1
|
Bhat-Ambure J, Ambure P, Serrano-Candelas E, Galiana-Roselló C, Gil-Martínez A, Guerrero M, Martin M, González-García J, García-España E, Gozalbes R. G4-QuadScreen: A Computational Tool for Identifying Multi-Target-Directed Anticancer Leads against G-Quadruplex DNA. Cancers (Basel) 2023; 15:3817. [PMID: 37568632 PMCID: PMC10416877 DOI: 10.3390/cancers15153817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The study presents 'G4-QuadScreen', a user-friendly computational tool for identifying MTDLs against G4s. Also, it offers a few hit MTDLs based on in silico and in vitro approaches. Multi-tasking QSAR models were developed using linear discriminant analysis and random forest machine learning techniques for predicting the responses of interest (G4 interaction, G4 stabilization, G4 selectivity, and cytotoxicity) considering the variations in the experimental conditions (e.g., G4 sequences, endpoints, cell lines, buffers, and assays). A virtual screening with G4-QuadScreen and molecular docking using YASARA (AutoDock-Vina) was performed. G4 activities were confirmed via FRET melting, FID, and cell viability assays. Validation metrics demonstrated the high discriminatory power and robustness of the models (the accuracy of all models is ~>90% for the training sets and ~>80% for the external sets). The experimental evaluations showed that ten screened MTDLs have the capacity to selectively stabilize multiple G4s. Three screened MTDLs induced a strong inhibitory effect on various human cancer cell lines. This pioneering computational study serves a tool to accelerate the search for new leads against G4s, reducing false positive outcomes in the early stages of drug discovery. The G4-QuadScreen tool is accessible on the ChemoPredictionSuite website.
Collapse
Affiliation(s)
| | - Pravin Ambure
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (P.A.); (E.S.-C.)
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (P.A.); (E.S.-C.)
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Ariadna Gil-Martínez
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (M.M.)
| | - Margarita Martin
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (M.M.)
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980 Valencia, Spain; (C.G.-R.); (A.G.-M.); (J.G.-G.); (E.G.-E.)
| | - Rafael Gozalbes
- MolDrug AI Systems SL, c/Olimpia Arozena Torres, 46018 Valencia, Spain;
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (P.A.); (E.S.-C.)
| |
Collapse
|
2
|
Ju F, Wang D, Huang L, Jiang C, Gao C, Xiong C, Zhai G. Progress of PD-1/PD-L1 signaling in immune response to liver transplantation for hepatocellular carcinoma. Front Immunol 2023; 14:1227756. [PMID: 37545535 PMCID: PMC10399574 DOI: 10.3389/fimmu.2023.1227756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Primary liver cancer is one of the most common malignant tumors in China. The vast majority of primary liver cancer are hepatocellular carcinoma. Due to its high incidence and mortality from HCC, HCC has always been a feared type of cancer. Liver transplantation, as one of the important means to treat advanced liver cancer, has brought new hope to patients. However, as patients have been in a state of immunosuppression after liver transplantation, these patients face new problems of HCC recurrence and metastasis. A increasing number of studies have proved that blocking the PD-1/PD-L1 signaling pathway and restoring the immune killing inhibition of T cells can produce better therapeutic effects on tumors and chronic infectious diseases. As a promising treatment in the field of tumor immunotherapy, PD-1/PD-L1 inhibitors have achieved important results in liver cancer patients, but their application in liver transplantation patients is still highly controversial. This paper will introduce the mechanism of action of PD-1/PD-L1 signaling pathway and the current basic and clinical studies of PD-1/PD-L1 signaling pathway associated with immune response in HCC transplantation.
Collapse
Affiliation(s)
- Feng Ju
- Department of Laboratory Medicine, The Yangzhou University Jianhu Clinical College, Jianhu, China
| | - Dawei Wang
- Department of Infectious Diseases, The Second People’s Hospital of Yancheng City, Yancheng, China
| | - Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Cunquan Xiong
- College of Pharmacy, Jiangsu Vocational College Medicine, Yancheng, Jiangsu, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Eivary SHA, Kheder RK, Najmaldin SK, Kheradmand N, Esmaeili SA, Hajavi J. Implications of IL-21 in solid tumor therapy. Med Oncol 2023; 40:191. [PMID: 37249661 DOI: 10.1007/s12032-023-02051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Cancer, the most deadly disease, is known as a recent dilemma worldwide. Presently different treatments are used for curing cancers, especially solid cancers. Because of the immune-enhancing functions of cytokine, IL-21 as a cytokine may have new possibilities to manipulate the immune system in disease conditions, as it stimulates NK and CTL functions and drives IgG antibody production. Indeed, IL-21 has been revealed to elicit antitumor-immune responses in several tumor models. Combining IL-21 with other agents, which target tumor cells, immune-regulatory circuits, or other immune-enhancing molecules enhances this activity. The exciting breakthrough in the results obtained in pre-clinical situations has led to the early outset of present developing clinical trials in cancer patients. In the paper, we have reviewed the function of IL-21 in solid tumor immunotherapy.
Collapse
Affiliation(s)
- Seyed Hossein Abtahi Eivary
- Department of Medical Sciences of Laboratory, Infectious Diseases Research Center, School of Para-Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, Gonabad, Iran.
| |
Collapse
|
4
|
Costanzo M, De Giglio MAR, Roviello GN. Deciphering the Relationship between SARS-CoV-2 and Cancer. Int J Mol Sci 2023; 24:ijms24097803. [PMID: 37175509 PMCID: PMC10178366 DOI: 10.3390/ijms24097803] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Some viruses are known to be associated with the onset of specific cancers. These microorganisms, oncogenic viruses or oncoviruses, can convert normal cells into cancer cells by modulating the central metabolic pathways or hampering genomic integrity mechanisms, consequently inhibiting the apoptotic machinery and/or enhancing cell proliferation. Seven oncogenic viruses are known to promote tumorigenesis in humans: human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), Epstein-Barr virus (EBV), human T-cell leukemia virus 1 (HTLV-1), Kaposi sarcoma-associated herpesvirus (KSHV), and Merkel cell polyomavirus (MCPyV). Recent research indicates that SARS-CoV-2 infection and COVID-19 progression may predispose recovered patients to cancer onset and accelerate cancer development. This hypothesis is based on the growing evidence regarding the ability of SARS-CoV-2 to modulate oncogenic pathways, promoting chronic low-grade inflammation and causing tissue damage. Herein, we summarize the main relationships known to date between virus infection and cancer, providing a summary of the proposed biochemical mechanisms behind the cellular transformation. Mechanistically, DNA viruses (such as HPV, HBV, EBV, and MCPyV) encode their virus oncogenes. In contrast, RNA viruses (like HCV, HTLV-1) may encode oncogenes or trigger host oncogenes through cis-/-trans activation leading to different types of cancer. As for SARS-CoV-2, its role as an oncogenic virus seems to occur through the inhibition of oncosuppressors or controlling the metabolic and autophagy pathways in the infected cells. However, these effects could be significant in particular scenarios like those linked to severe COVID-19 or long COVID. On the other hand, looking at the SARS-CoV-2─cancer relationship from an opposite perspective, oncolytic effects and anti-tumor immune response were triggered by SARS-CoV-2 infection in some cases. In summary, our work aims to recall comprehensive attention from the scientific community to elucidate the effects of SARS-CoV-2 and, more in general, β-coronavirus infection on cancer susceptibility for cancer prevention or supporting therapeutic approaches.
