collapse
|
24
|
Impairment of brain mitochondrial charybdotoxin- and ATP-insensitive BK channel activities in diabetes. Neuromolecular Med 2014; 16:862-71. [PMID: 25344764 DOI: 10.1007/s12017-014-8334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Existing evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance. More importantly, the open probability of channels from diabetic rats was reduced 1.5-2.5 fold compared to control, the most significant decrease being observed at depolarizing potentials. Because BKCa β4 subunit has been documented to left shift the BKCa channel voltage dependence curve in high Ca(2+) conditions, a Western blot analysis was undertaken where the expression of mitoBKCa α and β4 subunits was estimated using of anti-α and β4 subunit antibodies. Our results indicated a significant decrease in mitoBKCa β4 subunit expression coupled to a decrease in the expression of α subunit, an observation compatible with the observed decrease in Ca(2+) sensitivity. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from STZ model of diabetic rats, an effect potentially linked to a change in mitoBKCa β4 and α subunits expression and/or to an increase in reactive oxygen species production in high glucose conditions.
Collapse
|
25
|
Smad3/Nox4-mediated mitochondrial dysfunction plays a crucial role in puromycin aminonucleoside-induced podocyte damage. Cell Signal 2014; 26:2979-91. [PMID: 25229402 DOI: 10.1016/j.cellsig.2014.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/17/2014] [Indexed: 11/20/2022]
Abstract
Podocyte depletion due to apoptosis is the key hallmark of proteinuric kidney disease progression. Recently, several studies reported that mitochondrial (mt) dysfunction is involved in podocyte injury, while the underlying molecular mechanisms remain elusive. This study investigated the potential proximal signaling related to in vitro and in vivo mitochondrial dysfunction in a puromycin aminonucleoside (PA)-induced podocyte injury model. PA time- and dose-dependently resulted in cultured mouse podocyte damage, presenting with an increase of apoptotic cells and induction of activated caspase3/9. PA also caused mitochondrial damage and dysfunction based on the downregulation of the mtDNA level, decrease of transcriptional factors mtTfa and Nrf-1, decrease of CoxI, II and IV, and reduction of the oxygen consumption level and mitochondrial membrane potential level as well as excessive production of cellular ROS. Additionally, antioxidant MnSOD and catalase levels were decreased in mitochondrial fractions, and reduction of complex I and IV activity was also observed in PA-stimulated podocytes. Furthermore, an obvious translocation of p-Smad3 from the cytosol to nuclei and induction of mitochondrial Nox4 were detected following PA application. The PA-induced shift of cytochrome c was observed from mitochondria to the cytoplasm. Induction of Nox4 by PA administration was significantly repressed by Smad3-shRNA, while Nox4-shRNA showed no effect on PA-induced p-Smad3 activation. Notably, both Smad3 and Nox4 silencing significantly prevented the reduction of the mtDNA level, restored mitochondrial function, and decreased cellular apoptosis in PA-stimulated podocytes. A similar mitochondrial dysfunction was obtained in a PA-injected nephropathy rat, which was effectively inhibited by treatment with the antiproteinuric drug prednisone. In addition, Dab2 knockdown decreased albumin uptake and influx whereas it showed no effect on cellular apoptosis in PA-stimulated podocytes. In conclusion, our findings demonstrated that Smad3-Nox4 axis-mediated mitochondrial dysfunction is involved in PA-induced podocyte damage likely via increasing ROS generation and activating the cytochrome c-caspase9-caspase3 apoptotic signaling pathway. Dab2 may be required for the increased permeability of podocytes following injury.
