1
|
Kmiecik MJ, Micheletti S, Coker D, Heilbron K, Shi J, Stagaman K, Filshtein Sonmez T, Fontanillas P, Shringarpure S, Wetzel M, Rowbotham HM, Cannon P, Shelton JF, Hinds DA, Tung JY, Holmes MV, Aslibekyan S, Norcliffe-Kaufmann L. Genetic analysis and natural history of Parkinson's disease due to the LRRK2 G2019S variant. Brain 2024; 147:1996-2008. [PMID: 38804604 PMCID: PMC11146432 DOI: 10.1093/brain/awae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024] Open
Abstract
The LRRK2 G2019S variant is the most common cause of monogenic Parkinson's disease (PD); however, questions remain regarding the penetrance, clinical phenotype and natural history of carriers. We performed a 3.5-year prospective longitudinal online study in a large number of 1286 genotyped LRRK2 G2019S carriers and 109 154 controls, with and without PD, recruited from the 23andMe Research Cohort. We collected self-reported motor and non-motor symptoms every 6 months, as well as demographics, family histories and environmental risk factors. Incident cases of PD (phenoconverters) were identified at follow-up. We determined lifetime risk of PD using accelerated failure time modelling and explored the impact of polygenic risk on penetrance. We also computed the genetic ancestry of all LRRK2 G2019S carriers in the 23andMe database and identified regions of the world where carrier frequencies are highest. We observed that despite a 1 year longer disease duration (P = 0.016), LRRK2 G2019S carriers with PD had similar burden of motor symptoms, yet significantly fewer non-motor symptoms including cognitive difficulties, REM sleep behaviour disorder (RBD) and hyposmia (all P-values ≤ 0.0002). The cumulative incidence of PD in G2019S carriers by age 80 was 49%. G2019S carriers had a 10-fold risk of developing PD versus non-carriers. This rose to a 27-fold risk in G2019S carriers with a PD polygenic risk score in the top 25% versus non-carriers in the bottom 25%. In addition to identifying ancient founding events in people of North African and Ashkenazi descent, our genetic ancestry analyses infer that the G2019S variant was later introduced to Spanish colonial territories in the Americas. Our results suggest LRRK2 G2019S PD appears to be a slowly progressive predominantly motor subtype of PD with a lower prevalence of hyposmia, RBD and cognitive impairment. This suggests that the current prodromal criteria, which are based on idiopathic PD, may lack sensitivity to detect the early phases of LRRK2 PD in G2019S carriers. We show that polygenic burden may contribute to the development of PD in the LRRK2 G2019S carrier population. Collectively, the results should help support screening programmes and candidate enrichment strategies for upcoming trials of LRRK2 inhibitors in early-stage disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Paul Cannon
- 23andMe, Inc., Research, Sunnyvale, CA 94086, USA
| | | | | | - Joyce Y Tung
- 23andMe, Inc., Research, Sunnyvale, CA 94086, USA
| | | | | | | |
Collapse
|
2
|
Salari Z, Ashabi G, Fartoosi A, Fartoosi A, Shariatpanahi M, Aghsami M, Montazeri H, Kheradmand A. Sericin alleviates motor dysfunction by modulating inflammation and TrkB/BDNF signaling pathway in the rotenone-induced Parkinson's disease model. BMC Pharmacol Toxicol 2023; 24:60. [PMID: 37936189 PMCID: PMC10631121 DOI: 10.1186/s40360-023-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the degeneration of nigrostriatal dopaminergic neurons and movement impairment. Based on theories, neuroinflammatory processes may be vital in the etiology of PD and other neurodegenerative diseases. Reports show that rotenone has neurotoxic, inflammatory, and motor impairment effects in PD. Sericin is a natural polymer with effective properties, such as neuroprotective and anti-inflammatory. Therefore, this study aimed to examine the effects of sericin administration on motor dysfunction by modulating inflammation and tyrosine kinase B/brain-derived neurotrophic factor (TrkB/BDNF) pathway in the rotenone-induced PD model. METHODS Wistar male rats (3-months-old) were treated with rotenone (2 mg/kg every 48 h for 30 days) to induce a rotenone-induced PD model. Also, sericin was administered orally at dose of 200 mg/kg every 48 h for 30 days. Rotarod and bar tests were performed for motor dysfunction. The protein levels of BDNF, c-fos, TrkB, tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6) and catalase activity were evaluated in the striatum area. RESULTS Results showed that sericin increased latent time in the rotarod test and decreased the time staying on the pole in the bar test compared to the PD group (P < 0.001 for both tests). Moreover, sericin treatments decreased TNF-α (P < 0.001) and IL-6 (P < 0.001) concentration levels and enhanced the levels of BDNF (P < 0.001), c-fos (P < 0.001), TrkB (P < 0.001) proteins and catalase activity (P < 0.05) in the striatum area compared to the PD group. CONCLUSION These results support a protective benefit of sericin therapy in a rotenone-induced PD paradigm by reducing motor impairment, inflammatory response, and disruption of the TrkB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Zahra Salari
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fartoosi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Ahmad Fartoosi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, P.O. box: 1475886671, Tehran, Iran.
| |
Collapse
|
3
|
Dues DJ, Ma Y, Nguyen APT, Offerman AV, Beddows I, Moore DJ. Formation of templated inclusions in a forebrain α-synuclein mouse model is independent of LRRK2. Neurobiol Dis 2023; 188:106338. [PMID: 39492414 PMCID: PMC10906965 DOI: 10.1016/j.nbd.2023.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 03/05/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein share enigmatic roles in the pathobiology of Parkinson's disease (PD). LRRK2 mutations are a common genetic cause of PD which, in addition to neurodegeneration, often present with abnormal deposits of α-synuclein in the form of Lewy-related pathology. As Lewy-related pathology is a prominent neuropathologic finding in sporadic PD, the relationship between LRRK2 and α-synuclein has garnered considerable interest. However, whether and how LRRK2 might influence the accumulation of Lewy-related pathology remains poorly understood. Through stereotactic injection of mouse α-synuclein pre-formed fibrils (PFF), we modeled the spread of Lewy-related pathology within forebrain regions where LRRK2 is most highly expressed. The impact of LRRK2 genotype on the formation of α-synuclein inclusions was evaluated at 1-month post-injection. Neither deletion of LRRK2 nor G2019S LRRK2 knockin appreciably altered the burden of α-synuclein pathology at this early timepoint. These observations fail to provide support for a robust pathophysiologic interaction between LRRK2 and α-synuclein in the forebrain in vivo. There was, however, a modest reduction in microglial activation induced by PFF delivery in the hippocampus of LRRK2 knockout mice, suggesting that LRRK2 may contribute to α-synuclein-induced neuroinflammation. Collectively, our data indicate that the pathological accumulation of α-synuclein in the mouse forebrain is largely independent of LRRK2.
Collapse
Affiliation(s)
- Dylan J Dues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - An Phu Tran Nguyen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Alina V Offerman
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Ian Beddows
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
4
|
Paccosi E, Proietti-De-Santis L. Parkinson's Disease: From Genetics and Epigenetics to Treatment, a miRNA-Based Strategy. Int J Mol Sci 2023; 24:ijms24119547. [PMID: 37298496 DOI: 10.3390/ijms24119547] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by an initial and progressive loss of dopaminergic neurons of the substantia nigra pars compacta via a potentially substantial contribution from protein aggregates, the Lewy bodies, mainly composed of α-Synuclein among other factors. Distinguishing symptoms of PD are bradykinesia, muscular rigidity, unstable posture and gait, hypokinetic movement disorder and resting tremor. Currently, there is no cure for PD, and palliative treatments, such as Levodopa administration, are directed to relieve the motor symptoms but induce severe side effects over time. Therefore, there is an urgency for discovering new drugs in order to design more effective therapeutic approaches. The evidence of epigenetic alterations, such as the dysregulation of different miRNAs that may stimulate many aspects of PD pathogenesis, opened a new scenario in the research for a successful treatment. Along this line, a promising strategy for PD treatment comes from the potential exploitation of modified exosomes, which can be loaded with bioactive molecules, such as therapeutic compounds and RNAs, and can allow their delivery to the appropriate location in the brain, overcoming the blood-brain barrier. In this regard, the transfer of miRNAs within Mesenchymal stem cell (MSC)-derived exosomes has yet to demonstrate successful results both in vitro and in vivo. This review, besides providing a systematic overview of both the genetic and epigenetic basis of the disease, aims to explore the exosomes/miRNAs network and its clinical potential for PD treatment.