Collapse
Affiliation(s)
- Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., Via G. Salvatore 486, 80145 Naples, Italy
| | | | - Giovanni Nicola Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
6
|
Fávaro WJ, Alonso JCC, de Souza BR, Reis IB, Gonçalves JM, Deckmann AC, Oliveira G, Dias QC, Durán N. New synthetic nano-immunotherapy (OncoTherad®) for non-muscle invasive bladder cancer: Its synthesis, characterization and anticancer property. Tissue Cell 2023; 80:101988. [PMID: 36521234 DOI: 10.1016/j.tice.2022.101988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guérin (BCG)-based intravesical immunotherapy has been applied as gold standard treatment for high-risk non-muscle invasive bladder cancer (NMIBC) for almost half a century. However, several patients with high-risk disease experience relapse, including those whose condition has worsened and who failed to respond to BCG. Non-significant therapeutic options have been developed for these at-risk patients, for many years. Immunotherapies have shown promising outcomes for bladder cancer treatment. Accordingly, our research group developed the OncoTherad® (MRB-CFI-1) immunotherapy, which has shown positive outcomes in NMIBC treatment. The aim of the current study is to describe, in details, the physicochemical features and potential action mechanisms of OncoTherad® nano-immunotherapy, based on toll-like receptor 4 (TLR4)-mediated interferon and on RANK/RANKL signaling pathways, in animal model with NMIBC. Based on the current findings, OncoTherad® nano-immunotherapy did not have genotoxic effect on the investigated model and did not show signs of limiting local and/or systemic toxicity at therapeutic doses. OncoTherad® nano-immunotherapy was more effective than the BCG treatment, since it reduced by 70% the malignancy rate. Furthermore, it was possible identifying an important action mechanism of OncoTherad®, which was based on the modulation of TLR4-mediated interferon and RANK/RANKL signaling pathways that, altogether, were essential to reduce malignancy rate. OncoTherad® mechanisms in these pathways helped preventing tumor recurrence.
Collapse
Affiliation(s)
- W J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - J C C Alonso
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Paulínia Municipal Hospital, Paulínia, São Paulo, Brazil
| | - B R de Souza
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - I B Reis
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - J M Gonçalves
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A C Deckmann
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - G Oliveira
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Q C Dias
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - N Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil.
| |
Collapse
|
7
|
Therapeutic Adenovirus Vaccine Combined Immunization with IL-12 Induces Potent CD8 + T Cell Anti-Tumor Immunity in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14184512. [PMID: 36139670 PMCID: PMC9497125 DOI: 10.3390/cancers14184512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is a kind of tumor with a high malignant degree and mortality rate, and there is no effective treatment method. Currently, immunotherapy has shown good prospects in treating hepatocellular carcinoma. As an important approach of immunotherapy, the vaccine has become an attractive method for tumor treatment. This study developed an adenovirus vaccine containing tumor antigen glypican-3 and adjuvant interleukin 12. The subcutaneous tumor model was intramuscularly immunized three times with vaccines at a ten-day interval. Compared with the control group, the proliferation of CD 8+ T cell, the induction of multifunctional CD 8+ T cell and dendritic cells, and cytotoxic T lymphocyte activity were significantly increased in the combined immunization group, and the growth of tumor was inhibited obviously. The therapeutic effect of the vaccine of glypican-3 and interleukin 12 mainly depends on the anti-tumor effect of CD 8+ T cells mediated by dendritic cells. Likewise, this vaccine also showed a good therapeutic effect in the lung metastasis model of hepatocellular carcinoma. Therefore, the adenovirus vaccine of glypican-3 and interleukin 12 might become a potential way to treat hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is one of the cancers with the highest morbidity and mortality in the world. However, clinical progress in the treatment of HCC has not shown a satisfactory therapeutic effect. Here, we have developed a novel strategy to treat HCC with an adenovirus (Ad)-based vaccine, which contains a specific antigen glypican-3 (GPC3) and an immunostimulatory cytokine IL-12. In the subcutaneous tumor model, Ad-IL-12/GPC3 vaccine was injected into muscles three times to evaluate its therapeutic effect. Compared with the control immunization group, the Ad-IL-12/GPC3 immunization group showed a significant tumor growth inhibition effect, which was confirmed by the reduced tumor volume and the increased tumor inhibition. Ad-IL-12/GPC3 co-immunization promoted the induction and maturation of CD11c+ or CD8+CD11c+ DCs and increased the number of tumor-infiltrating CD8+ T cells. Furthermore, in the Ad-IL-12/GPC3 group, the proliferation of CD8+ T cells, the induction of multifunctional CD8+ T cells, and CTL activity were significantly increased. Interestingly, the deletion of CD8+ T cells abolished tumor growth inhibition by Ad-IL-12/GPC3 treatment, suggesting that CD8+ T cell immune responses were required to eliminate the tumor. Likewise, Ad-IL-12/GPC3 vaccine also effectively inhibited lung tumor growth or metastasis by enhancing CD8+ DCs-mediated multifunctional CD8+ T cell immune responses in the lung metastasis model. Therefore, these results indicate that IL-12 combined with Ad-GPC3 vaccine co-immunization might provide a promising therapeutic strategy for HCC patients.
Collapse
|
8
|
Davidson TM, Markovic SN, Dimou A. The immunologic balance: three cases of rituximab-associated melanoma. Melanoma Res 2022; 32:67-70. [PMID: 34783721 DOI: 10.1097/cmr.0000000000000799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, there is no known clinical evidence that rituximab increases the rate of subsequent primary malignancies; however, some studies have raised the question of increased melanoma risk following rituximab treatment for non-Hodgkin lymphoma. We report three interesting cases of suspected rituximab-induced melanoma. We hypothesize that this association is secondary to rituximab-driven shifts in the immunologic balance. Based on these cases, it is possible that the number of post-rituximab melanoma cases is underreported. Further mechanistic research into individual cases and population-level studies are required to better define association and risk; however, given the increasing prevalence of oncologic and nononcologic rituximab use, awareness across all fields is essential.
Collapse
Affiliation(s)
| | | | - Anastasios Dimou
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Jafarzadeh A, Saffari F. Development of anti-rituximab antibodies in rituximab-treated patients: Related parameters & consequences. Indian J Med Res 2022; 155:335-346. [DOI: 10.4103/ijmr.ijmr_312_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Polymeric Nanoparticles Decorated with Monoclonal Antibodies: A New Immobilization Strategy for Increasing Lipase Activity. Catalysts 2021. [DOI: 10.3390/catal11060744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent advances in nanotechnology techniques enable the production of polymeric nanoparticles with specific morphologies and dimensions and, by tailoring their surfaces, one can manipulate their characteristics to suit specific applications. In this work we report an innovative approach for the immobilization of a commercial lipase from Candida rugosa (CRL) which employs nanostructured polymeric carriers conjugated with anti-lipase monoclonal antibodies (MoAbs). MoAbs were chemically conjugated on the surface of polymeric nanoparticles and used to selectively adsorb CRL molecules. Hydrolytic enzymatic assays evidenced that such immobilization technique afforded a significant enhancement of enzymatic activity in comparison to the free enzyme.
Collapse
|
11
|
Fu L, Zhou X, He C. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100075. [PMID: 33885225 DOI: 10.1002/mabi.202100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy has pointed out a scientific and promising direction for cancer treatment through the rouse of immunosurveillance and the decrease of possible side effects in recent years. In immunotherapy, immunogenic cancer cell death (ICD) plays a critical role in regulating anti-cancer immune system in vivo via the release of damage-associated molecular patterns. ICD can not only induce in situ cancer cells apoptosis, but also arouse the immune response against metastatic tumors, which is of great clinical significance to eradicate tumors. In cancer immunotherapy, polymer nanoparticles have drawn increasing attention as an important component of ICD-based immunotherapy attributing to their controllable size, excellent biocompatibility, promising ability of protecting cargo from surrounding environment, which delivers the antigens or immune inducers to antigen-presenting cells, and further triggers sinnvoll T cell response. In this review, the recent advances in the development of polymeric material-based nanosystems for ICD-mediated cancer immunotherapy are summarized. The mechanism of ICD and some current restrictions inhibiting the efficiency of immunotherapy and future prospects are also discussed.
