1
|
Cizauskas HE, Burnham HV, Panni A, Peña A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti CE, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. Am J Physiol Heart Circ Physiol 2024; 327:H460-H472. [PMID: 38940916 PMCID: PMC11442024 DOI: 10.1152/ajpheart.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared with sinus rhythm atria. Atrial cardiomyocytes show reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and troponin I altering calcium sensitivity. We measured degradation of other myofilament proteins, including cardiac myosin binding protein C and actinin, that show degradation products in the AFib samples that are absent in the sinus rhythm atria. Many of the degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.NEW & NOTEWORTHY Atrial fibrillation is the most common cardiac rhythm disorder, and remodeling during atrial fibrillation is highly variable between patients. This study has defined the biophysical changes in contractility that occur in atrial fibrillation along with identifying potential molecular mechanisms that may drive this remodeling. This includes proteolysis of several myofilament proteins including titin, troponin I, myosin heavy chain, myosin binding protein C, and actinin, which is consistent with the observed contractile deficits.
Collapse
Affiliation(s)
- Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Azaria Panni
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Alexandra Peña
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - M Therese Davis
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Cizauskas HE, Burnham HV, Panni A, Pena A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti C, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565691. [PMID: 37961455 PMCID: PMC10635151 DOI: 10.1101/2023.11.05.565691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aims Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance. Treatment of AFib involves restoration of the atrial electrical rhythm. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs that involves decreased blood flow velocity and reduced atrial contractility. This suggests that defects in contractility occur in AFib and are revealed upon restoration of rhythm. The aim of this project is to define the contractile remodeling that occurs in AFib. Methods and Results To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction in skinned single cardiomyocyte calcium-force studies. There were no significant differences in myosin heavy chain isoform expression. Resting tension is decreased in the AFib samples correlating with reduced full-length titin in the sarcomere. We measured degradation of other myofilament proteins including cMyBP-C, actinin, and cTnI, showing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. Skinned cardiomyocytes from AFib atria showed decreased troponin I phosphorylation, consistent with the increased calcium sensitivity that was found within these cardiomyocytes. Conclusions With these results it can be concluded that AFib causes alterations in contraction that can be explained by both molecular changes occurring in myofilament proteins and overall myofilament protein degradation. These results provide an understanding of the contractile remodeling that occurs in AFib and provides insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.
Collapse
|
3
|
Fedotcheva T, Shimanovsky N, Fedotcheva N. Involvement of Multidrug Resistance Modulators in the Regulation of the Mitochondrial Permeability Transition Pore. MEMBRANES 2022; 12:membranes12090890. [PMID: 36135908 PMCID: PMC9502193 DOI: 10.3390/membranes12090890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 05/12/2023]
Abstract
The permeability transition pore in mitochondria (MPTP) and the ATP-binding cassette transporters (АВС transporters) in cell membranes provide the efflux of low-molecular compounds across mitochondrial and cell membranes, respectively. The inhibition of ABC transporters, especially of those related to multi drug resistance (MDR) proteins, is an actively explored approach to enhance intracellular drug accumulation and increase thereby the efficiency of anticancer therapy. Although there is evidence showing the simultaneous effect of some inhibitors on both MDR-related proteins and mitochondrial functions, their influence on MPTP has not been previously studied. We examined the participation of verapamil and quinidine, classified now as the first generation of MDR modulators, and avermectin, which has recently been actively studied as an MDR inhibitor, in the regulation of the MPTP opening. In experiments on rat liver mitochondria, we found that quinidine lowered and verapamil increased the threshold concentrations of calcium ions required for MPTP opening, and that they both decreased the rate of calcium-induced swelling of mitochondria. These effects may be associated with the positive charge of the drugs and their aliphatic properties. Avermectin not only decreased the threshold concentration of calcium ions, but also by itself induced the opening of MPTP and the mitochondrial swelling inhibited by ADP and activated by carboxyatractyloside, the substrate and inhibitor of adenine nucleotide translocase (ANT), which suggests the involvement of ANT in the process. Thus, these data indicate an additional opportunity to evaluate the effectiveness of MDR modulators in the context of their influence on the mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Tatiana Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| | - Nikolai Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| | - Nadezhda Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St. 3, Pushchino 142290, Russia
- Correspondence:
| |
Collapse
|
4
|
Goette A, Lendeckel U. Atrial Cardiomyopathy: Pathophysiology and Clinical Consequences. Cells 2021; 10:cells10102605. [PMID: 34685585 PMCID: PMC8533786 DOI: 10.3390/cells10102605] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Around the world there are 33.5 million patients suffering from atrial fibrillation (AF) with an annual increase of 5 million cases. Most AF patients have an established form of an atrial cardiomyopathy. The concept of atrial cardiomyopathy was introduced in 2016. Thus, therapy of underlying diseases and atrial tissue changes appear as a cornerstone of AF therapy. Furthermore, therapy or prevention of atrial endocardial changes has the potential to reduce atrial thrombogenesis and thereby cerebral stroke. The present manuscript will summarize the underlying pathophysiology and remodeling processes observed in the development of an atrial cardiomyopathy, thrombogenesis, and atrial fibrillation. In particular, the impact of oxidative stress, inflammation, diabetes, and obesity will be addressed.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, 33098 Paderborn, Germany
- MAESTRIA Consortium/AFNET, 48149 Münster, Germany
- Correspondence:
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| |
Collapse
|
5
|
Is left atrial strain the pathophysiological link between transplanted stem cells and atrial fibrillation? Int J Cardiol 2021; 339:60-61. [PMID: 34214503 DOI: 10.1016/j.ijcard.2021.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
|
6
|
Lkhagva B, Lin Y, Chen Y, Cheng W, Higa S, Kao Y, Chen Y. ZFHX3 knockdown dysregulates mitochondrial adaptations to tachypacing in atrial myocytes through enhanced oxidative stress and calcium overload. Acta Physiol (Oxf) 2021; 231:e13604. [PMID: 33332716 DOI: 10.1111/apha.13604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
