1
|
Aminuddin A, Ng PY, Leong CO, Makpol S, Chua EW. Potential role of heteroplasmic mitochondrial DNA mutations in modulating the subtype-specific adaptation of oral squamous cell carcinoma to cisplatin therapy. Discov Oncol 2024; 15:573. [PMID: 39425872 PMCID: PMC11490477 DOI: 10.1007/s12672-024-01445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Cancer cells are constantly evolving to adapt to environmental changes, particularly during exposure to drug treatment. In this work, we aimed to characterize genetic and epigenetic changes in mitochondrial DNA (mtDNA) that may increase the resistance of oral squamous cell carcinoma (OSCC) to cisplatin. We first derived drug-resistant cells from two human OSCC cell lines, namely SAS and H103, by continual cisplatin treatments for about 4 months. To determine mtDNA changes induced by cisplatin, we performed nanopore sequencing and quantitative polymerase chain reaction analysis of mtDNA extracted from the cells pre- and post-treatment. We also assessed the mitochondrial functions of the cells and their capacity to generate intracellular reactive oxygen species (ROS). We found that in the cisplatin-resistant cells derived from SAS, there was a reduction in mtDNA content and significant enrichment of a m.3910G > C mutation in the MT-ND1 gene. However, such changes were not detected in cisplatin-resistant H103 cells. The cisplatin treatment also altered methylation patterns in both SAS and H103 cells and decreased their sensitivity to ROS-induced cytotoxicity. We suggest that the sequence alterations and epigenetic changes in mtDNA and the reduction in mtDNA content could be key drivers of cisplatin resistance in OSCC. These mtDNA alterations may participate in cellular adaptation that serves as a response to adverse changes in the environment, particularly exposure to cytotoxic agents. Importantly, the observed mtDNA changes may be influenced by the distinct genetic landscapes of various cancer subtypes. Overall, this study reveals significant insights into cisplatin resistance driven by complex mtDNA dynamics, particularly in OSCC. This underscores the need for targeted therapies tailored to the genetic profiles of individual OSCC patients to improve disease prognosis.
Collapse
Affiliation(s)
- Amnani Aminuddin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Pei Yuen Ng
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- AGTC Genomics, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Jeong I, Cho EJ, Yook JS, Choi Y, Park DH, Kang JH, Lee SH, Seo DY, Jung SJ, Kwak HB. Mitochondrial Adaptations in Aging Skeletal Muscle: Implications for Resistance Exercise Training to Treat Sarcopenia. Life (Basel) 2024; 14:962. [PMID: 39202704 PMCID: PMC11355854 DOI: 10.3390/life14080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant health challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established intervention for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear. This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skeletal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving skeletal muscle health in aging individuals.
Collapse
Affiliation(s)
- Ilyoung Jeong
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Eun-Jeong Cho
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Jang-Soo Yook
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Institute of Specialized Teaching and Research, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Hun Lee
- Combat Institute of Australia, Leederville, WA 6007, Australia;
| | - Dae-Yun Seo
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Republic of Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Sert C, Başak N, Koruk İ. Electric and magnetic field pollution in near substations and investigation of anxiety and depressive effects on adult individuals living in this area. Electromagn Biol Med 2024; 43:145-155. [PMID: 38699873 DOI: 10.1080/15368378.2024.2348574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Exposure to electromagnetic fields causes a variety of health problems in living systems. We investigated EMF pollution in Şanlıurfa city center and also investigated anxiety-depression symptoms in individuals (18-40 years old) exposed to this pollution. For this purpose, electric field and magnetic field measurements were taken at Electricity Distribution Center and 44 substations (for each transformer), at 0 points, 1 meter away, 2 meters away and the house/office closest to the transformer. The experimental group was individuals living in electricity distribution center residences and individuals living near transformers (n = 55). The control group was selected from individuals who lived outside the city center of Şanlıurfa, did not have transformers or high transmission lines near their homes, and did not have any chronic diseases that could cause stress (n = 50). Anxiety and depression symptoms of the groups were measured using the Beck Anxiety Inventory Scale (BAI) and Beck Depression Inventory Scale (BDI). The relationship between EMF pollution and anxiety-depression was evaluated statistically. Maximum MF and EF values were recorded as 0.22 mT and 65.9 kV/m, respectively. All measured MF values were below standards, but EF values were above standards at some points. In conclusion, there is no statistically convincing evidence of a relationship between EMF exposure and anxiety-depression (p > 0.05). This result shows that there may be more meaningful results in places with higher EMF levels. We interpreted the fact that exposure to electromagnetic fields does not cause anxiety and depression in individuals, as the measured values are below the limit values.
Collapse
Affiliation(s)
- Cemil Sert
- Department of Biophysics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | | | - İbrahim Koruk
- Public Health Department, Harran University Faculty of Medicine, Sanliurfa, Turkey
| |
Collapse
|
4
|
Jeong J, Lee Y, Han J, Kang E, Kim D, Kim KS, Kim EAR, Lee BS, Jung E. Mitochondrial DNA mutations in extremely preterm infants with bronchopulmonary dysplasia. Gene 2024; 910:148337. [PMID: 38432533 DOI: 10.1016/j.gene.2024.148337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a serious chronic lung disease affecting extremely preterm infants. While mitochondrial dysfunction has been investigated in various medical conditions, limited research has explored mitochondrial DNA (mtDNA) gene mutations, specifically in BPD. This study aimed to evaluate mitochondrial mtDNA gene mutations in extremely preterm infants with BPD. In this prospective observational study, we enrolled a cohort of extremely preterm infants diagnosed with BPD. Clinical data were collected to provide comprehensive patient profiles. Peripheral blood mononuclear cells were isolated from whole-blood samples obtained within a defined timeframe. Subsequently, mtDNA extraction and sequencing using next-generation sequencing technology were performed to identify mtDNA gene mutations. Among the cohort of ten extremely preterm infants with BPD, mtDNA sequencing revealed the presence of mutations in seven patients, resulting in a total of twenty-one point mutations. Notably, many of these mutations were identified in loci associated with critical components of the respiratory chain complexes, vital for proper mitochondrial function and cellular energy production. This pilot study provides evidence of mtDNA point mutations in a subset of extremely preterm infants with BPD. These findings suggest a potential association between mitochondrial dysfunction and the pathogenesis of BPD. Further extensive investigations are warranted to unravel the mechanisms underlying mtDNA mutations in BPD.
Collapse
Affiliation(s)
- Jiyoon Jeong
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| | - Yeonmi Lee
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Jongsuk Han
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Eunju Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea; Department of Biomedical Science, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| | - Ki-Soo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| | - Ellen Ai-Rhan Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| | - Byong Sop Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wang W, Lin L, Zhang Q, Yang J, Kamili E, Chu J, Li X, Yang S, Xu Y. Heteroplasmy and Individual Mitogene Pools: Characteristics and Potential Roles in Ecological Studies. BIOLOGY 2023; 12:1452. [PMID: 37998051 PMCID: PMC10669347 DOI: 10.3390/biology12111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The mitochondrial genome (mitogenome or mtDNA), the extrachromosomal genome, is a multicopy circular DNA with high mutation rates due to replication and repair errors. A mitochondrion, cell, tissue, organ, or an individual body may hold multiple variants, both inherited and developed over a lifetime, which make up individual mitogene pools. This phenomenon is also called mtDNA heteroplasmy. MtDNA variants influence cellular and tissular functions and are consequently subjected to selection. Although it has long been recognized that only inheritable germline heteroplasmies have evolutionary significance, non-inheritable somatic heteroplasmies have been overlooked since they directly affect individual fitness and thus indirectly affect the fate of heritable germline variants. This review focuses on the characteristics, dynamics, and functions of mtDNA heteroplasmy and proposes the concept of individual mitogene pools to discuss individual genetic diversity from multiple angles. We provide a unique perspective on the relationship between individual genetic diversity and heritable genetic diversity and guide how the individual mitogene pool with novel genetic markers can be applied to ecological research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (W.W.); (L.L.); (Q.Z.); (J.Y.); (E.K.); (J.C.); (X.L.)
| |
Collapse
|
6
|
Kamienieva I, Charzyńska A, Duszyński J, Malińska D, Szczepanowska J. In search for mitochondrial biomarkers of Parkinson's disease: Findings in parkin-mutant human fibroblasts. Biochim Biophys Acta Mol Basis Dis 2023:166787. [PMID: 37302428 DOI: 10.1016/j.bbadis.2023.166787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Most cases of Parkinson's disease (PD) are idiopathic, with unknown aetiology and genetic background. However, approximately 10 % of cases are caused by defined genetic mutations, among which mutations in the parkin gene are the most common. There is increasing evidence of the involvement of mitochondrial dysfunction in the development of both idiopathic and genetic PD. However, the data on mitochondrial changes reported by different studies are inconsistent, which can reflect the variability in genetic background of the disease. Mitochondria, as a plastic and dynamic organelles, are the first place in the cell to respond to external and internal stress. In this work, we characterized mitochondrial function and dynamics (network morphology and turnover regulation) in primary fibroblasts from PD patients with parkin mutations. We performed clustering analysis of the obtained data to compare the profiles of mitochondrial parameters in PD patients and healthy donors. This allowed to extract the features characteristic for PD patients fibroblasts, which were a smaller and less complex mitochondrial network and decreased levels of mitochondrial biogenesis regulators and mitophagy mediators. The approach we used allowed a comprehensive characteristics of elements common for mitochondrial dynamics remodelling accompanying pathogenic mutation. This may be helpful in the deciphering key pathomechanisms of the PD disease.