Collapse
Affiliation(s)
- Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
12
|
Ou J, Lei P, Yang Z, Yang M, Luo L, Mo H, Luo G, He J. LINC00152 mediates CD8 + T-cell infiltration in gastric cancer through binding to EZH2 and regulating the CXCL9, 10/CXCR3 axis. J Mol Histol 2021; 52:611-620. [PMID: 33709190 DOI: 10.1007/s10735-021-09967-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to annotate the role of long intergenic non-coding RNA 152 (LINC00152) in CD8+ T cells mediated immune responses in gastric cancer (GC) and the underlying mechanism. LINC00152 expression levels were detected through RT-PCR. For tumor engraftment, HGC-27 cells that received LINC00152 shRNA, LINC00152 overexpression vectors, enhancer of zeste homolog 2 (EZH2) shRNA or combination transfection were injected into mice. Chromatin immunoprecipitation (ChIP) assay was used to explore the interaction between LINC00152, Cys-X-cys ligand 9 (CXCL9) and Cys-X-cys ligand 10 (CXCL10). Flow cytometry was adopted to measure the CD8+ T-cell infiltration in tumor issue. In this study, we found increased LINC00152 expression levels are positively associated with the poor prognosis of GC patients and negatively associated with the CD8 levels. ChIP assay verified that LINC00152 recruits EZH2 to the promoters of CXCL9 and CXCL10, thus the silencing of LINC00152 promoted the production of CXCL9 and CXCL10. Knockdown of LINC00152 suppressed tumor cells growth in vivo and in vitro, increased tumor-infiltrating CD8+ T cells numbers and promoted the expression of CXCL9, CXCL10 and C-X-C Motif Chemokine Receptor 3 (CXCR3) in xenograft tumors. While CD8+ T cell depletion reversed the tumor suppression effect of LINC00152 silence. Besides, the silencing of EZH2 partly inhibited the promotion effect LINC00152 on tumor growth. Our study indicated that LINC00152 inhibition suppressed the tumor progress may through promoting CD8+ T-cell infiltration.
Collapse
Affiliation(s)
- Jinqing Ou
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China
| | - Pingguang Lei
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China
| | - Zhenling Yang
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China
| | - Man Yang
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China
| | - Lingmin Luo
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China
| | - Hongdan Mo
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China
| | - Guijin Luo
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China.
| | - Junhui He
- Department of Gastroenterology, Songgang People's Hospital of Baoan, Shajiang Road NO.2, Shenzhen, 518000, China.
| |
Collapse
|
13
|
Lischer C, Vera-González J. The Road to Effective Cancer Immunotherapy—A Computational Perspective on Tumor Epitopes in Anti-Cancer Immunotherapy. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Kumar S, Mongia A, Gulati S, Singh P, Diwan A, Shukla S. Emerging theranostic gold nanostructures to combat cancer: Novel probes for Combinatorial Immunotherapy and Photothermal Therapy. Cancer Treat Res Commun 2020; 25:100258. [PMID: 33307507 DOI: 10.1016/j.ctarc.2020.100258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022]
Abstract
The application of gold nanoparticles in immunotherapy has emerged as one of the most effective therapeutic strategy for eradicating cancer by releasing antigens, oligonucleotides, adjuvants, immune-stimulating agents into the body. Gold nanoparticles are found to be a superior choice, for generating attack on oncogenic cells, due to their low toxicity, better target specificity, diagnostic capabilities, and enhanced cellular uptake rate. This review focuses on the efficiency of several functionalized gold nanoparticles of diverse shapes and sizes as delivery vehicles to desired target cells through effective immunotherapy, along with a brief discussion about photothermal therapy.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021
| |
Collapse
|
15
|
Li G, Liu F, Wang Y, Zhao M, Song Y, Zhang L. Effects of resistance exercise on treatment outcome and laboratory parameters of Takayasu arteritis with magnetic resonance imaging diagnosis: A randomized parallel controlled clinical trial. Clin Cardiol 2020; 43:1273-1278. [PMID: 32761844 PMCID: PMC7661652 DOI: 10.1002/clc.23439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Elevated tumor necrosis factor-α (TNF-α) is correlated with refractory Takayasu arteritis (TA), and resistance exercise have been shown to inhibit TNF-α. HYPOTHESIS We aimed to explore the effect of resistance exercise in the clinical management of TA. METHODS This clinical trial enrolled a total of 342 acute TA patients, who were subsequently randomized to undergo either resistance exercise or relaxation control twice per week for 12 weeks. The disease activity was defined using the primary outcome of Birmingham Vascular Activity Score (BVAS). Secondary outcomes included levels of plasma TNF-α and C-reactive protein (CRP), and the erythrocyte sedimentation rate (ESR). RESULTS BVAS scores along with other laboratory parameters obtained from the patients in the resistance exercise group showed a gradual decline throughout the course of the trial. By contrast, outcomes appeared largely unaltered in the relaxation control group patients. Analyses also revealed that plasma TNF-α displayed strong linear correlations with ESR, BVAS scores, and plasma CRP levels. CONCLUSION Resistance exercise could substantially improve treatment outcomes as well as laboratory parameters in patients with acute TA, probably through decreasing TNF-α.
Collapse
Affiliation(s)
- Guoce Li
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Fenghai Liu
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Meng Zhao
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Yancheng Song
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| | - Lei Zhang
- Department of MRI, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
16
|
Advancements in antibody–drug conjugate technology for cancer treatment. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Generation of humanized single-chain fragment variable immunotherapeutic against EGFR variant III using baculovirus expression system and in vitro validation. Int J Biol Macromol 2019; 124:17-24. [DOI: 10.1016/j.ijbiomac.2018.11.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
|
18
|
Rezaei M, Ghaderi A. Monoclonal Antibody Production Against Vimentin by Whole Cell Immunization in a Mouse Model. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 16:e1802. [PMID: 30805388 PMCID: PMC6371635 DOI: 10.21859/ijb.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
Background Pancreatic carcinoma is the fourth-leading cause of cancer death in the United States and due to its late presentation, only few patients would be candidates for the curative treatment of pancreactomy. Monoclonal antibodies have brought hope to targeted therapy. Objectives To identify new biomarkers, a panel of monoclonal antibodies was generated against newly established cell line, Faraz-ICR from a patient with pancreatic acinar cell carcinoma. Material and Methods Balb/c female mice were immunized with Faraz-ICR cell line and their spleenocytes fused with SP2/0 myeloma cell line. Highly reactive hybridoma producing antibodies against Faraz-ICR was detected using ELISA, immunofluorescence staining and flow cytometry. Western blot and 2D immunoblot were utilized for further characterization of the target antibodies. Results Among highly reactive clones, the reactivity of 7C11 clone was assessed in comparison to other epithelial tumors. The antibody isotype was IgM that reacted with a 55 kDa protein in western blot analysis. To further characterize the target antigen, immunoproteome of the Faraz-ICR cell line was performed. By LC-MS analysis, the target of 7C11 clone was identified to be vimentin. Conclusions Pancreatic cancer is a highly lethal malignancy with no reliable biomarker for early detection and diagnosis. In this study, by establishing a pancreatic acinar carcinoma cell line, a panel of monoclonal antibodies was generated to identify specific or associated cancer targets. Furthermore, 7C11 mAb was introduced that can specifically recognizes vimentin as a tumor marker. This antibody may serve as a new tool for prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Surendran SP, Moon MJ, Park R, Jeong YY. Bioactive Nanoparticles for Cancer Immunotherapy. Int J Mol Sci 2018; 19:E3877. [PMID: 30518139 PMCID: PMC6321368 DOI: 10.3390/ijms19123877] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, immunotherapy is considered to be one of the effective treatment modalities for cancer. All the developments and discoveries in this field up to the recent Nobel Prize add to the interest for research into this vast area of study. Targeting tumor environment as well as the immune system is a suitable strategy to be applied for cancer treatment. Usage of nanoparticle systems for delivery of immunotherapeutic agents to the body being widely studied and found to be a promising area of research to be considered and investigated further. Nanoparticles for immunotherapy would be one of the effective treatment options for cancer therapy in the future due to their high specificity, efficacy, ability to diagnose, imaging, and therapeutic effect. Among the many nanoparticle systems, polylactic-co-glycolic acid (PLGA) nanoparticles, liposomes, micelles, gold nanoparticles, iron oxide, dendrimers, and artificial exosomes are widely used for immunotherapy of cancer. Moreover, the combination therapy found to be the more effective way of treating the tumor. Here, we review the current trends in nanoparticle therapy and efficiency of these nanosystems in delivering antigens, adjuvants, therapeutic drugs, and other immunotherapeutic agents. This review summarizes the currently available bioactive nanoparticle systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Biomedical Sciences, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Myeong Ju Moon
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Rayoung Park
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Biomolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Hwasun 58128, South Korea.