Collapse
|
26
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
27
|
Ehx G, Gérin S, Mathy G, Franck F, Oliveira HC, Vercesi AE, Sluse FE. Liver proteomic response to hypertriglyceridemia in human-apolipoprotein C-III transgenic mice at cellular and mitochondrial compartment levels. Lipids Health Dis 2014; 13:116. [PMID: 25047818 PMCID: PMC4112841 DOI: 10.1186/1476-511x-13-116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hypertriglyceridemia (HTG) is defined as a triglyceride (TG) plasma level exceeding 150 mg/dl and is tightly associated with atherosclerosis, metabolic syndrome, obesity, diabetes and acute pancreatitis. The present study was undertaken to investigate the mitochondrial, sub-mitochondrial and cellular proteomic impact of hypertriglyceridemia in the hepatocytes of hypertriglyceridemic transgenic mice (overexpressing the human apolipoproteinC-III). METHODS Quantitative proteomics (2D-DIGE) analysis was carried out on both "low-expressor" (LE) and "high-expressor" (HE) mice, respectively exhibiting moderate and severe HTG, to characterize the effect of the TG plasma level on the proteomic response. RESULTS The mitoproteome analysis has revealed a large-scale phenomenon in transgenic mice, i.e. a general down-regulation of matricial proteins and up-regulation of inner membrane proteins. These data also demonstrate that the magnitude of proteomic changes strongly depends on the TG plasma level. Our different analyses indicate that, in HE mice, the capacity of several metabolic pathways is altered to promote the availability of acetyl-CoA, glycerol-3-phosphate, ATP and NADPH for TG de novo biosynthesis. The up-regulation of several cytosolic ROS detoxifying enzymes has also been observed, suggesting that the cytoplasm of HTG mice is subjected to oxidative stress. Moreover, our results suggest that iron over-accumulation takes place in the cytosol of HE mice hepatocytes and may contribute to enhance oxidative stress and to promote cellular proliferation. CONCLUSIONS These results indicate that the metabolic response to HTG in human apolipoprotein C-III overexpressing mice may support a high TG production rate and that the cytosol of hepatocytes is subjected to an important oxidative stress, probably as a result of FFA over-accumulation, iron overload and enhanced activity of some ROS-producing catabolic enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francis E Sluse
- Laboratory of Bioenergetics (B22), Department of Life Sciences, University of Liege, Boulevard du rectorat 27, 4000 Liege, Belgium.
| |
Collapse
|
28
|
Impaired mitochondrial function and reduced viability in bone marrow cells of obese mice. Cell Tissue Res 2014; 357:185-94. [DOI: 10.1007/s00441-014-1857-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
|
29
|
Cummings BP, Bettaieb A, Graham JL, Stanhope K, Haj FG, Havel PJ. Administration of pioglitazone alone or with alogliptin delays diabetes onset in UCD-T2DM rats. J Endocrinol 2014; 221:133-44. [PMID: 24627447 PMCID: PMC4457365 DOI: 10.1530/joe-13-0601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a need to identify strategies for type 2 diabetes prevention. Therefore, we investigated the efficacy of pioglitazone and alogliptin alone and in combination to prevent type 2 diabetes onset in UCD-T2DM rats, a model of polygenic obese type 2 diabetes. At 2 months of age, rats were divided into four groups: control, alogliptin (20 mg/kg per day), pioglitazone (2.5 mg/kg per day), and alogliptin+pioglitazone. Non-fasting blood glucose was measured weekly to determine diabetes onset. Pioglitazone alone and in combination with alogliptin lead to a 5-month delay in diabetes onset despite promoting increased food intake and body weight (BW). Alogliptin alone did not delay diabetes onset or affect food intake or BW relative to controls. Fasting plasma glucose, insulin, and lipid concentrations were lower and adiponectin concentrations were threefold higher in groups treated with pioglitazone. All treatment groups demonstrated improvements in glucose tolerance and insulin secretion during an oral glucose tolerance test with an additive improvement observed with alogliptin+pioglitazone. Islet histology revealed an improvement of islet morphology in all treatment groups compared with control. Pioglitazone treatment also resulted in increased expression of markers of mitochondrial biogenesis in brown adipose tissue and white adipose tissue, with mild elevations observed in animals treated with alogliptin alone. Pioglitazone markedly delays the onset of type 2 diabetes in UCD-T2DM rats through improvements of glucose tolerance, insulin sensitivity, islet function, and markers of adipose mitochondrial biogenesis; however, addition of alogliptin at a dose of 20 mg/kg per day to pioglitazone treatment does not enhance the prevention/delay of diabetes onset.
Collapse
Affiliation(s)
- Bethany P Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T7 022A Veterinary Research Tower (Box 17), Ithaca, New York 14850, USA Department of Molecular Biosciences, School of Veterinary Medicine Department of Nutrition, University of California Davis, Davis, California, USA Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | | | | | | | | | | |
Collapse
|
30
|
Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes. PLoS One 2014; 9:e88883. [PMID: 24558441 PMCID: PMC3928311 DOI: 10.1371/journal.pone.0088883] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/12/2014] [Indexed: 11/25/2022] Open
Abstract
Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD) (http://htd.cbi.pku.edu.cn). Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.