Collapse
Affiliation(s)
- Iryna Kamienieva
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Agata Charzyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland
| | - Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, ul. Pasteura 3, 02-093 Warszawa, Poland.
| |
Collapse
|
7
|
Ding Y, Zhang S, Guo Q, Leng J. Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation. Biomolecules 2023; 13:907. [PMID: 37371486 DOI: 10.3390/biom13060907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common endocrine disorder which remains a large challenge for clinicians. Previous studies have suggested that mitochondrial dysfunction plays an active role in T2DM progression, but a detailed mechanism is still elusive. In the current study, two Han Chinese families with maternally inherited T2DM were evaluated using clinical, genetic, molecular, and biochemical analyses. The mitochondrial genomes were PCR amplified and sequenced. Phylogenetic and bioinformatic analyses were used to assess the potential pathogenicity of mitochondrial DNA (mtDNA) mutations. Interestingly, the matrilineal relatives of these pedigrees exhibited variable severity of T2DM, in particular, the age at onset of T2DM varied from 26 to 65 years, with an average of 49 years. Sequence analysis revealed the presence of ND4 G11696A mutation, which resulted in the substitution of an isoleucine for valine at amino acid (AA) position 312. Indeed, this mutation was present in homoplasmy only in the maternal lineage, not in other members of these families, as well as 200 controls. Furthermore, the m.C5601T in the tRNAAla and novel m.T5813C in the tRNACys, showing high evolutional conservation, may contribute to the phenotypic expression of ND4 G11696A mutation. In addition, biochemical analysis revealed that cells with ND4 G11696A mutation exhibited higher levels of reactive oxygen species (ROS) productions than the controls. In contrast, the levels of mitochondrial membrane potential (MMP), ATP, mtDNA copy number (mtDNA-CN), Complex I activity, and NAD+/NADH ratio significantly decreased in cell lines carrying the m.G11696A and tRNA mutations, suggesting that these mutations affected the respiratory chain function and led to mitochondrial dysfunction that was involved in T2DM. Thus, our study broadened the clinical phenotypes of m.G11696A mutation.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shunrong Zhang
- Department of Geriatrics, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qinxian Guo
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jianhang Leng
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
8
|
Huang J, Liang Y, Zhou L. Natural products for kidney disease treatment: Focus on targeting mitochondrial dysfunction. Front Pharmacol 2023; 14:1142001. [PMID: 37007023 PMCID: PMC10050361 DOI: 10.3389/fphar.2023.1142001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The patients with kidney diseases are increasing rapidly all over the world. With the rich abundance of mitochondria, kidney is an organ with a high consumption of energy. Hence, renal failure is highly correlated with the breakup of mitochondrial homeostasis. However, the potential drugs targeting mitochondrial dysfunction are still in mystery. The natural products have the superiorities to explore the potential drugs regulating energy metabolism. However, their roles in targeting mitochondrial dysfunction in kidney diseases have not been extensively reviewed. Herein, we reviewed a series of natural products targeting mitochondrial oxidative stress, mitochondrial biogenesis, mitophagy, and mitochondrial dynamics. We found lots of them with great medicinal values in kidney disease. Our review provides a wide prospect for seeking the effective drugs targeting kidney diseases.
Collapse
|
9
|
Wu J, Lou YG, Yang XL, Wang R, Zhang R, Aa JY, Wang GJ, Xie Y. Silybin regulates P450s activity by attenuating endoplasmic reticulum stress in mouse nonalcoholic fatty liver disease. Acta Pharmacol Sin 2023; 44:133-144. [PMID: 35705686 DOI: 10.1038/s41401-022-00924-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023] Open
Abstract
Cytochrome P450s are important phase I metabolic enzymes located on endoplasmic reticulum (ER) involved in the metabolism of endogenous and exogenous substances. Our previous study showed that a hepatoprotective agent silybin restored CYP3A expression in mouse nonalcoholic fatty liver disease (NAFLD). In this study we investigated how silybin regulated P450s activity during NAFLD. C57BL/6 mice were fed a high-fat-diet (HFD) for 8 weeks to induce NAFLD, and were administered silybin (50, 100 mg ·kg-1 ·d-1, i.g.) in the last 4 weeks. We showed that HFD intake induced hepatic steatosis and ER stress, leading to significant inhibition on the activity of five primary P450s including CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP3A in liver microsomes. These changes were dose-dependently reversed by silybin administration. The beneficial effects of silybin were also observed in TG-stimulated HepG2 cells in vitro. To clarify the underlying mechanism, we examined the components involved in the P450 catalytic system, membrane phospholipids and ER membrane fluidity, and found that cytochrome b5 (cyt b5) was significantly downregulated during ER stress, and ER membrane fluidity was also reduced evidenced by DPH polarization and lower polyunsaturated phospholipids levels. The increased ratios of NADP+/NADPH and PC/PE implied Ca2+ release and disruption of cellular Ca2+ homeostasis resulted from mitochondria dysfunction and cytochrome c (cyt c) release. The interaction between cyt c and cyt b5 under ER stress was an important reason for P450s activity inhibition. The effect of silybin throughout the whole course suggested that it regulated P450s activity through its anti-ER stress effect in NAFLD. Our results suggest that ER stress may be crucial for the inhibition of P450s activity in mouse NAFLD and silybin regulates P450s activity by attenuating ER stress.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun-Ge Lou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xu-le Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ji-Ye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang-Ji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
11
|
Campbell T, Slone J, Huang T. Mitochondrial Genome Variants as a Cause of Mitochondrial Cardiomyopathy. Cells 2022; 11:cells11182835. [PMID: 36139411 PMCID: PMC9496904 DOI: 10.3390/cells11182835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are small double-membraned organelles responsible for the generation of energy used in the body in the form of ATP. Mitochondria are unique in that they contain their own circular mitochondrial genome termed mtDNA. mtDNA codes for 37 genes, and together with the nuclear genome (nDNA), dictate mitochondrial structure and function. Not surprisingly, pathogenic variants in the mtDNA or nDNA can result in mitochondrial disease. Mitochondrial disease primarily impacts tissues with high energy demands, including the heart. Mitochondrial cardiomyopathy is characterized by the abnormal structure or function of the myocardium secondary to genetic defects in either the nDNA or mtDNA. Mitochondrial cardiomyopathy can be isolated or part of a syndromic mitochondrial disease. Common manifestations of mitochondrial cardiomyopathy are a phenocopy of hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac conduction defects. The underlying pathophysiology of mitochondrial cardiomyopathy is complex and likely involves multiple abnormal processes in the cell, stemming from deficient oxidative phosphorylation and ATP depletion. Possible pathophysiology includes the activation of alternative metabolic pathways, the accumulation of reactive oxygen species, dysfunctional mitochondrial dynamics, abnormal calcium homeostasis, and mitochondrial iron overload. Here, we highlight the clinical assessment of mtDNA-related mitochondrial cardiomyopathy and offer a novel hypothesis of a possible integrated, multivariable pathophysiology of disease.
Collapse
|
12
|
Al-Kafaji G, Alharbi MA, Alkandari H, Salem AH, Bakhiet M. Analysis of the entire mitochondrial genome reveals Leber's hereditary optic neuropathy mitochondrial DNA mutations in an Arab cohort with multiple sclerosis. Sci Rep 2022; 12:11099. [PMID: 35773337 PMCID: PMC9246974 DOI: 10.1038/s41598-022-15385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) mutations of Leber's hereditary optic neuropathy (LHON) have been reported in patients with multiple sclerosis (MS) from different ethnicities. To further study the involvement of LHON mtDNA mutations in MS in the Arab population, we analyzed sequencing data of the entire mitochondrial genome from 47 unrelated Saudi individuals, 23 patients with relapse-remitting MS (RRMS) and 24 healthy controls. Ten LHON mutations/variants were detected in the patients but were absent in the controls. Of them, the common primary pathogenic mutation m.14484T>C and the rare mutation m.10237T>C were found in one patient, whereas the rare mutation m.9101T>C was found in another patient. The remaining were secondary single nucleotide variants (SNVs) found either in synergy with the primary/rare mutations or individually in other patients. Patients carrying LHON variants also exhibited distinct mtDNA variants throughout the mitochondrial genome, eight were previously reported in patients with LHON. Moreover, five other LHON-related SNVs differed significantly in their prevalence among patients and controls (P < 0.05). This study, the first to investigate LHON mtDNA mutations/variants in a Saudi cohort may suggest a role of these mutations/variants in the pathogenesis or genetic predisposition to MS, a possibility which needs to be explored further in a large-scale.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain. .,Department of molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Salmaniya Avenue, Building 293, Road 2904, Block 329, Manama, Kingdom of Bahrain.
| | - Maram A Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Hasan Alkandari
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Abdel Halim Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
13
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Rewiring cell signalling pathways in pathogenic mtDNA mutations. Trends Cell Biol 2021; 32:391-405. [PMID: 34836781 DOI: 10.1016/j.tcb.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
Collapse
|
15
|
Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation. Nat Commun 2021; 12:6409. [PMID: 34737295 PMCID: PMC8568893 DOI: 10.1038/s41467-021-26746-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Mutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are very limited. Most mtDNA diseases show heteroplasmy – tissues express both wild-type and mutant mtDNA. While the level of heteroplasmy broadly correlates with disease severity, the relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have carried out extensive bioenergetic, metabolomic and RNAseq studies on heteroplasmic patient-derived cells carrying the most prevalent disease related mtDNA mutation, the m.3243 A > G. These studies reveal that the mutation promotes changes in metabolites which are associated with the upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 reduced mtDNA mutant load and partially rescued cellular bioenergetic function. The PI3K-Akt-mTORC1 axis thus represents a potential therapeutic target that may benefit people suffering from the consequences of the m.3243 A > G mutation. Heteroplasmic mtDNA mutations cause disease in humans. Here, Chung et al find the PI3K-Akt-mTORC1 pathway constitutively activated in cells with the heteroplasmic m.3243 A > G mutation, and inhibition of the pathway cell autonomously reduces mutant mtDNA load and rescues mitochondrial bioenergetics.