AIM To investigate the role of zinc finger homeobox 3 gene (ZFHX3) in tachypacing-induced mitochondrial dysfunction and explore its molecular mechanisms and potential as a therapeutic target in atrial fibrillation (AF). METHODS Through a bioluminescent assay, a patch clamp, confocal fluorescence and fluorescence microscopy, microplate enzyme activity assays and Western blotting, we studied ATP and ADP production, mitochondrial electron transfer chain complex activities, ATP-sensitive potassium channels (IKATP ), mitochondrial oxidative stress, Ca2+ content, and protein expression in control and ZFHX3 knockdown (KD) HL-1 cells subjected to 1 and 5-Hz pacing for 24 hours. RESULTS Compared with 1-Hz pacing, 5-Hz pacing increased ATP and ADP production, IKATP , phosphorylated adenosine monophosphate-activated protein kinase and inositol 1,4,5-triphosphate (IP3 ) receptor (IP3 R) protein expression. Tachypacing induced mitochondrial oxidative stress and Ca2+ overload in both cell types. Furthermore, under 1- and 5-Hz pacing, ZFHX3 KD cells showed higher IKATP , ATP and ADP production, mitochondrial oxidative stress and Ca2+ content than control cells. Under 5-Hz pacing, 2-aminoethoxydiphenyl borate (2-APB; 3 μmol/L, an IP3 R inhibitor) and MitoTEMPO (10 µmol/L, a mitochondria-targeted antioxidant) reduced ADP and increased ATP production in both cell types; however, only 2-APB significantly reduced mitochondrial Ca2+ overload in control cells. Under 5-Hz pacing, mitochondrial oxidative stress was significantly reduced by both MitoTEMPO and 2-APB and only by 2-APB in control and ZFHX3 KD cells respectively. CONCLUSION ZFHX3 KD cells modulate mitochondrial adaptations to tachypacing in HL-1 cardiomyocytes through Ca2+ overload, oxidative stress and metabolic disorder. Targeting IP3 R signalling or oxidative stress could reduce AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Yung‐Kuo Lin
- Division of Cardiology Department of Internal Medicine School of Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Yao‐Chang Chen
- Department of Biomedical Engineering National Defense Medical Center Taipei Taiwan
| | - Wan‐Li Cheng
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory Division of Cardiovascular Medicine Makiminato Central Hospital Okinawa Japan
| | - Yu‐Hsun Kao
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Department of Medical Education and Research Wan‐Fang Hospital Taipei Medical University Taipei Taiwan
| | - Yi‐Jen Chen
- Graduate Institute of Clinical Medicine College of Medicine Taipei Medical University Taipei Taiwan
- Cardiovascular Research CenterWan‐Fang HospitalTaipei Medical University Taipei Taiwan
| |
Collapse
|
7
|
Abstract
The Wnt signaling pathway regulates physiological processes such as cell proliferation and differentiation, cell fate decisions, and stem cell maintenance and, thus, plays essential roles in embryonic development, but also in adult tissue homeostasis and repair. The Wnt signaling pathway has been associated with heart development and repair and has been shown to be crucially involved in proliferation and differentiation of progenitor cells into cardiomyocytes. The investigation of the role of the Wnt signaling pathway and the regulation of its expression/activity in atrial fibrillation has only just begun. The present minireview (I) provides original data regarding the expression of Wnt signaling components in atrial tissue of patients with atrial fibrillation or sinus rhythm and (II) summarizes the current state of knowledge of the regulation of Wnt signaling components' expression/activity and the contribution of the various levels of the Wnt signal transduction pathway to the processes of the development, maintenance, and progression of atrial fibrillation.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Elmer Antileo
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| |
Collapse
|
8
|
Brown SM, Larsen NK, Thankam FG, Agrawal DK. Fetal cardiomyocyte phenotype, ketone body metabolism, and mitochondrial dysfunction in the pathology of atrial fibrillation. Mol Cell Biochem 2020; 476:1165-1178. [PMID: 33188453 DOI: 10.1007/s11010-020-03980-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Even though hypertension, congestive heart failure, pulmonary disease, and coronary artery disease are the potential risk factors for AF, the underlying molecular pathology is largely unknown. The reversion of the mature cardiomyocytes to fetal phenotype, impaired ketone body metabolism, mitochondrial dysfunction, and the cellular effect of reactive oxygen species (ROS) are the major underlying biochemical events associated with the molecular pathology of AF. On this background, the present manuscript sheds light into these biochemical events in regard to the metabolic derangements in cardiomyocyte leading to AF, especially with respect to structural, contractile, and electrophysiological properties. In addition, the article critically reviews the current understanding, potential demerits, and translational strategies in the management of AF.
Collapse
Affiliation(s)
- Sean M Brown
- Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
9
|
Liu Y, Zhao Y, Tang R, Jiang X, Wang Y, Gu T. Effect of TFAM on ATP content in tachypacing primary cultured cardiomyocytes and atrial fibrillation patients. Mol Med Rep 2020; 22:5105-5112. [PMID: 33174030 PMCID: PMC7646973 DOI: 10.3892/mmr.2020.11593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common types of arrhythmia worldwide; although a number of theories have been proposed to explain the mechanisms of AF, the treatment of AF is far from satisfactory. Energy metabolism is associated with the development of AF. Mitochondrial transcription factor A (TFAM) serves a role in the maintenance and transcription of mitochondrial DNA. The present study aimed to investigate the association between TFAM and AF and the effect of TFAM on ATP content in cardiomyocytes. Left atrial appendage tissues were collected from 20 patients with normal sinus rhythm (SR) and 20 patients with AF, and the expression levels of TFAM in SR and AF tissues were evaluated. In addition, a tachypacing model of primary cultured cardiomyocytes was constructed to assess ATP content, cell viability and expression levels of TFAM, mitochondrially encoded (MT)-NADH dehydrogenase 1 (ND1), MT-cytochrome c oxidase 1 (CO1), NADH ubiquinone oxidoreductase core subunit 1 (NDUFS1) and cytochrome c oxidase subunit 6C (COX6C). Finally, the effects of overexpression and inhibition of TFAM on ATP content, cell viability and the expression levels of MT-ND1 and MT-CO1 were investigated. The expression levels of TFAM were decreased in AF tissues compared with SR tissues (P<0.05). The ATP content, cell viability and expression levels of TFAM, MT-ND1 and MT-CO1 were decreased in tachypacing cardiomyocytes compared with non-pacing cardiomyocytes (P<0.05), whereas the expression levels of NDUFS1 and COX6C were not changed (P>0.05). Overexpression of TFAM increased ATP content, cell viability and expression levels of MT-ND1 and MT-CO1 (P<0.05). The inhibition of TFAM decreased ATP content, cell viability and expression levels of MT-ND1 and MT-CO1 (P<0.05). In summary, the results of the present study demonstrated that the expression levels of TFAM were decreased in AF tissues and tachypacing cardiomyocytes and that the restoration of TFAM increased the ATP content by upregulating the expression levels of MT-ND1 and MT-CO1 in tachypacing cardiomyocytes. Thus, TFAM may be a novel beneficial target for treatment of patients with AF.
