1
|
Schroevers JL, Richard E, Hoevenaar-Blom MP, van den Born BJH, van Gool WA, Moll van Charante EP, van Dalen JW. Adverse Lipid Profiles Are Associated with Lower Dementia Risk in Older People. J Am Med Dir Assoc 2024; 25:105132. [PMID: 38977201 DOI: 10.1016/j.jamda.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE Midlife dyslipidemia is associated with higher risk of dementia in late-life dementia, but the impact of late-life dyslipidemia on dementia risk is uncertain. This may be due to the large heterogeneity in cholesterol measures and study designs employed. We used detailed data from a large prospective cohort of older persons to comprehensively assess the relation between a broad range of cholesterol measures and incident dementia, addressing potential biases, confounders, and modifiers. DESIGN Post hoc observational analysis based on data from a dementia prevention trial (PreDIVA). SETTING AND PARTICIPANTS 3392 community-dwelling individuals, without dementia, aged 70-78 years at baseline (recruited between June 2006 and March 2009). METHODS Total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, and apolipoprotein A1 and B were assessed. Over a median of 6.7 years' follow-up, dementia was established by clinical diagnosis confirmed by independent outcome adjudication. Hazard ratios (HRs) for dementia and mortality were calculated using Cox regression. RESULTS Dementia occurred in 231 (7%) participants. One-SD increase in LDL/HDL conveyed a 19% (P = .01) lower dementia risk and a 10% (P = .02) lower risk of dementia/mortality combined. This was independent of age, cardiovascular risk factors, cognitive function, apolipoprotein E genotype, and cholesterol-lowering drugs (CLD). This association was not influenced by the competing risk of mortality. Consistent and significant interactions suggested these associations were predominant in individuals with low body mass index (BMI) and higher education. CONCLUSIONS AND IMPLICATIONS Dyslipidemia in older individuals was associated with a lower risk of dementia. Low BMI and higher education level mitigate poor outcomes associated with dyslipidemia. These findings suggest that a different approach may be appropriate for interpreting lipid profiles that are conventionally considered adverse in older adults. Such an approach may aid predicting dementia risk and designing intervention studies aimed at reducing dementia risk in older populations.
Collapse
Affiliation(s)
- Jakob L Schroevers
- Department of General Practice, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Public & Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke P Hoevenaar-Blom
- Department of General Practice, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Public & Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bert-Jan H van den Born
- Department of Public & Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem A van Gool
- Department of Public & Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric P Moll van Charante
- Department of General Practice, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Public & Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Willem van Dalen
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Fan D, Zhao H, Liu H, Niu H, Liu T, Wang Y. Abnormal brain activities of cognitive processes in cerebral small vessel disease: A systematic review of task fMRI studies. J Neuroradiol 2024; 51:155-167. [PMID: 37844660 DOI: 10.1016/j.neurad.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (CSVD) is characterized by widespread functional changes in the brain, as evident from abnormal brain activations during cognitive tasks. However, the existing findings in this area are not yet conclusive. We systematically reviewed 25 studies reporting task-related fMRI in five cognitive domains in CSVD, namely executive function, working memory, processing speed, motor, and affective processing. The findings highlighted: (1) CSVD affects cognitive processes in a domain-specific manner; (2) Compensatory and regulatory effects were observed simultaneously in CSVD, which may reflect the interplay between the negative impact of brain lesion and the positive impact of cognitive reserve. Combined with behavioral and functional findings in CSVD, we proposed an integrated model to illustrate the relationship between altered activations and behavioral performance in different stages of CSVD: functional brain changes may precede and be more sensitive than behavioral impairments in the early pre-symptomatic stage; Meanwhile, compensatory and regulatory mechanisms often occur in the early stages of the disease, while dysfunction/decompensation and dysregulation often occur in the late stages. Overall, abnormal hyper-/hypo-activations are crucial for understanding the mechanisms of small vessel lesion-induced behavioral dysfunction, identifying potential neuromarker and developing interventions to mitigate the impact of CSVD on cognitive function.
Collapse
Affiliation(s)
- Dongqiong Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haichao Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Hao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yilong Wang
- Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
3
|
Camerino I, Ferreira J, Vonk JM, Kessels RPC, de Leeuw FE, Roelofs A, Copland D, Piai V. Systematic Review and Meta-Analyses of Word Production Abilities in Dysfunction of the Basal Ganglia: Stroke, Small Vessel Disease, Parkinson's Disease, and Huntington's Disease. Neuropsychol Rev 2024; 34:1-26. [PMID: 36564612 DOI: 10.1007/s11065-022-09570-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/25/2022]
Abstract
Clinical populations with basal ganglia pathologies may present with language production impairments, which are often described in combination with comprehension measures or attributed to motor, memory, or processing-speed problems. In this systematic review and meta-analysis, we studied word production in four (vascular and non-vascular) pathologies of the basal ganglia: stroke affecting the basal ganglia, small vessel disease, Parkinson's disease, and Huntington's disease. We compared scores of these clinical populations with those of matched cognitively unimpaired adults on four well-established production tasks, namely picture naming, category fluency, letter fluency, and past-tense verb inflection. We conducted a systematic search in PubMed and PsycINFO with terms for basal ganglia structures, basal ganglia disorders and language production tasks. A total of 114 studies were included, containing results for one or more of the tasks of interest. For each pathology and task combination, effect sizes (Hedges' g) were extracted comparing patient versus control groups. For all four populations, performance was consistently worse than that of cognitively unimpaired adults across the four language production tasks (p-values < 0.010). Given that performance in picture naming and verb inflection across all pathologies was quantified in terms of accuracy, our results suggest that production impairments cannot be fully explained by motor or processing-speed deficits. Our review shows that while language production difficulties in these clinical populations are not negligible, more evidence is necessary to determine the exact mechanism that leads to these deficits and whether this mechanism is the same across different pathologies.
Collapse
Affiliation(s)
- Ileana Camerino
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - João Ferreira
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands.
| | - Jet M Vonk
- Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roy P C Kessels
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
- Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ardi Roelofs
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| | - David Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Saint Lucia, QLD, Australia
- Queensland Aphasia Research Centre, The University of Queensland, Herston, QLD, Australia
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Donders Centre for Medical Neuroscience, Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B. Investigation into the vascular contributors to dementia and the associated treatments. EXPLORATION OF NEUROSCIENCE 2023; 2:224-237. [PMID: 37981945 PMCID: PMC10655228 DOI: 10.37349/en.2023.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
As the average lifespan has increased, memory disorders have become a more pressing public health concern. However, dementia in the elderly population is often neglected in light of other health priorities. Therefore, expanding the knowledge surrounding the pathology of dementia will allow more informed decision-making regarding treatment within elderly and older adult populations. An important emerging avenue in dementia research is understanding the vascular contributors to dementia. This review summarizes potential causes of vascular cognitive impairment like stroke, microinfarction, hypertension, atherosclerosis, blood-brain-barrier dysfunction, and cerebral amyloid angiopathy. Also, this review address treatments that target these vascular impairments that also show promising results in reducing patient's risk for and experience of dementia.
Collapse
Affiliation(s)
| | | | - Shreya Mathur
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Devon Foster
- University of Central Florida, Orlando, FL 32816, USA
| | | | - Arman Mahmood
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Kalyuzhnaya Y, Khaitin A, Demyanenko S. Modeling transient ischemic attack via photothrombosis. Biophys Rev 2023; 15:1279-1286. [PMID: 37974996 PMCID: PMC10643708 DOI: 10.1007/s12551-023-01121-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 11/19/2023] Open
Abstract
The health significance of transient ischemic attacks (TIAs) is largely underestimated. Often, TIAs are not given significant importance, and in vain, because TIAs are a predictor of the development of serious cardiovascular diseases and even death. Because of this, and because of the difficulty in diagnosing the disease, TIAs and related microinfarcts are poorly investigated. Photothrombotic models of stroke and TIA allow reproducing the occlusion of small brain vessels, even single ones. When dosing the concentration of photosensitizer, intensity and irradiation time, it is possible to achieve occlusion of well-defined small vessels with high reproducibility, and with the help of modern methods of blood flow assessment it is possible to achieve spontaneous restoration of blood flow without vessel rupture. In this review, we discuss the features of microinfarcts and the contemporary experimental approaches used to model TIA and microinfarcts, with an emphasis on models using the principle of photothrombosis of brain vessels. We review modern techniques for in vivo detection of blood flow in small brain vessels, as well as biomarkers of microinfarcts.