Collapse
|
16
|
Park J, Kang E, Kang S, Kim D, Kim D, Park SJ, Jhang WK. Mitochondrial gene mutations in pediatric septic shock. Pediatr Res 2021; 90:1016-1022. [PMID: 33504965 DOI: 10.1038/s41390-020-01358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND There has been a growing interest in the association between mitochondrial dysfunction and sepsis. However, most studies have focused on mitochondrial structural damage, functional aspects, or the clinical phenotypes in sepsis. The purpose of this study was to evaluate mitochondrial DNA (mtDNA) gene mutations in critically ill pediatric patients with septic shock. METHOD Thirteen patients with severe sepsis or septic shock admitted to the pediatric intensive care unit (PICU) of a tertiary children's hospital were enrolled in this prospective observational study. Clinical data from electronic medical records were obtained. Whole-blood samples were collected within 24 h of PICU admission to perform PBMC isolation, mtDNA extraction, and mtDNA sequencing using next-generation sequencing. RESULTS mtDNA sequencing revealed mutations in 9 of the 13 patients, presenting 27 point mutations overall, with 15 (55.6%) located in the locus related to adenosine triphosphate production and superoxide metabolism, including electron transport. CONCLUSION In this pilot study, significant numbers of mtDNA point mutations were detected in critically ill pediatric patients with septic shock. These mutations could provide promising evidence for mitochondrial dysfunction in sepsis and a basis for further large-scale studies. IMPACT This study is the first to examine mitochondrial DNA mutations in pediatric patients with septic shock using next-generation sequencing. A high frequency of mitochondrial DNA mutations was detected in these patients indicating an association with septic shock. This pilot study may provide a potential explanation for the association between mitochondrial dysfunction and septic shock on a genetic basis.
Collapse
Affiliation(s)
- Junsung Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dahyun Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Jong Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Rey F, Ottolenghi S, Zuccotti GV, Samaja M, Carelli S. Mitochondrial dysfunctions in neurodegenerative diseases: role in disease pathogenesis, strategies for analysis and therapeutic prospects. Neural Regen Res 2021; 17:754-758. [PMID: 34472461 PMCID: PMC8530118 DOI: 10.4103/1673-5374.322430] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fundamental organelles that occur in every cell type with the exception of mammal erythrocytes, the mitochondria are required for multiple pivotal processes that include the production of biological energy, the biosynthesis of reactive oxygen species, the control of calcium homeostasis, and the triggering of cell death. The disruption of anyone of these processes has been shown to impact strongly the function of all cells, but especially of neurons. In this review, we discuss the role of the mitochondria impairment in the development of the neurodegenerative diseases Amyotrophic Lateral Sclerosis, Parkinson's disease and Alzheimer's disease. We highlight how mitochondria disruption revolves around the processes that underlie the mitochondria's life cycle: fusion, fission, production of reactive oxygen species and energy failure. Both genetic and sporadic forms of neurodegenerative diseases are unavoidably accompanied with and often caused by the dysfunction in one or more of the key mitochondrial processes. Therefore, in order to get in depth insights into their health status in neurodegenerative diseases, we need to focus into innovative strategies aimed at characterizing the various mitochondrial processes. Current techniques include Mitostress, Mitotracker, transmission electron microscopy, oxidative stress assays along with expression measurement of the proteins that maintain the mitochondrial health. We will also discuss a panel of approaches aimed at mitigating the mitochondrial dysfunction. These include canonical drugs, natural compounds, supplements, lifestyle interventions and innovative approaches as mitochondria transplantation and gene therapy. In conclusion, because mitochondria are fundamental organelles necessary for virtually all the cell functions and are severely impaired in neurodegenerative diseases, it is critical to develop novel methods to measure the mitochondrial state, and novel therapeutic strategies aimed at improving their health.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan; Paediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy
| | - Sara Ottolenghi
- Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Milano, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan; Paediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano; Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Michele Samaja
- Laboratory of Biochemistry, Department of Health Sciences, University of Milan, Milano, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan; Paediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy
| |
Collapse
|
18
|
Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021; 22:ijms22042007. [PMID: 33670490 PMCID: PMC7922866 DOI: 10.3390/ijms22042007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial respiratory chain is the main site of reactive oxygen species (ROS) production in the cell. Although mitochondria possess a powerful antioxidant system, an excess of ROS cannot be completely neutralized and cumulative oxidative damage may lead to decreasing mitochondrial efficiency in energy production, as well as an increasing ROS excess, which is known to cause a critical imbalance in antioxidant/oxidant mechanisms and a "vicious circle" in mitochondrial injury. Due to insufficient energy production, chronic exposure to ROS overproduction consequently leads to the oxidative damage of life-important biomolecules, including nucleic acids, proteins, lipids, and amino acids, among others. Different forms of mitochondrial dysfunction (mitochondriopathies) may affect the brain, heart, peripheral nervous and endocrine systems, eyes, ears, gut, and kidney, among other organs. Consequently, mitochondriopathies have been proposed as an attractive diagnostic target to be investigated in any patient with unexplained progressive multisystem disorder. This review article highlights the pathomechanisms of mitochondriopathies, details advanced analytical tools, and suggests predictive approaches, targeted prevention and personalization of medical services as instrumental for the overall management of mitochondriopathy-related cascading pathologies.
Collapse
Affiliation(s)
- Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (E.K.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Correspondence: (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (P.K.); (O.G.)
| |
Collapse
|
19
|
Destiarani W, Mulyani R, Yusuf M, Maksum IP. Molecular Dynamics Simulation of T10609C and C10676G Mutations of Mitochondrial ND4L Gene Associated With Proton Translocation in Type 2 Diabetes Mellitus and Cataract Patients. Bioinform Biol Insights 2020; 14:1177932220978672. [PMID: 33402819 PMCID: PMC7747115 DOI: 10.1177/1177932220978672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
The mutation rate of mitochondrial DNA (mtDNA) is 17 times higher than nuclear DNA, and these mutations can cause mitochondrial disease in 1 of 10.000 people. The T10609C mutation was identified in type 2 diabetes mellitus (T2DM) patients and the C10676G mutation in cataract patients, with both mutations occurring in the ND4L gene of mtDNA that encodes ND4L protein. ND4L protein, a subunit of complex I in the respiratory complex, has been shown to play a role in the proton translocation process. The purpose of this study was to investigate the effect of both mutations on the proton translocation mechanism. Mutation mapping showed changes in amino acids M47T (T10609C) and C69W (C10676G). The 100 ns molecular dynamics (MD) simulations performed on native and mutants of ND4L-ND6 subunits. It is revealed that the native model had a similar proton translocation pathway to that of complex I from other organisms. Interestingly, the mutant M47T and C69W showed the interruption of the translocation pathway by a hydrogen bond formation between Glu34 and Tyr157. It is observed that the mutations were restricting the passage of water molecules through the transmembrane region. These results could help to develop the computational assay for the validation of a specific genetic biomarker for T2DM and cataracts.
Collapse
Affiliation(s)
- Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rahmaniar Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
20
|
Ji Y, Zhang J, Lu Y, Yi Q, Chen M, Xie S, Mao X, Xiao Y, Meng F, Zhang M, Yang R, Guan MX. Complex I mutations synergize to worsen the phenotypic expression of Leber's hereditary optic neuropathy. J Biol Chem 2020; 295:13224-13238. [PMID: 32723871 DOI: 10.1074/jbc.ra120.014603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inheritance of eye disease because of the mitochondrial DNA (mtDNA) mutations. We previously discovered a 3866T>C mutation within the gene for the ND1 subunit of complex I as possibly amplifying disease progression for patients bearing the disease-causing 11778G>A mutation within the gene for the ND4 subunit of complex I. However, whether and how the ND1 mutation exacerbates the ND4 mutation were unknown. In this report, we showed that four Chinese families bearing both m.3866T>C and m.11778G>A mutations exhibited higher penetrances of LHON than 6 Chinese pedigrees carrying only the m.3866T>C mutation or families harboring only the m.11778G>A mutation. The protein structure analysis revealed that the m.3866T>C (I187T) and m.11778G>A (R340H) mutations destabilized the specific interactions with other residues of ND1 and ND4, thereby altering the structure and function of complex I. Cellular data obtained using cybrids, constructed by transferring mitochondria from the Chinese families into mtDNA-less (ρ°) cells, demonstrated that the mutations perturbed the stability, assembly, and activity of complex I, leading to changes in mitochondrial ATP levels and membrane potential and increasing the production of reactive oxygen species. These mitochondrial dysfunctions promoted the apoptotic sensitivity of cells and decreased mitophagy. Cybrids bearing only the m.3866T>C mutation displayed mild mitochondrial dysfunctions, whereas those harboring both m.3866T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions. These suggested that the m.3866T>C mutation acted in synergy with the m.11778G>A mutation, aggravating mitochondrial dysfunctions and contributing to higher penetrance of LHON in these families carrying both mtDNA mutations.