Collapse
Affiliation(s)
- Yueheng Liu
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Zhao
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rui Tang
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuan Jiang
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuchao Wang
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianxiang Gu
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
10
|
Liu B, Li X, Zhao C, Wang Y, Lv M, Shi X, Han C, Pandey P, Qian C, Guo C, Zhang Y. Proteomic Analysis of Atrial Appendages Revealed the Pathophysiological Changes of Atrial Fibrillation. Front Physiol 2020; 11:573433. [PMID: 33041871 PMCID: PMC7526521 DOI: 10.3389/fphys.2020.573433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrillation (AF), known as the most common arrhythmia in the developed world, affects 1.5–2.0% of the population. Numerous basic studies have been carried out to identify the roles of electric and structural remodeling in the pathophysiological changes of AF, but more explorations are required to further understand the mechanisms of AF development. Proteomics enables researchers to identify protein alterations responsible for the pathological developing progresses of diseases. Compared to the genome, the proteome is closely related to the disease phenotype and can better manifest the progression of diseases. In this study, AF patients proteomically analyzed to identify possible mechanisms. Totally 20 patients undergoing cardiac surgery (10 with paroxysmal AF and 10 with persistent AF) and 10 healthy subjects were recruited. The differentially expressed proteins identified here included AKR1A1, LYZ, H2AFY, DDAH1, FGA, FGB, LAMB1, LAMC1, MYL2, MYBPC3, MYL5, MYH10, HNRNPU, DKK3, COPS7A, YWHAQ, and PAICS. These proteins were mainly involved in the development of structural remodeling. The differently expressed proteins may provide a new perspective for the pathological process of AF, and may enable useful targets for drug interference. Nevertheless, more research in terms of multi-omics is required to investigate possible implicated molecular pathways of AF development.
Collapse
Affiliation(s)
- Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cuimei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Mengwei Lv
- Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Han
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pratik Pandey
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhua Qian
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Berlin S, Goette A, Summo L, Lossie J, Gebauer A, Al-Saady N, Calo L, Naccarelli G, Schunck WH, Fischer R, Camm AJ, Dobrev D. Assessment of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids, in patients with persistent atrial fibrillation: Rationale and design of the PROMISE-AF phase II study. IJC HEART & VASCULATURE 2020; 29:100573. [PMID: 32685659 PMCID: PMC7356118 DOI: 10.1016/j.ijcha.2020.100573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
We designed a placebo controlled, double-blind, randomized, dose-finding phase II study on OMT-28 in the maintenance of sinus rhythm after electrical cardioversion (DCC) in patients with persistent atrial fibrillation (PROMISE-AF). OMT-28 is a first-in-class, synthetic analog of 17,18-epoxyeicosatetetraenoic acid, a bioactive lipid mediator generated by cytochrome P450 enzymes from the omega-3 fatty acid eicosapentaenoic acid. OMT-28 improves Ca2+-handling and mitochondrial function in cardiomyocytes and reduces pro-inflammatory signaling. This unique mode of action may provide a novel approach to target key mechanism contributing to AF pathophysiology. In a recent phase I study, OMT-28 was safe and well tolerated and showed favorable pharmacokinetics. The PROMISE-AF study (NCT03906799) is designed to assess the efficacy (primary objective), safety, and population pharmacokinetics (secondary objectives) of three different doses of OMT-28, administered once daily, versus placebo until the end of the follow-up period. Recruitment started in March 2019 and the study will include a total of 120 patients. The primary efficacy endpoint is the AF burden (% time with any AF), evaluated over a 13-week treatment period after DCC. AF burden is calculated based on continuous ECG monitoring using an insertable cardiac monitor (ICM). The primary efficacy analysis will be conducted on the modified intention-to-treat (mITT) population, whereas the safety analysis will be done on the safety population. Although ICMs have been used in other interventional studies to assess arrhythmia, PROMISE-AF will be the first study to assess antiarrhythmic efficacy and safety of a novel rhythm-stabilizing drug after DCC by using ICMs.
Collapse
Affiliation(s)
| | - Andreas Goette
- Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, Paderborn, Germany.,Working Group Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | | | | | | | | | - Leonardo Calo
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy
| | - Gerald Naccarelli
- Heart and Vascular Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | - A John Camm
- St. George's University of London, London, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Hammwöhner M, Bukowska A, Mahardika W, Goette A. Clinical importance of atrial cardiomyopathy. Int J Cardiol 2018; 287:174-180. [PMID: 30527991 DOI: 10.1016/j.ijcard.2018.11.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/29/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023]
Abstract
Atrial fibrillation (AF) is the most common cause of thromboembolic complications. The risk of suffering a thromboembolic complication correlates with the CHA2DS2-VASc score identifying patients at increased risk. It is based on patient age, prior thromboembolic events, and clinical comorbidities, but not based on pathophysiological changes in different types of atrial cardiomyopathy (ACM) as classified in the expert consensus on ACM published in 2016. The impact of different types of ACM has also been acknowledged in the expert consensus statement on catheter ablation of atrial fibrillation. The aim of this review is to review data on clinical importance of ACMs.
Collapse
Affiliation(s)
- Matthias Hammwöhner
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Krankenhaus, Paderborn, Germany
| | - Alicia Bukowska
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany
| | - Wisnu Mahardika
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Krankenhaus, Paderborn, Germany
| | - Andreas Goette
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Krankenhaus, Paderborn, Germany.
| |
Collapse
|
13
|
Bukowska A, Hammwöhner M, Corradi D, Mahardhika W, Goette A. Atrial thrombogenesis in atrial fibrillation : Results from atrial fibrillation models and AF-patients. Herzschrittmacherther Elektrophysiol 2018; 29:76-83. [PMID: 29234866 DOI: 10.1007/s00399-017-0543-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Atrial fibrillation (AF) is the most common cause of thromboembolic complications. The risk of suffering a thromboembolic complication depends on the accompanying cardiac risk factors and the patient's age. For patients who have an increased risk, which is now classified using the CHA2DS2-VASc score, initiation of long-term oral anticoagulation is the first-line treatment. In AF, thrombi arise in the left atrial appendage. The present review will summarize the basic pathophysiology of thrombogenesis in AF and will provide the molecular basis of a process called prothrombotic endocardial remodeling. Despite oral anticoagulation being a central component of therapy, the present results can be used to support concomitant therapy with statins, angiotensin II blockers, etc. to inhibit atrial thromogenesis.