Collapse
Affiliation(s)
- Elena Paccosi
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| | - Luca Proietti-De-Santis
- Unit of Molecular Genetics of Aging, Department of Ecology and Biology (DEB), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Ravinther AI, Dewadas HD, Tong SR, Foo CN, Lin YE, Chien CT, Lim YM. Molecular Pathways Involved in LRRK2-Linked Parkinson’s Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911744. [PMID: 36233046 PMCID: PMC9569706 DOI: 10.3390/ijms231911744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease is one of the most common neurodegenerative diseases affecting the ageing population, with a prevalence that has doubled over the last 30 years. As the mechanism of the disease is not fully elucidated, the current treatments are unable to effectively prevent neurodegeneration. Studies have found that mutations in Leucine-rich-repeat-kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). Moreover, aberrant (higher) LRRK2 kinase activity has an influence in idiopathic PD as well. Hence, the aim of this review is to categorize and synthesize current information related to LRRK2-linked PD and present the factors associated with LRRK2 that can be targeted therapeutically. A systematic review was conducted using the databases PubMed, Medline, SCOPUS, SAGE, and Cochrane (January 2016 to July 2021). Search terms included “Parkinson’s disease”, “mechanism”, “LRRK2”, and synonyms in various combinations. The search yielded a total of 988 abstracts for initial review, 80 of which met the inclusion criteria. Here, we emphasize molecular mechanisms revealed in recent in vivo and in vitro studies. By consolidating the recent updates in the field of LRRK2-linked PD, researchers can further evaluate targets for therapeutic application.
Collapse
Affiliation(s)
- Ailyn Irvita Ravinther
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hemaniswarri Dewi Dewadas
- Centre for Biomedical and Nutrition Research, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Perak, Malaysia
| | - Shi Ruo Tong
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Population Medicine, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
| | - Yu-En Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Department of Pre-Clinical Sciences, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Trinh J, Schymanski EL, Smajic S, Kasten M, Sammler E, Grünewald A. Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. MED GENET-BERLIN 2022; 34:103-116. [PMID: 38835904 PMCID: PMC11006382 DOI: 10.1515/medgen-2022-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Neurology, School of Medicine, Dundee, Ninewells Hospital, Dundee, UK
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Cresto N, Gardier C, Gaillard MC, Gubinelli F, Roost P, Molina D, Josephine C, Dufour N, Auregan G, Guillermier M, Bernier S, Jan C, Gipchtein P, Hantraye P, Chartier-Harlin MC, Bonvento G, Van Camp N, Taymans JM, Cambon K, Liot G, Bemelmans AP, Brouillet E. The C-Terminal Domain of LRRK2 with the G2019S Substitution Increases Mutant A53T α-Synuclein Toxicity in Dopaminergic Neurons In Vivo. Int J Mol Sci 2021; 22:ijms22136760. [PMID: 34201785 PMCID: PMC8268201 DOI: 10.3390/ijms22136760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Noémie Cresto
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Camille Gardier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Marie-Claude Gaillard
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Daniela Molina
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Charlène Josephine
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Noëlle Dufour
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Gwenaëlle Auregan
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Suéva Bernier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Caroline Jan
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Pauline Gipchtein
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (M.-C.C.-H.); (J.-M.T.)
- Brain Biology and Chemistry, LiCEND, F-59000 Lille, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France; (M.-C.C.-H.); (J.-M.T.)
- Brain Biology and Chemistry, LiCEND, F-59000 Lille, France
| | - Karine Cambon
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Géraldine Liot
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
| | - Emmanuel Brouillet
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (N.C.); (C.G.); (M.-C.G.); (F.G.); (P.R.); (D.M.); (C.J.); (N.D.); (G.A.); (M.G.); (S.B.); (C.J.); (P.G.); (P.H.); (G.B.); (N.V.C.); (K.C.); (G.L.); (A.-P.B.)
- Correspondence:
| |
Collapse
|
8
|
Leucine-rich repeat kinase 2-related functions in GLIA: an update of the last years. Biochem Soc Trans 2021; 49:1375-1384. [PMID: 33960369 DOI: 10.1042/bst20201092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Missense mutations in the leucine-rich repeat kinase-2 (LRRK2) gene represent the most common cause of autosomal dominant Parkinson's disease (PD). In the years LRRK2 has been associated with several organelles and related pathways in cell. However, despite the significant amount of research done in the past decade, the contribution of LRRK2 mutations to PD pathogenesis remains unknown. Growing evidence highlights that LRRK2 controls multiple processes in brain immune cells, microglia and astrocytes, and suggests that deregulated LRRK2 activity in these cells, due to gene mutation, might be directly associated with pathological mechanisms underlying PD. In this brief review, we recapitulate and update the last LRRK2 functions dissected in microglia and astrocytes. Moreover, we discuss how dysfunctions of LRRK2-related pathways may impact glia physiology and their cross-talk with neurons, thus leading to neurodegeneration and progression of PD.
Collapse
|
9
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
10
|
Dues DJ, Moore DJ. LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Front Neurosci 2020; 14:719. [PMID: 32733200 PMCID: PMC7360724 DOI: 10.3389/fnins.2020.00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) instigate an autosomal dominant form of Parkinson’s disease (PD). Despite the neuropathological heterogeneity observed in LRRK2-PD, accumulating evidence suggests that alpha-synuclein and tau pathology are observed in a vast majority of cases. Intriguingly, the presence of protein aggregates spans both LRRK2-PD and idiopathic disease, supportive of a common pathologic mechanism. Thus, it is important to consider how LRRK2 mutations give rise to such pathology, and whether targeting LRRK2 might modify the accumulation, transmission, or toxicity of protein aggregates. Likewise, it is not clear how LRRK2 mutations drive PD pathogenesis, and whether protein aggregates are implicated in LRRK2-dependent neurodegeneration. While animal models have been instrumental in furthering our understanding of a potential interaction between LRRK2 and protein aggregation, the biology is far from clear. We aim to provide a thoughtful overview of the evidence linking LRRK2 to protein aggregation in animal models.
Collapse
Affiliation(s)
- Dylan J Dues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
11
|
Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. Proc Natl Acad Sci U S A 2020; 117:17296-17307. [PMID: 32631998 PMCID: PMC7382283 DOI: 10.1073/pnas.1922184117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of late-onset, autosomal-dominant familial Parkinson's disease (PD). LRRK2 functions as both a kinase and GTPase, and PD-linked mutations are known to influence both enzymatic activities. While PD-linked LRRK2 mutations can commonly induce neuronal damage in culture models, the mechanisms underlying these pathogenic effects remain uncertain. Rodent models containing familial LRRK2 mutations often lack robust PD-like neurodegenerative phenotypes. Here, we develop a robust preclinical model of PD in adult rats induced by the brain delivery of recombinant adenoviral vectors with neuronal-specific expression of human LRRK2 harboring the most common G2019S mutation. In this model, G2019S LRRK2 induces the robust degeneration of substantia nigra dopaminergic neurons, a pathological hallmark of PD. Introduction of a stable kinase-inactive mutation or administration of the selective kinase inhibitor, PF-360, attenuates neurodegeneration induced by G2019S LRRK2. Neuroprotection provided by pharmacological kinase inhibition is mediated by an unusual mechanism involving the robust destabilization of human LRRK2 protein in the brain relative to endogenous LRRK2. Our study further demonstrates that G2019S LRRK2-induced dopaminergic neurodegeneration critically requires normal GTPase activity, as hypothesis-testing mutations that increase GTP hydrolysis or impair GTP-binding activity provide neuroprotection although via distinct mechanisms. Taken together, our data demonstrate that G2019S LRRK2 induces neurodegeneration in vivo via a mechanism that is dependent on kinase and GTPase activity. Our study provides a robust rodent preclinical model of LRRK2-linked PD and nominates kinase inhibition and modulation of GTPase activity as promising disease-modifying therapeutic targets.
Collapse
|
12
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
13
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
14
|
Ysselstein D, Nguyen M, Young TJ, Severino A, Schwake M, Merchant K, Krainc D. LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson's disease patients. Nat Commun 2019; 10:5570. [PMID: 31804465 PMCID: PMC6895201 DOI: 10.1038/s41467-019-13413-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in LRRK2 and GBA1 are common genetic risk factors for Parkinson's disease (PD) and major efforts are underway to develop new therapeutics that target LRRK2 or glucocerebrosidase (GCase). Here we describe a mechanistic and therapeutic convergence of LRRK2 and GCase in neurons derived from patients with PD. We find that GCase activity was reduced in dopaminergic (DA) neurons derived from PD patients with LRRK2 mutations. Inhibition of LRRK2 kinase activity results in increased GCase activity in DA neurons with either LRRK2 or GBA1 mutations. This increase is sufficient to partially rescue accumulation of oxidized dopamine and alpha-synuclein in PD patient neurons. We have identified the LRRK2 substrate Rab10 as a key mediator of LRRK2 regulation of GCase activity. Together, these results suggest an important role of mutant LRRK2 as a negative regulator of lysosomal GCase activity.
