1
|
Riediger M, Hernández-Prieto MA, Song K, Hess WR, Futschik ME. Genome-wide identification and characterization of Fur-binding sites in the cyanobacteria Synechocystis sp. PCC 6803 and PCC 6714. DNA Res 2021; 28:6407143. [PMID: 34672328 PMCID: PMC8634477 DOI: 10.1093/dnares/dsab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Ferric uptake regulator (Fur) is crucial to both pathogenic and non-pathogenic bacteria for the maintenance of iron homeostasis as well as the defence against reactive oxygen species. Based on datasets from the genome-wide mapping of transcriptional start sites and transcriptome data, we identified a high confidence regulon controlled by Fur for the model cyanobacterium Synechocystis sp. PCC 6803 and its close relative, strain 6714, based on the conserved strong iron starvation response and Fur-binding site occurrence. This regulon comprises 33 protein-coding genes and the sRNA IsaR1 that are under the control of 16 or 14 individual promoters in strains 6803 and 6714, respectively. The associated gene functions are mostly restricted to transporters and enzymes involved in the uptake and storage of iron ions, with few exceptions or unknown functional relevance. Within the isiABC operon, we identified a previously neglected gene encoding a small cysteine-rich protein, which we suggest calling, IsiE. The regulation of iron uptake, storage, and utilization ultimately results from the interplay between the Fur regulon, several other transcription factors, the FtsH3 protease, and the sRNA IsaR1.
Collapse
Affiliation(s)
- Matthias Riediger
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Miguel A Hernández-Prieto
- ARC Centre of Excellence for Translational Photosynthesis & School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kuo Song
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang R Hess
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias E Futschik
- SysBioLab, Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal.,MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
2
|
Xiao Y, Huang G, You X, Zhu Q, Wang W, Kuang T, Han G, Sui SF, Shen JR. Structural insights into cyanobacterial photosystem II intermediates associated with Psb28 and Tsl0063. NATURE PLANTS 2021; 7:1132-1142. [PMID: 34226692 DOI: 10.1038/s41477-021-00961-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex and catalyses light-induced water oxidation, leading to the conversion of light energy into chemical energy and the release of dioxygen. We analysed the structures of two Psb28-bound PSII intermediates, Psb28-RC47 and Psb28-PSII, purified from a psbV-deletion strain of the thermophilic cyanobacterium Thermosynechococcus vulcanus, using cryo-electron microscopy. Both Psb28-RC47 and Psb28-PSII bind one Psb28, one Tsl0063 and an unknown subunit. Psb28 is located at the cytoplasmic surface of PSII and interacts with D1, D2 and CP47, whereas Tsl0063 is a transmembrane subunit and binds at the side of CP47/PsbH. Substantial structural perturbations are observed at the acceptor side, which result in conformational changes of the quinone (QB) and non-haem iron binding sites and thus may protect PSII from photodamage during assembly. These results provide a solid structural basis for understanding the assembly process of native PSII.
Collapse
Affiliation(s)
- Yanan Xiao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Zhang H, Ge H, Zhang Y, Wang Y, Zhang P. Slr0320 Is Crucial for Optimal Function of Photosystem II during High Light Acclimation in Synechocystis sp. PCC 6803. Life (Basel) 2021; 11:life11040279. [PMID: 33810453 PMCID: PMC8065906 DOI: 10.3390/life11040279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Upon exposure of photosynthetic organisms to high light (HL), several HL acclimation responses are triggered. Herein, we identified a novel gene, slr0320, critical for HL acclimation in Synechocystis sp. PCC 6803. The growth rate of the Δslr0320 mutant was similar to wild type (WT) under normal light (NL) but severely declined under HL. Net photosynthesis of the mutant was lower under HL, but maximum photosystem II (PSII) activity was higher under NL and HL. Immunodetection revealed the accumulation and assembly of PSII were similar between WT and the mutant. Chlorophyll fluorescence traces showed the stable fluorescence of the mutant under light was much higher. Kinetics of single flash-induced chlorophyll fluorescence increase and decay revealed the slower electron transfer from QA to QB in the mutant. These data indicate that, in the Δslr0320 mutant, the number of functional PSIIs was comparable to WT even under HL but the electron transfer between QA and QB was inefficient. Quantitative proteomics and real-time PCR revealed that expression profiles of psbL, psbH and psbI were significantly altered in the Δslr0320 mutant. Thus, Slr0320 protein plays critical roles in optimizing PSII activity during HL acclimation and is essential for PSII electron transfer from QA to QB.