Collapse
Affiliation(s)
- Yanchun Ji
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Lu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Lab Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Shipeng Xie
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Rulai Yang
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Vianello C, Cocetta V, Caicci F, Boldrin F, Montopoli M, Martinuzzi A, Carelli V, Giacomello M. Interaction Between Mitochondrial DNA Variants and Mitochondria/Endoplasmic Reticulum Contact Sites: A Perspective Review. DNA Cell Biol 2020; 39:1431-1443. [PMID: 32598172 DOI: 10.1089/dna.2020.5614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria contain their own genome, mitochondrial DNA (mtDNA), essential to support their fundamental intracellular role in ATP production and other key metabolic and homeostatic pathways. Mitochondria are highly dynamic organelles that communicate with all the other cellular compartments, through sites of high physical proximity. Among all, their crosstalk with the endoplasmic reticulum (ER) appears particularly important as its derangement is tightly implicated with several human disorders. Population-specific mtDNA variants clustered in defining the haplogroups have been shown to exacerbate or mitigate these pathological conditions. The exact mechanisms of the mtDNA background-modifying effect are not completely clear and a possible explanation is the outcome of mitochondrial efficiency on retrograde signaling to the nucleus. However, the possibility that different haplogroups shape the proximity and crosstalk between mitochondria and the ER has never been proposed neither investigated. In this study, we pose and discuss this question and provide preliminary data to answer it. Besides, we also address the possibility that single, disease-causing mtDNA point mutations may act also by reshaping organelle communication. Overall, this perspective review provides a theoretical platform for future studies on the interaction between mtDNA variants and organelle contact sites.
Collapse
Affiliation(s)
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | | | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,VIMM-Veneto Institute of Molecular Medicine, Padova, Italy
| | - Andrea Martinuzzi
- Department of Neurorehabilitation, IRCCS "E. Medea" Scientific Institute, Conegliano Research Center, Treviso, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Ji Y, Zhang J, Yu J, Wang Y, Lu Y, Liang M, Li Q, Jin X, Wei Y, Meng F, Gao Y, Cang X, Tong Y, Liu X, Zhang M, Jiang P, Zhu T, Mo JQ, Huang T, Jiang P, Guan MX. Contribution of mitochondrial ND1 3394T>C mutation to the phenotypic manifestation of Leber's hereditary optic neuropathy. Hum Mol Genet 2020; 28:1515-1529. [PMID: 30597069 DOI: 10.1093/hmg/ddy450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/05/2018] [Accepted: 12/22/2018] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations have been associated with Leber's hereditary optic neuropathy (LHON) and their pathophysiology remains poorly understood. In this study, we investigated the pathophysiology of a LHON susceptibility allele (m.3394T>C, p.30Y>H) in the Mitochondrial (MT)-ND1 gene. The incidence of m.3394T>C mutation was 2.7% in the cohort of 1741 probands with LHON. Extremely low penetrances of LHON were observed in 26 pedigrees carrying only m.3394T>C mutation, while 21 families bearing m.3394T>C, together with m.11778G>A or m.14484T>C mutation, exhibited higher penetrance of LHON than those in families carrying single mtDNA mutation(s). The m.3394T>C mutation disrupted the specific electrostatic interactions between Y30 of p.MT-ND1 with the sidechain of E4 and backbone carbonyl group of M1 of NDUFA1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1) of complex I, thereby altering the structure and function of complex I. We demonstrated that these cybrids bearing only m.3394T>C mutation caused mild mitochondrial dysfunctions and those harboring both m.3394T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions than cybrids carrying only m.11778G>A mutation. In particular, the m.3394T>C mutation altered the stability of p.MT-ND1 and complex I assembly. Furthermore, the m.3394T>C mutation decreased the activities of mitochondrial complexes I, diminished mitochondrial ATP levels and membrane potential and increased the production of reactive oxygen species in the cybrids. These m.3394T>C mutation-induced alterations aggravated mitochondrial dysfunctions associated with the m.11778G>A mutation. These resultant biochemical defects contributed to higher penetrance of LHON in these families carrying both mtDNA mutations. Our findings provide new insights into the pathophysiology of LHON arising from the synergy between mitochondrial ND1 and ND4 mutations.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Yu
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Ophthalmology, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yuanyuan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Liang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiang Li
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofen Jin
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinsheng Wei
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinglong Gao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Peifang Jiang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Villanueva-Paz M, Povea-Cabello S, Villalón-García I, Álvarez-Córdoba M, Suárez-Rivero JM, Talaverón-Rey M, Jackson S, Falcón-Moya R, Rodríguez-Moreno A, Sánchez-Alcázar JA. Parkin-mediated mitophagy and autophagy flux disruption in cellular models of MERRF syndrome. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165726. [PMID: 32061767 DOI: 10.1016/j.bbadis.2020.165726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022]
Abstract
Mitochondrial diseases are considered rare genetic disorders characterized by defects in oxidative phosphorylation (OXPHOS). They can be provoked by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most frequent mitochondrial diseases, principally caused by the m.8344A>G mutation in mtDNA, which affects the translation of all mtDNA-encoded proteins and therefore impairs mitochondrial function. In the present work, we evaluated autophagy and mitophagy flux in transmitochondrial cybrids and fibroblasts derived from a MERRF patient, reporting that Parkin-mediated mitophagy is increased in MERRF cell cultures. Our results suggest that supplementation with coenzyme Q10 (CoQ), a component of the electron transport chain (ETC) and lipid antioxidant, prevents Parkin translocation to the mitochondria. In addition, CoQ acts as an enhancer of autophagy and mitophagy flux, which partially improves cell pathophysiology. The significance of Parkin-mediated mitophagy in cell survival was evaluated by silencing the expression of Parkin in MERRF cybrids. Our results show that mitophagy acts as a cell survival mechanism in mutant cells. To confirm these results in one of the main affected cell types in MERRF syndrome, mutant induced neurons (iNs) were generated by direct reprogramming of patients-derived skin fibroblasts. The treatment of MERRF iNs with Guttaquinon CoQ10 (GuttaQ), a water-soluble derivative of CoQ, revealed a significant improvement in cell bioenergetics. These results indicate that iNs, along with fibroblasts and cybrids, can be utilized as reliable cellular models to shed light on disease pathomechanisms as well as for drug screening.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Sandra Jackson
- Department of Neurology, Uniklinikum C. G. Carus, Dresden, Germany
| | - Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
24
|
Bagheri Hosseinabadi M, Khanjani N, Ebrahimi MH, Mousavi SH, Nazarkhani F. Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress. J Occup Health 2020; 62:e12136. [PMID: 32710586 PMCID: PMC7382129 DOI: 10.1002/1348-9585.12136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES This study was designed to investigate the possible effect of exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on occupational burnout syndrome and the severity of depression experienced among thermal power plant workers and the role of oxidative stress. METHODS In this cross-sectional study, 115 power plant workers and 124 administrative personnel of a hospital were enrolled as exposed and unexposed groups, respectively, based on inclusion and exclusion criteria. Levels of oxidative stress biomarkers, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (Cat), and total antioxidant capacity were measured in serum samples. Exposure to electric and magnetic fields was measured using the IEEE Std C95.3.1 standard at each workstation. The burnout syndrome and the severity of depression were assessed using the Maslach Burnout and Beck Depression Inventory. RESULTS The levels of MDA and SOD were significantly lower in the exposed group than the unexposed group. The exposed group reported a higher prevalence of burnout syndrome and higher depression severity. Multiple linear regression showed that work experience, MDA level, and levels of exposure to magnetic fields are the most important predictor variables for burnout syndrome and severity of depression. In addition, a decrease in the level of Cat was significantly associated with increased burnout syndrome. CONCLUSION The thermal power plant workers exposed to ELF-EMFs are at risk of burnout syndrome and depression. These effects may be caused directly by exposure to magnetic fields or indirectly due to increased oxidative stress indices.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research CenterKerman University of Medical SciencesKermanIran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research CenterShahroud University of Medical SciencesShahroudIran
| | | | - Fereshteh Nazarkhani
- Department of Occupational Health, Faculty of HealthMazandaran University of Medical SciencesSariIran
| |
Collapse
|
25
|
Fakruddin M, Wei FY, Suzuki T, Asano K, Kaieda T, Omori A, Izumi R, Fujimura A, Kaitsuka T, Miyata K, Araki K, Oike Y, Scorrano L, Suzuki T, Tomizawa K. Defective Mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. Cell Rep 2019; 22:482-496. [PMID: 29320742 DOI: 10.1016/j.celrep.2017.12.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
A subset of mitochondrial tRNAs (mt-tRNAs) contains taurine-derived modifications at 34U of the anticodon. Loss of taurine modification has been linked to the development of mitochondrial diseases, but the molecular mechanism is still unclear. Here, we showed that taurine modification is catalyzed by mitochondrial optimization 1 (Mto1) in mammals. Mto1 deficiency severely impaired mitochondrial translation and respiratory activity. Moreover, Mto1-deficient cells exhibited abnormal mitochondrial morphology owing to aberrant trafficking of nuclear DNA-encoded mitochondrial proteins, including Opa1. The mistargeted proteins were aggregated and misfolded in the cytoplasm, which induced cytotoxic unfolded protein response. Importantly, application of chemical chaperones successfully suppressed cytotoxicity by reducing protein misfolding and increasing functional mitochondrial proteins in Mto1-deficient cells and mice. Thus, our results demonstrate the essential role of taurine modification in mitochondrial translation and reveal an intrinsic protein homeostasis network between the mitochondria and cytosol, which has therapeutic potential for mitochondrial diseases.