Collapse
Affiliation(s)
- Daniel Ysselstein
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Maria Nguyen
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Tiffany J Young
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Alex Severino
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Michael Schwake
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Chelban V, Vichayanrat E, Schottlaende L, Iodice V, Houlden H. Autonomic dysfunction in genetic forms of synucleinopathies. Mov Disord 2019; 33:359-371. [PMID: 29508456 DOI: 10.1002/mds.27343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/01/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
The discovery of genetic links between alpha-synuclein and PD has opened unprecedented opportunities for research into a new group of diseases, now collectively known as synucleinopathies. Autonomic dysfunction, including cardiac sympathetic denervation, has been reported in familial forms of synucleinopathies that have Lewy bodies at the core of their pathogenesis. SNCA mutations and multiplications, LRRK2 disease with Lewy bodies as well as other common, sporadic forms of idiopathic PD, MSA, pure autonomic failure, and dementia with Lewy bodies have all been associated with dysautonomia. By contrast, in familial cases of parkinsonism without Lewy bodies, such as in PARK2, the autonomic profile remains normal throughout the course of the disease. The degeneration of the central and peripheral autonomic systems in genetic as well as sporadic forms of neurodegenerative synucleinopathies correlates with the accumulation of alpha-synuclein immunoreactive-containing inclusions. Given that dysautonomia has a significant impact on the quality of life of sufferers and autonomic symptoms are generally treatable, a prompt diagnostic testing and treatment should be provided. Moreover, new evidence suggests that autonomic dysfunction can be used as an outcome prediction factor in some forms of synucleinopathies or premotor diagnostic markers that could be used in the future to define further research avenues. In this review, we describe the autonomic dysfunction of genetic synucleinopathies in comparison to the dysautonomia of sporadic forms of alpha-synuclein accumulation and provide the reader with an up-to-date overview of the current understanding in this fast-growing field. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Viorica Chelban
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Ekawat Vichayanrat
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, United Kingdom
| | - Lucia Schottlaende
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Valeria Iodice
- Autonomic Unit, National Hospital for Neurology and Neurosurgery, UCL NHS Trust, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom, and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
16
|
Cresto N, Gardier C, Gubinelli F, Gaillard MC, Liot G, West AB, Brouillet E. The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease. Eur J Neurosci 2019; 49:339-363. [PMID: 30269383 PMCID: PMC6391223 DOI: 10.1111/ejn.14182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Our understanding of the mechanisms underlying Parkinson's disease, the once archetypical nongenetic neurogenerative disorder, has dramatically increased with the identification of α-synuclein and LRRK2 pathogenic mutations. While α-synuclein protein composes the aggregates that can spread through much of the brain in disease, LRRK2 encodes a multidomain dual-enzyme distinct from any other protein linked to neurodegeneration. In this review, we discuss emergent datasets from multiple model systems that suggest these unlikely partners do interact in important ways in disease, both within cells that express both LRRK2 and α-synuclein as well as through more indirect pathways that might involve neuroinflammation. Although the link between LRRK2 and disease can be understood in part through LRRK2 kinase activity (phosphotransferase activity), α-synuclein toxicity is multilayered and plausibly interacts with LRRK2 kinase activity in several ways. We discuss common protein interactors like 14-3-3s that may regulate α-synuclein and LRRK2 in disease. Finally, we examine cellular pathways and outcomes common to both mutant α-synuclein expression and LRRK2 activity and points of intersection. Understanding the interplay between these two unlikely partners in disease may provide new therapeutic avenues for PD.
Collapse
Affiliation(s)
- Noémie Cresto
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Camille Gardier
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Géraldine Liot
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| | - Andrew B. West
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States 35294
| | - Emmanuel Brouillet
- Neurodegenerative Diseases Laboratory, UMR9199, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, and MIRCen (Molecular Imaging Research Centre), Institut François Jacob, DRF, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
The role of monogenic genes in idiopathic Parkinson's disease. Neurobiol Dis 2018; 124:230-239. [PMID: 30448284 DOI: 10.1016/j.nbd.2018.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, mutations in multiple genes have been linked to autosomal dominant or recessive forms of monogenic Parkinson's disease (PD). Collectively, these monogenic (often familial) cases account for less than 5% of all PD, the majority being apparently sporadic cases. More recently, large-scale genome-wide association studies have identified over 40 loci that increase risk of PD. Importantly, there is overlap between monogenic and sporadic PD genes, particularly for the loci that contain the genes SNCA and LRRK2, which are mutated in monogenic dominant PD. There have also been reports of idiopathic PD cases with heterozygous variants in autosomal recessive genes suggesting that these mutations may increase risk of PD. These observations suggest that monogenic and idiopathic PD may have shared pathogenic mechanisms. Here, we focus mainly on the role of monogenic PD genes that represent pleomorphic risk loci for idiopathic PD. We also discuss the functional mechanisms that may play a role in increasing risk of disease in both monogenic and idiopathic forms.
Collapse
|
18
|
Sheehan P, Yue Z. Deregulation of autophagy and vesicle trafficking in Parkinson's disease. Neurosci Lett 2018; 697:59-65. [PMID: 29627340 DOI: 10.1016/j.neulet.2018.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized pathologically by the selective loss of dopaminergic neurons in the substantia nigra and the intracellular accumulation of α-synuclein in the Lewy bodies. While the pathogenic mechanisms of PD are poorly understood, many lines of evidence point to a role of altered autophagy and membrane trafficking in the development of the disease. Emerging studies show that connections between the deregulation of autophagy and synaptic vesicle (SV) trafficking may contribute to PD. Here we review the evidence that many PD related-genes have roles in both autophagy and SV trafficking and examine how deregulation of these pathways contributes to PD pathogenesis. This review also discusses recent studies aimed at uncovering the role of PD-linked genes in autophagy-lysosome function.
Collapse
Affiliation(s)
- Patricia Sheehan
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Zhenyu Yue
- Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, USA.
| |
Collapse
|
19
|
Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu NY, Chuang LS, Carmi S, Villaverde N, Li X, Rivas M, Levine AP, Bao X, Labrias PR, Haritunians T, Ruane D, Gettler K, Chen E, Li D, Schiff ER, Pontikos N, Barzilai N, Brant SR, Bressman S, Cheifetz AS, Clark LN, Daly MJ, Desnick RJ, Duerr RH, Katz S, Lencz T, Myers RH, Ostrer H, Ozelius L, Payami H, Peter Y, Rioux JD, Segal AW, Scott WK, Silverberg MS, Vance JM, Ubarretxena-Belandia I, Foroud T, Atzmon G, Pe'er I, Ioannou Y, McGovern DPB, Yue Z, Schadt EE, Cho JH, Peter I. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 2018; 10:eaai7795. [PMID: 29321258 PMCID: PMC6028002 DOI: 10.1126/scitranslmed.aai7795] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.