Collapse
Affiliation(s)
- Y.N. Kalyuzhnaya
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - A.M. Khaitin
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| | - S.V. Demyanenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
| |
Collapse
|
6
|
Liu Q, Zhang X. Multimodality neuroimaging in vascular mild cognitive impairment: A narrative review of current evidence. Front Aging Neurosci 2023; 15:1073039. [PMID: 37009448 PMCID: PMC10050753 DOI: 10.3389/fnagi.2023.1073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The vascular mild cognitive impairment (VaMCI) is generally accepted as the premonition stage of vascular dementia (VaD). However, most studies are focused mainly on VaD as a diagnosis in patients, thus neglecting the VaMCI stage. VaMCI stage, though, is easily diagnosed by vascular injuries and represents a high-risk period for the future decline of patients' cognitive functions. The existing studies in China and abroad have found that magnetic resonance imaging technology can provide imaging markers related to the occurrence and development of VaMCI, which is an important tool for detecting the changes in microstructure and function of VaMCI patients. Nevertheless, most of the existing studies evaluate the information of a single modal image. Due to the different imaging principles, the data provided by a single modal image are limited. In contrast, multi-modal magnetic resonance imaging research can provide multiple comprehensive data such as tissue anatomy and function. Here, a narrative review of published articles on multimodality neuroimaging in VaMCI diagnosis was conducted,and the utilization of certain neuroimaging bio-markers in clinical applications was narrated. These markers include evaluation of vascular dysfunction before tissue damages and quantification of the extent of network connectivity disruption. We further provide recommendations for early detection, progress, prompt treatment response of VaMCI, as well as optimization of the personalized treatment plan.
Collapse
Affiliation(s)
- Qiuping Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Zhao J, Wang X, Li Q, Lu C, Li S. The relevance of serum macrophage migratory inhibitory factor and cognitive dysfunction in patients with cerebral small vascular disease. Front Aging Neurosci 2023; 15:1083818. [PMID: 36824264 PMCID: PMC9941340 DOI: 10.3389/fnagi.2023.1083818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral small vascular disease (CSVD) is a common type of cerebrovascular disease, and an important cause of vascular cognitive impairment (VCI) and stroke. The disease burden is expected to increase further as a result of population aging, an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate management. Due to the poor understanding of pathophysiology in CSVD, there is no effective preventive or therapeutic approach for CSVD. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence and development of vascular dysfunction diseases. Therefore, MIF may contribute to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new evidence for CSVD, and its potential role in protection against VCI.
Collapse
Affiliation(s)
- Jianhua Zhao
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China,*Correspondence: Jianhua Zhao,
| | - Xiaoting Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiong Li
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Henan Key Laboratory of Neurorestoratology, Department of Neurology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Chengbiao Lu
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Huang D, Guo Y, Guan X, Pan L, Zhu Z, Chen Z, Dijkhuizen RM, Duering M, Yu F, Boltze J, Li P. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment. J Cereb Blood Flow Metab 2023; 43:173-184. [PMID: 36284489 PMCID: PMC9903225 DOI: 10.1177/0271678x221135353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Cognitive impairment (CI) is a major health concern in aging populations. It impairs patients' independent life and may progress to dementia. Vascular cognitive impairment (VCI) encompasses all cerebrovascular pathologies that contribute to cognitive impairment (CI). Moreover, the majority of CI subtypes involve various aspects of vascular dysfunction. Recent research highlights the critical role of reduced cerebral blood flow (CBF) in the progress of VCI, and the detection of altered CBF may help to detect or even predict the onset of VCI. Arterial spin labeling (ASL) is a non-invasive, non-ionizing perfusion MRI technique for assessing CBF qualitatively and quantitatively. Recent methodological advances enabling improved signal-to-noise ratio (SNR) and data acquisition have led to an increase in the use of ASL to assess CBF in VCI patients. Combined with other imaging modalities and biomarkers, ASL has great potential for identifying early VCI and guiding prediction and prevention strategies. This review focuses on recent advances in ASL-based perfusion MRI for identifying patients at high risk of VCI.
Collapse
Affiliation(s)
- Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlu Guo
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Guan
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeng’ai Chen
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Fang Yu
- Department of Anesthesiology, Westchester Medical Center, New York Medical College, NY, USA
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Li Y, Liu X, Jia X, Li H, Jia X, Yang Q. Structural and functional alterations in cerebral small vessel disease: an ALE-based meta-analysis. Cereb Cortex 2022; 33:5484-5492. [PMID: 36376927 DOI: 10.1093/cercor/bhac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and dementia. Although increasing studies have reported alterations of brain structural or neuronal functional activity exhibited in patients with CSVD, it is still unclear which alterations are reliable. Here, we performed a meta-analysis to establish which brain structural or neuronal functional activity changes in those studies were consistent. Activation likelihood estimation revealed that changes in neuronal functional activity in the left angular gyrus, bilateral anterior cingulate cortex/left medial prefrontal cortex, right rolandic operculum, and alterations of gray structure in the left insular cortex/superior temporal gyrus/claustrum were reliable in sporadic CSVD. Decreased neuronal functional activity in the caudate head, anterior cingulate cortex, and reduced gray matter volume in the insular cortex/superior temporal gyrus/claustrum were associated with CSVD-related cognitive impairment. Furthermore, unlike sporadic CSVD, the reliable alterations of neuronal functional activity in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were concentrated in the left parahippocampal gyrus. The current study presents stable brain structural and neuronal functional abnormalities within the brain, which can help further understand the pathogenesis of CSVD and CSVD-cognitive impairment and provide an index to evaluate the effectiveness of treatment protocols.
Highlights
• Default mode network and salience network are reliable networks affected in sporadic CSVD in resting-state.
• Altered corticostriatal circuitry is associated with cognitive decline.
• Decreased gray matter volume in the insular cortex is stable “remote effects” of sporadic CSVD.
• The parahippocampal gyrus may be a reliable affected brain region in CADASIL.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Xin Liu
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Xuejia Jia
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Haoyuan Li
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
| | - Xiuqin Jia
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University , No.10 Xitoutiao, Fengtai District, Beijing 100069 , China
| | - Qi Yang
- Beijing Chaoyang Hospital, Capital Medical University Department of Radiology, , No.8 Gongti South Road, Chaoyang District, Beijing 100020 , China
- Ministry of Education Key Lab of Medical Engineering for Cardiovascular Disease, , Beijing 100020 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University , No.10 Xitoutiao, Fengtai District, Beijing 100069 , China
| |
Collapse
|
10
|
Gleason CE, Zuelsdorff M, Gooding DC, Kind AJH, Johnson AL, James TT, Lambrou NH, Wyman MF, Ketchum FB, Gee A, Johnson SC, Bendlin BB, Zetterberg H. Alzheimer's disease biomarkers in Black and non-Hispanic White cohorts: A contextualized review of the evidence. Alzheimers Dement 2022; 18:1545-1564. [PMID: 34870885 PMCID: PMC9543531 DOI: 10.1002/alz.12511] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Black Americans are disproportionately affected by dementia. To expand our understanding of mechanisms of this disparity, we look to Alzheimer's disease (AD) biomarkers. In this review, we summarize current data, comparing the few studies presenting these findings. Further, we contextualize the data using two influential frameworks: the National Institute on Aging-Alzheimer's Association (NIA-AA) Research Framework and NIA's Health Disparities Research Framework. The NIA-AA Research Framework provides a biological definition of AD that can be measured in vivo. However, current cut-points for determining pathological versus non-pathological status were developed using predominantly White cohorts-a serious limitation. The NIA's Health Disparities Research Framework is used to contextualize findings from studies identifying racial differences in biomarker levels, because studying biomakers in isolation cannot explain or reduce inequities. We offer recommendations to expand study beyond initial reports of racial differences. Specifically, life course experiences associated with racialization and commonly used study enrollment practices may better account for observations than exclusively biological explanations.