Collapse
|
31
|
Neves FA, Cortez E, Bernardo AF, Mattos ABM, Vieira AK, Malafaia TDO, Thole AA, Rodrigues-Cunha ACDS, Garcia-Souza EP, Sichieri R, Moura AS. Heart energy metabolism impairment in Western-diet induced obese mice. J Nutr Biochem 2013; 25:50-7. [PMID: 24314865 DOI: 10.1016/j.jnutbio.2013.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/20/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Nutritional transition has contributed to growing obesity, mainly by changing eating habits of the population. The mechanisms by which diet-induced obesity leads to cardiac injury are not completely understood, but it is known that obesity is associated to impaired cardiac function and energy metabolism, increasing morbidity and mortality. Therefore, our study aimed to investigate the mechanisms underlying cardiac metabolism impairment related to Western diet-induced obesity. After weaning, male Swiss mice were fed a Western diet for 16 weeks in order to induce obesity. After this period, the content of proteins involved in heart energy metabolism GLUT1, cytosolic lysate and plasma membrane GLUT4, AMPK, pAMPK, IRβ, IRS-1, PGC-1α, CPT1 and UCP2 was evaluated. Also, the oxidative phosphorylation of myocardial fibers was measured by high-resolution respirometry. Mice in the Western diet group (WG) presented altered biometric parameters compared to those in control group, including higher body weight, increased myocardial lipid deposition and glucose intolerance, which demonstrate the obesogenic role of Western diet. WG presented increased CPT1 and UCP2 contents and decreased IRS-1, plasma membrane GLUT4 and PGC-1α contents. In addition, WG presented cardiac mitochondrial dysfunction and reduced biogenesis, demonstrating a lower capacity of carbohydrates and fatty acid oxidation and also decreased coupling between oxidative phosphorylation and adenosine triphosphate synthesis. Cardiac metabolism impairment related to Western diet-induced obesity is probably due to damaged myocardial oxidative capacity, reduced mitochondrial biogenesis and mitochondria uncoupling, which compromise the bioenergetic metabolism of heart.
Collapse
Affiliation(s)
- Fabiana A Neves
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Madathil MM, Khdour OM, Jaruvangsanti J, Hecht SM. A structurally simplified analogue of geldanamycin exhibits neuroprotective activity. ACS Med Chem Lett 2013; 4:953-7. [PMID: 24900591 DOI: 10.1021/ml400207m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 11/30/2022] Open
Abstract
The syntheses of a structurally simplified geldanamycin analogue 2 and two related compounds are described. Compound 2 conferred cytoprotection and quenched ROS and lipid peroxidation in a dose-dependent manner in Friedreich's ataxia (FRDA) lymphocytes at low micromolar concentrations. It also prevented ROS-induced damage of cellular lipid membranes and maintained the mitochondrial membrane potential of FRDA lymphocytes. In addition, 2 did not inhibit Hsp90 when tested at micromolar concentrations, exhibited no cytotoxicity, and afforded neuroprotection to differentiated SH-SY5Y cells under conditions of Aβ-induced cell toxicity.
Collapse
Affiliation(s)
- Manikandadas M. Madathil
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| | - Omar M. Khdour
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| | - Jennifer Jaruvangsanti
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| | - Sidney M. Hecht
- Center
for BioEnergetics, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
85287-2904, United States
| |
Collapse
|
33
|
Magnani ND, Marchini T, Vanasco V, Tasat DR, Alvarez S, Evelson P. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes. Toxicol Appl Pharmacol 2013; 270:31-8. [DOI: 10.1016/j.taap.2013.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/24/2022]
|
34
|
Imasawa T, Rossignol R. Podocyte energy metabolism and glomerular diseases. Int J Biochem Cell Biol 2013; 45:2109-18. [PMID: 23806869 DOI: 10.1016/j.biocel.2013.06.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022]
Abstract
Mitochondria are crucial organelles that produce and deliver adenosine triphosphate (ATP), by which all cellular processes are driven. Although the mechanisms that control mitochondrial biogenesis, function and dynamics are complex process and vary among different cell types, recent studies provided many new discoveries in this field. Podocyte injury is a crucial step in the development of a large number of glomerular diseases. Glomerular podocytes are unique cells with complex foot processes that cover the outer layer of the glomerular basement membrane, and are the principle cells composing filtration barriers of glomerular capillaries. Little is known on the modalities and the regulation of podocyte's energetics as well as the type of energy substrate primarily used for their activity, recent studies revealed that dysfunction of energy transduction in podocytes may underlie the podocyte injury associated with numerous glomerular diseases. We herein review and discuss the importance of a fine regulation of energy metabolism in podocytes for maintaining their cellular structure and related kidney function. In the future, understanding these mechanisms will open up new areas of treatment for glomerular diseases.