Collapse
Affiliation(s)
- Ken Y Hui
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adam Schaffner
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nai-Yun Hsu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Nicole Villaverde
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianting Li
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manual Rivas
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Xiuliang Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe R Labrias
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Talin Haritunians
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Darren Ruane
- Department of Immunology and Inflammation, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Kyle Gettler
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Ernie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dalin Li
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elena R Schiff
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nikolas Pontikos
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - Nir Barzilai
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven R Brant
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Susan Bressman
- Alan and Barbara Mirken Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Adam S Cheifetz
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark J Daly
- Department of Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard H Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Seymour Katz
- New York University School of Medicine, New York City, NY 10016, USA
- North Shore University-Long Island Jewish Medical Center, Manhasset, NY, USA
- St. Francis Hospital, Roslyn, NY 11576, USA
| | - Todd Lencz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA 02114, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laurie Ozelius
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Deparment of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Haydeh Payami
- Departments of Neurology and Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35805, USA
| | - Yakov Peter
- Department of Biology, Touro College, Queens, NY 10033, USA
- Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10033, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T1C8, Canada
- Faculté de Médecine, Université de Montréal, Montreal, Quebec H1T1C8, Canada
| | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College, London WC1E 6JF, UK
| | - William K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario M5T3L9, USA
- Department of Medicine, University of Toronto, Toronto, Ontario M5G1X5, Canada
| | - Jeffery M Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gil Atzmon
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Itsik Pe'er
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Yiannis Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dermot P B McGovern
- Translational Genomics Group, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhenyu Yue
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Judy H Cho
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics, Yale University, New Haven, CT 06520, USA
- Section of Gastroenterology and Hepatology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Institute for Genetics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Nguyen APT, Daniel G, Valdés P, Islam MS, Schneider BL, Moore DJ. G2019S LRRK2 enhances the neuronal transmission of tau in the mouse brain. Hum Mol Genet 2018; 27:120-134. [PMID: 29088368 DOI: 10.1093/hmg/ddx389] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 11/12/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 mutations typically give rise to Lewy pathology in the brains of PD subjects yet can induce tau-positive neuropathology in some cases. The pathological interaction between LRRK2 and tau remains poorly defined. To explore this interaction in vivo, we crossed a well-characterized human P301S-tau transgenic mouse model of tauopathy with human G2019S-LRRK2 transgenic mice or LRRK2 knockout (KO) mice. We find that endogenous or pathogenic LRRK2 expression has minimal effects on the steady-state levels, solubility and abnormal phosphorylation of human P301S-tau throughout the mouse brain. We next developed a new model of tauopathy by delivering AAV2/6 vectors expressing human P301S-tau to the hippocampal CA1 region of G2019S-LRRK2 transgenic or LRRK2 KO mice. P301S-tau expression induces hippocampal tau pathology and marked degeneration of CA1 pyramidal neurons in mice, however, this occurs independently of endogenous or pathogenic LRRK2 expression. We further developed new AAV2/6 vectors co-expressing human WT-tau and GFP to monitor the neuron-to-neuron transmission of tau within defined hippocampal neuronal circuits. While endogenous LRRK2 is not required for tau transmission, we find that G2019S-LRRK2 markedly enhances the neuron-to-neuron transmission of tau in mice. Our data suggest that mutant tau-induced neuropathology occurs independently of LRRK2 expression in two mouse models of tauopathy but identifies a novel pathogenic role for G2019S-LRRK2 in promoting the neuronal transmission of WT-tau protein. These findings may have important implications for understanding the development of tau neuropathology in LRRK2-linked PD brains.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Pamela Valdés
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Md Shariful Islam
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bernard L Schneider
- Neurodegenerative Disease Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Laboratory of Molecular Neurodegenerative Research
| |
Collapse
|
21
|
Zhang PL, Chen Y, Zhang CH, Wang YX, Fernandez-Funez P. Genetics of Parkinson's disease and related disorders. J Med Genet 2017; 55:73-80. [PMID: 29151060 DOI: 10.1136/jmedgenet-2017-105047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex and heterogeneous neurological condition characterised mainly by bradykinesia, resting tremor, rigidity and postural instability, symptoms that together comprise the parkinsonian syndrome. Non-motor symptoms preceding and following clinical onset are also helpful diagnostic markers revealing a widespread and progressive pathology. Many other neurological conditions also include parkinsonism as primary or secondary symptom, confounding their diagnosis and treatment. Although overall disease course and end-stage pathological examination single out these conditions, the significant overlaps suggest that they are part of a continuous disease spectrum. Recent genetic discoveries support this idea because mutations in a few genes (α-synuclein, LRRK2, tau) can cause partially overlapping pathologies. Additionally, mutations in causative genes and environmental toxins identify protein homeostasis and the mitochondria as key mediators of degeneration of dopaminergic circuits in the basal ganglia. The evolving mechanistic insight into the pathophysiology of PD and related conditions will contribute to the development of targeted and effective symptomatic treatments into disease-modifying therapies that will reduce the burden of these dreadful conditions.
Collapse
Affiliation(s)
- Pei-Lan Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Chen-Hao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yu-Xin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School-Duluth Campus, Duluth, Minnesota, USA
| |
Collapse
|
22
|
Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochem Soc Trans 2017; 45:163-172. [PMID: 28202670 DOI: 10.1042/bst20160264] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD) with autosomal dominant inheritance. Accordingly, LRRK2 has emerged as a promising therapeutic target for disease modification in PD. Since the first discovery of LRRK2 mutations some 12 years ago, LRRK2 has been the subject of intense investigation. It has been established that LRRK2 can function as a protein kinase, with many putative substrates identified, and can also function as a GTPase that may serve in part to regulate kinase activity. Familial mutations influence both of these enzymatic activities, suggesting that they may be important for the development of PD. Many LRRK2 models have been established to understand the pathogenic effects and mechanisms of familial mutations. Here, we provide a focused discussion of the evidence supporting a role for kinase and GTPase activity in mediating the pathogenic effects of familial LRRK2 mutations in different model systems, with an emphasis on rodent models of PD. We also critically discuss the contribution and relevance of protein aggregation, namely of α-synuclein and tau-proteins, which are known to form aggregates in PD brains harboring LRRK2 mutations, to neurodegeneration in LRRK2 rodent models. We aim to provide a clear and unbiased review of some of the key mechanisms that are important for LRRK2-dependent neurodegeneration in PD.
Collapse
|
23
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
24
|
Nguyen APT, Moore DJ. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. ADVANCES IN NEUROBIOLOGY 2017; 14:71-88. [PMID: 28353279 DOI: 10.1007/978-3-319-49969-7_4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of Parkinson's disease (PD) with late-onset and autosomal-dominant inheritance. LRRK2 belongs to the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations cluster within the Roc-COR tandem and kinase domains of LRRK2, where they act to either impair GTPase activity or enhance kinase activity. Familial LRRK2 mutations share in common the capacity to induce neuronal toxicity in cultured cells. While the contribution of the frequent G2019S mutation, located within the kinase domain, to kinase activity and neurotoxicity has been extensively investigated, the contribution of GTPase activity has received less attention. The GTPase domain has been shown to play an important role in regulating kinase activity, in dimerization, and in mediating the neurotoxic effects of LRRK2. Accordingly, the GTPase domain has emerged as a potential therapeutic target for inhibiting the pathogenic effects of LRRK2 mutations. Many important mechanisms remain to be elucidated, including how the GTPase cycle of LRRK2 is regulated, whether GTPase effectors exist for LRRK2, and how GTPase activity contributes to the overall functional output of LRRK2. In this review, we discuss the importance of the GTPase domain for LRRK2-linked PD focusing in particular on its regulation, function, and contribution to neurotoxic mechanisms.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
25
|
Islam MS, Nolte H, Jacob W, Ziegler AB, Pütz S, Grosjean Y, Szczepanowska K, Trifunovic A, Braun T, Heumann H, Heumann R, Hovemann B, Moore DJ, Krüger M. Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease. Hum Mol Genet 2016; 25:5365-5382. [PMID: 27794539 PMCID: PMC6078604 DOI: 10.1093/hmg/ddw352] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 11/14/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinson`s disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we performed mass spectrometry and quantified 3,616 proteins in the fly brain. We identify several differentially-expressed cytoskeletal, mitochondrial and synaptic vesicle proteins (SV), including synaptotagmin-1, syntaxin-1A and Rab3, in the brain of this LRRK2 fly model. In addition, a global phosphoproteome analysis reveals the enhanced phosphorylation of several SV proteins, including synaptojanin-1 (pThr1131) and the microtubule-associated protein futsch (pSer4106) in the brain of R1441C hLRRK2 flies. The direct phosphorylation of human synaptojanin-1 by R1441C hLRRK2 could further be confirmed by in vitro kinase assays. A protein-protein interaction screen in the fly brain confirms that LRRK2 robustly interacts with numerous SV proteins, including synaptojanin-1 and EndophilinA. Our proteomic, phosphoproteomic and interactome study in the Drosophila brain provides a systematic analyses of R1441C hLRRK2-induced pathobiological mechanisms in this model. We demonstrate for the first time that the R1441C mutation located within the LRRK2 GTPase domain induces the enhanced phosphorylation of SV proteins in the brain.