Collapse
Affiliation(s)
- Carey E. Gleason
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- University of Wisconsin School of NursingMadisonWisconsinUSA
| | - Diane C. Gooding
- Department of PsychologyUniversity of Wisconsin, MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Amy J. H. Kind
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Center for Health Disparities ResearchDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Adrienne L. Johnson
- Center for Tobacco Research and InterventionUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Taryn T. James
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Nickolas H. Lambrou
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Mary F. Wyman
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Department of PsychologyUniversity of Wisconsin, MadisonMadisonWisconsinUSA
| | - Fred B. Ketchum
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alexander Gee
- Nehemiah Center for Urban Leadership DevelopmentMadisonWisconsinUSA
| | - Sterling C. Johnson
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
- Geriatric ResearchEducation and Clinical Center (11G)William S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Division of Geriatrics and GerontologyDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterMadisonWisconsinUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for NeurodegenerationHong KongChina
| |
Collapse
|
11
|
Sharma AL, Wang H, Zhang Z, Millien G, Tyagi M, Hongpaisan J. HIV Promotes Neurocognitive Impairment by Damaging the Hippocampal Microvessels. Mol Neurobiol 2022; 59:4966-4986. [PMID: 35665894 PMCID: PMC10071835 DOI: 10.1007/s12035-022-02890-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Current evidence suggests that mild cerebrovascular changes could induce neurodegeneration and contribute to HIV-associated neurocognitive disease (HAND) in HIV patients. We investigated both the quantitative and qualitative impact of HIV infection on brain microvessels, especially on hippocampal microvessels, which are crucial for optimal O2 supply, and thus for maintaining memory and cognitive abilities. The results obtained using cultured human brain microvascular endothelial cells (HBMEC) were reproduced using a suitable mouse model and autopsied human HIV hippocampus. In HBMEC, we found significantly higher oxidative stress-dependent apoptotic cell loss following 5 h of treatment of GST-Tat (1 µg/ml) compared to GST (1 µg/ml) control. We noticed complete recovery of HBMEC cells after 24 h of GST-Tat treatment, due to temporal degradation or inactivation of GST-Tat. Interestingly, we found a sustained increase in mitochondrial oxidative DNA damage marker 8-OHdG, as well as an increase in hypoxia-inducible factor hypoxia-inducible factor-1α (HIF-1α). In our mouse studies, upon short-term injection of GST-Tat, we found the loss of small microvessels (mostly capillaries) and vascular endothelial growth factor (VEGF), but not large microvessels (arterioles and venules) in the hippocampus. In addition to capillary loss, in the post-mortem HIV-infected human hippocampus, we observed large microvessels with increased wall cells and perivascular tissue degeneration. Together, our data show a crucial role of Tat in inducing HIF-1α-dependent inhibition of mitochondrial transcriptional factor A (TFAM) and dilated perivascular space. Thus, our results further define the underlying molecular mechanism promoting mild cerebrovascular disease, neuropathy, and HAND pathogenesis in HIV patients.
Collapse
Affiliation(s)
- Adhikarimayum Lakhikumar Sharma
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Huaixing Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Zongxiu Zhang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Guetchyn Millien
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA
| | - Mudit Tyagi
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, PA, 19107, Philadelphia, USA.
| |
Collapse
|
12
|
Ren B, Tan L, Song Y, Li D, Xue B, Lai X, Gao Y. Cerebral Small Vessel Disease: Neuroimaging Features, Biochemical Markers, Influencing Factors, Pathological Mechanism and Treatment. Front Neurol 2022; 13:843953. [PMID: 35775047 PMCID: PMC9237477 DOI: 10.3389/fneur.2022.843953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is the most common chronic vascular disease involving the whole brain. Great progress has been made in clinical imaging, pathological mechanism, and treatment of CSVD, but many problems remain. Clarifying the current research dilemmas and future development direction of CSVD can provide new ideas for both basic and clinical research. In this review, the risk factors, biological markers, pathological mechanisms, and the treatment of CSVD will be systematically illustrated to provide the current research status of CSVD. The future development direction of CSVD will be elucidated by summarizing the research difficulties.
Collapse
Affiliation(s)
- Beida Ren
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Ling Tan
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuebo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Danxi Li
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Bingjie Xue
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Xinxing Lai
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Zeng Q, Li K, Luo X, Wang S, Xu X, Jiaerken Y, Liu X, Hong L, Hong H, Li Z, Fu Y, Zhang T, Chen Y, Liu Z, Huang P, Zhang M. The association of enlarged perivascular space with microglia-related inflammation and Alzheimer's pathology in cognitively normal elderly. Neurobiol Dis 2022; 170:105755. [PMID: 35577066 DOI: 10.1016/j.nbd.2022.105755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Glymphatic dysfunction may contribute to the accumulation of Alzheimer's disease (AD) pathologies. Conversely, AD pathologic change might also cause neuroinflammation and aggravate glymphatic dysfunction, forming a loop that accelerates AD progression. In vivo validations are needed to confirm their relationships. METHODS In this study, we included 144 cognitively normal participants with AD pathological biomarker data (baseline CSF Aβ1-42, T-Tau, P-Tau181; plasma P-Tau181 at baseline and at least one follow-up) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Each subject had completed structural MRI scans. Among them, 117 subjects have available neuroinflammatory biomarker (soluble triggering receptor expressed on myeloid cells 2 (sTREM2), and 123 subjects have completed two times [18F]-florbetapir PET. The enlarged PVS (EPVS) visual rating scores in basal ganglia (BG) and centrum semiovale (CS) were assessed on T1-weighted images to reflect glymphatic dysfunction. Intracranial volume and white matter hyperintensities (WMH) volume were also calculated for further analysis. We performed stepwise linear regression models and mediation analyses to estimate the association between EPVS severity, sTREM2, and AD biomarkers. RESULTS CS-EPVS degree was associated with CSF sTREM2, annual change of plasma P-tau181 and total WMH volume, whereas BG-EPVS severity was associated with age, gender and intracranial volume. The sTREM2 mediated the association between CSF P-tau181 and CS-EPVS. CONCLUSION Impaired glymphatic dysfunction could contribute to the accumulation of pathological tau protein. The association between tauopathy and glymphatic dysfunction was mediated by the microglia inflammatory process. These findings may provide evidence for novel treatment strategies of anti-neuroinflammation therapy in the early stage.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwei Hong
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyu Li
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | | |
Collapse
|
14
|
Leaston J, Ferris CF, Kulkarni P, Chandramohan D, van de Ven AL, Qiao J, Timms L, Sepulcre J, El Fakhri G, Ma C, Normandin MD, Gharagouzloo C. Neurovascular imaging with QUTE-CE MRI in APOE4 rats reveals early vascular abnormalities. PLoS One 2021; 16:e0256749. [PMID: 34449808 PMCID: PMC8396782 DOI: 10.1371/journal.pone.0256749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Cerebrovascular abnormality is linked to Alzheimer's disease and related dementias (ADRDs). ApoE-Ɛ4 (APOE4) is known to play a critical role in neurovascular dysfunction, however current medical imaging technologies are limited in quantification. This cross-sectional study tested the feasibility of a recently established imaging modality, quantitative ultra-short time-to-echo contrast-enhanced magnetic resonance imaging (QUTE-CE MRI), to identify small vessel abnormality early in development of human APOE4 knock-in female rat (TGRA8960) animal model. At 8 months, 48.3% of the brain volume was found to have significant signal increase (75/173 anatomically segmented regions; q<0.05 for multiple comparisons). Notably, vascular abnormality was detected in the tri-synaptic circuit, cerebellum, and amygdala, all of which are known to functionally decline throughout AD pathology and have implications in learning and memory. The detected abnormality quantified with QUTE-CE MRI is likely a result of hyper-vascularization, but may also be partly, or wholly, due to contributions from blood-brain-barrier leakage. Further exploration with histological validation is warranted to verify the pathological cause. Regardless, these results indicate that QUTE-CE MRI can detect neurovascular dysfunction with high sensitivity with APOE4 and may be helpful to provide new insights into health and disease.