Collapse
|
35
|
Alberici LC, Paim BA, Zecchin KG, Mirandola SR, Pestana CR, Castilho RF, Vercesi AE, Oliveira HCF. Activation of the mitochondrial ATP-sensitive K+ channel reduces apoptosis of spleen mononuclear cells induced by hyperlipidemia. Lipids Health Dis 2013; 12:87. [PMID: 23764148 PMCID: PMC3693968 DOI: 10.1186/1476-511x-12-87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023] Open
Abstract
Background We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoKATP protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoKATP activity and evaluate the influence of this trait on cell redox state and viability. Methods Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. Results HTG mice mononuclear cells displayed increased mitoKATP activity, as evidenced by higher resting respiration rates that were sensitive to mitoKATP antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoKATP further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. Conclusions These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoKATP channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoKATP channels. Thus, mitoKATP opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.
Collapse
Affiliation(s)
- Luciane C Alberici
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain 2013; 154 Suppl 1:S2-9. [PMID: 23711480 DOI: 10.1016/j.pain.2013.05.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.
Collapse
Affiliation(s)
- David B Reichling
- Department of Medicine, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
37
|
Lungato L, Marques MS, Pereira VG, Hix S, Gazarini ML, Tufik S, D'Almeida V. Sleep deprivation alters gene expression and antioxidant enzyme activity in mice splenocytes. Scand J Immunol 2013; 77:195-9. [PMID: 23360182 DOI: 10.1111/sji.12029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
Abstract
Cellular defence against the formation of reactive oxygen species (ROS) involves a number of mechanisms in which antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) play an important role. The relation between sleep deprivation and oxidative stress has not yet been completely elucidated. Although some authors did not find evidence of this relationship, others found alterations in some oxidative stress markers in response to sleep deprivation. Thus, the objective of this study was to identify changes induced by sleep deprivation in the activity and gene expression of antioxidant enzymes in mice splenocytes, ideally corroborating a better understanding of the observed effects related to sleep deprivation, which could be triggered by oxidative imbalance. Splenocytes from mice sleep deprived for 72 h showed no significant difference in CAT and CuZnSOD gene expression compared with normal sleep mice. However, sleep-deprived mice did show higher MnSOD gene expression than the control group. Concerning enzymatic activity, CuZnSOD and MnSOD significantly increased after sleep deprivation, despite the expression in CuZnSOD remained unchanged. Moreover, CAT activity was significantly lower after sleep deprivation. The data suggest that the antioxidant system is triggered by sleep deprivation, which in turn could influence the splenocytes homoeostasis, thus interfering in physiological responses.
Collapse
Affiliation(s)
- L Lungato
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | | | | | | | | | | | | |
Collapse
|
38
|
Shimasaki T, Masaki T, Mitsutomi K, Ueno D, Gotoh K, Chiba S, Kakuma T, Yoshimatsu H. The dipeptidyl peptidase-4 inhibitor des-fluoro-sitagliptin regulates brown adipose tissue uncoupling protein levels in mice with diet-induced obesity. PLoS One 2013; 8:e63626. [PMID: 23696840 PMCID: PMC3656085 DOI: 10.1371/journal.pone.0063626] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Dipeptidyl peptidase (DPP)-4 is responsible for the degradation of several peptides that contain an alanine or proline at the penultimate position or position P1. DPP-4 inhibitors (DPP-4is) have protective effects against type-2 diabetes and several metabolic disorders. METHODS In the present study, we examined the effects of des-fluoro-sitagliptin (DFS), a DDP-4i, on body adiposity and levels of peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ coactivator-1 (PGC-1), and uncoupling proteins (UCPs) in mice with diet-induced obesity. RESULTS Treatment with DFS dose-dependently decreased the weight of white adipose tissue and serum levels of glucose, compared with controls, without influencing food intake (P<0.05). Additionally, DFS treatment increased the levels of PPAR-α, PGC-1, and UCPs in brown adipose tissue (BAT), and of PPAR-α and UCP3 in skeletal muscle (P<0.05). Furthermore, the effects on BAT PGC-1 and muscle PPAR-α levels were attenuated by treatment with the glucagon-like peptide 1 (GLP-1) antagonist exendin (9-39). Interestingly, hypothalamic levels of proopiomelanocortin (POMC) were increased by DFS treatment and the effects of DFS on PPAR-α, PGC-1, and UCP levels were attenuated in melanocortin (MC)-4 receptor-deficient mice. CONCLUSIONS In conclusion, high-dose DFS appeared to regulate body adiposity and UCPs in mice with diet-induced obesity, at least partly through a GLP-1 and/or MC-4 pathway.