Collapse
Affiliation(s)
- Md Shariful Islam
- Silantes GmbH, Munich, Germany
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Cologne, Germany
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Cologne, Germany
| | - Wright Jacob
- Biochemistry II, Molecular Neurobiochemistry Faculty for Chemistry and Biochemistry Ruhr-University Bochum, NC 7/174 Universitaetsstraße 150, 44780 Bochum, Germany
| | - Anna B. Ziegler
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
- Université de Bourgogne Franche-Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | | | - Yael Grosjean
- CNRS, UMR6265 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
- Université de Bourgogne Franche-Comté, UMR Centre des Sciences du Goût et de l'Alimentation, F-21000 Dijon, France
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Cologne, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | | | - Rolf Heumann
- Biochemistry II, Molecular Neurobiochemistry Faculty for Chemistry and Biochemistry Ruhr-University Bochum, NC 7/174 Universitaetsstraße 150, 44780 Bochum, Germany
| | | | - Darren J. Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Germany
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
26
|
Melachroinou K, Leandrou E, Valkimadi PE, Memou A, Hadjigeorgiou G, Stefanis L, Rideout HJ. Activation of FADD-Dependent Neuronal Death Pathways as a Predictor of Pathogenicity for LRRK2 Mutations. PLoS One 2016; 11:e0166053. [PMID: 27832104 PMCID: PMC5104429 DOI: 10.1371/journal.pone.0166053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/21/2016] [Indexed: 01/24/2023] Open
Abstract
Background Despite the plethora of sequence variants in LRRK2, only a few clearly segregate with PD. Even within this group of pathogenic mutations, the phenotypic profile can differ widely. Objective We examined multiple properties of LRRK2 behavior in cellular models over-expressing three sequence variants described in Greek PD patients in comparison to several known pathogenic and non-pathogenic LRRK2 mutations, to determine if specific phenotypes associated with pathogenic LRRK2 can be observed in other less-common sequence variants for which pathogenicity is unclear based on clinical and/or genetic data alone. Methods The oligomerization, activity, phosphorylation, and interaction with FADD was assessed in HEK293T cells over-expressing LRRK2; while the induction of neuronal death was determined by quantifying apoptotic nuclei in primary neurons transiently expressing LRRK2. Results One LRRK2 variant, A211V, exhibited a modest increase in kinase activity, whereas only the pathogenic mutants G2019S and I2020T displayed significantly altered auto-phosphorylation. We observed an induction of detergent-insoluble high molecular weight structures upon expression of pathogenic LRRK2 mutants, but not the other LRRK2 variants. In contrast, each of the variants tested induced apoptotic death of cultured neurons similar to pathogenic LRRK2 in a FADD-dependent manner. Conclusions Overall, despite differences in some properties of LRRK2 function such as kinase activity and its oligomerization, each of the LRRK2 variants examined induced neuronal death to a similar extent. Furthermore, our findings further strengthen the notion of a convergence on the extrinsic cell death pathway common to mutations in LRRK2 that are capable of inducing neuronal death.
Collapse
Affiliation(s)
- Katerina Melachroinou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Emmanouela Leandrou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polytimi-Eleni Valkimadi
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna Memou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgios Hadjigeorgiou
- Department of Neurogenetics, Institute of Biomedical Research & Technology (CERETETH), Larissa, Greece
- Department of Neurology, University of Thessaly School of Medicine, Larissa, Greece
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Second Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Hardy J. Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
27
|
Abstract
Interactions between genetic and environmental factors are thought to contribute to the pathogenesis of the majority of Parkinson's disease (PD) cases. However, our understanding of these interactions is at an early stage. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of hereditary PD. Penetrance of LRRK2 mutations is incomplete and variable, suggesting that other environmental or genetic factors may contribute to the development of the disorder. Recently, using animal models, several attempts have been made to understand if LRRK2 may mediate sensitivity to environmental neurotoxicants. Here, we critically review the most current data on how LRRK2 mutations influence neurotoxicity in PD models.
Collapse
Affiliation(s)
- Jang-Won Lee
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Tsika E, Nguyen APT, Dusonchet J, Colin P, Schneider BL, Moore DJ. Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease. Neurobiol Dis 2015; 77:49-61. [PMID: 25731749 DOI: 10.1016/j.nbd.2015.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). LRRK2 contains functional GTPase and kinase domains. The most common G2019S mutation enhances the kinase activity of LRRK2 in vitro whereas G2019S LRRK2 expression in cultured neurons induces toxicity in a kinase-dependent manner. These observations suggest a potential role for kinase activity in LRRK2-associated PD. We have recently developed a novel rodent model of PD with progressive neurodegeneration induced by the adenoviral-mediated expression of G2019S LRRK2. In the present study, we further characterize this LRRK2 model and determine the contribution of kinase activity to LRRK2-mediated neurodegeneration. Recombinant human adenoviral vectors were employed to deliver human wild-type, G2019S or kinase-inactive G2019S/D1994N LRRK2 to the rat striatum. LRRK2-dependent pathology was assessed in the striatum, a region where LRRK2 protein is normally enriched in the mammalian brain. Human LRRK2 variants are robustly expressed throughout the rat striatum. Expression of G2019S LRRK2 selectively induces the accumulation of neuronal ubiquitin-positive inclusions accompanied by neurite degeneration and the altered distribution of axonal phosphorylated neurofilaments. Importantly, the introduction of a kinase-inactive mutation (G2019S/D1994N) completely ameliorates the pathological effects of G2019S LRRK2 in the striatum supporting a kinase activity-dependent mechanism for this PD-associated mutation. Collectively, our study further elucidates the pathological effects of the G2019S mutation in the mammalian brain and supports the development of kinase inhibitors as a potential therapeutic approach for treating LRRK2-associated PD. This adenoviral rodent model provides an important tool for elucidating the molecular basis of LRRK2-mediated neurodegeneration.
Collapse
Affiliation(s)
- Elpida Tsika
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - An Phu Tran Nguyen
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Julien Dusonchet
- Neurodegenerative Studies Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Philippe Colin
- Neurodegenerative Studies Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bernard L Schneider
- Neurodegenerative Studies Laboratory, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Darren J Moore
- Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
29
|
Daniel G, Moore DJ. Modeling LRRK2 Pathobiology in Parkinson's Disease: From Yeast to Rodents. Curr Top Behav Neurosci 2015; 22:331-368. [PMID: 24850078 DOI: 10.1007/7854_2014_311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2, PARK8) gene represent the most common cause of familial Parkinson's disease (PD) with autosomal dominant inheritance, whereas common variation at the LRRK2 genomic locus influences the risk of developing idiopathic PD. LRRK2 is a member of the ROCO protein family and contains multiple domains, including Ras-of-Complex (ROC) GTPase, kinase, and protein-protein interaction domains. In the last decade, the biochemical characterization of LRRK2 and the development of animal model s have provided important insight into the pathobiology of LRRK2. In this review, we comprehensively describe the different models employed to understand LRRK2-associated PD, including yeast, invertebrates, transgenic and viral-based rodents, and patient-derived induced pluripotent stem cells. We discuss how these models have contributed to understanding LRRK2 pathobiology and the advantages and limitations of each model for exploring aspects of LRRK2-associated PD.
Collapse
Affiliation(s)
- Guillaume Daniel
- School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | | |
Collapse
|
30
|
Tsika E, Kannan M, Foo CSY, Dikeman D, Glauser L, Gellhaar S, Galter D, Knott GW, Dawson TM, Dawson VL, Moore DJ. Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration. Neurobiol Dis 2014; 71:345-58. [PMID: 25174890 DOI: 10.1016/j.nbd.2014.08.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/08/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been developed that display abnormalities in dopaminergic neurotransmission and alterations in tau metabolism yet without consistently inducing dopaminergic neurodegeneration. To directly explore the impact of mutant LRRK2 on the nigrostriatal dopaminergic pathway, we developed conditional transgenic mice that selectively express human R1441C LRRK2 in dopaminergic neurons from the endogenous murine ROSA26 promoter. The expression of R1441C LRRK2 does not induce the degeneration of substantia nigra dopaminergic neurons or striatal dopamine deficits in mice up to 2years of age, and fails to precipitate abnormal protein inclusions containing alpha-synuclein, tau, ubiquitin or autophagy markers (LC3 and p62). Furthermore, mice expressing R1441C LRRK2 exhibit normal motor activity and olfactory function with increasing age. Intriguingly, the expression of R1441C LRRK2 induces age-dependent abnormalities of the nuclear envelope in nigral dopaminergic neurons including reduced nuclear circularity and increased invaginations of the nuclear envelope. In addition, R1441C LRRK2 mice display increased neurite complexity of cultured midbrain dopaminergic neurons. Collectively, these novel R1441C LRRK2 conditional transgenic mice reveal altered dopaminergic neuronal morphology with advancing age, and provide a useful tool for exploring the pathogenic mechanisms underlying the R1441C LRRK2 mutation in PD.