| |
Collapse
|
20
|
Immunogenicity of Rituximab, Trastuzumab, and Bevacizumab Monoclonal Antibodies in Patients with Malignant Diseases. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.64983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. NANO RESEARCH 2018; 11:5769-5786. [DOI: 10.1007/s12274-018-2124-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2024]
|
22
|
Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. BIOSENSORS-BASEL 2018; 8:bios8040104. [PMID: 30388865 PMCID: PMC6316038 DOI: 10.3390/bios8040104] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
In biomedical science among several other growing fields, the detection of specific biological agents or biomolecular markers, from biological samples is crucial for early diagnosis and decision-making in terms of appropriate treatment, influencing survival rates. In this regard, immunosensors are based on specific antibody-antigen interactions, forming a stable immune complex. The antigen-specific detection antibodies (i.e., biomolecular recognition element) are generally immobilized on the nanomaterial surfaces and their interaction with the biomolecular markers or antigens produces a physico-chemical response that modulates the signal readout. Lowering the detection limits for particular biomolecules is one of the key parameters when designing immunosensors. Thus, their design by combining the specificity and versatility of antibodies with the intrinsic properties of nanomaterials offers a plethora of opportunities for clinical diagnosis. In this review, we show a comprehensive set of recent developments in the field of nanoimmunosensors and how they are progressing the detection and validation for a wide range of different biomarkers in multiple diseases and what are some drawbacks and considerations of the uses of such devices and their expansion.
Collapse
Affiliation(s)
- Sandra Lara
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - André Perez-Potti
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
23
|
Sexual dimorphism in solid and hematological malignancies. Semin Immunopathol 2018; 41:251-263. [DOI: 10.1007/s00281-018-0724-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
24
|
McKnight BN, Viola-Villegas NT. Monitoring Src status after dasatinib treatment in HER2+ breast cancer with 89Zr-trastuzumab PET imaging. Breast Cancer Res 2018; 20:130. [PMID: 30359299 PMCID: PMC6203283 DOI: 10.1186/s13058-018-1055-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
Background De novo or acquired resistance in breast cancer leads to treatment failures and disease progression. In human epidermal growth factor receptor 2 (HER2)-positive (HER2+) breast cancer, Src, a non-receptor tyrosine kinase, is identified as a major mechanism of trastuzumab resistance, with its activation stabilizing aberrant HER2 signaling, thus making it an attractive target for inhibition. Here, we explored the causal relationship between Src and HER2 by examining the potential of 89Zr-trastuzumab as a surrogate imaging marker of Src activity upon inhibition with dasatinib in HER2+ breast cancer. Methods HER2+ primary breast cancer cell lines BT-474 and trastuzumab-resistant JIMT-1 were treated with dasatinib and assessed for expression and localization of HER2, Src, and phosphorylated Src (pSrc) (Y416) through western blots and binding assays. Mice bearing BT-474 or JIMT-1 tumors were treated for 7 or 14 days with dasatinib. At the end of each treatment, tumors were imaged with 89Zr-trastuzumab. The results of 89Zr-trastuzumab positron emission tomography (PET) was compared against tumor uptake of fluorodeoxyglucose (18F-FDG) obtained the day before in the same group of mice. Ex vivo western blots and immunohistochemical staining (IHC) were performed for validation. Results In BT-474 and JIMT-1 cells, treatment with dasatinib resulted in a decrease in internalized 89Zr-trastuzumab. Confirmation with immunoblots displayed abrogation of pSrc (Y416) signaling; binding assays in both cell lines demonstrated a decrease in cell surface and internalized HER2-bound tracer. In xenograft models, dasatinib treatment for 7 days (BT-474, 11.05 ± 2.10 % injected dose per gram of tissue %(ID)/g; JIMT-1, 3.88 ± 1.47 %ID/g)) or 14 days (BT-474, 9.20 ± 1.85 %ID/g; JIMT-1, 4.45 ± 1.23 %ID/g) resulted in a significant decrease in 89Zr-trastuzumab uptake on PET compared to untreated control (BT-474, 17.88 ± 2.18 %ID/g; JIMT-1, 8.04 ± 1.47 %ID/g). No difference in 18F-FDG uptake was observed between control and treated cohorts. A parallel decrease in membranous HER2 and pSrc (Y416) staining was observed in tumors post treatment on IHC. Immunoblots further validated the 89Zr-trastuzumab-PET readout. Positive correlation was established between 89Zr-trastuzumab tumor uptake versus tumor regression, pSrc and pHER2 expression. Conclusions 89Zr-trastuzumab can potentially assess tumor response to dasatinib in HER2+ breast cancer and could be used as a surrogate tool to monitor early changes in Src signaling downstream of HER2. Electronic supplementary material The online version of this article (10.1186/s13058-018-1055-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brooke N McKnight
- Department of Oncology, Karmanos Cancer Institute, 4100 John R Street, Detroit, MI, 48201, USA
| | | |
Collapse
|
25
|
Abstract
Nowadays, in cancer treatments, immunotherapy which can be classified as a cancer type specific therapy is more popular than non-specific therapy methods such as surgery, radiotherapy and chemotherapy. The main aim of immunotherapy is to enable patients' immune system to target cancer cells and destroy them. The mainly used treatment methods in cancer immunotherapy are cancer vaccines, adoptive cell therapy, cytokines and monoclonal antibodies. In this review, we discuss the immunotherapy approaches, especially monoclonal antibodies which are mostly used in cancer immunotherapy in clinical applications.
Collapse
|
26
|
Marshall HT, Djamgoz MBA. Immuno-Oncology: Emerging Targets and Combination Therapies. Front Oncol 2018; 8:315. [PMID: 30191140 PMCID: PMC6115503 DOI: 10.3389/fonc.2018.00315] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Host immunity recognizes and eliminates most early tumor cells, yet immunological checkpoints, exemplified by CTLA-4, PD-1, and PD-L1, pose a significant obstacle to effective antitumor immune responses. T-lymphocyte co-inhibitory pathways influence intensity, inflammation and duration of antitumor immunity. However, tumors and their immunosuppressive microenvironments exploit them to evade immune destruction. Recent PD-1 checkpoint inhibitors yielded unprecedented efficacies and durable responses across advanced-stage melanoma, showcasing potential to replace conventional radiotherapy regimens. Neverthless, many clinical problems remain in terms of efficacy, patient-to-patient variability, and undesirable outcomes and side effects. In this review, we evaluate recent advances in the immuno-oncology field and discuss ways forward. First, we give an overview of current immunotherapy modalities, involving mainy single agents, including inhibitor monoclonal antibodies (mAbs) targeting T-cell checkpoints of PD-1 and CTLA-4. However, neoantigen recognition alone cannot eliminate tumors effectively in vivo given their inherent complex micro-environment, heterogeneous nature and stemness. Then, based mainly upon CTLA-4 and PD-1 checkpoint inhibitors as a "backbone," we cover a range of emerging ("second-generation") therapies incorporating other immunotherapies or non-immune based strategies in synergistic combination. These include targeted therapies such as tyrosine kinase inhibitors, co-stimulatory mAbs, bifunctional agents, epigenetic modulators (such as inhibitors of histone deacetylases or DNA methyltransferase), vaccines, adoptive-T-cell therapy, nanoparticles, oncolytic viruses, and even synthetic "gene circuits." A number of novel immunotherapy co-targets in pre-clinical development are also introduced. The latter include metabolic components, exosomes and ion channels. We discuss in some detail of the personalization of immunotherapy essential for ultimate maximization of clinical outcomes. Finally, we outline possible future technical and conceptual developments including realistic in vitro and in vivo models and inputs from physics, engineering, and artificial intelligence. We conclude that the breadth and quality of immunotherapeutic approaches and the types of cancers that can be treated will increase significantly in the foreseeable future.