Collapse
Affiliation(s)
- Hao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Z.); (Y.Z.)
- Correspondence:
| |
Collapse
|
4
|
Chu HM, Narindri B, Hsueh HT, Chu H. Improvement of Thermosynechococcus sp. CL-1 performance on biomass productivity and CO 2 fixation via growth factors arrangement. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111822. [PMID: 32135470 DOI: 10.1016/j.jphotobiol.2020.111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
The enormous attraction on CO2 biofixation using photosynthetic microorganisms such as cyanobacteria has been risen due to its promising efficiency and valuable by-products production. In this study, an isolated cyanobacterium from hot spring in Taiwan, Thermosynechococcus sp. CL-1 (TCL-1) was evaluated for its growth factors arrangement effect on the biomass productivity and CO2 biofixation. The initial biomass concentration, and nutrient supply level variation influenced TCL-1 biomass productivity and CO2 biofixation rate while the adjusted and controlled pH value gave an insignificant difference on its performance. The initial biomass concentration of 3 g L-1 gave the best result on biomass productivity and CO2 fixation which reached 143.4 mg L-1 h-1 and 224 mg L-1 h-1 respectively. Regarding to the result of this study, controlled pH value by the CO2 supply inside the reactor, produced an insignificant difference in TCL-1 performance compared to those with the uncontrolled pH value. The variation of nutrient supply level was achieved by the variation of macronutrient and micronutrient supply inside the medium. The G-solution contains metals and other micronutrient elements which are necessary for the growth of TCL-1. The combination between 5-folds MF medium as the macronutrient, and 3-folds G-solution as the micronutrient supply, present the best TCL-1 performance on biomass productivity and CO2 fixation rate.
Collapse
Affiliation(s)
- Hsuan Man Chu
- Department of Environmental Engineering National Cheng Kung University, Tainan 701, Taiwan
| | - Birgitta Narindri
- Department of Environmental Engineering National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
5
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
6
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, Branco Dos Santos F, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Front Bioeng Biotechnol 2019; 7:67. [PMID: 30984754 PMCID: PMC6450040 DOI: 10.3389/fbioe.2019.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
The approach of providing an oxygenic photosynthetic organism with a cyclic electron transfer system, i.e., a far-red light-driven proton pump, is widely proposed to maximize photosynthetic efficiency via expanding the absorption spectrum of photosynthetically active radiation. As a first step in this approach, Gloeobacter rhodopsin was expressed in a PSI-deletion strain of Synechocystis sp. PCC6803. Functional expression of Gloeobacter rhodopsin, in contrast to Proteorhodopsin, did not stimulate the rate of photoheterotrophic growth of this Synechocystis strain, analyzed with growth rate measurements and competition experiments. Nevertheless, analysis of oxygen uptake and—production rates of the Gloeobacter rhodopsin-expressing strains, relative to the ΔPSI control strain, confirm that the proton-pumping Gloeobacter rhodopsin provides the cells with additional capacity to generate proton motive force. Significantly, expression of the Gloeobacter rhodopsin did modulate levels of pigment formation in the transgenic strain.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Center of Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jos Arents
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - J Merijn Schuurmans
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | | | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, dos Santos FB, Hellingwerf KJ. Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a ∆PSI strain of Synechocystis sp. PCC6803. Metab Eng 2019; 52:68-76. [DOI: 10.1016/j.ymben.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 11/28/2022]
|
8
|
Tibiletti T, Rehman AU, Vass I, Funk C. The stress-induced SCP/HLIP family of small light-harvesting-like proteins (ScpABCDE) protects Photosystem II from photoinhibitory damages in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2018; 135:103-114. [PMID: 28795265 PMCID: PMC5783992 DOI: 10.1007/s11120-017-0426-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/22/2017] [Indexed: 05/07/2023]
Abstract
Small CAB-like proteins (SCPs) are single-helix light-harvesting-like proteins found in all organisms performing oxygenic photosynthesis. We investigated the effect of growth in moderate salt stress on these stress-induced proteins in the cyanobacterium Synechocystis sp. PCC 6803 depleted of Photosystem I (PSI), which expresses SCPs constitutively, and compared these cells with a PSI-less/ScpABCDE- mutant. SCPs, by stabilizing chlorophyll-binding proteins and Photosystem II (PSII) assembly, protect PSII from photoinhibitory damages, and in their absence electrons accumulate and will lead to ROS formation. The presence of 0.2 M NaCl in the growth medium increased the respiratory activity and other PSII electron sinks in the PSI-less/ScpABCDE- strain. We postulate that this salt-induced effect consumes the excess of PSII-generated electrons, reduces the pressure of the electron transport chain, and thereby prevents 1O2 production.