Collapse
Affiliation(s)
- Md Fakruddin
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takashi Kaieda
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Omori
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Ryoma Izumi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Atsushi Fujimura
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
26
|
Matoo OB, Julick CR, Montooth KL. Genetic Variation for Ontogenetic Shifts in Metabolism Underlies Physiological Homeostasis in Drosophila. Genetics 2019; 212:537-552. [PMID: 30975764 PMCID: PMC6553824 DOI: 10.1534/genetics.119.302052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
Organismal physiology emerges from metabolic pathways and subcellular structures like the mitochondria that can vary across development and among individuals. Here, we tested whether genetic variation at one level of physiology can be buffered at higher levels of biological organization during development by the inherent capacity for homeostasis in physiological systems. We found that the fundamental scaling relationship between mass and metabolic rate, as well as the oxidative capacity per mitochondria, changed significantly across development in the fruit fly Drosophila However, mitochondrial respiration rate was maintained at similar levels across development. Furthermore, larvae clustered into two types-those that switched to aerobic, mitochondrial ATP production before the second instar, and those that relied on anaerobic, glycolytic production of ATP through the second instar. Despite genetic variation for the timing of this metabolic shift, metabolic rate in second-instar larvae was more robust to genetic variation than was the metabolic rate of other instars. We found that larvae with a mitochondrial-nuclear incompatibility that disrupts mitochondrial function had increased aerobic capacity and relied more on anaerobic ATP production throughout development relative to larvae from wild-type strains. By taking advantage of both ways of making ATP, larvae with this mitochondrial-nuclear incompatibility maintained mitochondrial respiratory capacity, but also had higher levels of whole-body reactive oxygen species and decreased mitochondrial membrane potential, potentially as a physiological defense mechanism. Thus, genetic defects in core physiology can be buffered at the organismal level via physiological plasticity, and natural populations may harbor genetic variation for distinct metabolic strategies in development that generate similar organismal outcomes.
Collapse
Affiliation(s)
- Omera B Matoo
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502
| |
Collapse
|
27
|
Mitochondrial Transfer of Wharton's Jelly Mesenchymal Stem Cells Eliminates Mutation Burden and Rescues Mitochondrial Bioenergetics in Rotenone-Stressed MELAS Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9537504. [PMID: 31249652 PMCID: PMC6556302 DOI: 10.1155/2019/9537504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
Abstract
Wharton's jelly mesenchymal stem cells (WJMSCs) transfer healthy mitochondria to cells harboring a mitochondrial DNA (mtDNA) defect. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the major subgroups of mitochondrial diseases, caused by the mt.3243A>G point mutation in the mitochondrial tRNALeu(UUR) gene. The specific aim of the study is to investigate whether WJMSCs exert therapeutic effect for mitochondrial dysfunction in cells of MELAS patient through donating healthy mitochondria. We herein demonstrate that WJMSCs transfer healthy mitochondria into rotenone-stressed fibroblasts of a MELAS patient, thereby eliminating mutation burden and rescuing mitochondrial functions. In the coculture system in vitro study, WJMSCs transferred healthy mitochondria to rotenone-stressed MELAS fibroblasts. By inhibiting actin polymerization to block tunneling nanotubes (TNTs), the WJMSC-conducted mitochondrial transfer was abrogated. After mitochondrial transfer, the mt.3243A>G mutation burden of MELAS fibroblasts was reduced to an undetectable level, with long-term retention. Sequencing results confirmed that the transferred mitochondria were donated from WJMSCs. Furthermore, mitochondrial transfer of WJMSCs to MELAS fibroblasts improves mitochondrial functions and cellular performance, including protein translation of respiratory complexes, ROS overexpression, mitochondrial membrane potential, mitochondrial morphology and bioenergetics, cell proliferation, mitochondrion-dependent viability, and apoptotic resistance. This study demonstrates that WJMSCs exert bioenergetic therapeutic effects through mitochondrial transfer. This finding paves the way for the development of innovative treatments for MELAS and other mitochondrial diseases.
Collapse
|
28
|
ANKRD49 inhibits etoposide-induced intrinsic apoptosis of GC-1 cells by modulating NF-κB signaling. Mol Cell Biochem 2019; 457:21-29. [DOI: 10.1007/s11010-019-03508-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/14/2019] [Indexed: 01/09/2023]
|
29
|
Zhang J, Ji Y, Lu Y, Fu R, Xu M, Liu X, Guan MX. Leber's hereditary optic neuropathy (LHON)-associated ND5 12338T > C mutation altered the assembly and function of complex I, apoptosis and mitophagy. Hum Mol Genet 2019; 27:1999-2011. [PMID: 29579248 DOI: 10.1093/hmg/ddy107] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/19/2018] [Indexed: 02/04/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) have been associated with Leber's hereditary optic neuropathy (LHON) and their pathophysiology remains poorly understood. In this study, we demonstrated that a missense mutation (m.12338T>C, p.1M>T) in the ND5 gene contributed to the pathogenesis of LHON. The m.12338T>C mutation affected the first methionine (Met1) with a threonine and shortened two amino acids of ND5. We therefore hypothesized that the mutated ND5 perturbed the structure and function of complex I. Using the cybrid cell models, generated by fusing mtDNA-less (ρ°) cells with enucleated cells from LHON patients carrying the m.12338T>C mutation and a control subject belonging to the same mtDNA haplogroup, we demonstrated that the m.12338T>C mutation caused the reduction of ND5 polypeptide, perturbed assemble and activity of complex I. Furthermore, the m.12338T>C mutation caused respiratory deficiency, diminished mitochondrial adenosine triphosphate levels and membrane potential and increased the production of reactive oxygen species. The m.12338T>C mutation promoted apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 9, 3, 7 and Poly ADP ribose polymerase in the cybrids carrying the m.12338T>C mutation, as compared with control cybrids. Moreover, we also document the involvement of m.12338T>C mutation in decreased mitophagy, as showed by reduced levels of autophagy protein light chain 3 and accumulation of autophagic substrate p62 in the in mutant cybrids as compared with control cybrids. These data demonstrated the direct link between mitochondrial dysfunction caused by complex I mutation and apoptosis or mitophagy. Our findings may provide new insights into the pathophysiology of LHON.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuanyuan Lu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Runing Fu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Man Xu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Zhang Q, Zhang L, Chen D, He X, Yao S, Zhang Z, Chen Y, Guan MX. Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function. Nucleic Acids Res 2018; 46:10930-10945. [PMID: 30137487 PMCID: PMC6237746 DOI: 10.1093/nar/gky758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
Mtu1(Trmu) is a highly conserved tRNA modifying enzyme responsible for the biosynthesis of τm5s2U at the wobble position of tRNAGln, tRNAGlu and tRNALys. Our previous investigations showed that MTU1 mutation modulated the phenotypic manifestation of deafness-associated mitochondrial 12S rRNA mutation. However, the pathophysiology of MTU1 deficiency remains poorly understood. Using the mtu1 knock-out zebrafish generated by CRISPR/Cas9 system, we demonstrated the abolished 2-thiouridine modification of U34 of mitochondrial tRNALys, tRNAGlu and tRNAGln in the mtu1 knock-out zebrafish. The elimination of this post-transcriptional modification mediated mitochondrial tRNA metabolisms, causing the global decreases in the levels of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms led to the impairment of mitochondrial translation, respiratory deficiencies and reductions of mitochondrial ATP production. These mitochondria dysfunctions caused the defects in hearing organs. Strikingly, mtu1-/- mutant zebrafish displayed the abnormal startle response and swimming behaviors, significant decreases in the sizes of saccular otolith and numbers of hair cells in the auditory and vestibular organs. Furthermore, mtu1-/- mutant zebrafish exhibited the significant reductions in the hair bundle densities in utricle, saccule and lagena. Therefore, our findings may provide new insights into the pathophysiology of deafness, which was manifested by the deficient modifications at wobble position of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zengming Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
31
|
Shen X, Han G, Li S, Song Y, Shen H, Zhai Y, Wang Y, Zhang F, Dong N, Li T, Yao Y, Zhu H. Association between the T6459C point mutation of the mitochondrial MT-CO1 gene and susceptibility to sepsis among Chinese Han people. J Cell Mol Med 2018; 22:5257-5264. [PMID: 30207067 PMCID: PMC6201344 DOI: 10.1111/jcmm.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/18/2018] [Indexed: 11/29/2022] Open
Abstract
To search for an association between sepsis and mitochondrial genetic basis, we began our study. In this study, a proband harbouring mitochondrial T6459C mutation with sepsis and his Chinese Han pedigree including 7 members of 3 generations were enrolled. General information, blood parameters and mitochondrial full sequence scanning of all members were performed, and cellular functions, including cellular reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), degrees of cell apoptosis and adenosine triphosphate (ATP) concentrations, were measured in members with and without the T6459C mutation. Through mitochondrial full sequence scanning and analysis of all members we found, the maternal members (I-1, II-1, II-2 and II-4) in this Chinese Han pedigree all had the mitochondrial T6459C mutation and were used as the mutation group. The non-maternal members (II-3, III-1 and III-2) did not have this mutation and were used as the non-mutation group. The differences in all indicators, including the blood routine, blood biochemistry and coagulation function tests, between members in these two groups were not significant. Under the non-stimulation condition, the mutation group had higher ROS levels (4210.42 ± 1043.35 vs 3387.78 ± 489.66, P = .028) and apoptosis ratios (P = .004) and lower ATP concentrations (P = .049) and MMP levels (P = .047) than the non-mutation group. After 6 hours of simulated LPS stimulation, the mutation group had significantly increased ROS levels (5759.25 ± 2297.90 vs 3862.00 ± 1519.77, P = .045) compared with the non-mutation group, whereas the mutation group continued to demonstrate higher ROS levels (P = .045) and apoptosis ratios (P = .003) and lower MMP levels (P = .005) and ATP concentrations (P = .010). We speculated that the mtDNA T6459C mutation might be the basis for the genetic susceptibility to sepsis.