Collapse
Affiliation(s)
- Henry T Marshall
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mustafa B A Djamgoz
- Neuroscience Solutions to Cancer Research Group, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Rahal Z, Abdulhai F, Kadara H, Saab R. Genomics of adult and pediatric solid tumors. Am J Cancer Res 2018; 8:1356-1386. [PMID: 30210910 PMCID: PMC6129500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023] Open
Abstract
Different types of cancers exhibit disparate spectra of genomic alterations (germline and/or somatic). These alterations can include single nucleotide variants (SNVs), copy number alterations (CNAs) or structural changes (e.g. gene fusions and chromosomal rearrangements). Identification of those genomic alterations has provided the opportune element to derive new strategies for molecular-based precision medicine of adult and pediatric cancers including risk assessment, non-invasive detection, molecular diagnosis and personalized therapy. Moreover, it is now becoming clear that the spectra of genomic-based alterations and mechanisms in pediatric malignancies are different from those predominantly occurring in adult cancer. Adult cancers on average exhibit substantially higher mutational burdens compared with the vast majority of childhood tumors. Accumulating evidence also suggests that the type of genomic alterations frequently encountered in adult cancers is different from those observed in pediatric malignancies. In this review, we discuss the state of knowledge on adult and pediatric cancer genomes (or "mutatomes"), specifically focusing on solid tumors. We present an overview of mutational signatures and processes in cancer as well as comprehensively compare and contrast the diverse spectra of genomic alterations (somatic and familial) among major adult and pediatric solid tumors. The review also discusses the role of genomics in molecular-based precision medicine of adult and pediatric solid malignancies as well as comprehending resistance mechanisms to various targeted therapies. In addition, we present a perspective that discusses upon emerging concepts in cancer genomics including intratumoral heterogeneity, the precancer (premalignant) genome as well as the interface between the host immune response and tumor genome - immunogenomics - as they relate to adult and pediatric tumors.
Collapse
Affiliation(s)
- Zahraa Rahal
- School of Medicine, American University of BeirutBeirut, Lebanon
| | - Farah Abdulhai
- School of Medicine, American University of BeirutBeirut, Lebanon
| | - Humam Kadara
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of BeirutBeirut, Lebanon
- Department of Epidemiology, Division of Cancer Prevention, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Raya Saab
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of BeirutBeirut, Lebanon
- Department of Anatomy, Physiology and Cell Biology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
28
|
Sanchez-Martinez D, Allende-Vega N, Orecchioni S, Talarico G, Cornillon A, Vo DN, Rene C, Lu ZY, Krzywinska E, Anel A, Galvez EM, Pardo J, Robert B, Martineau P, Hicheri Y, Bertolini F, Cartron G, Villalba M. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumors. Theranostics 2018; 8:3856-3869. [PMID: 30083264 PMCID: PMC6071536 DOI: 10.7150/thno.25149] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) have significantly improved the treatment of certain cancers. However, in general mAbs alone have limited therapeutic activity. One of their main mechanisms of action is to induce antibody-dependent cell-mediated cytotoxicity (ADCC), which is mediated by natural killer (NK) cells. Unfortunately, most cancer patients have severe immune dysfunctions affecting NK activity. This can be circumvented by the injection of allogeneic, expanded NK cells, which is safe. Nevertheless, despite their strong cytolytic potential against different tumors, clinical results have been poor. Methods: We combined allogeneic NK cells and mAbs to improve cancer treatment. We generated expanded NK cells (e-NK) with strong in vitro and in vivo ADCC responses against different tumors and using different therapeutic mAbs, namely rituximab, obinutuzumab, daratumumab, cetuximab and trastuzumab. Results: Remarkably, e-NK cells can be stored frozen and, after thawing, armed with mAbs. They mediate ADCC through degranulation-dependent and -independent mechanisms. Furthermore, they overcome certain anti-apoptotic mechanisms found in leukemic cells. Conclusion: We have established a new protocol for activation/expansion of NK cells with high ADCC activity. The use of mAbs in combination with e-NK cells could potentially improve cancer treatment.
Collapse
|
29
|
Mangini M, Iaccino E, Mosca MG, Mimmi S, D'Angelo R, Quinto I, Scala G, Mariggiò S. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget 2018; 8:5179-5195. [PMID: 28029647 PMCID: PMC5354900 DOI: 10.18632/oncotarget.14121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Expression of the lysophosphatidylinositol receptor GPR55 correlates with invasive potential of metastatic cells and bone metastasis formation of different types of tumors. These findings suggest a role for GPR55 signaling in cancer progression, including in lymphoproliferative diseases. Here, we screened a M13-phage-displayed random library using the bait of HEK293 cells that heterologously expressed full-length HA-GPR55. We selected a set of phagotopes that carried 7-mer insert peptides flanked by a pair of cysteine residues, which resulted in cyclized peptides. Sequencing of selected phagotopes dictated the primary structure for the synthetic FITC-labeled peptide P1, which was analyzed for binding specificity to immunoprecipitated HA-GPR55, and to endogenously expressed GPR55, using cells interfered or not for GPR55, as well as for co-localization imaging with HA-GPR55 at the membrane level. The peptide P1 stimulated GPR55 endocytosis and inhibited GPR55-dependent proliferation of EHEB and DeFew cells, two human B-lymphoblastoid cell lines. Our data support the potential therapeutic application of peptide ligands of GPR55 for targeting and inhibiting growth of neoplastic cells, which overexpress GPR55 and are dependent on GPR55 signaling for their proliferation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | | | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Rosa D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
30
|
Kumar S, Saini RV, Mahindroo N. Recent advances in cancer immunology and immunology-based anticancer therapies. Biomed Pharmacother 2017; 96:1491-1500. [PMID: 29198747 DOI: 10.1016/j.biopha.2017.11.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/12/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapies offer promise for cure of cancer with specificity and minimal toxicity. Recent developments in cancer immunology have led to the better understanding of role of immune regulatory mechanisms in cancer. There is rapid progress in this field in the last few years. Several clinical studies report the efficacy of immunotherapies for treating cancer. The immunology-based anticancer therapies have shown better safety profiles in clinic as compared to other chemotherapeutic agents, thus increasing interest in this area. This review summarizes recent advances in cancer immunology and discusses tumor microenvironment and immunology-based anticancer therapies, including vaccines and therapies targeting immune checkpoints.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Reena Vohra Saini
- School of Biotechnology, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
31
|
Long-term endurance training increases serum cathepsin S levels in healthy female subjects. Ir J Med Sci 2017; 187:845-851. [PMID: 29181829 DOI: 10.1007/s11845-017-1693-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Circulating cathepsin S (CS) has been associated with a lower risk for breast cancer in a large Swedish cohort. Long-term physical activity has been shown to have beneficial effects on the development of various cancer subtypes, in particular breast and colorectal cancers. The aim of this study was to investigate the effect of long-term endurance sport on CS levels in females. MATERIAL AND METHODS Thirty-six of 40 subjects completed the study. Subjects were told to increase their activity pensum for 8 months reaching 150 min/week moderate or 75 min/week intense exercise. Ergometries were performed at the beginning and the end of the study to prove/quantify the performance gain. Blood samples were drawn at baseline and every 2 months. Serum CS levels were measured by ELISA. To analyse the change and the progression of CS, Wilcoxon rank sum and Friedman tests were used. RESULTS The sportive group (performance gain by > 4.9%) showed a significant increase of CS levels from 3.32/2.73/4.09 to 4.00/3.09/5.04 ng/ml (p = 0.008) corresponding to an increase of 20.5%. CONCLUSIONS We could show a significant increase of circulating CS levels in healthy female subjects induced by long-term physical activity. CS, occurring in the tumour microenvironment, is well-known to promote tumour growth, e.g. by ameliorating angiogenesis. However, the role of circulating CS in cancer growth is not clear. As physical activity is known as preventive intervention, in particular concerning breast and colorectal cancers, and long-term physical activity leads to an increase of CS levels in female subjects, circulating CS might even be involved in this protective effect. TRIAL REGISTRATION Clinical trial registration: NCT02097199.