Collapse
Affiliation(s)
- Joshua Leaston
- Imaginostics, Inc., Cambridge, Massachusetts, United States of America
| | - Craig F. Ferris
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
| | - Praveen Kulkarni
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
| | | | - Anne L. van de Ven
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, United States of America
| | - Ju Qiao
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, United States of America
| | - Liam Timms
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, United States of America
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Codi Gharagouzloo
- Imaginostics, Inc., Cambridge, Massachusetts, United States of America
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Du J, Zhu H, Yu L, Lu P, Qiu Y, Zhou Y, Cao W, Lu D, Zhao W, Yang J, Sun J, Xu Q. Multi-Dimensional Diffusion Tensor Imaging Biomarkers for Cognitive Decline From the Preclinical Stage: A Study of Post-stroke Small Vessel Disease. Front Neurol 2021; 12:687959. [PMID: 34322083 PMCID: PMC8311001 DOI: 10.3389/fneur.2021.687959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: We aim to investigate whether multi-dimensional diffusion tensor imaging (DTI) measures can sensitively identify different cognitive status of cerebral small vessel disease (CSVD) and to explore the underlying pattern of white matter disruption in CSVD. Methods: Two hundred and two participants were recruited, composed of 99 CSVD patients with mild cognitive impairment (VaMCI) and 60 with no cognitive impairment (NCI) and 43 healthy subjects as normal controls (NC). Full domain neuropsychological tests and diffusion-weighted imaging were performed on each subject. DTI metrics such as fractional anisotropy (FA), mean diffusivity (MD), the skeletonized mean diffusivity (PSMD), and structural brain network measures including network strength, global efficiency (EGlobal), and local efficiency (ELocal) were calculated. Region of interest (ROI) analysis of 42 white matter tracts was performed to examine the regional anatomical white matter disruption for each group. Results: Significant differences of multiple cognitive test scores across all cognitive domains especially processing and executive function existed among the three groups. DTI measures (FA, MD, and PSMD) showed significant group difference with the cognitive status changing. FA and EGlobal showed significant correlation with processing speed, executive function, and memory. ROI analysis found that white matter integrity impairment occurred from the preclinical stage of vascular cognitive impairment (VCI) due to CSVD. These lesions in the NCI group mainly involved some longitudinal fibers such as right superior longitudinal fasciculus (SLF-R), right superior fronto-occipital fasciculus (SFO-R), and right uncinate fasciculus (UNC-R), which might be more vulnerable to the cerebrovascular aging and disease process. Conclusions: DTI measures are sensitive neuroimaging markers in detecting the early cognitive impairment and able to differentiate the different cognitive status due to CSVD. Subtle changes of some vulnerable white matter tracts may be observed from the preclinical stage of VCI and have a local to general spreading pattern during the disease progression.
Collapse
Affiliation(s)
- Jing Du
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Health Management Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhu
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yu
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Peiwen Lu
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Health Management Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Cao
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Dong Lu
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhao
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Xu
- Renji-UNSW CHeBA (Centre for Healthy Brain Ageing of University of New South Wales) Neurocognitive Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China.,Department of Health Management Center, Renji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Spektor ED, Poluektov MG. [Periodic limb movements in sleep and clinicomorphological features of cerebral small vessel disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:75-79. [PMID: 34078864 DOI: 10.17116/jnevro202112104275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To search for the association between white matter deterioration extend as well as related cognitive dysfunction and periodic limb movements in sleep (PLMS) in patients with cerebral small vessel disease (cSVD). MATERIAL AND METHODS Thirty-four subjects with cSVD were enrolled (12 men, 22 women, average age 66.9 y.o.). The study protocol includes nocturnal actigraphy, cardiorespiratory monitoring, cognitive assessment and brain MRI. Two groups were formed depending on PLMS index. The patients of the main group had PLMS index equal or more than 15 movements per hour, and the controls had PLMS index less than 15. RESULTS AND CONCLUSION The significant differences between groups are shown in the executive functioning (p=0.0025 for the Frontal Assessment battery, p=0.036 for TMT-B, p=0.009 for TMT-A) and in the volume of juxtacortical white matter hyperintensities (WMH) (p=0.009). The positive correlation of PLMS features with total and periventricular volume of WMH and the negative correlation of PLMS features with cognitive performance are found as well.
Collapse
Affiliation(s)
- E D Spektor
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - M G Poluektov
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Sagnier S, Catheline G, Munsch F, Bigourdan A, Poli M, Debruxelles S, Renou P, Olindo S, Rouanet F, Dousset V, Tourdias T, Sibon I. Severity of Small Vessel Disease Biomarkers Reduces the Magnitude of Cognitive Recovery after Ischemic Stroke. Cerebrovasc Dis 2021; 50:456-463. [PMID: 33827075 DOI: 10.1159/000513916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the impact of radiological biomarkers suggestive of cerebral small vessel disease (SVD) on the evolution of cognitive performances after an ischemic stroke (IS). METHODS We studied patients with a supratentorial IS recruited consecutively to a prospective monocentric longitudinal study. A cognitive assessment was performed at baseline, 3 months, and 1 year and was based on a Montreal Cognitive Assessment, an Isaacs set test of verbal fluency (IST), and a Zazzo's cancellation task (ZCT) for the evaluation of attentional functions and processing speed. The following cerebral SVD biomarkers were detected on a 3-T brain MRI performed at baseline: white matter hyperintensities (WMHs), deep and lobar microbleeds, enlarged perivascular spaces in basal ganglia and centrum semiovale, previous small deep infarcts, and cortical superficial siderosis (cSS). Generalized linear mixed models were used to evaluate the relationship between these biomarkers and changes in cognitive performances. RESULTS A total of 199 patients (65 ± 13 years, 68% male) were analyzed. Overall, the cognitive performances improved, more significantly in the first 3 months. Severe WMH was identified in 34% of the patients, and focal cSS in 3.5%. Patients with severe WMH and focal cSS had overall worse cognitive performances. Those with severe WMH had less improvement over time for IST (β = -0.16, p = 0.02) and the number of errors to ZCT (β = 0.19, p = 0.02), while those with focal cSS had less improvement over time for ZCT completion time (β = 0.14, p = 0.01) and number of errors (β = 0.17, p = 0.008), regardless of IS volume and location, gray matter volume, demographic confounders, and clinical and cardiovascular risk factors. CONCLUSION The severity of SVD biomarkers, encompassing WMH and cSS, seems to reduce the magnitude of cognitive recovery after an IS. The detection of such SVD biomarkers early after stroke might help to identify patients with a cognitive vulnerability and a higher risk of poststroke cognitive impairment.
Collapse
Affiliation(s)
- Sharmila Sagnier
- UMR 5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France.,CHU de Bordeaux, Unité Neuro-Vasculaire, Bordeaux, France
| | - Gwenaëlle Catheline
- UMR 5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France
| | - Fanny Munsch
- Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | | | - Mathilde Poli
- CHU de Bordeaux, Unité Neuro-Vasculaire, Bordeaux, France
| | | | - Pauline Renou
- CHU de Bordeaux, Unité Neuro-Vasculaire, Bordeaux, France
| | | | | | - Vincent Dousset
- INSERM-U1215, Neurocentre Magendie, Bordeaux, France.,CHU de Bordeaux, Neuroimagerie Diagnostique et Thérapeutique, Bordeaux, France
| | - Thomas Tourdias
- INSERM-U1215, Neurocentre Magendie, Bordeaux, France.,CHU de Bordeaux, Neuroimagerie Diagnostique et Thérapeutique, Bordeaux, France
| | - Igor Sibon
- UMR 5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France.,CHU de Bordeaux, Unité Neuro-Vasculaire, Bordeaux, France
| |
Collapse
|
18
|
Zanon Zotin MC, Sveikata L, Viswanathan A, Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol 2021; 34:246-257. [PMID: 33630769 PMCID: PMC7984766 DOI: 10.1097/wco.0000000000000913] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We present recent developments in the field of small vessel disease (SVD)-related vascular cognitive impairment, including pathological mechanisms, updated diagnostic criteria, cognitive profile, neuroimaging markers and risk factors. We further address available management and therapeutic strategies. RECENT FINDINGS Vascular and neurodegenerative pathologies often co-occur and share similar risk factors. The updated consensus criteria aim to standardize vascular cognitive impairment (VCI) diagnosis, relying strongly on cognitive profile and MRI findings. Aggressive blood pressure control and multidomain lifestyle interventions are associated with decreased risk of cognitive impairment, but disease-modifying treatments are still lacking. Recent research has led to a better understanding of mechanisms leading to SVD-related cognitive decline, such as blood-brain barrier dysfunction, reduced cerebrovascular reactivity and impaired perivascular clearance. SUMMARY SVD is the leading cause of VCI and is associated with substantial morbidity. Tackling cardiovascular risk factors is currently the most effective approach to prevent cognitive decline in the elderly. Advanced imaging techniques provide tools for early diagnosis and may play an important role as surrogate markers for cognitive endpoints in clinical trials. Designing and testing disease-modifying interventions for VCI remains a key priority in healthcare.