Collapse
Affiliation(s)
- Xiaodong Shen
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Guoxin Han
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Shuoshuo Li
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Yang Song
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Hong Shen
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Yongzhi Zhai
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Yingchan Wang
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Fei Zhang
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Ning Dong
- Trauma Research CenterFirst Hospital Affiliated to the Chinese PLA General HospitalBeijingChina
| | - Tanshi Li
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| | - Yongming Yao
- Trauma Research CenterFirst Hospital Affiliated to the Chinese PLA General HospitalBeijingChina
| | - Haiyan Zhu
- Emergency DepartmentChinese PLA General HospitalBeijingChina
| |
Collapse
|
32
|
Volobueva AS, Melnichenko AA, Grechko AV, Orekhov AN. Mitochondrial genome variability: the effect on cellular functional activity. Ther Clin Risk Manag 2018; 14:237-245. [PMID: 29467576 PMCID: PMC5811183 DOI: 10.2147/tcrm.s153895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the key players in cell metabolism, calcium homeostasis, and reactive oxygen species (ROS) production. Mitochondrial genome alterations are reported to be associated with numerous human disorders affecting nearly all tissues. In this review, we discuss the available information on the involvement of mitochondrial DNA (mtDNA) mutations in cell dysfunction.
Collapse
Affiliation(s)
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| |
Collapse
|
33
|
Zhang J, Liu X, Liang X, Lu Y, Zhu L, Fu R, Ji Y, Fan W, Chen J, Lin B, Yuan Y, Jiang P, Zhou X, Guan MX. A novel ADOA-associated OPA1 mutation alters the mitochondrial function, membrane potential, ROS production and apoptosis. Sci Rep 2017; 7:5704. [PMID: 28720802 PMCID: PMC5515948 DOI: 10.1038/s41598-017-05571-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/31/2017] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a dominantly inherited optic neuropathy, affecting the specific loss of retinal ganglion cells (RGCs). The majority of affected cases of ADOA are associated with mutations in OPA1 gene. Our previous investigation identified the c.1198C > G (p.P400A) mutation in the OPA1 in a large Han Chinese family with ADOA. In this report, we performed a functional characterization using lymphoblostoid cell lines derived from affected members of this family and control subjects. Mutant cell lines exhibited the aberrant mitochondrial morphology. A ~24.6% decrease in the mitochondrial DNA (mtDNA) copy number was observed in mutant cell lines, as compared with controls. Western blotting analysis revealed the variable reductions (~45.7%) in four mtDNA-encoded polypeptides in mutant cell lines. The impaired mitochondrial translation caused defects in respiratory capacity. Furthermore, defects in mitochondrial ATP synthesis and mitochondrial membrane potential (ΔΨm) were observed in mutant cell lines. These abnormalities resulted in the accumulation of oxidative damage and increasing of apoptosis in the mutant cell lines, as compared with controls. All those alterations may cause the primary degeneration of RGCs and subsequent visual loss. These data provided the direct evidence for c.1198C > G mutation leading to ADOA. Our findings may provide new insights into the understanding of pathophysiology of ADOA.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoyang Liang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yuanyuan Lu
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ling Zhu
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Runing Fu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wenlu Fan
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jie Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Bing Lin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yimin Yuan
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
34
|
Zhou M, Wang M, Xue L, Lin Z, He Q, Shi W, Chen Y, Jin X, Li H, Jiang P, Guan MX. A hypertension-associated mitochondrial DNA mutation alters the tertiary interaction and function of tRNA Leu(UUR). J Biol Chem 2017; 292:13934-13946. [PMID: 28679533 DOI: 10.1074/jbc.m117.787028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/03/2017] [Indexed: 01/10/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with hypertension, but their pathophysiology remains poorly understood. In this report, we identified a novel homoplasmic 3253T→C mutation in the mitochondrial tRNALeu(UUR) gene in a Han Chinese family with maternally inherited hypertension. The m.3253T→C mutation affected a highly conserved uridine at position 22 at the D-stem of tRNALeu(UUR), introducing a G-C base pairing (G13-C22) at the D-stem and a tertiary base pairing (C22-G46) between the D-stem and the variable loop. We therefore hypothesized that the m.3253T→C mutation altered both the structure and function of tRNALeu(UUR) Using cytoplasmic hybrid (cybrid) cell lines derived from this Chinese family, we demonstrated that the m.3253T→C mutation perturbed the conformation and stability of tRNALeu(UUR), as suggested by faster electrophoretic mobility of mutated tRNA relative to the wild-type molecule. Northern blot analysis revealed an ∼45% decrease in the steady-state level of tRNALeu(UUR) in the mutant cell lines carrying the m.3253T→C mutation, as compared with control cell lines. Moreover, an ∼35% reduction in aminoacylation efficiency of tRNALeu(UUR) was observed in the m.3253T→C mutant cells. These alterations in tRNALeu(UUR) metabolism impaired mitochondrial translation, especially for those polypeptides with a high proportion of Leu(UUR) codons, such as ND6. Furthermore, we demonstrated that the m.3253T→C mutation decreased the activities of mitochondrial complexes I and V, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in the cells. In conclusion, our findings may provide new insights into the pathophysiology of maternally inherited hypertension.
Collapse
Affiliation(s)
- Mi Zhou
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Zhi Lin
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Qiufen He
- Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenwen Shi
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Yaru Chen
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Xiaofen Jin
- Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiying Li
- Department of Cardiology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325600, Zhejiang, China
| | - Pingping Jiang
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China,; Institute of Genetics and Zhejiang University, Hangzhou 310058, Zhejiang, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, Zhejiang, China,; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
35
|
Du SNN, Khajali F, Dawson NJ, Scott GR. Hybridization increases mitochondrial production of reactive oxygen species in sunfish. Evolution 2017; 71:1643-1652. [PMID: 28444733 DOI: 10.1111/evo.13254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction and oxidative stress have been suggested to be possible mechanisms underlying hybrid breakdown, as a result of mito-nuclear incompatibilities in respiratory complexes of the electron transport system. However, it remains unclear whether hybridization increases the production of reactive oxygen species (ROS) by mitochondria. We used high-resolution respirometry and fluorometry on isolated liver mitochondria to examine mitochondrial physiology and ROS emission in naturally occurring hybrids of pumpkinseed (Lepomis gibbosus) and bluegill (L. macrochirus). ROS emission was greater in hybrids than in both parent species when respiration was supported by complex I (but not complex II) substrates, and was associated with increases in lipid peroxidation. However, respiratory capacities for oxidative phosphorylation, phosphorylation efficiency, and O2 kinetics in hybrids were intermediate between those in parental species. Flux control ratios of capacities for electron transport (measured in uncoupled mitochondria) relative to oxidative phosphorylation suggested that the limiting influence of the phosphorylation system is reduced in hybrids. This likely helped offset impairments in electron transport capacity and complex III activity, but contributed to augmenting ROS production. Therefore, hybridization can increase mitochondrial ROS production, in support of previous suggestions that mitochondrial dysfunction can induce oxidative stress and thus contribute to hybrid breakdown.
Collapse
Affiliation(s)
- Sherry N N Du
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Fariborz Khajali
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Department of Animal Science, Shahrekord University, Shahrekord, Iran
| | - Neal J Dawson
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Department of Biology, University of Miami, Coral Gables, Florida, 33146
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
36
|
Youn CK, Kim HB, Wu TT, Park S, Cho SI, Lee JH. 53BP1 contributes to regulation of autophagic clearance of mitochondria. Sci Rep 2017; 7:45290. [PMID: 28345606 PMCID: PMC5366885 DOI: 10.1038/srep45290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autophagy, the primary recycling pathway within cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the cellular response to stress. Here we provide evidence that 53BP1, a DNA damage response protein, is involved in regulating mitochondrial clearance from the cell via a type of autophagy termed mitophagy. We found that when either human or mouse cells were 53BP1-deficient, there was an increase in mitochondrial abnormalities, as observed through staining intensity, aggregation, and increased mass. Moreover, a 53BP1-depleted cell population included an increased number of cells with a high mitochondrial membrane potential (ΔΨm) relative to controls, suggesting that the loss of 53BP1 prevents initiation of mitophagy thereby leading to the accumulation of damaged mitochondria. Indeed, both 53BP1 and the mitophagy-associated protein LC3 translocated to mitochondria in response to damage induced by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The recruitment of parkin, an E3-ubiquitin ligase, to mitochondria in response to CCCP treatment was significantly decreased in 53BP1-deficient cells. And lastly, using p53-deficient H1299 cells, we confirmed that the role of 53BP1 in mitophagy is independent of p53. These data support a model in which 53BP1 plays an important role in modulating mitochondrial homeostasis and in the clearance of damaged mitochondria.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of premedical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Hong Beum Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of premedical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Sanggon Park
- Department of Internal Medicine, Hemato-oncology, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| |
Collapse
|
37
|
Mamelak M. Energy and the Alzheimer brain. Neurosci Biobehav Rev 2017; 75:297-313. [PMID: 28193453 DOI: 10.1016/j.neubiorev.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.