Collapse
Affiliation(s)
- Tania Tibiletti
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- SC Synchrotron SOLEIL, AILES beamline, L'Orme des Merisiers Saint-Aubin- BP 48, 91192, Gif-sur-Yvette, France
| | - Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
9
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
10
|
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels. G3-GENES GENOMES GENETICS 2017; 7:517-532. [PMID: 27974439 PMCID: PMC5295598 DOI: 10.1534/g3.116.036855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels.
Collapse
|
11
|
Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc Natl Acad Sci U S A 2016; 113:E3792-800. [PMID: 27303039 DOI: 10.1073/pnas.1603562113] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation of singlet oxygen ((1)O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, (1)O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of (1)O2 was first documented in the fluorescent (flu) mutant of Arabidopsis It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by (1)O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of (1)O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of (1)O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and (1)O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII.
Collapse
|
12
|
Varkey D, Mazard S, Ostrowski M, Tetu SG, Haynes P, Paulsen IT. Effects of low temperature on tropical and temperate isolates of marine Synechococcus. THE ISME JOURNAL 2016; 10:1252-63. [PMID: 26495993 PMCID: PMC5029218 DOI: 10.1038/ismej.2015.179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 08/01/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022]
Abstract
Temperature is an important factor influencing the distribution of marine picocyanobacteria. However, molecular responses contributing to temperature preferences are poorly understood in these important primary producers. We compared the temperature acclimation of a tropical Synechococcus strain WH8102 with temperate strain BL107 at 18 °C relative to 22 °C and examined their global protein expression, growth patterns, photosynthetic efficiency and lipid composition. Global protein expression profiles demonstrate the partitioning of the proteome into major categories: photosynthesis (>40%), translation (10-15%) and membrane transport (2-8%) with distinct differences between and within strains grown at different temperatures. At low temperature, growth and photosynthesis of strain WH8102 was significantly decreased, while BL107 was largely unaffected. There was an increased abundance of proteins involved in protein biosynthesis at 18 °C for BL107. Each strain showed distinct differences in lipid composition with higher unsaturation in strain BL107. We hypothesize that differences in membrane fluidity, abundance of protein biosynthesis machinery and the maintenance of photosynthesis efficiency contribute to the acclimation of strain BL107 to low temperature. Additional proteins unique to BL107 may also contribute to this strain's improved fitness at low temperature. Such adaptive capacities are likely important factors favoring growth of temperate strains over tropical strains in high latitude niches.
Collapse
Affiliation(s)
- Deepa Varkey
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sophie Mazard
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
Deletion of the gene family of small chlorophyll-binding proteins (ScpABCDE) offsets C/N homeostasis in Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:396-407. [DOI: 10.1016/j.bbabio.2015.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 02/03/2023]
|
14
|
Komenda J, Sobotka R. Cyanobacterial high-light-inducible proteins — Protectors of chlorophyll–protein synthesis and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:288-95. [DOI: 10.1016/j.bbabio.2015.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/28/2015] [Accepted: 08/30/2015] [Indexed: 12/24/2022]
|
15
|
Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803. Sci Rep 2016; 6:22168. [PMID: 26923200 PMCID: PMC4770689 DOI: 10.1038/srep22168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 01/03/2023] Open
Abstract
Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu).