Collapse
Affiliation(s)
- Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Center for Imaging Sciences and Medical Physics. Department of Medical Imaging, Hematology and Clinical Oncology. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Pinar Yilmaz
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of Enlarged Perivascular Spaces and Measures of Small Vessel and Alzheimer Disease. Neurology 2020; 96:e193-e202. [PMID: 33046608 DOI: 10.1212/wnl.0000000000011046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the relationship between enlarged perivascular spaces (EPVS) and measures of Alzheimer disease (AD), small vessel disease (SVD), cognition, vascular risk factors, and neuroinflammation, we tested associations between EPVS and different relevant neuroimaging, biochemical, and cognitive variables in 778 study participants. METHODS Four hundred ninety-nine cognitively unimpaired (CU) individuals, 240 patients with mild cognitive impairment, and 39 patients with AD from the Swedish Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER) study were included. EPVS with diameter >1 mm in centrum semiovale (CSO), basal ganglia (BG), and hippocampus (HP); hippocampal volume; white matter lesions (WML); and other SVD markers were determined from MRI. CSF levels of β-amyloid42 (Aβ42), phosphorylated tau, total tau, and neuroinflammatory markers; amyloid accumulation determined with [18F]-flutemetamol PET; and vascular risk factors and results from cognitive tests were determined and collected. RESULTS EPVS in CSO, BG, and HP were associated with WML volume and Fazekas score in individuals without dementia. No associations were found between EPVS and CSF Aβ42, total tau and phosphorylated tau, neuroinflammatory markers, vascular risk factors, and cognitive tests. EPVS in HP were associated with hippocampal atrophy. In a matched group of individuals with AD and CU, EPVS in HP were associated with AD diagnosis. CONCLUSIONS EPVS are related to SVD, also in early disease stages, but the lack of correlation with cognition suggests that their importance is limited. Our data do not support a role for EPVS in early AD pathogenesis.
Collapse
Affiliation(s)
- Eske Christiane Gertje
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Danielle van Westen
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden.
| | - Clara Panizo
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| | - Oskar Hansson
- From the Clinical Memory Research Unit (E.C.G., N.M.-C., O.H.), Department of Clinical Sciences Malmö, Lund University; Department of Internal Medicine (E.C.G.), Skåne University Hospital; Diagnostic Radiology (D.v.W., C.P.), Department of Clinical Sciences Lund, Lund University; Imaging and Function (D.v.W., C.P.), Skåne University Health Care; Department of Clinical Sciences Lund (N.M.-C.), Neurology, Lund University, Skåne University Hospital; Wallenberg Center for Molecular Medicine (N.M.-C.), Lund University; andMemory Clinic (O.H.), Skåne University Health Care, Malmö, Sweden
| |
Collapse
|
20
|
Huizinga N, Keil F, Birkhold A, Kowarschik M, Tritt S, Berkefeld J. 4D Flat Panel Conebeam CTA for In Vivo Imaging of the Microvasculature of the Human Cortex with a Novel Software Prototype. AJNR Am J Neuroradiol 2020; 41:976-979. [PMID: 32439643 DOI: 10.3174/ajnr.a6574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/28/2020] [Indexed: 11/07/2022]
Abstract
It was the aim of our pilot study to investigate whether time-resolved flat panel conebeam CTA is able to demonstrate small cortical vessels in vivo. In 8 patients with small AVMs, time-resolved coronal MPRs of the vasculature of the frontal cortex were recalculated from 3D rotational angiography datasets with the use of a novel software prototype. 4D flat panel conebeam CTA demonstrated the course of the cortical arteries with small perpendicular side branches to the underlying cortex. Pial arterial and venous networks could also be identified, corresponding to findings in injection specimens. Reasonable image quality was achieved in 6 of 8 cases. In this small study, in vivo display of the cortical microvasculature with 4D flat panel conebeam CTA was feasible and superior to other angiographic imaging modalities.
Collapse
Affiliation(s)
- N Huizinga
- From the Institute of Neuroradiology (N.H., F.K., J.B.), University Hospital of Frankfurt, Frankfurt, Germany
| | - F Keil
- From the Institute of Neuroradiology (N.H., F.K., J.B.), University Hospital of Frankfurt, Frankfurt, Germany
| | - A Birkhold
- Siemens Healthcare GmbH (A.B., M.K.), Forchheim, Germany
| | - M Kowarschik
- Siemens Healthcare GmbH (A.B., M.K.), Forchheim, Germany
| | - S Tritt
- Helios Dr. Horst Schmidt Kliniken Wiesbaden (S.T.), Wiesbaden, Germany
| | - J Berkefeld
- From the Institute of Neuroradiology (N.H., F.K., J.B.), University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
21
|
Xia Y, Shen Y, Wang Y, Yang L, Wang Y, Li Y, Liang X, Zhao Q, Wu J, Chu S, Liang Z, Wang X, Qiu B, Ding H, Ding D, Cheng X, Dong Q. White matter hyperintensities associated with progression of cerebral small vessel disease: a 7-year Chinese urban community study. Aging (Albany NY) 2020; 12:8506-8522. [PMID: 32388497 PMCID: PMC7244059 DOI: 10.18632/aging.103154] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/16/2020] [Indexed: 11/25/2022]
Abstract
We aimed to explore the role of white matter hyperintensities (WMH) in progression of cerebral small vessel disease (CSVD) in an urban community in China over a period of 7 years, and to investigate associations between WMH volume (baseline and progression) and cognitive impairment. CSVD markers and neuropsychological tests at baseline and follow-up of 191 participants of the Shanghai Aging Study (SAS) were assessed. WMH volume were assessed by automatic segmentation based on U-net model. Lacunes, cerebral microbleeds (CMBs) and enlarged perivascular spaces (ePVS) were rated manually. Small vessel disease (SVD) score was rated as the total burden of CSVD markers. Global cognitive function and 5 main cognitive domains (memory, language, spatial construction, attention and executive function) were evaluated by neuropsychological tests. We performed multivariable linear regression and binominal logistic regression. Participants with higher baseline WMH volume developed more progression of WMH volume, increased risk of incident lacunes, incident CMBs, and ePVS progression. WMH (baseline and progression) were associated with decline of executive function. WMH were associated with progression of cerebral small vessel disease and decline of executive function in a Chinese urban community study over a period of 7 years.
Collapse
Affiliation(s)
- Yiwei Xia
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Shen
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lumeng Yang
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yiqing Wang
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yu Li
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoniu Liang
- Institute of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Wu
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Department of Neurology, Jing'an District Center Hospital, Shanghai, China
| | - Shuguang Chu
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Jing'an District Center Hospital, Shanghai, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Hansheng Ding
- Shanghai Health Development Research Center (Shanghai Medical Information Center), Shanghai, China
| | - Ding Ding
- Institute of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
22
|
A Systematic Review Examining Associations between Cardiovascular Conditions and Driving Outcomes among Older Drivers. Geriatrics (Basel) 2020; 5:geriatrics5020027. [PMID: 32353970 PMCID: PMC7345371 DOI: 10.3390/geriatrics5020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
There is a vast literature on stroke as a cardiovascular disease and driving outcomes, however little is known about other cardiovascular conditions and driving. The purpose of this review is to examine the literature for studies assessing the effect of non-stroke, vascular conditions on daily driving, reported crash risk and driving decline in older adult drivers as captured by naturalistic methodologies. A systematic review of Embase, Ovid and Scopus Plus examined articles on driving and vascular conditions among older adults. A search yielded 443 articles and, following two screenings, no articles remained that focused on non-stroke, vascular conditions and naturalistic driving. As a result, this review examined non-stroke, vascular conditions in nine driving studies of older adults that used road testing, driving simulators and self-report measures. These studies fell into three categories—heart failure, vascular dementia and white matter hyperintensities/leukoaraiosis. The combined findings of the studies suggest that heart failure, vascular dementia and white matter hyperintensities (WMH) negatively impact driving performance and contribute to driving cessation among older adults. Future research should examine cardiovascular risk factors like hypertension, hypercholesterolemia, myocardial infraction or atherosclerosis using naturalistic driving measurement, as well as traditional measures, in order to more fully characterize how these conditions impact older adult driving.