Collapse
Affiliation(s)
- Alicja Bukowska
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Hammwöhner
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Am Busdorf 2, 33098, Paderborn, Germany
| | - Domenico Corradi
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), Unit of Pathology, University of Parma, Parma, Italy
| | - Wisno Mahardhika
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Am Busdorf 2, 33098, Paderborn, Germany
| | - Andreas Goette
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Cardiology and Intensive Care Medicine, St. Vincenz Hospital, Am Busdorf 2, 33098, Paderborn, Germany.
| |
Collapse
|
14
|
Proteomics and transcriptomics in atrial fibrillation. Herzschrittmacherther Elektrophysiol 2018; 29:70-75. [PMID: 29318371 DOI: 10.1007/s00399-017-0551-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/12/2017] [Indexed: 01/08/2023]
Abstract
Atrial fibrillation (AF) is the most common tachyarrhythmia. AF, due to substantial remodeling processes initiated in the atria, is a typically self-sustaining and progressive disease. Atrial remodeling has been intensively investigated at the molecular level in recent decades. Although the application of "omics" technologies has already significantly contributed to our current understanding of the pathophysiology of AF, the complexity of the latter and the large heterogeneity of AF patients remained a major limitation. With the advent of novel "omics" and by applying integrative approaches, it will be possible to extract more information and push boundaries. The present review will summarize the contribution of transcriptomics and proteomics to our understanding of the pathophysiology of AF.
Collapse
|
15
|
Bukowska A, Felgendreher M, Scholz B, Wolke C, Schulte JS, Fehrmann E, Wardelmann E, Seidl MD, Lendeckel U, Himmler K, Gardemann A, Goette A, Müller FU. CREM-transgene mice: An animal model of atrial fibrillation and thrombogenesis. Thromb Res 2017; 163:172-179. [PMID: 28807377 DOI: 10.1016/j.thromres.2017.07.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND The molecular pathomechanisms underlying atrial thrombogenesis are multifactorial and still require detailed investigations. Transgenic mice with cardiomyocyte-directed expression of the transcriptional repressor CREM-IbΔC-X (CREM-TG) represent an experimental model of atrial fibrillation (AF) that shows a gradual, age-dependent progression from atrial ectopy to persistent AF. Importantly, this model develops biatrial thrombi. The molecular characteristics related to the thrombogenesis in CREM-TG mice have not been studied, yet. METHODS The inflammatory and prothrombotic state was evaluated at the transcriptional (qRT-PCR) and protein level in the left (LA) and right atria (RA) from CREM-TG mice at the age of 20weeks and compared to wild-type controls. Moreover, histological analyses of atrial thrombi were performed. RESULTS The endocardial dysfunction was mirrored by diminished levels of eNOS-mRNA in both atria (RA: 0.79±0.04, LA: 0.72±0.06; each P<0.05). Moreover, the PAI-1/t-PA mRNA ratio was significantly increased in both atria (RA: 3.6±0.6; P<0.01, LA: 4.0±1.0; P<0.05) indicating a high risk of thrombus formation. However, the inflammatory phenotype was more pronounced in the RA and was reflected by a significant increase in the mRNA levels encoding adhesion molecules ICAM-1 (2.1±0.2; P<0.01), VCAM-1 (2.3±0.5; P<0.05), and selectin P (3.6±0.5: P<0.05). CONCLUSIONS CREM-TG mice represent a valuable model for studying atrial thrombogenesis and assessing therapeutic approaches preventing embolic events in the systemic and pulmonary circulation.
Collapse
Affiliation(s)
- A Bukowska
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany.
| | - M Felgendreher
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany
| | - B Scholz
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University Münster, Germany
| | - C Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - J S Schulte
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University Münster, Germany
| | - E Fehrmann
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University Münster, Germany
| | - E Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany
| | - M D Seidl
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University Münster, Germany
| | - U Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Germany
| | - K Himmler
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University Münster, Germany
| | - A Gardemann
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany
| | - A Goette
- Working Group of Molecular Electrophysiology, Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto von Guericke University Magdeburg, Germany; St. Vincenz-Hospital, Paderborn, Germany
| | - F U Müller
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University Münster, Germany
| |
Collapse
|
16
|
Harada M, Melka J, Sobue Y, Nattel S. Metabolic Considerations in Atrial Fibrillation ― Mechanistic Insights and Therapeutic Opportunities ―. Circ J 2017; 81:1749-1757. [DOI: 10.1253/circj.cj-17-1058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jonathan Melka
- Department of Medicine and Research Center, Montreal Heart Institute
- Université de Montréal
- Department of Pharmacology and Therapeutics, McGill University
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen
| | - Yoshihiro Sobue
- Department of Medicine and Research Center, Montreal Heart Institute
- Université de Montréal
- Department of Pharmacology and Therapeutics, McGill University
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute
- Université de Montréal
- Department of Pharmacology and Therapeutics, McGill University
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen
| |
Collapse
|
17
|
Zhao Z, Wang Y, Chen Y, Wang X, Li J, Yuan M, Liu T, Li G. Cilostazol Prevents Atrial Structural Remodeling through the MEK/ERK Pathway in a Canine Model of Atrial Tachycardia. Cardiology 2016; 135:240-248. [PMID: 27532517 DOI: 10.1159/000447769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/20/2016] [Indexed: 10/11/2023]
Abstract
OBJECTIVES Atrial fibrillation (AF) is the most common sustained arrhythmia in clinical practice. Atrial structural remodeling (ASR), particularly atrial fibrosis, is an important contributor to the AF substrate. This study aimed to investigate the preventive effects of the phosphodiesterase 3 inhibitor cilostazol on ASR and its potential molecular mechanisms in a canine model of rapid atrial pacing (RAP). METHODS Thirty dogs were assigned to sham (Sham), paced/ no treatment (Paced) and paced + cilostazol 5 mg/kg/day (Paced + cilo) groups, with 10 dogs in each group. RAP at 500 beats/min was maintained for 2 weeks, while the Sham group was instrumented without pacing. Cilostazol was provided orally during pacing. Western blotting, RT-PCR and pathology were used to assess ASR. RESULTS Cilostazol attenuated atrial interstitial fibrosis and structural remodeling in canines with RAP. MEK/ERK transduction pathway gene expression was upregulated in the Paced group compared with the Sham group. Cilostazol markedly alleviated these changes in the MEK/ERK pathway. Transforming growth factor-β1 protein expression in the Paced group was significantly higher than in the Sham group (p < 0.01), and was significantly reduced by cilostazol (p < 0.01). CONCLUSIONS Our findings suggest that cilostazol is beneficial for prevention and treatment in atrial tachycardia-induced ASR in a canine model of RAP.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016; 7:10312. [PMID: 26785135 PMCID: PMC4735644 DOI: 10.1038/ncomms10312] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.