Collapse
Affiliation(s)
- Miguel A. Hernández-Prieto
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Trudi Ann Semeniuk
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Matthias E. Futschik
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
16
|
Wang P, Grimm B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. PHOTOSYNTHESIS RESEARCH 2015; 126:189-202. [PMID: 25957270 DOI: 10.1007/s11120-015-0154-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
17
|
Akulinkina DV, Bolychevtseva YV, Elanskaya IV, Karapetyan NV, Yurina NP. Association of High Light-Inducible HliA/HliB Stress Proteins with Photosystem 1 Trimers and Monomers of the Cyanobacterium Synechocystis PCC 6803. BIOCHEMISTRY (MOSCOW) 2015; 80:1254-61. [PMID: 26567568 DOI: 10.1134/s0006297915100053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hlip (high light-inducible proteins) are important for protection of the photosynthetic apparatus of cyanobacteria from light stress. However, the interaction of these proteins with chlorophyll-protein complexes of thylakoids remains unclear. The association of HliA/HliB stress proteins with photosystem 1 (PS1) complexes of the cyanobacterium Synechocystis PCC 6803 was studied to understand their function. Western blotting demonstrated that stress-induced HliA/HliB proteins are associated with PS1 trimers in wild-type cells grown under moderate light condition (40 µmol photons/m(2) per sec). The content of these proteins increased 1.7-fold after light stress (150 µmol photons/m(2) per sec) for 1 h. In the absence of PS1 trimers (ΔpsaL mutant), the HliA/HliB proteins are associated with PS1 monomers and the PS2 complex. HliA/HliB proteins are associated with PS1 monomers but not with PS1 trimers in Synechocystis PS2-deficient mutant grown at 5 µmol photons/m(2) per sec; the content of Hli proteins associated with PS1 monomers increased 1.2-fold after light stress. The HliA/HliB proteins were not detected in wild-type cells of cyanobacteria grown in glucose-supplemented medium at 5 µmol photons/m(2) per sec, but light stress induces the synthesis of stress proteins associated with PS1 trimers. Thus, for the first time, the association of HliA/HliB proteins not only with PS1 trimers, but also with PS1 monomers is shown, which suggests a universal role of these proteins in the protection of the photosynthetic apparatus from excess light.
Collapse
Affiliation(s)
- D V Akulinkina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
18
|
Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:71-97. [PMID: 25381655 DOI: 10.1007/s11120-014-0057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
Collapse
Affiliation(s)
- Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andrew D Millard
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
19
|
Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New? Molecules 2015; 20:14621-37. [PMID: 26274949 PMCID: PMC6331805 DOI: 10.3390/molecules200814621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5ʹ GGCGATCGCC 3ʹ, was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.
Collapse
|
20
|
Linhartová M, Bučinská L, Halada P, Ječmen T, Setlík J, Komenda J, Sobotka R. Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium Synechocystis PCC 6803. Mol Microbiol 2014; 93:1207-23. [PMID: 25060824 DOI: 10.1111/mmi.12730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
Abstract
Type IV pilins are bacterial proteins that are small in size but have a broad range of functions, including motility, transformation competence and secretion. Although pilins vary in sequence, they possess a characteristic signal peptide that has to be removed by the prepilin peptidase PilD during pilin maturation. We generated a pilD (slr1120) null mutant of the cyanobacterium Synechocystis 6803 that accumulates an unprocessed form of the major pilin PilA1 (pPilA1) and its non-glycosylated derivative (NpPilA1). Notably, the pilD strain had aberrant membrane ultrastructure and did not grow photoautotrophically because the synthesis of Photosystem II subunits was abolished. However, other membrane components such as Photosystem I and ATP synthase were synthesized at levels comparable to the control strain. Proliferation of the pilD strain was rescued by elimination of the pilA1 gene, demonstrating that PilA1 prepilin inhibited the synthesis of Photosystem II. Furthermore, NpPilA1 co-immunoprecipitated with the SecY translocase and the YidC insertase, and both of these essential translocon components were degraded in the mutant. We propose that unprocessed prepilins inactivate an identical pool of translocons that function in the synthesis of both pilins and the core subunits of Photosystem II.