Collapse
|
23
|
The Whole Picture: From Isolated to Global MRI Measures of Neurovascular and Neurodegenerative Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 31894568 DOI: 10.1007/978-3-030-31904-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Structural magnetic resonance imaging (MRI) has been used to characterise the appearance of the brain in cerebral small vessel disease (SVD), ischaemic stroke, cognitive impairment, and dementia. SVD is a major cause of stroke and dementia; features of SVD include white matter hyperintensities (WMH) of presumed vascular origin, lacunes of presumed vascular origin, microbleeds, and perivascular spaces. Cognitive impairment and dementia have traditionally been stratified into subtypes of varying origin, e.g., vascular dementia versus dementia of the Alzheimer's type (Alzheimer's disease; AD). Vascular dementia is caused by reduced blood flow in the brain, often as a result of SVD, and AD is thought to have its genesis in the accumulation of tau and amyloid-beta leading to brain atrophy. But after early seminal studies in the 1990s found neurovascular disease features in around 30% of AD patients, it is becoming recognised that so-called "mixed pathologies" (of vascular and neurodegenerative origin) exist in many more patients diagnosed with stroke, only one type of dementia, or cognitive impairment. On the back of these discoveries, attempts have recently been made to quantify the full extent of degenerative and vascular disease in the brain in vivo on MRI. The hope being that these "global" methods may one day lead to better diagnoses of disease and provide more sensitive measurements to detect treatment effects in clinical trials. Indeed, the "Total MRI burden of cerebral small vessel disease", the "Brain Health Index" (BHI), and "MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease" have all been shown to have stronger associations with clinical and cognitive phenotypes than individual brain MRI features. This chapter will review individual structural brain MRI features commonly seen in SVD, stroke, and dementia. The relationship between these features and differing clinical and cognitive phenotypes will be discussed along with developments in their measurement and quantification. The chapter will go on to review emerging methods for quantifying the collective burden of structural brain MRI findings and how these "whole picture" methods may lead to better diagnoses of neurovascular and neurodegenerative disorders.
Collapse
|
24
|
Banerjee G, Chan E, Ambler G, Wilson D, Cipolotti L, Shakeshaft C, Cohen H, Yousry T, Al-Shahi Salman R, Lip GYH, Muir KW, Brown MM, Jäger HR, Werring DJ. Cognitive Impairment Before Atrial Fibrillation-Related Ischemic Events: Neuroimaging and Prognostic Associations. J Am Heart Assoc 2020; 9:e014537. [PMID: 31902325 PMCID: PMC6988157 DOI: 10.1161/jaha.119.014537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background It is likely that a proportion of poststroke cognitive impairment is sometimes attributable to unidentified prestroke decline; prestroke cognitive function is also clinically relevant because it is associated with poor functional outcomes, including death. We investigated the radiological and prognostic associations of preexisting cognitive impairment in patients with ischemic stroke or transient ischemic attack associated with atrial fibrillation. Methods and Results We included 1102 patients from the prospective multicenter observational CROMIS‐2 (Clinical Relevance of Microbleeds in Stroke 2) atrial fibrillation study. Preexisting cognitive impairment was identified using the 16‐item Informant Questionnaire for Cognitive Decline in the Elderly. Functional outcome was measured using the modified Rankin scale. Preexisting cognitive impairment was common (n=271; 24.6%). The presence of lacunes (odds ratio [OR], 1.50; 95% CI, 1.03–1.05; P=0.034), increasing periventricular white matter hyperintensity grade (per grade increase, OR, 1.38; 95% CI, 1.17–1.63; P<0.0001), deep white matter hyperintensity grade (per grade increase, OR, 1.26; 95% CI, 1.05–1.51; P=0.011), and medial temporal atrophy grade (per grade increase, OR, 1.61; 95% CI, 1.34–1.95; P<0.0001) were independently associated with preexisting cognitive impairment. Preexisting cognitive impairment was associated with poorer functional outcome at 24 months (mRS >2; adjusted OR, 2.43; 95% CI, 1.42–4.20; P=0.001). Conclusions Preexisting cognitive impairment in patients with atrial fibrillation–associated ischemic stroke or transient ischemic attack is common, and associated with imaging markers of cerebral small vessel disease and neurodegeneration, as well as with longer‐term functional outcome. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02513316.
Collapse
Affiliation(s)
- Gargi Banerjee
- Department of Brain Repair and Rehabilitation Stroke Research Centre UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Edgar Chan
- Department of Neuropsychology National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom
| | - Gareth Ambler
- Department of Statistical Science University College London London United Kingdom
| | - Duncan Wilson
- Department of Brain Repair and Rehabilitation Stroke Research Centre UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery London United Kingdom.,New Zealand Brain Research Institute Christchurch New Zealand
| | - Lisa Cipolotti
- Department of Neuropsychology National Hospital for Neurology and Neurosurgery Queen Square London United Kingdom
| | - Clare Shakeshaft
- Department of Brain Repair and Rehabilitation Stroke Research Centre UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Hannah Cohen
- Haemostasis Research Unit Department of Haematology University College London London United Kingdom
| | - Tarek Yousry
- Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit Department of Brain Repair and Rehabilitation UCL Queen Square Institute of Neurology Queen Square London United Kingdom
| | - Rustam Al-Shahi Salman
- Centre for Clinical Brain Sciences School of Clinical Sciences University of Edinburgh United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool United Kingdom.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Keith W Muir
- Institute of Neuroscience & Psychology Queen Elizabeth University Hospital University of Glasgow United Kingdom
| | - Martin M Brown
- Department of Brain Repair and Rehabilitation Stroke Research Centre UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery London United Kingdom
| | - Hans Rolf Jäger
- Lysholm Department of Neuroradiology and the Neuroradiological Academic Unit Department of Brain Repair and Rehabilitation UCL Queen Square Institute of Neurology Queen Square London United Kingdom
| | - David J Werring
- Department of Brain Repair and Rehabilitation Stroke Research Centre UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery London United Kingdom
| | | | | |
Collapse
|
25
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
26
|
Chen H, Huang L, Yang D, Ye Q, Guo M, Qin R, Luo C, Li M, Ye L, Zhang B, Xu Y. Nodal Global Efficiency in Front-Parietal Lobe Mediated Periventricular White Matter Hyperintensity (PWMH)-Related Cognitive Impairment. Front Aging Neurosci 2019; 11:347. [PMID: 31920627 PMCID: PMC6914700 DOI: 10.3389/fnagi.2019.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
White matter hyperintensity (WMH) is widely observed in the elderly population and serves as a key indicator of cognitive impairment (CI). However, the underlying mechanism remains to be elucidated. Herein, we investigated the topological patterns of resting state functional networks in WMH subjects and the relationship between the topological measures and CI. A graph theory-based analysis was employed in the resting-state functional magnetic resonance scans of 112 subjects (38 WMH subjects with cognitive impairment without dementia (CIND), 36 WMH subjects with normal cognition and 38 healthy controls (HCs), and we found that WMH-CIND subjects displayed decreased global efficiency at the levels of the whole brain, specific subnetworks [fronto-parietal network (FPN) and cingulo-opercular network (CON)] and certain nodes located in the FPN and CON, as well as decreased local efficiency in subnetworks. Our results demonstrated that nodal global efficiency in frontal and parietal regions mediated the impairment of information processing speed related to periventricular WMH (PWMH). Additionally, we performed support vector machine (SVM) analysis and found that altered functional efficiency can identify WMH-CIND subjects with high accuracy, sensitivity and specificity. These findings suggest impaired functional networks in WMH-CIND individuals and that decreased functional efficiency may be a feature of CI in WMH subjects.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengdi Guo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
27
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
28
|
Longitudinal changes in rich club organization and cognition in cerebral small vessel disease. NEUROIMAGE-CLINICAL 2019; 24:102048. [PMID: 31706220 PMCID: PMC6978216 DOI: 10.1016/j.nicl.2019.102048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/11/2019] [Accepted: 10/21/2019] [Indexed: 01/06/2023]
Abstract
Cerebral small vessel disease (SVD) is considered the most important vascular contributor to the development of cognitive impairment and dementia. There is increasing awareness that SVD exerts its clinical effects by disrupting white matter connections, predominantly disrupting connections between rich club nodes, a set of highly connected and interconnected regions. Here we examined the progression of disturbances in rich club organization in older adults with SVD and their associations with conventional SVD markers and cognitive decline. We additionally investigated associations of baseline network measures with dementia. In 270 participants of the RUN DMC study, we performed diffusion tensor imaging (DTI) and cognitive assessments longitudinally. Rich club organization was examined in structural networks derived from DTI followed by deterministic tractography. Global efficiency (p<0.05) and strength of rich club connections (p<0.001) declined during follow-up. Decline in strength of peripheral connections was associated with a decline in overall cognition (β=0.164; p<0.01), psychomotor speed (β=0.151; p<0.05) and executive function (β=0.117; p<0.05). Baseline network measures were reduced in participants with dementia, and the association between WMH and dementia was causally mediated by global efficiency (p = =0.037) and peripheral connection strength (p = =0.040). SVD-related disturbances in rich club organization progressed over time, predominantly in participants with severe SVD. In this study, we found no specific role of rich club connectivity disruption in causing cognitive decline or dementia. The effect of WMH on dementia was mediated by global network efficiency and the strength of peripheral connections, suggesting an important role for network disruption in causing cognitive decline and dementia in older adults with SVD.