Collapse
|
19
|
Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res 2016; 109:542-57. [PMID: 26762270 DOI: 10.1093/cvr/cvw002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
CaMKII is a serine-threonine protein kinase that is abundant in myocardium. Emergent evidence suggests that CaMKII may play an important role in promoting atrial fibrillation (AF) by targeting a diverse array of proteins involved in membrane excitability, cell survival, calcium homeostasis, matrix remodelling, inflammation, and metabolism. Furthermore, CaMKII inhibition appears to protect against AF in animal models and correct proarrhythmic, defective intracellular Ca(2+) homeostasis in fibrillating human atrial cells. This review considers current concepts and evidence from animal and human studies on the role of CaMKII in AF.
Collapse
Affiliation(s)
- Olurotimi O Mesubi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA Department of Physiology and the Program in Cellular and Molecular Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Circulating Glutamate and Taurine Levels Are Associated with the Generation of Reactive Oxygen Species in Paroxysmal Atrial Fibrillation. DISEASE MARKERS 2016; 2016:7650976. [PMID: 26880856 PMCID: PMC4736607 DOI: 10.1155/2016/7650976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 12/04/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, but its proarrhythmic mechanism remains to be elucidated. Glutamate (Glu) and taurine (Tau) are present in the myocardium at substantially higher concentrations than in the plasma, suggesting their active role in myocardium. Here, we tested the hypothesis that the metabolism of Glu and Tau is altered in association with the generation of reactive oxygen species (ROS) in patients with AF. Fifty patients with paroxysmal AF and 50 control subjects without a history of AF were consecutively enrolled. Circulating Glu and Tau levels were measured and correlations between Glu/Tau and ROS levels were examined. Glu/Tau content was significantly higher in patients with AF versus controls (Glu: 79.2 ± 23.9 versus 60.5 ± 25.2 nmol/L; Tau: 78.8 ± 19.8 versus 68.5 ± 20.8 nmol/L; mean ± standard deviation (SD), p < 0.001 for both). Glu/Tau levels also showed an independent association with AF by multiple logistic regression analysis. Glu and Tau levels both showed significant positive associations with plasma hydroperoxide concentrations. These data suggest a novel pathophysiological role of Glu and Tau in association with ROS production in paroxysmal AF, providing new insights into the elevated amino acid content in cardiac disease.
Collapse
|
21
|
Meraviglia V, Azzimato V, Colussi C, Florio MC, Binda A, Panariti A, Qanud K, Suffredini S, Gennaccaro L, Miragoli M, Barbuti A, Lampe PD, Gaetano C, Pramstaller PP, Capogrossi MC, Recchia FA, Pompilio G, Rivolta I, Rossini A. Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol 2015; 87:54-64. [PMID: 26264759 DOI: 10.1016/j.yjmcc.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 01/13/2023]
Abstract
Communication between cardiomyocytes depends upon gap junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylase (HAT) and deacetylase (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 h significantly reduced connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy; Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano Italy
| | - Valerio Azzimato
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy; Department of Pharmacology, Chemotherapy and Medical Toxicology, Università degli Studi di Milano, Milano, Italy
| | - Claudia Colussi
- Istituto di Patologia Medica, Università Cattolica del SacroCuore, Roma, Italy
| | | | - Anna Binda
- Department of Health Science, University of Milano Bicocca, Monza, Italy
| | - Alice Panariti
- Department of Health Science, University of Milano Bicocca, Monza, Italy
| | - Khaled Qanud
- Department of Physiology, New York Medical College, Valhalla, NY, United States
| | - Silvia Suffredini
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano Italy
| | - Laura Gennaccaro
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano Italy; Department of Life Sciences, University of Parma, Parma, Italy
| | - Michele Miragoli
- CERT, Center of Excellence for Toxicological Research, INAIL, ex ISPESL, University of Parma, Parma, Italy; Humanitas Clinical and Research Center, Rozzano Milano, Italy
| | - Andrea Barbuti
- The PaceLab, Department of Biosciences, Università di Milano, Italy
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Peter P Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano Italy
| | - Maurizio C Capogrossi
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata IRCCS, Roma, Italy
| | - Fabio A Recchia
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, United States; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giulio Pompilio
- Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Rivolta
- Department of Health Science, University of Milano Bicocca, Monza, Italy
| | - Alessandra Rossini
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano Italy.