Collapse
Affiliation(s)
- Markéta Linhartová
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic; Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
21
|
Chidgey JW, Linhartová M, Komenda J, Jackson PJ, Dickman MJ, Canniffe DP, Koník P, Pilný J, Hunter CN, Sobotka R. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. THE PLANT CELL 2014; 26:1267-79. [PMID: 24681617 PMCID: PMC4001383 DOI: 10.1105/tpc.114.124495] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls.
Collapse
Affiliation(s)
- Jack W. Chidgey
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Markéta Linhartová
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Philip J. Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mark J. Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Daniel P. Canniffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Peter Koník
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jan Pilný
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Address correspondence to
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
22
|
Knoppová J, Sobotka R, Tichý M, Yu J, Konik P, Halada P, Nixon PJ, Komenda J. Discovery of a chlorophyll binding protein complex involved in the early steps of photosystem II assembly in Synechocystis. THE PLANT CELL 2014; 26:1200-12. [PMID: 24681620 PMCID: PMC4001378 DOI: 10.1105/tpc.114.123919] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.
Collapse
Affiliation(s)
- Jana Knoppová
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Martin Tichý
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter Konik
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences, 14220 Praha 4-Krč, Czech Republic
| | - Peter J. Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, London SW7 2AZ, United Kingdom
| | - Josef Komenda
- Institute of Microbiology, Academy of Sciences, 37981 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Address correspondence to
| |
Collapse
|
23
|
Sobotka R. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2014; 119:223-32. [PMID: 23377990 DOI: 10.1007/s11120-013-9797-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/10/2013] [Indexed: 05/20/2023]
Abstract
Chlorophyll (Chl) is an essential component of the photosynthetic apparatus. Embedded into Chl-binding proteins, Chl molecules play a central role in light harvesting and charge separation within the photosystems. It is critical for the photosynthetic cell to not only ensure the synthesis of a sufficient amount of new Chl-binding proteins but also avoids any misbalance between apoprotein synthesis and the formation of potentially phototoxic Chl molecules. According to the available data, Chl-binding proteins are translated on membrane bound ribosomes and their integration into the membrane is provided by the SecYEG/Alb3 translocon machinery. It appears that the insertion of Chl molecules into growing polypeptide is a prerequisite for the correct folding and finishing of Chl-binding protein synthesis. Although the Chl biosynthetic pathway is fairly well-described on the level of enzymatic steps, a link between Chl biosynthesis and the synthesis of apoproteins remains elusive. In this review, I summarize the current knowledge about this issue putting emphasis on protein-protein interactions. I present a model of the Chl biosynthetic pathway organized into a multi-enzymatic complex and physically attached to the SecYEG/Alb3 translocon. Localization of this hypothetical large biosynthetic centre in the cyanobacterial cell is also discussed as well as regulatory mechanisms coordinating the rate of Chl and apoprotein synthesis.