Collapse
|
32
|
Bhat J, Mondal S, Sengupta P, Chatterjee S. In Silico Screening and Binding Characterization of Small Molecules toward a G-Quadruplex Structure Formed in the Promoter Region of c-MYC Oncogene. ACS OMEGA 2017; 2:4382-4397. [PMID: 30023722 PMCID: PMC6044917 DOI: 10.1021/acsomega.6b00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/20/2017] [Indexed: 06/08/2023]
Abstract
Overexpression of c-MYC oncogene is associated with cancer pathology. Expression of c-MYC is regulated by the G-quadruplex structure formed in the G-rich segment of nuclease hypersensitive element (NHE III1), that is, "Pu27", which is localized in the promoter region. Ligand-induced stabilization of the Pu27 structure has been identified as a novel target for cancer therapeutics. Here, we have explored the library of synthetic compounds against the predefined binding site of Pu27. Three compounds were selected based on the docking analyses; they were further scrutinized using all atom molecular dynamics simulations in an explicit water model. Simulated trajectories were scrutinized for conformational stability and ligand binding free energy estimation; essential dynamic behavior was determined using principal component analysis. One of the molecules, "TPP (1-(3-(4-(1,2,3-thiadiazol-4-yl)phenoxy)-2-hydroxypropyl)-4-carbamoylpiperidinium)", with the best results was considered for further evaluation. The theoretical observations are supported well by biophysical analysis using circular dichroism, isothermal titration calorimetry, and high-resolution NMR spectroscopy indicating association of TPP with Pu27. The in vitro studies were then translated into c-MYC overexpression in the T47D breast cancer cell line. Biological evaluation through the MTT assay, flow cytometric assay, RT-PCR, and reporter luciferase assay suggests that TPP downregulates the expression of c-MYC oncogene by arresting its promoter region. In silico and in vitro observations cumulatively suggest that the novel skeleton of TPP could be a potential anticancer agent by stabilizing the G-quadruplex formed in the Pu27 and consequently downregulating the expression of c-MYC oncogene. Derivation of new molecules on its skeleton may confer anticancer therapeutics for the next generation.
Collapse
|
33
|
Monoclonal Antibody 1C11 Mouse Monoclonal Antibody Against Mortalin. Monoclon Antib Immunodiagn Immunother 2017; 36:192-193. [PMID: 28806154 DOI: 10.1089/mab.2017.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Vulto AG, Jaquez OA. The process defines the product: what really matters in biosimilar design and production? Rheumatology (Oxford) 2017; 56:iv14-iv29. [PMID: 28903544 PMCID: PMC5850795 DOI: 10.1093/rheumatology/kex278] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
Biologic drugs are highly complex molecules produced by living cells through a multistep manufacturing process. The key characteristics of these molecules, known as critical quality attributes (CQAs), can vary based on post-translational modifications that occur in the cellular environment or during the manufacturing process. The extent of the variation in each of the CQAs must be characterized for the originator molecule and systematically matched as closely as possible by the biosimilar developer to ensure bio-similarity. The close matching of the originator fingerprint is the foundation of the biosimilarity exercise, as the analytical tools designed to measure differences at the molecular level are far more sensitive and specific than tools available to physicians during clinical trials. Biosimilar development, therefore, has a greater focus on preclinical attributes compared with the development of an original biological agent. As changes in CQAs can occur at different stages of the manufacturing process, even small modifications to the process can alter biosimilar attributes beyond the point of similarity and impact clinical effectiveness and safety. The manufacturer's ability to provide consistent production and quality control will greatly influence the acceptance of biosimilars. To this end, preventing drift from the required specifications over time and avoiding the various implications brought by product shortage will enhance biosimilar integration into daily practice. As most prescribers are not familiar with this new drug development paradigm, educational programmes will be needed so that prescribers see biosimilars as fully equivalent, efficacious and safe medicines when compared with originator products.
Collapse
Affiliation(s)
- Arnold G. Vulto
- Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orlando A. Jaquez
- Department of Medical Affairs, Biogen International GmbH, Zug, Switzerland
| |
Collapse
|
35
|
Rezaei M, Ghaderi A. Production of a Mouse Monoclonal Antibody Against Mortalin by Whole Cell Immunization. Monoclon Antib Immunodiagn Immunother 2017; 36:169-175. [PMID: 28719245 DOI: 10.1089/mab.2017.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pancreatic carcinoma is the fourth leading cause of cancer death and is characterized by early invasion and metastasis. Advances in molecular biology directed new strategies in targeted therapy using monoclonal antibodies. To identify new biomarkers, we generated a panel of monoclonal antibodies against the newly established cell line, Faraz-ICR, from a patient with acinar cell carcinoma. After immunization of BALB/c female mice with Faraz-ICR cell line and fusion of splenocytes with SP2/0 myeloma cell line, high reactive hybridoma producing antibodies to Faraz-ICR were detected using enzyme-linked immunosorbent assay, immunofluorescence staining and flow cytometry. Western blot and two-dimensional immunoblot were used for further characterization of the targets antibodies. Among high reactive clones, the reactivity of 1C11 clone was assessed with other epithelial tumors. The isotype of the antibody was revealed to be IgM, and the antibody reacted to a protein with a molecular weight of about 70 kDa in Western blot analysis. To further characterization of the target antigen, immunoproteome of the Faraz-ICR cell line was performed. By liquid chromatography-mass spectrometry (LC-MS) analysis, we identified that the target of 1C11 clone was HSP70. In conclusion, pancreatic cancer is a fatal malignancy with no reliable biomarker for early screening and diagnosis. In this study, by establishing a pancreatic cell line, a panel of monoclonal antibodies was generated aiming to explore specific or associated cancer targets. We then introduced 1C11 monoclonal antibody that can specifically recognize mortalin as a main tumor marker and may serve as a new tool for diagnostic kit and therapeutic strategies targeting this molecule.
Collapse
Affiliation(s)
- Marzieh Rezaei
- 1 Department of Immunology, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran .,2 Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Abbas Ghaderi
- 2 Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
36
|
Guazzelli A, Bakker E, Krstic-Demonacos M, Lisanti MP, Sotgia F, Mutti L. Anti-CTLA-4 therapy for malignant mesothelioma. Immunotherapy 2017; 9:273-280. [PMID: 28231719 DOI: 10.2217/imt-2016-0123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy is an emerging therapeutic strategy with a promising clinical outcome in some solid tumors, particularly metastatic melanoma. One approach to immunotherapy is immune checkpoint inhibitors, such as blockage of CTLA-4 and PD-1/PD-L1. This special report aims to describe the state of clinical trials of tremelimumab in patients with unresectable malignant mesothelioma (MM) in particular with regard to the clinical efficacy, safety and tolerability. Criticism and perspective of this treatment are also discussed. Biological and clinical considerations rule out the use of tremelimumab as single agent for MM and, more generally, the use of immune checkpoint inhibitors for MM is still largely questionable and not supported by evidences.