| |
Collapse
|
22
|
Irregular rhythm and atrial metabolism are key for the evolution of proarrhythmic atrial remodeling in atrial fibrillation. Basic Res Cardiol 2015; 110:41. [PMID: 26018792 DOI: 10.1007/s00395-015-0498-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022]
|
23
|
Chilukoti RK, Giese A, Malenke W, Homuth G, Bukowska A, Goette A, Felix SB, Kanaan J, Wollert HG, Evert K, Verheule S, Jais P, Hatem SN, Lendeckel U, Wolke C. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria. Int J Cardiol 2015; 187:604-13. [PMID: 25863735 DOI: 10.1016/j.ijcard.2015.03.072] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE Atrial fibrillation (AF) has been associated with increased volumes of epicardial fat and atrial adipocyte accumulation. Underlying mechanisms are not well understood. This study aims to identify rapid atrial pacing (RAP)/AF-dependent changes in atrial adipocyte/adipositas-related gene expression (AARE). METHODS Right atrial (RA) and adjacent epicardial adipose tissue (EAT) samples were obtained from 26 patients; 13 with AF, 13 in sinus rhythm (SR). Left atrial (LA) samples were obtained from 9 pigs (5 RAP, 4 sham-operated controls). AARE was analyzed using microarrays and RT-qPCR. The impact of diabetes/obesity on gene expression was additionally determined in RA samples (RAP ex vivo and controls) from 3 vs. 6 months old ZDF rats. RESULTS RAP in vivo of pigs resulted in substantial changes of AARE, with 66 genes being up- and 53 down-regulated on the mRNA level. Differential expression during adipocyte differentiation was confirmed using 3T3-L1 cells. In patients with AF (compared to SR), a comparable change in RA mRNA levels concerned a fraction of genes only (RETN, IGF1, HK2, PYGM, LOX, and NR4A3). RA and EAT were affected by AF to a different extent. In patients, concomitant disease contributes to AARE changes. CONCLUSIONS RAP, and to lesser extent AF, provoke significant changes in atrial AARE. In chronic AF, activation of this gene panel is very likely mediated by AF itself, AF risk factors and concomitant diseases. This may facilitate the development of an AF substrate by increasing atrial ectopic fat and fat infiltration of the atrial myocardium.
Collapse
Affiliation(s)
- R K Chilukoti
- University Medicine Greifswald, Ernst-Moritz-Arndt-University Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - A Giese
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - W Malenke
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - G Homuth
- University Medicine Greifswald, Ernst-Moritz-Arndt-University Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - A Bukowska
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - A Goette
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany; Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, Paderborn, Germany
| | - S B Felix
- University Medicine Greifswald, Department of Cardiology, Greifswald, Germany
| | - J Kanaan
- Dr. Guth Clinics, Dept. of Cardiovascular Surgery, Karlsburg, Germany
| | - H-G Wollert
- Dr. Guth Clinics, Dept. of Cardiovascular Surgery, Karlsburg, Germany
| | - K Evert
- University Medicine Greifswald, Department of Pathology, Greifswald, Germany
| | - S Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - P Jais
- Hôpital Cardiologique du Haut Lévêque, Université Victor-Segalen Bordeaux II, Pessac, France
| | - S N Hatem
- Sorbonne Universités, UPMC University Paris 06, UMR_S 1166 I, ICAN, Paris, France
| | - U Lendeckel
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany.
| | - C Wolke
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| |
Collapse
|
24
|
Wolke C, Bukowska A, Goette A, Lendeckel U. Redox control of cardiac remodeling in atrial fibrillation. Biochim Biophys Acta Gen Subj 2014; 1850:1555-65. [PMID: 25513966 DOI: 10.1016/j.bbagen.2014.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a potential cause of thromboembolic events. AF induces significant changes in the electrophysiological properties of atrial myocytes and causes alterations in the structure, metabolism, and function of the atrial tissue. The molecular basis for the development of structural atrial remodeling of fibrillating human atria is still not fully understood. However, increased production of reactive oxygen or nitrogen species (ROS/RNS) and the activation of specific redox-sensitive signaling pathways observed both in patients with and animal models of AF are supposed to contribute to development, progression and self-perpetuation of AF. SCOPE OF REVIEW The present review summarizes the sources and targets of ROS/RNS in the setting of AF and focuses on key redox-sensitive signaling pathways that are implicated in the pathogenesis of AF and function either to aggravate or protect from disease. MAJOR CONCLUSIONS NADPH oxidases and various mitochondrial monooxygenases are major sources of ROS during AF. Besides direct oxidative modification of e.g. ion channels and ion handling proteins that are crucially involved in action potential generation and duration, AF leads to the reversible activation of redox-sensitive signaling pathways mediated by activation of redox-regulated proteins including Nrf2, NF-κB, and CaMKII. Both processes are recognized to contribute to the formation of a substrate for AF and, thus, to increase AF inducibility and duration. GENERAL SIGNIFICANCE AF is a prevalent disease and due to the current demographic developments its socio-economic relevance will further increase. Improving our understanding of the role that ROS and redox-related (patho)-mechanisms play in the development and progression of AF may allow the development of a targeted therapy for AF that surpasses the efficacy of previous general anti-oxidative strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17487 Greifswald, Germany
| | - Alicja Bukowska
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, D-39120 Magdeburg, Germany
| | - Andreas Goette
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, D-39120 Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, D-33098 Paderborn, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| |
Collapse
|
25
|
Bukowska A, Lendeckel U, Goette A. Atrial Calpains: Mediators of Atrialmyopathies in Atrial Fibrillation. J Atr Fibrillation 2014; 6:1021. [PMID: 27957058 DOI: 10.4022/jafib.1021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 01/24/2023]
Abstract
Atrial fibrillation (AF) is associated with substantial structural changes at cell and tissue level. Cellular hypertrophy, disintegration of sarcomeres, mitochondrial swelling and apoptosis have been described as typical histo-morphologic alterations in AF. Main initiators for cellular alterations in fibrillating atrial myocytes are cytosolic calcium overload and oxidative stress. Calpains are intracellular Ca2+- activated proteases and important mediators of calcium overload. Activation of calpains and down-regulation of the calpain inhibitor, calpastatin, contribute to myocardial damage in fibrillating atria. Thus, deregulations of the expression, activity, or subcellular localization of calpain within atrial myocytes have been established as important mediators of atrial myopathy during AF.