Collapse
Affiliation(s)
- Roman Sobotka
- Institute of Microbiology CAS, Opatovický mlyn, Třeboň, Czech Republic,
| |
Collapse
|
24
|
Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Takahashi K, Takabayashi A, Tanaka A, Tanaka R. Functional analysis of light-harvesting-like protein 3 (LIL3) and its light-harvesting chlorophyll-binding motif in Arabidopsis. J Biol Chem 2013; 289:987-99. [PMID: 24275650 DOI: 10.1074/jbc.m113.525428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The light-harvesting complex (LHC) constitutes the major light-harvesting antenna of photosynthetic eukaryotes. LHC contains a characteristic sequence motif, termed LHC motif, consisting of 25-30 mostly hydrophobic amino acids. This motif is shared by a number of transmembrane proteins from oxygenic photoautotrophs that are termed light-harvesting-like (LIL) proteins. To gain insights into the functions of LIL proteins and their LHC motifs, we functionally characterized a plant LIL protein, LIL3. This protein has been shown previously to stabilize geranylgeranyl reductase (GGR), a key enzyme in phytol biosynthesis. It is hypothesized that LIL3 functions to anchor GGR to membranes. First, we conjugated the transmembrane domain of LIL3 or that of ascorbate peroxidase to GGR and expressed these chimeric proteins in an Arabidopsis mutant lacking LIL3 protein. As a result, the transgenic plants restored phytol-synthesizing activity. These results indicate that GGR is active as long as it is anchored to membranes, even in the absence of LIL3. Subsequently, we addressed the question why the LHC motif is conserved in the LIL3 sequences. We modified the transmembrane domain of LIL3, which contains the LHC motif, by substituting its conserved amino acids (Glu-171, Asn-174, and Asp-189) with alanine. As a result, the Arabidopsis transgenic plants partly recovered the phytol-biosynthesizing activity. However, in these transgenic plants, the LIL3-GGR complexes were partially dissociated. Collectively, these results indicate that the LHC motif of LIL3 is involved in the complex formation of LIL3 and GGR, which might contribute to the GGR reaction.
Collapse
Affiliation(s)
- Kaori Takahashi
- From the Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan and
| | | | | | | |
Collapse
|
26
|
Boehm M, Yu J, Reisinger V, Beckova M, Eichacker LA, Schlodder E, Komenda J, Nixon PJ. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II. Philos Trans R Soc Lond B Biol Sci 2013; 367:3444-54. [PMID: 23148271 PMCID: PMC3497071 DOI: 10.1098/rstb.2012.0066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we showed that RC47 is heterogeneous and mainly found as a monomer of 220 kDa. RC47 complexes co-purify with small Cab-like proteins (ScpC and/or ScpD) and with Psb28 and its homologue Psb28-2. Analysis of isolated His-tagged RC47 indicated the presence of D1, D2, the CP47 apopolypeptide, plus nine of the 13 low-molecular-mass (LMM) subunits found in the PSII holoenzyme, including PsbL, PsbM and PsbT, which lie at the interface between the two momomers in the dimeric holoenzyme. Not detected were the LMM subunits (PsbK, PsbZ, Psb30 and PsbJ) located in the vicinity of CP43 in the holoenzyme. The photochemical activity of isolated RC47-His complexes, including the rate of reduction of P680+, was similar to that of PSII complexes lacking the Mn4CaO5 cluster. The implications of our results for the assembly and repair of PSII in vivo are discussed.
Collapse
Affiliation(s)
- M Boehm
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Storm P, Tibiletti T, Hall M, Funk C. Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2013; 8:e55569. [PMID: 23390541 PMCID: PMC3563542 DOI: 10.1371/journal.pone.0055569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.
Collapse
Affiliation(s)
- Patrik Storm
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Tania Tibiletti
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Michael Hall
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Christiane Funk
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
28
|
Cheregi O, Vermaas W, Funk C. The search for new chlorophyll-binding proteins in the cyanobacterium Synechocystis sp. PCC 6803. J Biotechnol 2012; 162:124-33. [PMID: 22759916 DOI: 10.1016/j.jbiotec.2012.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 01/24/2023]
Abstract
Light harvesting provides a major challenge in the production of biofuels from microorganisms; while sunlight provides the energy necessary for biomass/biofuel production, at the same time it damages the cells. The genome of Synechocystis sp. PCC 6803 was searched for open reading frames that might code for yet unidentified chlorophyll-binding proteins with low molecular mass that could be involved in stress-adaptation. Amongst 9167 hypothetical ORFs corresponding to potential polypeptides of 100 amino acids or less, two were identified that had the potential to be pigment-binding, because they (i) encoded a potential transmembrane region, (ii) showed sequence similarity with known chlorophyll-binding domains, (iii) were conserved in other cyanobacterial species, and (iv) their codon adaptation index indicated significant translation probability. The two ORFs were located complementary (antisense) and internal to the ferrochelatase (hemH) and the pyruvate dehydrogenase (pdh) genes and therefore were named a-fch and a-pdh, respectively. Transcription of both genes was confirmed; however, no translated proteins could be detected immunologically. Whereas mutations within a-pdh or a-fch did not lead to any obvious phenotype, it is clear that transcripts and proteins over and above the currently known set may play a role in defining the physiology of cyanobacteria and other organisms.