Collapse
Affiliation(s)
- Alice Guazzelli
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Emyr Bakker
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Marija Krstic-Demonacos
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Michael P Lisanti
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Federica Sotgia
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Luciano Mutti
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| |
Collapse
|
37
|
Tao L, Clarke CA, Rosenberg AS, Advani RH, Jonas BA, Flowers CR, Keegan THM. Subsequent primary malignancies after diffuse large B-cell lymphoma in the modern treatment era. Br J Haematol 2017; 178:72-80. [PMID: 28542862 PMCID: PMC5487277 DOI: 10.1111/bjh.14638] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/22/2016] [Indexed: 01/07/2023]
Abstract
With the addition of rituximab and other treatment advances, survival after diffuse large B-cell lymphoma (DLBCL) has improved, but subsequent primary malignancies (SPMs) have emerged as an important challenge for DLBCL survivorship. We calculated standardized incidence ratios (SIRs) and 95% confidence intervals (CIs) for SPMs among 23 879 patients who survived at least 1 year after a first primary DLBCL diagnosed during 1989-2012, compared to the general population in California. Cumulative incidence (CMI) of SPMs, accounting for the competing risk of death, also was calculated. We found that the incidence of acute myeloid leukaemia (AML) nearly doubled in the post-rituximab era [SIR (95% CI) 4·39 (2·51-7·13) pre- (1989-2000) and 8·70 (6·62-11·22) post-rituximab (2001-2012)]. Subsequent thyroid cancer was rare pre-rituximab, but increased substantially after 2001 [0·66 (0·08-2·37) vs. 2·27(1·44-3·41)]. The 5-year CMI for all SPMs (4·77% pre- vs. 5·41% post-rituximab, P = 0·047), AML (0·15% vs. 0·41%, P = 0·003), thyroid cancer (0·03% vs. 0·15%, P = 0·003) and melanoma (0·25% vs. 0·42%, P = 0·020) were greater in DLBCL patients diagnosed in the post- versus pre-rituximab period. This study provides insight into the changing pattern of SPM occurrence after the introduction of rituximab, which may elucidate the aetiology of SPMs and should guide future cancer surveillance efforts among DLBCL patients.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- California/epidemiology
- Female
- Follow-Up Studies
- Humans
- Incidence
- Leukemia, Myeloid, Acute/chemically induced
- Leukemia, Myeloid, Acute/epidemiology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Male
- Melanoma/chemically induced
- Melanoma/epidemiology
- Middle Aged
- Neoplasms, Second Primary/chemically induced
- Neoplasms, Second Primary/epidemiology
- Registries
- Rituximab/adverse effects
- Rituximab/therapeutic use
- Thyroid Neoplasms/chemically induced
- Thyroid Neoplasms/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Li Tao
- Cancer Prevention Institute of California, Fremont, CA, USA
| | - Christina A Clarke
- Cancer Prevention Institute of California, Fremont, CA, USA
- Department of Health Research and Policy (Epidemiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron S Rosenberg
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | | | - Brian A Jonas
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christopher R Flowers
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Theresa H M Keegan
- Center for Oncology Hematology Outcomes Research and Training (COHORT), Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
38
|
Ventola CL. Cancer Immunotherapy, Part 2: Efficacy, Safety, and Other Clinical Considerations. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2017; 42:452-463. [PMID: 28674473 PMCID: PMC5481296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article, the second in a series of three, provides an overview of the efficacy and safety of cancer immunotherapies ranging from monoclonal antibodies to vaccines, including additional clinical considerations regarding immune checkpoint blockers.
Collapse
|
39
|
Ye J, Yuen SM, Murphy G, Xie R, Kwok HF. Anti-tumor effects of a 'human & mouse cross-reactive' anti-ADAM17 antibody in a pancreatic cancer model in vivo. Eur J Pharm Sci 2017; 110:62-69. [PMID: 28554668 DOI: 10.1016/j.ejps.2017.05.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumor amongst all human cancers due to late diagnosis and resistant to treatment with chemotherapy and radiation. Preclinical and clinical studies have revealed that ErbB family for example epidermal growth factor receptor (EGFR) is a validated molecular target for pancreatic cancer prevention and therapy. The ErbB signaling cascade is regulated by a member of the ADAM (a disintegrin and metalloprotease) family, namely ADAM17, by enzymatic cleavage of precursor ligands into soluble cytokines and growth factors. Mouse genetic studies have demonstrated that ADAM17 is required for PDAC development. In this study, we evaluated the anti-tumor effects of A9(B8) IgG - the first specific 'human and mouse cross-reactive' ADAM17 inhibitory antibody on pancreatic malignant transformation. We found that inhibition of ADAM17 with A9(B8) IgG efficiently suppressed the shedding of ADAM17 substrates both in vivo and in vitro. Furthermore, we demonstrated that administration of A9(B8) IgG significantly suppressed motility in human pancreatic cancer cells and also significantly delayed tumorigenesis in the Pdx1Cre;KrasG12D;Trp53fl/+PDAC mouse model. Inhibition of ADAM17 with A9(B8) IgG particularly affected the progression of pre-invasive pancreatic lesions to advanced PDAC in mice. Taken together, the preclinical data presented here will provide a starting point for clinical applications of ADAM17 targeted therapy.
Collapse
Affiliation(s)
- Jie Ye
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau
| | - Shun Ming Yuen
- Histopathology Core, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau
| | - Gillian Murphy
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ruiyu Xie
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau; Histopathology Core, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau.
| |
Collapse
|
40
|
Tosi A, Dalla Santa S, Cappuzzello E, Marotta C, Walerych D, Del Sal G, Zanovello P, Sommaggio R, Rosato A. Identification of a HLA-A*0201-restricted immunogenic epitope from the universal tumor antigen DEPDC1. Oncoimmunology 2017; 6:e1313371. [PMID: 28919988 PMCID: PMC5593712 DOI: 10.1080/2162402x.2017.1313371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 11/21/2022] Open
Abstract
The identification of universal tumor-specific antigens shared between multiple patients and/or multiple tumors is of great importance to overcome the practical limitations of personalized cancer immunotherapy. Recent studies support the involvement of DEPDC1 in many aspects of cancer traits, such as cell proliferation, resistance to induction of apoptosis and cell invasion, suggesting that it may play key roles in the oncogenic process. In this study, we report that DEPDC1 expression is upregulated in most types of human tumors, and closely linked to a poorer prognosis; therefore, it might be regarded as a novel universal oncoantigen potentially suitable for targeting many different cancers. In this regard, we report the identification of a HLA-A*0201 allele-restricted immunogenic DEPDC1-derived epitope, which is able to induce cytotoxic T lymphocytes (CTL) exerting a strong and specific functional response in vitro toward not only peptide-loaded cells but also triple negative breast cancer (TNBC) cells endogenously expressing the DEPDC1 protein. Such CTL are also therapeutically active against human TNBC xenografts in vivo upon adoptive transfer in immunodeficient mice. Overall, these data provide evidence that this DEPDC1-derived antigenic epitope can be exploited as a new tool for developing immunotherapeutic strategies for HLA-A*0201 patients with TNBC, and potentially many other cancers.
Collapse
Affiliation(s)
- Anna Tosi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Giannino Del Sal
- National Laboratory CIB (LNCIB), Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Roberta Sommaggio
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| |
Collapse
|
41
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
42
|
Shao N, Jia H, Li Y, Li J. Curcumin improves treatment outcome of Takayasu arteritis patients by reducing TNF-α: a randomized placebo-controlled double-blind clinical trial. Immunol Res 2017; 65:969-974. [DOI: 10.1007/s12026-017-8917-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Nejatollahi F, Bayat P, Moazen B. Cell growth inhibition and apoptotic effects of a specific anti-RTFscFv antibody on prostate cancer, but not glioblastoma, cells. F1000Res 2017; 6:156. [PMID: 28491282 PMCID: PMC5399964 DOI: 10.12688/f1000research.10803.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/04/2023] Open
Abstract
Background: Single chain antibody (scFv) has shown interesting results in cancer immunotargeting approaches, due to its advantages over monoclonal antibodies. Regeneration and tolerance factor (RTF) is one of the most important regulators of extracellular and intracellular pH in eukaryotic cells. In this study, the inhibitory effects of a specific anti-RTF scFv were investigated and compared between three types of prostate cancer and two types of glioblastoma cells.
Methods: A phage antibody display library of scFv was used to select specific scFvs against RTF using panning process. The reactivity of a selected scFv was assessed by phage ELISA. The anti-proliferative and apoptotic effects of the antibody on prostate cancer (PC-3, Du-145 and LNCaP) and glioblastoma (U-87 MG and A-172) cell lines were investigated by MTT and Annexin V/PI assays.