Collapse
Affiliation(s)
- Takanobu Shimasaki
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takayuki Masaki
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
- * E-mail:
| | - Kimihiko Mitsutomi
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Daisuke Ueno
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Koro Gotoh
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Seiichi Chiba
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Tetsuya Kakuma
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hironobu Yoshimatsu
- Department of Internal Medicine 1, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
39
|
Abstract
The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondira often rely on disruption of protein--protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion.
Collapse
Affiliation(s)
- Jonathan E Constance
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | |
Collapse
|
41
|
|
42
|
Szabò I, Leanza L, Gulbins E, Zoratti M. Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch 2011; 463:231-46. [PMID: 22089812 DOI: 10.1007/s00424-011-1058-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 10/30/2011] [Indexed: 02/06/2023]
Abstract
The inner membrane of the ATP-producing organelles of endosymbiotic origin, mitochondria, has long been considered to be poorly permeable to cations and anions, since the strict control of inner mitochondrial membrane permeability is crucial for efficient ATP synthesis. Over the past 30 years, however, it has become clear that various ion channels--along with antiporters and uniporters--are present in the mitochondrial inner membrane, although at rather low abundance. These channels are important for energy supply, and some are a decisive factor in determining whether a cell lives or dies. Their electrophysiological and pharmacological characterisations have contributed importantly to the ongoing elucidation of their pathophysiological roles. This review gives an overview of recent advances in our understanding of the functions of the mitochondrial potassium channels identified so far. Open issues concerning the possible molecular entities giving rise to the observed activities and channel protein targeting to mitochondria are also discussed.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
43
|
Rea SL, Graham BH, Nakamaru-Ogiso E, Kar A, Falk MJ. Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases. ACTA ACUST UNITED AC 2011; 16:200-18. [PMID: 20818735 DOI: 10.1002/ddrr.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multicellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems.
Collapse
Affiliation(s)
- Shane L Rea
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| | | | | | | | | |
Collapse
|
44
|
Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1309-15. [PMID: 21094666 DOI: 10.1016/j.bbamcr.2010.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/05/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022]
Abstract
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in the protective mechanism of ischemic preconditioning (IPC). The channel is reportedly sensitive to reactive oxygen and nitrogen species, and the aim of this study was to compare such species in parallel, to build a more comprehensive picture of mK(ATP) regulation. mK(ATP) activity was measured by both osmotic swelling and Tl(+) flux assays, in isolated rat heart mitochondria. An isolated adult rat cardiomyocyte model of ischemia-reperfusion (IR) injury was also used to determine the role of mK(ATP) in cardioprotection by nitroxyl. Key findings were as follows: (i) mK(ATP) was activated by O(2)(-) and H(2)O(2) but not other peroxides. (ii) mK(ATP) was inhibited by NADPH. (iii) mK(ATP) was activated by S-nitrosothiols, nitroxyl, and nitrolinoleate. The latter two species also inhibited mitochondrial complex II. (iv) Nitroxyl protected cardiomyocytes against IR injury in an mK(ATP)-dependent manner. Overall, these results suggest that the mK(ATP) channel is activated by specific reactive oxygen and nitrogen species, and inhibited by NADPH. The redox modulation of mK(ATP) may be an underlying mechanism for its regulation in the context of IPC. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Bruno B Queliconi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|