Collapse
|
29
|
Schreiber S, Wilisch-Neumann A, Schreiber F, Assmann A, Scheumann V, Perosa V, Jandke S, Mawrin C, Carare RO, Werring DJ. Invited Review: The spectrum of age-related small vessel diseases: potential overlap and interactions of amyloid and nonamyloid vasculopathies. Neuropathol Appl Neurobiol 2019; 46:219-239. [PMID: 31386773 DOI: 10.1111/nan.12576] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Deep perforator arteriopathy (DPA) and cerebral amyloid angiopathy (CAA) are the commonest known cerebral small vessel diseases (CSVD), which cause ischaemic stroke, intracebral haemorrhage (ICH) and vascular cognitive impairment (VCI). While thus far mainly considered as separate entities, we here propose that DPA and CAA share similarities, overlap and interact, so that 'pure' DPA or CAA are extremes along a continuum of age-related small vessel pathologies. We suggest blood-brain barrier (BBB) breakdown, endothelial damage and impaired perivascular β-amyloid (Aβ) drainage are hallmark common mechanisms connecting DPA and CAA. We also suggest a need for new biomarkers (e.g. high-resolution imaging) to deepen understanding of the complex relationships between DPA and CAA.
Collapse
Affiliation(s)
- S Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany.,Center for behavioral brain sciences (CBBS), Magdeburg, Germany
| | - A Wilisch-Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - F Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - A Assmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - V Scheumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - V Perosa
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - S Jandke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - C Mawrin
- Department of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany
| | - R O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - D J Werring
- Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
30
|
Zhang Y, Zhang Y, Wu R, Gao F, Zang P, Hu X, Gu C. Effect of cerebral small vessel disease on cognitive function and TLR4 expression in hippocampus. J Clin Neurosci 2019; 67:210-214. [DOI: 10.1016/j.jocn.2019.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
|
31
|
Kubota M, Iijima M, Shirai Y, Toi S, Kitagawa K. Association Between Cerebral Small Vessel Disease and Central Motor Conduction Time in Patients with Vascular Risk. J Stroke Cerebrovasc Dis 2019; 28:2343-2350. [PMID: 31208821 DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease (CSVD) is related to motor function disturbance. It includes several types: lacunar infarction, white matter hyperintensity, cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVS). Transcranial magnetic stimulation (TMS) has been successfully used to evaluate the function of the pyramidal tract. Central motor conduction time (CMCT) is one of the indicators of pyramidal tract dysfunction in motor evoked potential (MEP). The aim of this study was to investigate the association between each type of CSVD and CMCT. METHODS We enrolled 350 patients with vascular risk factors or a history of cerebrovascular events, who showed signs of CSVD in magnetic resonance imaging in the prospective registry. Among them, 138 patients agreed to the evaluation of MEP. CMCT, resting motor threshold (RMT), and silent period are indicators of the function of motor pathways in MEP. A total of 276 hemispheres were divided into 45 symptomatic hemispheres with a history of pyramidal tract dysfunction and 231 without it. Correlation between each type of CSVD and CMCT were examined in total, symptomatic, and asymptomatic hemispheres. RESULTS The mean age was 70.5 ± 10.3 (mean ± SD) years, and 89 (65%) were men. In the symptomatic hemisphere, CMCT and RMT were significantly higher than in the asymptomatic hemisphere. In the symptomatic hemisphere, significant association was observed between the number of EPVS in the white matter and CMCT (R2 = 0.201, p < .01). CONCLUSIONS In the symptomatic hemispheres, CMCT was associated with the number of EPVS in the white matter. The EPVS in the white matter may be involved in the motor disturbance due to CSVD.
Collapse
Affiliation(s)
- Megumi Kubota
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Japan.
| | - Mutsumi Iijima
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Japan
| | - Yuka Shirai
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Japan
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Japan
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Japan
| |
Collapse
|
32
|
Du J, Xu Q. Neuroimaging studies on cognitive impairment due to cerebral small vessel disease. Stroke Vasc Neurol 2019; 4:99-101. [PMID: 31338220 PMCID: PMC6613873 DOI: 10.1136/svn-2018-000209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/17/2023] Open
Abstract
Vascular cognitive impairment (VCI) is a major contributor to age-related dementing illnesses which imposes a tremendous burden on families and society. It is a heterogeneous group of brain disorders. However, cerebral small vessel disease (CSVD) accounts for about 50%-70% of VCI, which represented a more homogeneous subtype of VCI. Advanced multimodal neuroimaging techniques like brain network connectome analyses are currently applied to explore the underlying mechanism of VCI. Some progress in the field of structural and functional brain network researches on a poststroke longitudinal CSVD cohort (Renji CSVD Cohort Study) was reported. Global and regional brain network characters were compared between patients with CSVD and healthy control. It suggested that distributed brain structural network disruption may play a pivot role in the cognitive decline. The results showed that brain structural network characters have distinctive differentiating capacity on the cognition of patients with CSVD.
Collapse
Affiliation(s)
- Jing Du
- Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Qun Xu
- Health Manage Center, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
33
|
Liu X, Chen L, Cheng R, Luo T, Lv F, Fang W, Gong J, Jiang P. Altered functional connectivity in patients with subcortical ischemic vascular disease: A resting-state fMRI study. Brain Res 2019; 1715:126-133. [PMID: 30910630 DOI: 10.1016/j.brainres.2019.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
Patients with subcortical ischemic vascular disease (SIVD) may hold a high risk of cognitive impairment (CI) by affecting the functional connectivity (FC) of resting-state networks (RSNs). Current studies have mainly focused on the patients with CI but have ignored the prodromal stage when people suffered subcortical vascular damage, but without CI. Independent component analysis (ICA) of rs-fMRI could detect altered FC in RSNs at the early stage of the disease. 81 SIVD patients with CI (SVCI = 29) and without CI (pre-SVCI = 25), and 27 normal controls (NCs) were scanned with rs-fMRI, analyzed by ICA and assessed by neuropsychological examinations. We found significantly altered FC within the RSNs of sensorimotor network (SMN), posterior default mode networks (pDMN), right frontoparietal network (rFPN) and language network (LN) (P < 0.05, AlphaSim corrected). The pre-SVCI group showed significantly increased FC in brain regions of the multiple RSNs when compared with the other two groups. The mean values extracted from the right inferior frontal gyrus (IFG.R) and the left posterior cingulate gyrus (PCG.L) were significantly correlated with clock drawing test (CDT). The right precentral/postcentral gyrus (PreCG.R/PoCG.R) and the right supramarginal gyrus (SMG.R) were positively correlated with Stroop-1 Test. We concluded the FC in RSNs had already been changed at the early stage of the disease as the maladaptive response or compensatory reallocation of the cognitive resources. The ICA of rs-fMRI can be applied as a potential approach to identify the underlying mechanisms of SIVD.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- The Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Runtian Cheng
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - FaJin Lv
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junwei Gong
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiling Jiang
- The Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Raja R, Rosenberg G, Caprihan A. Review of diffusion MRI studies in chronic white matter diseases. Neurosci Lett 2019; 694:198-207. [PMID: 30528980 PMCID: PMC6380179 DOI: 10.1016/j.neulet.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
Diffusion MRI studies characterizing the changes in white matter (WM) due to vascular cognitive impairment, which includes all forms of small vessel disease are reviewed. We reviewed the usefulness of diffusion methods in discriminating the affected WM regions and its relation to cognitive impairment. These studies were categorized based on the diffusion MRI techniques used. The most common method was the diffusion tensor imaging, whereas other methods included diffusion weighted imaging, diffusion kurtosis imaging, intravoxel incoherent motion, and studies based on diffusion tractography. The diffusion measures showed correlation with cognitive scores and disease progression, with mean diffusivity being the most robust parameter. Future studies should focus on incorporating multi-compartment and higher order diffusion models, which can handle the presence of multiple and crossing fibers inside a voxel.