Collapse
Affiliation(s)
- Alicja Bukowska
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, Ernst-Moritz-Arndt University,Greifswald, Germany
| | - Andreas Goette
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, Paderborn,Germany
| |
Collapse
|
26
|
Bukowska A, Zacharias I, Weinert S, Skopp K, Hartmann C, Huth C, Goette A. Coagulation factor Xa induces an inflammatory signalling by activation of protease-activated receptors in human atrial tissue. Eur J Pharmacol 2013; 718:114-23. [PMID: 24041930 DOI: 10.1016/j.ejphar.2013.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 11/29/2022]
Abstract
Activated factor X (FXa) is an important player in the coagulation cascade responsible for thrombin generation, which is activated during atrial fibrillation. Increasing evidence suggests that FXa influences cell signalling in various cell types by activating protease-activated receptors (PARs). It is so far not known if molecular effects of FXa affect atrial signal transduction. To study the effects of FXa, human atrial tissue slices were cultivated with FXa up to 24h. Additionally, rapid pacing was applied at 4Hz to resemble atrial fibrillation. The inhibitory impact of FXa antagonist (Rivaroxaban), protease-activated receptor 1 antagonist (SCH79797), and protease-activated receptor 2 antagonist (GB83) were analysed under experimental conditions. The exposure of atrial tissue to FXa resulted in the 1.7 fold upregulation of PAR2-mRNA, activation of MAP kinases (ERK1/2) and NF-κB signalling. Furthermore FXa increased the expression of adhesion molecule ICAM-1 (1.82 ± 0.20), chemokine IL-8 (1.94 ± 0.20), as well as prothrombotic molecule PAI-1 (1.52 ± 0.17). The combination of rapid pacing and FXa caused significant upregulation of PAR1 (2.82 ± 0.22), PAR2 (2.66 ± 0.40), ICAM-1 (2.13 ± 0.25), IL-8 (2.22 ± 0.24), LOX-1 (2.59 ± 0.35), and PAI-1 (2.65 ± 0.52) at the mRNA level. Rivaroxaban and GB83 prevented upregulation of PARs, ICAM-1, LOX-1, IL-8, and activation of MAP kinases. The elevation in the expression of PAI-1 was hindered in the presence of SCH79797, or Rivaroxaban. The present study indicates that FXa mediates inflammatory signalling in atrial tissue. Importantly, FXa and tachyarrhythmia act synergistically to increase expression of protease-activated receptors and inflammatory mediators. Rivaroxaban prevented effectively FXa-induced molecular effects in human atrial tissue particularly during rapid pacing.
Collapse
Affiliation(s)
- Alicja Bukowska
- Working Group of Molecular Electrophysiology, Medical Faculty, Otto von Guericke University Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Redpath CJ, Bou Khalil M, Drozdzal G, Radisic M, McBride HM. Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One 2013; 8:e69165. [PMID: 23861961 PMCID: PMC3704522 DOI: 10.1371/journal.pone.0069165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/11/2013] [Indexed: 01/04/2023] Open
Abstract
Atrial Fibrillation is the most common sustained cardiac arrhythmia worldwide harming millions of people every year. Atrial Fibrillation (AF) abruptly induces rapid conduction between atrial myocytes which is associated with oxidative stress and abnormal calcium handling. Unfortunately this new equilibrium promotes perpetuation of the arrhythmia. Recently, in addition to being the major source of oxidative stress within cells, mitochondria have been observed to fuse, forming mitochondrial networks and attach to intracellular calcium stores in response to cellular stress. We sought to identify a potential role for rapid stimulation, oxidative stress and mitochondrial hyperfusion in acute changes to myocyte calcium handling. In addition we hoped to link altered calcium handling to increased sarcoplasmic reticulum (SR)-mitochondrial contacts, the so-called mitochondrial associated membrane (MAM). We selected the C2C12 murine myotube model as it has previously been successfully used to investigate mitochondrial dynamics and has a myofibrillar system similar to atrial myocytes. We observed that rapid stimulation of C2C12 cells resulted in mitochondrial hyperfusion and increased mitochondrial colocalisation with calcium stores. Inhibition of mitochondrial fission by transfection of mutant DRP1K38E resulted in similar effects on mitochondrial fusion, SR colocalisation and altered calcium handling. Interestingly the effects of 'forced fusion' were reversed by co-incubation with the reducing agent N-Acetyl cysteine (NAC). Subsequently we demonstrated that oxidative stress resulted in similar reversible increases in mitochondrial fusion, SR-colocalisation and altered calcium handling. Finally, we believe we have identified that myocyte calcium handling is reliant on baseline levels of reactive oxygen species as co-incubation with NAC both reversed and retarded myocyte response to caffeine induced calcium release and re-uptake. Based on these results we conclude that the coordinate regulation of mitochondrial fusion and MAM contacts may form a point source for stress-induced arrhythmogenesis. We believe that the MAM merits further investigation as a therapeutic target in AF-induced remodelling.
Collapse
Affiliation(s)
- Calum J Redpath
- Cellular Electrophysiology Laboratory, University of Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
28
|
Al-Gayyar MMH, Abdelsaid MA, Matragoon S, Pillai BA, El-Remessy AB. Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 2012; 164:170-80. [PMID: 21434880 DOI: 10.1111/j.1476-5381.2011.01336.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of thioredoxin interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (Trx), compromises cellular antioxidant and anti-apoptotic defences and stimulates pro-inflammatory cytokines expression, implying a role for TXNIP in apoptosis. Here we have examined the causal role of TXNIP expression in mediating retinal neurotoxicity and assessed the neuroprotective actions of verapamil, a calcium channel blocker and an inhibitor of TXNIP expression. EXPERIMENTAL APPROACH Retinal neurotoxicity was induced by intravitreal injection of NMDA in Sprague-Dawley rats, which received verapamil (10 mg·kg(-1), p.o.) or vehicle. Neurotoxicity was examined by terminal dUTP nick-end labelling assay and ganglion cell count. Expression of TXNIP, apoptosis signal-regulating kinase 1 (ASK-1), NF-κB, p38 MAPK, JNK, cleaved poly-ADP-ribose polymerase (PARP), caspase-3, nitrotyrosine and 4-hydroxy-nonenal were examined by Western and slot-blot analysis. Release of TNF-α and IL-1β was examined by elisa. KEY RESULTS NMDA injection enhanced TXNIP expression, decreased Trx activity, causing increased oxidative stress, glial activation and release of TNF-α and IL-1β. Enhanced TXNIP expression disrupted Trx/ASK-1 inhibitory complex leading to release of ASK-1 and activation of the pro-apoptotic p38 MAPK/JNK pathway, as indicated by cleaved PARP and caspase-3 expression. Treatment with verapamil blocked these effects. CONCLUSION AND IMPLICATIONS Elevated TXNIP expression contributed to retinal neurotoxicity by three different mechanisms, inducing release of inflammatory mediators such as TNF-α and IL-1β, altering antioxidant status and disrupting the Trx-ASK-1 inhibitory complex leading to activation of the p38 MAPK/JNK apoptotic pathway. Targeting TXNIP expression is a potential therapeutic target for retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Mohammed M H Al-Gayyar