Collapse
Affiliation(s)
- Otilia Cheregi
- Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden.
| | | | | |
Collapse
|
29
|
Komenda J, Sobotka R, Nixon PJ. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:245-51. [PMID: 22386092 DOI: 10.1016/j.pbi.2012.01.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 05/20/2023]
Abstract
Plants, algae and cyanobacteria grow because of their ability to use sunlight to extract electrons from water. This vital reaction is catalysed by the Photosystem II (PSII) complex, a large multi-subunit pigment-protein complex embedded in the thylakoid membrane. Recent results show that assembly of PSII occurs in a step-wise fashion in defined regions of the membrane system, involves conserved auxiliary factors and is closely coupled to chlorophyll biosynthesis. PSII is also repaired following damage by light. FtsH proteases play an important role in selectively removing damaged proteins from the complex, both in chloroplasts and cyanobacteria, whilst undamaged subunits and pigments are recycled. The chloroplastic Deg proteases play a supplementary role in PSII repair.
Collapse
Affiliation(s)
- Josef Komenda
- Institute of Microbiology, Laboratory of Photosynthesis, Opatovický mlýn, Třeboň, Czech Republic
| | | | | |
Collapse
|
30
|
Sinha RK, Komenda J, Knoppová J, Sedlářová M, Pospíšil P. Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. PLANT, CELL & ENVIRONMENT 2012; 35:806-18. [PMID: 22070528 DOI: 10.1111/j.1365-3040.2011.02454.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cyanobacterial small CAB-like proteins (SCPs) are single-helix membrane proteins mostly associated with the photosystem II (PSII) complex that accumulate under stress conditions. Their function is still ambiguous although they are assumed to regulate chlorophyll (Chl) biosynthesis and/or to protect PSII against oxidative damage. In this study, the effect of SCPs on the PSII-specific light-induced damage and generation of singlet oxygen ((1)O(2)) was assessed in the strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking PSI (PSI-less strain) or lacking PSI together with all SCPs (PSI-less/scpABCDE(-) strain). The light-induced oxidative modifications of the PSII D1 protein reflected by a mobility shift of the D1 protein and by generation of a D1-cytochrome b-559 adduct were more pronounced in the PSI-less/scpABCDE(-) strain. This increased protein oxidation correlated with a faster formation of (1)O(2) as detected by the green fluorescence of Singlet Oxygen Sensor Green assessed by a laser confocal scanning microscopy and by electron paramagnetic resonance spin-trapping technique using 2, 2, 6, 6-tetramethyl-4-piperidone (TEMPD) as a spin trap. In contrast, the formation of hydroxyl radicals was similar in both strains. Our results show that SCPs prevent (1)O(2) formation during PSII damage, most probably by the binding of free Chl released from the damaged PSII complexes.
Collapse
Affiliation(s)
- Rakesh Kumar Sinha
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
31
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
32
|
Shi LX, Hall M, Funk C, Schröder WP. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:13-25. [PMID: 21907181 DOI: 10.1016/j.bbabio.2011.08.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 12/12/2022]
Abstract
Photosystem II is a unique complex capable of absorbing light and splitting water. The complex has been thoroughly studied and to date there are more than 40 proteins identified, which bind to the complex either stably or transiently. Another special feature of this complex is the unusually high content of low molecular mass proteins that represent more than half of the proteins. In this review we summarize the recent findings on the low molecular mass proteins (<15kDa) and present an overview of the newly identified components as well. We have also performed co-expression analysis of the genes encoding PSII proteins to see if the low molecular mass proteins form a specific sub-group within the Photosystem II complex. Interestingly we found that the chloroplast-localized genes encoding PSII proteins display a different response to environmental and stress conditions compared to the nuclear localized genes. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|