Collapse
Affiliation(s)
- Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Meghna Kannan
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Caroline Shi-Yan Foo
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Dustin Dikeman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liliane Glauser
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandra Gellhaar
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dagmar Galter
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Graham W Knott
- Centre of Interdisciplinary Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Darren J Moore
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
31
|
Li T, Yang D, Zhong S, Thomas JM, Xue F, Liu J, Kong L, Voulalas P, Hassan HE, Park JS, MacKerell AD, Smith WW. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models. Hum Mol Genet 2014; 23:6212-22. [PMID: 24993787 DOI: 10.1093/hmg/ddu341] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson's disease (PD) and contribute to sporadic PD. LRRK2 contains Guanosine-5'-triphosphate (GTP) binding, GTPase and kinase activities that have been implicated in the neuronal degeneration of PD pathogenesis, making LRRK2, a potential drug target. To date, there is no disease-modifying drug to slow the neuronal degeneration of PD and no published LRRK2 GTP domain inhibitor. Here, the biological functions of two novel GTP-binding inhibitors of LRRK2 were examined in PD cell and mouse models. Through a combination of computer-aided drug design (CADD) and LRRK2 bio-functional screens, two novel compounds, 68: and 70: , were shown to reduce LRRK2 GTP binding and to inhibit LRRK2 kinase activity in vitro and in cultured cell assays. Moreover, these two compounds attenuated neuronal degeneration in human SH-SY5Y neuroblastoma cells and mouse primary neurons expressing mutant LRRK2 variants. Although both compounds inhibited LRRK2 kinase activity and reduced neuronal degeneration, solubility problems with 70: prevented further testing in mice. Thus, only 68: was tested in a LRRK2-based lipopolysaccharide (LPS)-induced pre-inflammatory mouse model. 68: reduced LRRK2 GTP-binding activity and kinase activity in brains of LRRK2 transgenic mice after intraperitoneal injection. Moreover, LPS induced LRRK2 upregulation and microglia activation in mouse brains. These findings suggest that disruption of GTP binding to LRRK2 represents a potential novel therapeutic approach for PD intervention and that these novel GTP-binding inhibitors provide both tools and lead compounds for future drug development.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Dejun Yang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Shijun Zhong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Joseph M Thomas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jingnan Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Lingbo Kong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Pamela Voulalas
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jae-Sung Park
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wanli W Smith
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Reynolds A, Doggett EA, Riddle SM, Lebakken CS, Nichols RJ. LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status. Front Mol Neurosci 2014; 7:54. [PMID: 25009464 PMCID: PMC4068021 DOI: 10.3389/fnmol.2014.00054] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/28/2014] [Indexed: 01/23/2023] Open
Abstract
Missense mutations in the Leucine-Rich Repeat protein Kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD) (Farrer et al., 2005; Skipper et al., 2005; Di Fonzo et al., 2006; Healy et al., 2008; Paisan-Ruiz et al., 2008; Lesage et al., 2010). LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955, and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955, and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro, and Tyr1699Cys, can positively enhance LRRK2 kinase activity, while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and Okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.
Collapse
|
33
|
Kethiri RR, Bakthavatchalam R. Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 – 2013). Expert Opin Ther Pat 2014; 24:745-57. [DOI: 10.1517/13543776.2014.907275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Esteves AR, Swerdlow RH, Cardoso SM. LRRK2, a puzzling protein: insights into Parkinson's disease pathogenesis. Exp Neurol 2014; 261:206-16. [PMID: 24907399 DOI: 10.1016/j.expneurol.2014.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large, ubiquitous protein of unknown function. Mutations in the gene encoding LRRK2 have been linked to familial and sporadic Parkinson's disease (PD) cases. The LRRK2 protein is a single polypeptide that displays GTPase and kinase activity. Kinase and GTPase domains are involved in different cellular signaling pathways. Despite several experimental studies associating LRRK2 protein with various intracellular membranes and vesicular structures such as endosomal/lysosomal compartments, the mitochondrial outer membrane, lipid rafts, microtubule-associated vesicles, the golgi complex, and the endoplasmic reticulum its broader physiologic function(s) remain unidentified. Additionally, the cellular distribution of LRRK2 may indicate its role in several different pathways, such as the ubiquitin-proteasome system, the autophagic-lysosomal pathway, intracellular trafficking, and mitochondrial dysfunction. This review discusses potential mechanisms through which LRRK2 may mediate neurodegeneration and cause PD.
Collapse
Affiliation(s)
- A Raquel Esteves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sandra M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
35
|
Mutant LRRK2 toxicity in neurons depends on LRRK2 levels and synuclein but not kinase activity or inclusion bodies. J Neurosci 2014; 34:418-33. [PMID: 24403142 DOI: 10.1523/jneurosci.2712-13.2014] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
By combining experimental neuron models and mathematical tools, we developed a "systems" approach to deconvolve cellular mechanisms of neurodegeneration underlying the most common known cause of Parkinson's disease (PD), mutations in leucine-rich repeat kinase 2 (LRRK2). Neurons ectopically expressing mutant LRRK2 formed inclusion bodies (IBs), retracted neurites, accumulated synuclein, and died prematurely, recapitulating key features of PD. Degeneration was predicted from the levels of diffuse mutant LRRK2 that each neuron contained, but IB formation was neither necessary nor sufficient for death. Genetic or pharmacological blockade of its kinase activity destabilized LRRK2 and lowered its levels enough to account for the moderate reduction in LRRK2 toxicity that ensued. By contrast, targeting synuclein, including neurons made from PD patient-derived induced pluripotent cells, dramatically reduced LRRK2-dependent neurodegeneration and LRRK2 levels. These findings suggest that LRRK2 levels are more important than kinase activity per se in predicting toxicity and implicate synuclein as a major mediator of LRRK2-induced neurodegeneration.
Collapse
|
36
|
LRRK2 phosphorylates novel tau epitopes and promotes tauopathy. Acta Neuropathol 2013; 126:809-27. [PMID: 24113872 PMCID: PMC3830748 DOI: 10.1007/s00401-013-1188-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease (PD). The neuropathology of LRRK2-related PD is heterogeneous and can include aberrant tau phosphorylation or neurofibrillary tau pathology. Recently, LRRK2 has been shown to phosphorylate tau in vitro; however, the major epitopes phosphorylated by LRRK2 and the physiological or pathogenic consequences of these modifications in vivo are unknown. Using mass spectrometry, we identified multiple sites on recombinant tau that are phosphorylated by LRRK2 in vitro, including pT149 and pT153, which are phospho-epitopes that to date have been largely unexplored. Importantly, we demonstrate that expression of transgenic LRRK2 in a mouse model of tauopathy increased the aggregation of insoluble tau and its phosphorylation at T149, T153, T205, and S199/S202/T205 epitopes. These findings indicate that tau can be a LRRK2 substrate and that this interaction can enhance salient features of human disease.
Collapse
|
37
|
Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, Biskup S, Xiong Y, Bandopadhyay R, Dawson VL, Dawson TM, Moore DJ. Functional interaction of Parkinson's disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 2013; 23:2055-77. [PMID: 24282027 PMCID: PMC3959816 DOI: 10.1093/hmg/ddt600] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in LRRK2 cause autosomal dominant Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase domains, and putative protein–protein interaction domains. Familial PD mutations alter the GTPase and kinase activity of LRRK2 in vitro. LRRK2 is suggested to regulate a number of cellular pathways although the underlying mechanisms are poorly understood. To explore such mechanisms, it has proved informative to identify LRRK2-interacting proteins, some of which serve as LRRK2 kinase substrates. Here, we identify common interactions of LRRK2 with members of the dynamin GTPase superfamily. LRRK2 interacts with dynamin 1–3 that mediate membrane scission in clathrin-mediated endocytosis and with dynamin-related proteins that mediate mitochondrial fission (Drp1) and fusion (mitofusins and OPA1). LRRK2 partially co-localizes with endosomal dynamin-1 or with mitofusins and OPA1 at mitochondrial membranes. The subcellular distribution and oligomeric complexes of dynamin GTPases are not altered by modulating LRRK2 in mouse brain, whereas mature OPA1 levels are reduced in G2019S PD brains. LRRK2 enhances mitofusin-1 GTP binding, whereas dynamin-1 and OPA1 serve as modest substrates of LRRK2-mediated phosphorylation in vitro. While dynamin GTPase orthologs are not required for LRRK2-induced toxicity in yeast, LRRK2 functionally interacts with dynamin-1 and mitofusin-1 in cultured neurons. LRRK2 attenuates neurite shortening induced by dynamin-1 by reducing its levels, whereas LRRK2 rescues impaired neurite outgrowth induced by mitofusin-1 potentially by reversing excessive mitochondrial fusion. Our study elucidates novel functional interactions of LRRK2 with dynamin-superfamily GTPases that implicate LRRK2 in the regulation of membrane dynamics important for endocytosis and mitochondrial morphology.