Collapse
|
38
|
Heller S, Penrose HM, Cable C, Biswas D, Nakhoul H, Baddoo M, Flemington E, Crawford SE, Savkovic SD. Reduced mitochondrial activity in colonocytes facilitates AMPKα2-dependent inflammation. FASEB J 2017; 31:2013-2025. [PMID: 28183804 DOI: 10.1096/fj.201600976r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
Intestinal inflammation is associated with low levels of mucosal ATP, highlighting the importance of mitochondrial function associated with ATP production in the pathophysiology of the disease. In the inflamed colon of humans and mice, we found decreased levels of mitochondrial complex cytochrome c oxidase I/IV and lower ATP levels. Thus, we generated colonic ρ0 cells with reduced mitochondrial function linked to ATP production by selective depletion of mitochondrial DNA. In these cells, RNA sequencing revealed a substantial number of differentially expressed transcripts, among which 240 belonged to inflammatory pathways activated in human inflamed colon and TNF-α-treated cells (false discovery rate < 0.05). TNF-α treatment of colonic ρ0 cells augmented IL-8 expression by 9-fold (P < 0.01) via NF-κB compared to TNF-α-treated control. Moreover, reduced mitochondrial function facilitated TNF-α-mediated NF-κB luciferase promoter activity as a result of lowered inhibitory IκBα (nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor, α), leading to elevated NF-κB. In cells with reduced mitochondrial function, TNF-α facilitated AMPKα2 activation by 8-fold (P < 0.01), which was involved in NF-κB-dependent IL-8 expression. Last, in human and mouse colon, anti-TNF-α treatment restored reduced mitochondria-dependent inflammation. We propose that selective targeting of this novel mechanism provides new treatment opportunities for intestinal inflammation.-Heller, S., Penrose, H. M., Cable, C., Biswas, D., Nakhoul, H., Baddoo, M., Flemington, E., Crawford, S. E., Savkovic, S. D. Reduced mitochondrial activity in colonocytes facilitates AMPKα2-dependent inflammation.
Collapse
Affiliation(s)
- Sandra Heller
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Chloe Cable
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Debjani Biswas
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Erik Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Susan E Crawford
- Department of Surgery, NorthShore Research Institute, University of Chicago Pritzker School of Medicine, Evanston, Illinois, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Louisiana, USA;
| |
Collapse
|
39
|
Zhang SH, Gao FJ, Sun ZM, Xu P, Chen JY, Sun XH, Wu JH. High Pressure-Induced mtDNA Alterations in Retinal Ganglion Cells and Subsequent Apoptosis. Front Cell Neurosci 2016; 10:254. [PMID: 27932951 PMCID: PMC5121242 DOI: 10.3389/fncel.2016.00254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023] Open
Abstract
Purpose: Our previous study indicated that mitochondrial DNA (mtDNA) damage and mutations are crucial to the progressive loss of retinal ganglion cells (RGCs) in a glaucomatous rat model. In this study, we examined whether high pressure could directly cause mtDNA alterations and whether the latter could lead to mitochondrial dysfunction and RGC death. Methods: Primary cultured rat RGCs were exposed to 30 mm Hg of hydrostatic pressure (HP) for 12, 24, 48, 72, 96 and 120 h. mtDNA alterations and mtDNA repair/replication enzymes OGG1, MYH and polymerase gamma (POLG) expressions were also analyzed. The RGCs were then infected with a lentiviral small hairpin RNA (shRNA) expression vector targeting POLG (POLG-shRNA), and mtDNA alterations as well as mitochondrial function, including complex I/III activities and ATP production were subsequently studied at appropriate times. Finally, RGC apoptosis and the mitochondrial-apoptosis pathway-related protein cleaved caspase-3 were detected using a Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and western blotting, respectively. Results: mtDNA damage was observed as early as 48 h after the exposure of RGCs to HP. At 120 h after HP, mtDNA damage and mutations significantly increased, reaching >40% and 4.8 ± 0.3-fold, respectively, compared with the control values. Twelve hours after HP, the expressions of OGG1, MYH and POLG mRNA in the RGCs were obviously increased 5.02 ± 0.6-fold (p < 0.01), 4.3 ± 0.2-fold (p < 0.05), and 0.8 ± 0.09-fold (p < 0.05). Western blot analysis showed that the protein levels of the three enzymes decreased at 72 and 120 h after HP (p < 0.05). After interference with POLG-shRNA, the mtDNA damage and mutations were significantly increased (p < 0.01), while complex I/III activities gradually decreased (p < 0.05). Corresponding decreases in membrane potential and ATP production appeared at 5 and 6 days after POLG-shRNA transfection respectively (p < 0.05). Increases in the apoptosis of RGCs and cleaved caspase-3 protein expression were observed after mtDNA damage and mutations. Conclusions: High pressures could directly cause mtDNA alterations, leading to mitochondrial dysfunction and RGC death.
Collapse
Affiliation(s)
- Sheng-Hai Zhang
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China; Shanghai Key Laboratory of Visual Impairment and RestorationShanghai, China
| | - Feng-Juan Gao
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University Shanghai, China
| | - Zhong-Mou Sun
- Molecular Biology and Biochemistry Department, Wesleyan UniversityMiddletown, CT, USA; Schepens Eye Research Institute, Wesleyan UniversityMiddletown, CT, USA
| | - Ping Xu
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University Shanghai, China
| | - Jun-Yi Chen
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University Shanghai, China
| | - Xing-Huai Sun
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China; Shanghai Key Laboratory of Visual Impairment and RestorationShanghai, China; Key Laboratory of Myopia, Ministry of Health, Fudan UniversityShanghai, China
| | - Ji-Hong Wu
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China; Shanghai Key Laboratory of Visual Impairment and RestorationShanghai, China; Key Laboratory of Myopia, Ministry of Health, Fudan UniversityShanghai, China
| |
Collapse
|
40
|
Wang M, Liu H, Zheng J, Chen B, Zhou M, Fan W, Wang H, Liang X, Zhou X, Eriani G, Jiang P, Guan MX. A Deafness- and Diabetes-associated tRNA Mutation Causes Deficient Pseudouridinylation at Position 55 in tRNAGlu and Mitochondrial Dysfunction. J Biol Chem 2016; 291:21029-21041. [PMID: 27519417 DOI: 10.1074/jbc.m116.739482] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 02/03/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.
Collapse
Affiliation(s)
- Meng Wang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Hao Liu
- the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Jing Zheng
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Bobei Chen
- the Department of Otolaryngology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035, the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Mi Zhou
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Wenlu Fan
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Hen Wang
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xiaoyang Liang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Xiaolong Zhou
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031, and
| | - Gilbert Eriani
- the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | - Pingping Jiang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Min-Xin Guan
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China 310058,
| |
Collapse
|
41
|
Jiang P, Liang M, Zhang C, Zhao X, He Q, Cui L, Liu X, Sun YH, Fu Q, Ji Y, Bai Y, Huang T, Guan MX. Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet 2016; 25:3613-3625. [PMID: 27427386 DOI: 10.1093/hmg/ddw199] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 02/01/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disease. Mitochondrial modifiers are proposed to modify the phenotypic expression of primary LHON-associated mitochondrial DNA (mtDNA) mutations. In this study, we demonstrated that the LHON susceptibility allele (m.14502T > C, p. 58I > V) in the ND6 gene modulated the phenotypic expression of primary LHON-associated m.11778G > A mutation. Twenty-two Han Chinese pedigrees carrying m.14502T > C and m.11778G > A mutations exhibited significantly higher penetrance of optic neuropathy than those carrying only m.11778G > A mutation. We performed functional assays using the cybrid cell models, generated by fusing mtDNA-less ρo cells with enucleated cells from LHON patients carrying both m.11778G > A and m.14502T > C mutations, only m.14502T > C or m.11778G > A mutation and a control belonging to the same mtDNA haplogroup. These cybrids cell lines bearing m.14502T > C mutation exhibited mild effects on mitochondrial functions compared with those carrying only m.11778G > A mutation. However, more severe mitochondrial dysfunctions were observed in cell lines bearing both m.14502T > C and m.11778G > A mutations than those carrying only m.11778G > A or m.14502T > C mutation. In particular, the m.14502T > C mutation altered assemble of complex I, thereby aggravating the respiratory phenotypes associated with m.11778G > A mutation, resulted in a more defective complex I. Furthermore, more reductions in the levels of mitochondrial ATP and increasing production of reactive oxygen species were also observed in mutant cells bearing both m.14502T > C and m.11778G > A mutation than those carrying only 11778G > A mutation. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between primary and secondary mtDNA mutations.