Results: A specific scFv with frequency 35% was selected against RTF epitope. This significantly inhibited the proliferation of the prostate cells after 24 h. The percentages of cell viability (using 1000 scFv/cell) were 52, 61 and 73% for PC-3, Du-145 and LNCaP cells, respectively, compared to untreated cells. The antibody (1000 scFv/cell) induced apoptosis at 50, 40 and 25% in PC-3, Du-145 and LNCaP cells, respectively. No growth inhibition and apoptotic induction was detected for U-87 and A172 glioblastoma cells.
Conclusions: Anti-RTFscFv significantly reduced the proliferation of the prostate cancer cells. The inhibition of cell growth and apoptotic induction effects in PC-3 cells were greater than Du-145 and LNCaP cells. This might be due to higher expression of RTF antigen in PC-3 cells and/or better accessibility of RTF to scFv antibody. The resistance of glioblastoma cells to anti-RTF scFv offers the existence of mechanism(s) that abrogate the inhibitory effect(s) of the antibody to RTF. The results suggest that the selected anti-RTF scFv antibody could be an effective new alternative for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Foroogh Nejatollahi
- Shiraz HIV/AIDS research center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payam Bayat
- Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Moazen
- Shiraz HIV/AIDS research center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.,Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Resveratrol improves treatment outcome and laboratory parameters in patients with Takayasu arteritis: A randomized double-blind and placebo-controlled trial. Immunobiology 2017; 222:164-168. [DOI: 10.1016/j.imbio.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
|
45
|
Velpurisiva P, Gad A, Piel B, Jadia R, Rai P. Nanoparticle Design Strategies for Effective Cancer Immunotherapy. JOURNAL OF BIOMEDICINE (SYDNEY, NSW) 2017; 2:64-77. [PMID: 28503405 PMCID: PMC5426812 DOI: 10.7150/jbm.18877] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer immunotherapy is a rapidly evolving and paradigm shifting treatment modality that adds a strong tool to the collective cancer treatment arsenal. It can be effective even for late stage diagnoses and has already received clinical approval. Tumors are known to not only avoid immune surveillance but also exploit the immune system to continue local tumor growth and metastasis. Because of this, most immunotherapies, particularly those directed against solid cancers, have thus far only benefited a small minority of patients. Early clinical substantiation lends weight to the claim that cancer immunotherapies, which are adaptive and enduring treatment methods, generate much more sustained and robust anticancer effects when they are effectively formulated in nanoparticles or scaffolds than when they are administered as free drugs. Engineering cancer immunotherapies using nanomaterials is, therefore, a very promising area worthy of further consideration and investigation. This review focuses on the recent advances in cancer immunoengineering using nanoparticles for enhancing the therapeutic efficacy of a diverse range of immunotherapies. The delivery of immunostimulatory agents to antitumor immune cells, such as dendritic or antigen presenting cells, may be a far more efficient tactic to eradicate tumors than delivery of conventional chemotherapeutic and cytotoxic drugs to cancer cells. In addition to its immense therapeutic potential, immunoengineering using nanoparticles also provides a valuable tool for unearthing and understanding the basics of tumor biology. Recent research using nanoparticles for cancer immunotherapy has demonstrated the advantage of physicochemical manipulation in improving the delivery of immunostimulatory agents. In vivo studies have tested a range of particle sizes, mostly less than 300 nm, and particles with both positive and negative zeta potentials for various applications. Material composition and surface modifications have been shown to contribute significantly in selective targeting, efficient delivery and active stimulation of immune system targets. Thus, these investigations, including a wide array of nanoparticles for cancer immunotherapy, substantiate the employment of nanocarriers for efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Praveena Velpurisiva
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, USA
| | - Aniket Gad
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, USA
| | - Brandon Piel
- Department of Chemical Engineering, University of Massachusetts Lowell, USA
| | - Rahul Jadia
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, USA
| | - Prakash Rai
- Department of Chemical Engineering, University of Massachusetts Lowell, USA
| |
Collapse
|
46
|
Sponder M, Campean IA, Emich M, Fritzer-Szekeres M, Litschauer B, Bergler-Klein J, Graf S, Strametz-Juranek J. Long-term endurance training increases serum cathepsin S and decreases IL-6 and hsCRP levels. J Sports Sci 2016; 35:2129-2134. [DOI: 10.1080/02640414.2016.1258482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michael Sponder
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Emich
- Austrian Armed Forces, Austrian Federal Ministry of Defence and Sports, Vienna, Austria
| | - Monika Fritzer-Szekeres
- Department of Medical-Chemical Laboratory Analysis, Medical University of Vienna, Vienna, Austria
| | - Brigitte Litschauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Senta Graf
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
47
|
Maruthanila VL, Elancheran R, Kunnumakkara AB, Kabilan S, Kotoky J. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer 2016; 24:191-219. [PMID: 27796923 DOI: 10.1007/s12282-016-0732-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/18/2016] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most prominent cause of cancer death in women worldwide. The highlights of this review are to provide an overview of the targeted therapeutic agents, challenges with metastatic breast cancer (MBCa), mechanisms of action through Hedgehog/Gli 1 signaling pathway and future prospective. Over a decade of success, several drugs have been approved and are in the advanced stages of clinical trials that target the receptors such as estrogen receptor, growth factor receptor, receptor activator of nuclear factor kappa-B, etc. Currently, several monoclonal antibodies are also used for the treatment of breast cancer. Advances in understanding tumor biology, particularly signaling pathways such as Notch signaling pathway, Hedgehog/Gli 1 signaling pathway, and inhibitors are considered to be important for bone metastasis. These studies may provide vital information for the design and development of new strategies with respect to efficacy, reduction of the side effects, and treatment strategies.
Collapse
Affiliation(s)
- V L Maruthanila
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - R Elancheran
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
| | - A B Kunnumakkara
- Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam, 781035, India
| | - S Kabilan
- Department of Chemistry, Annamalai University, Annamalai Nagar, Tamilnadu, 608002, India
| | - Jibon Kotoky
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
48
|
Cheng WL, Kao YH, Chen SA, Chen YJ. Pathophysiology of cancer therapy-provoked atrial fibrillation. Int J Cardiol 2016; 219:186-94. [PMID: 27327505 DOI: 10.1016/j.ijcard.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) occurs with increased frequency in cancer patients, especially in patients who undergo surgery or chemotherapy. AF disturbs the prognosis of cancer patients and challenges therapeutic outcomes of cancer treatment. Elucidating the mechanisms of cancer-induced AF would help identify specific strategies for preventing AF occurrence. In addition to concurrent risk factors of cancer and AF, cancer surgery, side effects of anticancer agents, and cancer-associated immune responses play critical roles in the genesis of AF. In this review, we provide succinct potential mechanisms of AF genesis in cancer patients.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Zhang X, Pei Z, Chen J, Ji C, Xu J, Zhang X, Wang J. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer. J Cancer 2016; 7:1081-7. [PMID: 27326251 PMCID: PMC4911875 DOI: 10.7150/jca.14866] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention.
Collapse
Affiliation(s)
- Xuan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Zenglin Pei
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jinyun Chen
- 2. Departments of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 770030, USA
| | - Chunxia Ji
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jianqing Xu
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Xiaoyan Zhang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Jin Wang
- 1. Scientific Research Center, Shanghai Public Health Clinical Center, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| |
Collapse
|
50
|
Abstract
Fighting Cancer with Immunotherapy. 21st Century Cancer Warfare: A Glimpse into the Operations of a Modern Radiotherapy Unit. Is Colorectal Carcinomas due to ‘Bad Luck’ or Is It Preventable? Asian Point of View on Cancer. Improving Overall Survival in Hepatocellular Carcinoma through a Multi-Disciplinary Approach: Intra-Tumoral Heterogeneity, Immunology and the Promise of Better Outcomes. Cancer of the Cervix – Can It be Prevented?
Collapse
|