Collapse
Affiliation(s)
- Klodjan Stafa
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huang L, Shimoji M, Wang J, Shah S, Kamila S, Biehl ER, Lim S, Chang A, Maguire-Zeiss KA, Su X, Federoff HJ. Development of inducible leucine-rich repeat kinase 2 (LRRK2) cell lines for therapeutics development in Parkinson's disease. Neurotherapeutics 2013; 10:840-51. [PMID: 23963789 PMCID: PMC3805857 DOI: 10.1007/s13311-013-0208-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pathogenic mechanism(s) contributing to loss of dopamine neurons in Parkinson's disease (PD) remain obscure. Leucine-rich repeat kinase 2 (LRRK2) mutations are linked, as a causative gene, to PD. LRRK2 mutations are estimated to account for 10% of familial and between 1 % and 3 % of sporadic PD. LRRK2 proximate single nucleotide polymorphisms have also been significantly associated with idiopathic/sporadic PD by genome-wide association studies. LRRK2 is a multidomain-containing protein and belongs to the protein kinase super-family. We constructed two inducible dopaminergic cell lines expressing either human-LRRK2-wild-type or human-LRRK2-mutant (G2019S). Phenotypes of these LRRK2 cell lines were examined with respect to cell viability, morphology, and protein function with or without induction of LRRK2 gene expression. The overexpression of G2019S gene promoted (1) low cellular metabolic activity without affecting cell viability, (2) blunted neurite extension, and (3) increased phosphorylation at S910 and S935. Our observations are consistent with reported general phenotypes in LRRK2 cell lines by other investigators. We used these cell lines to interrogate the biological function of LRRK2, to evaluate their potential as a drug-screening tool, and to investigate screening for small hairpin RNA-mediated LRRK2 G2019S gene knockdown as a potential therapeutic strategy. A proposed LRRK2 kinase inhibitor (i.e., IN-1) decreased LRRK2 S910 and S935 phosphorylation in our MN9DLRRK2 cell lines in a dose-dependent manner. Lentivirus-mediated transfer of LRRK2 G2019S allele-specific small hairpin RNA reversed the blunting of neurite extension caused by LRRK2 G2019S overexpression. Taken together, these inducible LRRK2 cell lines are suitable reagents for LRRK2 functional studies, and the screening of potential LRRK2 therapeutics.
Collapse
Affiliation(s)
- Liang Huang
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Mika Shimoji
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Juan Wang
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Salim Shah
- />Department of Biochemistry and Molecule & Cellular Biology, Georgetown University Medical Center, Washington, DC USA
| | - Sukanta Kamila
- />Department of Chemistry, Southern Methodist University, Dallas, TX USA
| | - Edward R. Biehl
- />Department of Chemistry, Southern Methodist University, Dallas, TX USA
| | - Seung Lim
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Allison Chang
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | | | - Xiaomin Su
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
| | - Howard J. Federoff
- />Department of Neuroscience, Georgetown University Medical Center, Washington, DC USA
- />Department of Neurology, Georgetown University Medical Center, Washington, DC USA
| |
Collapse
|
39
|
Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson's disease. Prog Neurobiol 2013; 106-107:17-32. [PMID: 23643800 PMCID: PMC3742021 DOI: 10.1016/j.pneurobio.2013.04.004] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a movement disorder that is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. Although majority of the PD cases are sporadic several genetic mutations have also been linked to the disease thus providing new opportunities to study the pathology of the illness. Studies in humans and various animal models of PD reveal that mitochondrial dysfunction might be a defect that occurs early in PD pathogenesis and appears to be a widespread feature in both sporadic and monogenic forms of PD. The general mitochondrial abnormalities linked with the disease include mitochondrial electron transport chain impairment, alterations in mitochondrial morphology and dynamics, mitochondrial DNA mutations and anomaly in calcium homeostasis. Mitochondria are vital organelles with multiple functions and their dysfunction can lead to a decline in energy production, generation of reactive oxygen species and induction of stress-induced apoptosis. In this review, we give an outline of mitochondrial functions that are affected in the pathogenesis of sporadic and familial PD, and hence provide insights that might be valuable for focused future research to exploit possible mitochondrial targets for neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Sudhakar Raja Subramaniam
- Department of Neurology, David Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | |
Collapse
|
40
|
Pharmacological inhibition of LRRK2 cellular phosphorylation sites provides insight into LRRK2 biology. Biochem Soc Trans 2013; 40:1158-62. [PMID: 22988882 DOI: 10.1042/bst20120137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) have been linked to inherited forms of PD (Parkinson's disease). Substantial pre-clinical research and drug discovery efforts have focused on LRRK2 with the hope that small-molecule inhibitors of the enzyme may be valuable for the treatment or prevention of the onset of PD. The pathway to develop therapeutic or neuroprotective agents based on LRRK2 function (i.e. kinase activity) has been facilitated by the development of both biochemical and cell-based assays for LRRK2. LRRK2 is phosphorylated on Ser910, Ser935, Ser955 and Ser973 in the N-terminal domain of the enzyme, and these sites of phosphorylation are likely to be regulated by upstream enzymes in an LRRK2 kinase-activity-dependent manner. Knowledge of these phosphorylation sites and their regulation can be adapted to high-throughput-screening-amenable platforms. The present review describes the utilization of LRRK2 phosphorylation as indicators of enzyme inhibition, as well as how such assays can be used to deconvolute the pathways in which LRRK2 plays a role.
Collapse
|
41
|
Abstract
Mutations in the LRRK2 (leucine-rich repeat kinase 2) gene are the most frequent genetic cause of PD (Parkinson's disease), and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein-protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signalling pathways. LRRK2's GTPase and kinase domains may reciprocally regulate each other to direct LRRK2's ultimate function. Although most LRRK2 investigations are centred on LRRK2's kinase activity, the present review focuses on the function of LRRK2's GTPase activity in LRRK2 physiology and pathophysiology.
Collapse
|
42
|
Funk N, Wieghofer P, Grimm S, Schaefer R, Bühring HJ, Gasser T, Biskup S. Characterization of peripheral hematopoietic stem cells and monocytes in Parkinson's disease. Mov Disord 2013; 28:392-5. [PMID: 23401086 DOI: 10.1002/mds.25300] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 10/20/2012] [Accepted: 10/31/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Emerging evidence has highlighted the pivotal role of the immune system in neurodegenerative diseases. This study investigated the impact of progressive neurodegeneration on the differentiation and development of hematopoietic stem cells in the peripheral blood of Parkinson's patients. METHODS A colony-forming cell assay was established to study hematopoietic stem cells from venous blood of Parkinson's patients, and flow cytometry was used to analyze the expression of chemokine receptors on monocytes. RESULTS We demonstrate that there is strong upregulation in the percentage of monocyte precursors in the peripheral blood of Parkinson's patients and asymptomatic high-risk individuals. We identify the receptor CCR2 as undergoing strong upregulation on the surface of classical monocytes in Parkinson's patients. CONCLUSIONS The association between blood cell development and progressive cell death in the brain of Parkinson's patients should be further investigated as a potential dynamic biomarker and indicator of disease progression.
Collapse
Affiliation(s)
- Natalja Funk
- Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
ATP-competitive LRRK2 inhibitors interfere with monoclonal antibody binding to the kinase domain of LRRK2 under native conditions. A method to directly monitor the active conformation of LRRK2? J Neurosci Methods 2013; 214:62-8. [PMID: 23318290 DOI: 10.1016/j.jneumeth.2012.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/21/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease. LRRK2 kinase activity is required for toxicity in neuronal cell cultures suggesting that selective kinase inhibitors may prevent neurodegeneration in patients. Directly monitoring LRRK2 activity in cells would be advantageous for the development of small molecule LRRK2 inhibitors. Here, we demonstrate that a monoclonal anti-LRRK2 antibody directed against the activation segment binds less efficiently to native LRRK2 protein in the presence of ATP-competitive LRRK2 inhibitors. Since kinase inhibitors prevent autophosphorylation and refolding of the activation segment, we hypothesize that the antibody preferentially binds to the active conformation of LRRK2 under native conditions.