Collapse
Affiliation(s)
- Pingping Jiang
- Divsion of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min Liang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Department of Clinical Laboratory, The First Affiliated Hospital.,School of Ophthalmology and Optometry
| | - Chaofan Zhang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoxu Zhao
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiufen He
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Limei Cui
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry.,Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yan-Hong Sun
- Department of Ophthalmology, Beijing University of Chinese Medicine and Pharmacology, Beijing 100029, China
| | - Qun Fu
- Department of Ophthalmology, The Third Affiliated Hospital, Xinxiang Medical College, Xinxiang, Henan 45300, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yidong Bai
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, OH 45229, USA
| | - Min-Xin Guan
- Divsion of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
42
|
Nardi F, Frati F, Liò P. Animal inference on human mitochondrial diseases. Comput Biol Chem 2016; 62:17-28. [PMID: 27023046 DOI: 10.1016/j.compbiolchem.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Several pathological mutations in the human mitochondrial genome have been characterized based on medical, genetic and biochemical evidence. The observation that the structure and core functions of the mitochondrial genome are conserved from animals to man suggests that the analysis of animal variation may be informative to further characterize, and possibly predict, human pathological variants. We studied the distribution of sequence site-wise diversity and structural heterogeneity (based on several scales of hydrophobicity and supercomplex classification of mitochondrial genes) at different taxonomic levels in ∼15,000 human and animal genomes. We found that human pathological mutations tend to lay in regions of low diversity and that states that are pathological in humans appear to be extremely rare in animals, with two noticeable exceptions (T10663C and C14568T). Focusing on hydrophobicity, as possibly the most general site-wise functional parameter of a protein, we deploy the observed range of hydrophobicity in mammals as a proxy for the range of permissible states compatible with an efficient functioning of the mitochondrial machinery. We show that, while non pathological human variants tend to fall within the hypothesized range, pathological mutations generally fall outside this range. We further analyzed this distribution quantitatively to show that the estimated probability of observed states can indeed be used to predict the pathogenicity of a mutation in humans. This study provides a proof of principle that animal data can indeed be informative to predict the pathogenicity of a human mutation alongside, or in the absence of, additional evidence.
Collapse
Affiliation(s)
| | | | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Wojewoda M, Walczak J, Duszyński J, Szczepanowska J. Selenite activates the ATM kinase-dependent DNA repair pathway in human osteosarcoma cells with mitochondrial dysfunction. Biochem Pharmacol 2015; 95:170-6. [DOI: 10.1016/j.bcp.2015.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 01/22/2023]
|
44
|
Wu JH, Zhang SH, Nickerson JM, Gao FJ, Sun Z, Chen XY, Zhang SJ, Gao F, Chen JY, Luo Y, Wang Y, Sun XH. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis 2014; 74:167-179. [PMID: 25478814 DOI: 10.1016/j.nbd.2014.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs.
Collapse
Affiliation(s)
- Ji-Hong Wu
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China
| | - Sheng-Hai Zhang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China
| | - John M Nickerson
- Ophthalmology Department, Emory University, Atlanta, GA, 30322, USA
| | - Feng-Juan Gao
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | | | - Xin-Ya Chen
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Shu-Jie Zhang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Feng Gao
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Jun-Yi Chen
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Yi Luo
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Yan Wang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Xing-Huai Sun
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Kozieł R, Ruckenstuhl C, Albertini E, Neuhaus M, Netzberger C, Bust M, Madeo F, Wiesner RJ, Jansen‐Dürr P. Methionine restriction slows down senescence in human diploid fibroblasts. Aging Cell 2014; 13:1038-48. [PMID: 25273919 PMCID: PMC4326930 DOI: 10.1111/acel.12266] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 12/31/2022] Open
Abstract
Methionine restriction (MetR) extends lifespan in animal models including rodents. Using human diploid fibroblasts (HDF), we report here that MetR significantly extends their replicative lifespan, thereby postponing cellular senescence. MetR significantly decreased activity of mitochondrial complex IV and diminished the accumulation of reactive oxygen species. Lifespan extension was accompanied by a significant decrease in the levels of subunits of mitochondrial complex IV, but also complex I, which was due to a decreased translation rate of several mtDNA-encoded subunits. Together, these findings indicate that MetR slows down aging in human cells by modulating mitochondrial protein synthesis and respiratory chain assembly.
Collapse
Affiliation(s)
- Rafał Kozieł
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences Karl‐Franzens University Humboldtstrasse 50 8010Graz Austria
| | - Eva Albertini
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| | - Michael Neuhaus
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| | - Christine Netzberger
- Institute of Molecular Biosciences Karl‐Franzens University Humboldtstrasse 50 8010Graz Austria
| | - Maria Bust
- Institute for Vegetative Physiology University of Köln Robert‐Kochstr. 39 50931Köln Germany
| | - Frank Madeo
- Institute of Molecular Biosciences Karl‐Franzens University Humboldtstrasse 50 8010Graz Austria
| | - Rudolf J. Wiesner
- Institute for Vegetative Physiology University of Köln Robert‐Kochstr. 39 50931Köln Germany
- Center for Molecular Medicine Cologne University of Köln Robert‐Kochstr. 21 50931Köln Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐associated Diseases (CECAD) Joseph‐Stelzmannstr. 26 50931Köln Germany
| | - Pidder Jansen‐Dürr
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| |
Collapse
|
46
|
Torrell H, Salas A, Abasolo N, Morén C, Garrabou G, Valero J, Alonso Y, Vilella E, Costas J, Martorell L. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:607-17. [PMID: 25132006 DOI: 10.1002/ajmg.b.32264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/18/2014] [Indexed: 12/17/2022]
Abstract
It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia.
Collapse
Affiliation(s)
- Helena Torrell
- Hospital Universitari Institut Pere Mata. IISPV. Universitat Rovirai Virgili. CIBERSAM, Reus, Catalunya, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gong S, Peng Y, Jiang P, Wang M, Fan M, Wang X, Zhou H, Li H, Yan Q, Huang T, Guan MX. A deafness-associated tRNAHis mutation alters the mitochondrial function, ROS production and membrane potential. Nucleic Acids Res 2014; 42:8039-48. [PMID: 24920829 PMCID: PMC4081083 DOI: 10.1093/nar/gku466] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this report, we investigated the molecular genetic mechanism underlying the deafness-associated mitochondrial tRNAHis 12201T>C mutation. The destabilization of a highly conserved base-pairing (5A-68U) by the m.12201T>C mutation alters structure and function of tRNAHis. Using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mtDNA-less (ρo) cells, we showed ∼70% decrease in the steady-state level of tRNAHis in mutant cybrids, compared with control cybrids. The mutation changed the conformation of tRNAHis, as suggested by slower electrophoretic mobility of mutated tRNA with respect to the wild-type molecule. However, ∼60% increase in aminoacylated level of tRNAHis was observed in mutant cells. The failure in tRNAHis metabolism was responsible for the variable reductions in seven mtDNA-encoded polypeptides in mutant cells, ranging from 37 to 81%, with the average of ∼46% reduction, as compared with those of control cells. The impaired mitochondrial translation caused defects in respiratory capacity in mutant cells. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increase in the production of reactive oxygen species in the mutant cells. The data provide the evidence for a mitochondrial tRNAHis mutation leading to deafness.
Collapse
Affiliation(s)
- Shasha Gong
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Meng Wang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Mingjie Fan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Hong Zhou
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Huawei Li
- Department of Otology and Skull Base Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China 200031
| | - Qingfeng Yan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China 310058 Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 45229
| |
Collapse
|
48
|
Berhanu TK, Holley-Cuthrell J, Roberts NW, Mull AJ, Heydemann A. Increased AMP-activated protein kinase in skeletal muscles of Murphy Roth Large mice and its potential role in altered metabolism. Physiol Rep 2014; 2:e00252. [PMID: 24760507 PMCID: PMC4002233 DOI: 10.1002/phy2.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 12/19/2022] Open
Abstract
Abstract Wild-type Murphy Roth Large (MRL) mice have long been investigated for their superior healing ability when subjected to various wound and disease models. Despite this long history, the mechanisms causing their extraordinary healing ability remain undefined. As we have recently demonstrated that MRL mice with muscular dystrophy are resistant to the associated fibrosis and the Heber-Katz group has demonstrated MRL mitochondrial mutations, we decided to investigate the skeletal muscle metabolic characteristics of the MRL mouse strain compared to the commonly utilized C57BL/6J control mouse strain. We now have evidence demonstrating an altered metabolism in the MRL quadriceps, triceps brachii, and diaphragm of 8-week-old animals compared to tissues from control animals. The MRL skeletal muscles have increased activated phosphorylated AMP-activated protein kinase (pAMPK). The increased pAMPK signaling coincides with increased skeletal muscle mitochondrial content. These metabolic changes may compensate for insufficient oxidative phosphorylation which is demonstrated by altered quantities of proteins involved in oxidative phosphorylation and ex vivo metabolic investigations. We also demonstrate that the MRL muscle cells have increased metabolic physiologic reserve. These data further the investigations into this important and unique mouse strain. Why the MRL mice have increased pAMPK and how increased pAMPK and the resultant metabolic alterations affect the healing ability in the MRL mouse strain is discussed. Understanding the molecular mechanisms surrounding the super healing characteristics of these mice will lead to relevant clinical intervention points. In conclusion, we present novel data of increased mitochondrial content, pAMPK, and glycolytic indicators in MRL skeletal muscles.
Collapse
Affiliation(s)
- Tirsit K Berhanu
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|