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
29
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 876] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Bukowska A, Lendeckel U, Bode-Böger SM, Goette A. Physiologic and Pathophysiologic Role of Calpain: Implications for the Occurrence of Atrial Fibrillation. Cardiovasc Ther 2010; 30:e115-27. [DOI: 10.1111/j.1755-5922.2010.00245.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
31
|
Bukowska A, Röcken C, Erxleben M, Röhl FW, Hammwöhner M, Huth C, Ebert MP, Lendeckel U, Goette A. Atrial expression of endothelial nitric oxide synthase in patients with and without atrial fibrillation. Cardiovasc Pathol 2010; 19:e51-60. [DOI: 10.1016/j.carpath.2008.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 12/12/2008] [Accepted: 12/24/2008] [Indexed: 10/21/2022] Open
|
32
|
Calpain in atrial fibrillation: friend or foe?: editorial to: "anti-apoptotic effects of a calpain inhibitor on cardiomyocytes in a canine rapid atrial fibrillation model" by Yue Li et al. Cardiovasc Drugs Ther 2010; 23:339-40. [PMID: 19813082 DOI: 10.1007/s10557-009-6200-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Bukowska A, Schild L, Keilhoff G, Hirte D, Neumann M, Gardemann A, Neumann KH, Röhl FW, Huth C, Goette A, Lendeckel U. Mitochondrial dysfunction and redox signaling in atrial tachyarrhythmia. Exp Biol Med (Maywood) 2008; 233:558-74. [PMID: 18375832 DOI: 10.3181/0706-rm-155] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence links calcium-overload and oxidative stress to atrial remodeling during atrial fibrillation (AF). Furthermore, atrial remodeling appears to increase atrial thrombogeneity, characterized by increased expression of adhesion molecules. The aim of this study was to assess mitochondrial dysfunction and oxidative stress-activated signal transduction (nuclear factor-kappaB [NF-kappa B], lectin-like oxidized low-density lipoprotein receptor [LOX-1], intercellular adhesion molecule-1 [ICAM-1], and hemeoxgenase-1 [HO-1]) in atrial tissue during AF. Ex vivo atrial tissue from patients with and without AF and, additionally, rapid pacing of human atrial tissue slices were used to study mitochondrial structure by electron microscopy and mitochondrial respiration. Furthermore, quantitative reverse transcription polymerase chain reaction (RT-PCR), immunoblot analyses, gel-shift assays, and enzyme-linked immunosorbent assay (ELISA) were applied to measure nuclear amounts of NF-kappa B target gene expression. Using ex vivo atrial tissue samples from patients with AF we demonstrated oxidative stress and impaired mitochondrial structure and respiration, which was accompanied by nuclear accumulation of NF-kappa B and elevated expression levels of the adhesion molecule ICAM-1 and the oxidative stress-induced markers HO-1 and LOX-1. All these changes were reproduced by rapid pacing for 24 hours of human atrial tissue slices. Furthermore, the blockade of calcium inward current with verapamil effectively prevented both the mitochondrial changes and the activation of NF-kappa B signaling and target gene expression. The latter appeared also diminished by the antioxidants apocynin and resveratrol (an inhibitor of NF-kappa B), or the angiotensin II receptor type 1 antagonist, olmesartan. This study demonstrates that calcium inward current via L-type calcium channels contributes to oxidative stress and increased expression of oxidative stress markers and adhesion molecules during cardiac tachyarrhythmia.
Collapse
Affiliation(s)
- Alicja Bukowska
- University Hospital Magdeburg, Institute of Experimental Internal Medicine, Leipzigerstrasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Goette A, Bukowska A, Lendeckel U, Erxleben M, Hammwöhner M, Strugala D, Pfeiffenberger J, Röhl FW, Huth C, Ebert MPA, Klein HU, Röcken C. Angiotensin II receptor blockade reduces tachycardia-induced atrial adhesion molecule expression. Circulation 2008; 117:732-42. [PMID: 18227384 DOI: 10.1161/circulationaha.107.730101] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased levels of inflammatory markers are predictors of thromboembolic events during atrial fibrillation (AF). Increased endocardial expression of adhesion molecules (ie, vascular cell adhesion molecule [VCAM] and intercellular adhesion molecule [ICAM]) could be an important link between initiation of inflammatory and prothrombogenic mechanisms responsible for thrombus development at the atrial endocardium (endocardial remodeling). METHODS AND RESULTS Tissue microarrays were used to screen right atrial tissue specimens obtained from 320 consecutive patients for differences in atrial expression of the prothrombogenic proteins VCAM-1, ICAM-1, thrombomodulin, plasminogen activator inhibitor-1, and von Willebrand factor. An in vitro organotypic human atrial tissue model and a pig model of rapid atrial pacing were used to determine the therapeutic impact of angiotensin II receptor blockade. Immunohistochemical analyses showed that all prothrombogenic proteins are expressed by endocardial cells. Using multivariable analysis, only the intensity of VCAM-1 expression was increased in patients with AF (P=0.03). Increased atrial VCAM-1 expression was confirmed by Western blotting in patients with persistent and paroxysmal AF (persistent AF 207+/-42% versus sinus rhythm 100+/-16%, P=0.028; paroxysmal AF 193+/-42%, P=0.024 versus sinus rhythm). In vitro pacing of ex vivo human atrial tissue slices confirmed that rapid activation causes VCAM-1 upregulation (mRNA and protein levels). Pacing-induced VCAM-1 expression was abolished by olmesartan. To confirm this finding in vivo, VCAM-1 expression was determined in 14 pigs after rapid atrial pacing (600 bpm). Atrial tachycardia caused an upregulation of VCAM-1 expression, which was prevented by irbesartan, consistent with the observed increase in plasma levels of angiotensin II. Alterations in the in vivo VCAM-1 expression were more pronounced in the left atrium (>5-fold compared with sham) than in the right atrium (3.5-fold compared with sham). CONCLUSIONS AF and rapid atrial pacing both increase endocardial VCAM-1 expression, which can be attenuated by angiotensin II receptor blockade. This provides evidence that angiotensin II plays a pathophysiological role in prothrombotic endocardial remodeling.
Collapse
Affiliation(s)
- Andreas Goette
- Division of Cardiology, Otto von Guericke University Hospital Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|