Collapse
|
44
|
Calabresi P, Di Filippo M, Gallina A, Wang Y, Stankowski JN, Picconi B, Dawson VL, Dawson TM. New synaptic and molecular targets for neuroprotection in Parkinson's disease. Mov Disord 2013; 28:51-60. [PMID: 22927178 PMCID: PMC4161019 DOI: 10.1002/mds.25096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/21/2012] [Accepted: 06/03/2012] [Indexed: 12/20/2022] Open
Abstract
The defining anatomical feature of Parkinson's disease (PD) is the degeneration of substantia nigra pars compacta (SNc) neurons, resulting in striatal dopamine (DA) deficiency and in the subsequent alteration of basal ganglia physiology. Treatments targeting the dopaminergic system alleviate PD symptoms but are not able to slow the neurodegenerative process that underlies PD progression. The nucleus striatum comprises a complex network of projecting neurons and interneurons that integrates different neural signals to modulate the activity of the basal ganglia circuitry. In this review we describe new potential molecular and synaptic striatal targets for the development of both symptomatic and neuroprotective strategies for PD. In particular, we focus on the interaction between adenosine A2A receptors and dopamine D2 receptors, on the role of a correct assembly of NMDA receptors, and on the sGC/cGMP/PKG pathway. Moreover, we also discuss the possibility to target the cell death program parthanatos and the kinase LRRK2 in order to develop new putative neuroprotective agents for PD acting on dopaminergic nigral neurons as well as on other basal ganglia structures.
Collapse
|
45
|
A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson's Disease. PARKINSONS DISEASE 2012; 2012:324521. [PMID: 23251830 PMCID: PMC3518055 DOI: 10.1155/2012/324521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/01/2012] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative disorder, and its molecular etiopathogenesis remains poorly understood. The discovery of monogenic forms has significantly advanced our understanding of the molecular mechanisms underlying PD, as it allows generation of cellular and animal models carrying the mutant gene to define pathological pathways. Mutations in leucine-rich repeat kinase 2 (LRRK2) cause dominantly inherited PD, and variations increase risk, indicating that LRRK2 is an important player in both genetic and sporadic forms of the disease. G2019S, the most prominent pathogenic mutation, maps to the kinase domain and enhances enzymatic activity of LRRK2, which in turn seems to correlate with cytotoxicity. Since kinases are druggable targets, this has raised great hopes that disease-modifying therapies may be developed around modifying LRRK2 enzymatic activity. Apart from cytotoxicity, changes in autophagy have been consistently reported in the context of G2019S mutant LRRK2. Here, we will discuss current knowledge about mechanism(s) by which mutant LRRK2 may regulate autophagy, which highlights additional putative therapeutic targets.
Collapse
|
46
|
Deng X, Choi HG, Buhrlage SJ, Gray NS. Leucine-rich repeat kinase 2 inhibitors: a patent review (2006 – 2011). Expert Opin Ther Pat 2012; 22:1415-26. [DOI: 10.1517/13543776.2012.729041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Trancikova A, Mamais A, Webber PJ, Stafa K, Tsika E, Glauser L, West AB, Bandopadhyay R, Moore DJ. Phosphorylation of 4E-BP1 in the mammalian brain is not altered by LRRK2 expression or pathogenic mutations. PLoS One 2012; 7:e47784. [PMID: 23082216 PMCID: PMC3474772 DOI: 10.1371/journal.pone.0047784] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson's disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2 in mammalian cells or brain.
Collapse
Affiliation(s)
- Alzbeta Trancikova
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adamantios Mamais
- Reta Lila Weston Institute of Neurological Disease, University College London Institute of Neurology, London, United Kingdom
| | - Philip J. Webber
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Klodjan Stafa
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elpida Tsika
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Liliane Glauser
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew B. West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Disease, University College London Institute of Neurology, London, United Kingdom
| | - Darren J. Moore
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
48
|
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of familial Parkinson's disease (PD), whereas common variation at the LRRK2 locus is associated with an increased risk of idiopathic PD. Considerable progress has been made toward understanding the biological functions of LRRK2 and the molecular mechanisms underlying the pathogenic effects of disease-associated mutations. The development of neuronal culture models and transgenic or viral-based rodent models have proved useful for identifying a number of emerging pathways implicated in LRRK2-dependent neuronal damage, including the microtubule network, actin cytoskeleton, autophagy, mitochondria, vesicular trafficking, and protein quality control. However, many important questions remain to be posed and answered. Elucidating the molecular mechanisms and pathways underlying LRRK2-mediated neurodegeneration is critical for the identification of new molecular targets for therapeutic intervention in PD. In this review we discuss recent advances and unanswered questions in understanding the pathophysiology of LRRK2.
Collapse
|
49
|
Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, Arthur S, Tan L, Choi H, Gray N, Cohen P, Pedrioli P, Clark K, Alessi DR. The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One 2012; 7:e39132. [PMID: 22723946 PMCID: PMC3377608 DOI: 10.1371/journal.pone.0039132] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson's disease. LRRK2 is highly expressed in immune cells and recent work points towards a link between LRRK2 and innate immunity. Here we demonstrate that stimulation of the Toll-Like Receptor (TLR) pathway by MyD88-dependent agonists in bone marrow-derived macrophages (BMDMs) or RAW264.7 macrophages induces marked phosphorylation of LRRK2 at Ser910 and Ser935, the phosphorylation sites that regulate the binding of 14-3-3 to LRRK2. Phosphorylation of these residues is prevented by knock-out of MyD88 in BMDMs, but not the alternative TLR adaptor protein TRIF. Utilising both pharmacological inhibitors, including a new TAK1 inhibitor, NG25, and genetic models, we provide evidence that both the canonical (IKKα and IKKβ) and IKK-related (IKKε and TBK1) kinases mediate TLR agonist induced phosphorylation of LRRK2 in vivo. Moreover, all four IKK members directly phosphorylate LRRK2 at Ser910 and Ser935 in vitro. Consistent with previous work describing Ser910 and Ser935 as pharmacodynamic biomarkers of LRRK2 activity, we find that the TLR independent basal phosphorylation of LRRK2 at Ser910 and Ser935 is abolished following treatment of macrophages with LRRK2 kinase inhibitors. However, the increased phosphorylation of Ser910 and Ser935 induced by activation of the MyD88 pathway is insensitive to LRRK2 kinase inhibitors. Finally, employing LRRK2-deficient BMDMs, we present data indicating that LRRK2 does not play a major role in regulating the secretion of inflammatory cytokines induced by activation of the MyD88 pathway. Our findings provide the first direct link between LRRK2 and the IKKs that mediate many immune responses. Further work is required to uncover the physiological roles that phosphorylation of LRRK2 by IKKs play in controlling macrophage biology and to determine how phosphorylation of LRRK2 by IKKs impacts upon the use of Ser910 and Ser935 as pharmacodynamic biomarkers.
Collapse
Affiliation(s)
- Nicolas Dzamko
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| | - Francisco Inesta-Vaquera
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| | - Jiazhen Zhang
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute of Aging, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute of Aging, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Simon Arthur
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| | - Li Tan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hwanguen Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nathanael Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philip Cohen
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| | - Patrick Pedrioli
- Scottish Institute of Life Sciences, College of Life Sciences, University of Dundee, Dow Street, Dundee Scotland
| | - Kristopher Clark
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland
| |
Collapse
|
50
|
Daher JPL, Pletnikova O, Biskup S, Musso A, Gellhaar S, Galter D, Troncoso JC, Lee MK, Dawson TM, Dawson VL, Moore DJ. Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2. Hum Mol Genet 2012; 21:2420-31. [PMID: 22357653 DOI: 10.1093/hmg/dds057] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinson's disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD. Importantly, α-synuclein-positive Lewy bodies are the most common pathology identified in the brains of PD subjects harboring LRRK2 mutations. These observations may suggest that LRRK2 functions in a common pathway with α-synuclein to regulate its aggregation. To explore the potential pathophysiological interaction between LRRK2 and α-synuclein in vivo, we modulated LRRK2 expression in a well-established human A53T α-synuclein transgenic mouse model with transgene expression driven by the hindbrain-selective prion protein promoter. Deletion of LRRK2 or overexpression of human G2019S-LRRK2 has minimal impact on the lethal neurodegenerative phenotype that develops in A53T α-synuclein transgenic mice, including premature lethality, pre-symptomatic behavioral deficits and human α-synuclein or glial neuropathology. We also find that endogenous or human LRRK2 and A53T α-synuclein do not interact together to influence the number of nigrostriatal dopaminergic neurons. Taken together, our data suggest that α-synuclein-related pathology, which occurs predominantly in the hindbrain of this A53T α-synuclein mouse model, occurs largely independently from LRRK2 expression. These observations fail to provide support for a pathophysiological interaction of LRRK2 and α-synuclein in vivo, at least within neurons of the mouse hindbrain.
Collapse
Affiliation(s)
- João Paulo L Daher
- NeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|