Collapse
Affiliation(s)
- Rajikha Raja
- The MIND Research Network, Albuquerque, NM, United States.
| | - Gary Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | | |
Collapse
|
35
|
Du J, Wang Y, Zhi N, Geng J, Cao W, Yu L, Mi J, Zhou Y, Xu Q, Wen W, Sachdev P. Structural brain network measures are superior to vascular burden scores in predicting early cognitive impairment in post stroke patients with small vessel disease. NEUROIMAGE-CLINICAL 2019; 22:101712. [PMID: 30772684 PMCID: PMC6378318 DOI: 10.1016/j.nicl.2019.101712] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
Objectives In this cross-sectional study, we aimed to explore the mechanisms of early cognitive impairment in a post stroke non-dementia cerebral small vessel disease (SVD) cohort by comparing the SVD score with the structural brain network measures. Method 127 SVD patients were recruited consecutively from a stroke clinic, comprising 76 individuals with mild cognitive impairment (MCI) and 51 with no cognitive impairment (NCI). Detailed neuropsychological assessments and multimodal MRI were performed. SVD scores were calculated on a standard scale, and structural brain network measures were analyzed by diffusion tensor imaging (DTI). Between-group differences were analyzed, and logistic regression was applied to determine the predictive value of SVD and network measures for cognitive status. Mediation analysis with structural equation modeling (SEM) was used to better understand the interactions of SVD burden, brain networks and cognitive deficits. Results Group difference was found on all global brain network measures. After adjustment for age, gender, education and depression, significant correlations were found between global brain network measures and diverse neuropsychological tests, including TMT-B (r = −0.209, p < .05), DSST (r = 0.206, p < .05), AVLT short term free recall (r = 0.233, p < .05), AVLT long term free recall (r = 0.264, p < .05) and Rey-O copy (r = 0.272, p < .05). SVD score showed no group difference and was not correlated with cognition tests. Network global efficiency (EGlobal) was significantly related to cognitive state (p < .01) but not the SVD score. Mediation analysis showed that the standardized total effect (p = .013) and the standardized indirect effect (p = .016) of SVD score on cognition was significant, but the direct effect was not. Conclusions Brain network measures, but not the SVD score, are significantly correlated with cognition in post-stroke SVD patients. Mediation analysis showed that the cerebral vascular lesions produce cognitive dysfunction by interfering with the structural brain network in SVD patients. The brain network measures may be regarded as direct and independent surrogate markers of cognitive impairment in SVD. Network measures instead of SVD score are significantly correlated with cognition. Network measures are superior to brain lesions in predicting cognitive impairment. Brain networks mediated the relationship between brain lesions and cognition. Brain network measures were direct and independent surrogate markers of SVD.
Collapse
Affiliation(s)
- Jing Du
- Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Zhi
- Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieli Geng
- Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Cao
- Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yu
- Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Mi
- Department of Neurology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qun Xu
- Renji-UNSW CHeBA Neurocognitive Center, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Health Manage Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
36
|
Cao R, Li J, Zhang C, Zuo Z, Hu S. Photoacoustic microscopy of obesity-induced cerebrovascular alterations. Neuroimage 2018; 188:369-379. [PMID: 30553918 DOI: 10.1016/j.neuroimage.2018.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral small vessel disease has been linked to cognitive, psychiatric and physical disabilities, especially in the elderly. However, the underlying pathophysiology remains incompletely understood, largely due to the limited accessibility of these small vessels in the live brain. Here, we report an intravital imaging and analysis platform for high-resolution, quantitative and comprehensive characterization of pathological alterations in the mouse cerebral microvasculature. By exploiting multi-parametric photoacoustic microscopy (PAM), microvascular structure, blood perfusion, oxygenation and flow were imaged in the awake brain. With the aid of vessel segmentation, these structural and functional parameters were extracted at the single-microvessel level, from which vascular density, tortuosity, wall shear stress, resistance and associated cerebral oxygen extraction fraction and metabolism were also quantified. With the use of vasodilatory stimulus, multifaceted cerebrovascular reactivity (CVR) was characterized in vivo. By extending the classic Evans blue assay to in vivo, permeability of the blood-brain barrier (BBB) was dynamically evaluated. The utility of this enabling technique was examined by studying cerebrovascular alterations in an established mouse model of high-fat diet-induced obesity. Our results revealed increased vascular density, reduced arterial flow, enhanced oxygen extraction, impaired BBB integrity, and increased multifaceted CVR in the obese brain. Interestingly, the 'counterintuitive' increase of CVR was supported by the elevated active endothelial nitric oxide synthase in the obese mouse. Providing comprehensive and quantitative insights into cerebral microvessels and their responses under pathological conditions, this technique opens a new door to mechanistic studies of the cerebral small vessel disease and its implications in neurodegeneration and stroke.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, USA
| | - Chenchu Zhang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, USA.
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
37
|
Jandke S, Garz C, Schwanke D, Sendtner M, Heinze HJ, Carare RO, Schreiber S. The association between hypertensive arteriopathy and cerebral amyloid angiopathy in spontaneously hypertensive stroke-prone rats. Brain Pathol 2018; 28:844-859. [PMID: 30062722 PMCID: PMC8028507 DOI: 10.1111/bpa.12629] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to test the hypothesis that in spontaneously hypertensive stroke‐prone rats (SHRSP), non‐amyloid cerebral small vessel disease/hypertensive arteriopathy (HA) results in vessel wall injury that may promote cerebral amyloid angiopathy (CAA). Our study comprised 21 male SHRSP (age 17–44 weeks) and 10 age‐ and sex‐matched Wistar control rats, that underwent two‐photon (2PM) imaging of the arterioles in the parietal cortex using Methoxy‐X04, Dextran and cerebral blood flow (CBF) measurements. Our data suggest that HA in SHRSP progresses in a temporal and age‐dependent manner, starting from small vessel wall damage (stage 1A), proceeding to CBF reduction (stage 1B), non‐occlusive (stage 2), and finally, occlusive thrombi (stage 3). Wistar animals also demonstrated small vessel wall damage, but were free of any of the later HA stages. Nearly half of all SHRSP additionally displayed vascular Methoxy‐X04 positivity indicative of cortical CAA. Vascular β‐amyloid deposits were found in small vessels characterized by thrombotic occlusions (stage 2 or 3). Post‐mortem analysis of the rat brains confirmed the findings derived from intravital 2PM microscopy. Our data thus overall suggest that advanced HA may play a role in CAA development with the two small vessel disease entities might be related to the same pathological spectrum of the aging brain.
Collapse
Affiliation(s)
- Solveig Jandke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Cornelia Garz
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Daniel Schwanke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
38
|
Dawe RJ, Yu L, Schneider JA, Arfanakis K, Bennett DA, Boyle PA. Postmortem brain MRI is related to cognitive decline, independent of cerebral vessel disease in older adults. Neurobiol Aging 2018; 69:177-184. [PMID: 29908416 PMCID: PMC6424332 DOI: 10.1016/j.neurobiolaging.2018.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/13/2018] [Accepted: 05/16/2018] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to determine whether metrics of brain tissue integrity derived from postmortem magnetic resonance imaging (MRI) are associated with late-life cognitive decline, independent of cerebral vessel disease. Using data from 554 older adults, we used voxelwise regression to identify regions where the postmortem MRI transverse relaxation rate constant R2 was associated with the rate of decline in global cognition. We then used linear mixed models to investigate the association between a composite R2 measure and cognitive decline, controlling for neuropathology including 3 indices of vessel disease: atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy. This composite R2 measure was associated with the rate of decline (0.049 unit annually per R2 unit, p < 0.0001) and accounted for 6.1% of its variance, beyond contributions from vessel disease indices and other prominent age-related neuropathologies. Thus, postmortem brain R2 reflects disease processes underlying cognitive decline that are not captured by vessel disease indices or other standard neuropathologic indices and may provide a measure of brain tissue integrity that is complementary to histopathologic evaluation.
Collapse
Affiliation(s)
- Robert J Dawe
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
39
|
Domain-specific characterisation of early cognitive impairment following spontaneous intracerebral haemorrhage. J Neurol Sci 2018; 391:25-30. [DOI: 10.1016/j.jns.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 01/02/2023]
|
40
|
Heiss WD. The Additional Value of PET in the Assessment of Cerebral Small Vessel Disease. J Nucl Med 2018; 59:1660-1664. [DOI: 10.2967/jnumed.118.214270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022] Open
|
41
|
Banerjee G, Jang H, Kim HJ, Kim ST, Kim JS, Lee JH, Im K, Kwon H, Lee JM, Na DL, Seo SW, Werring DJ. Total MRI Small Vessel Disease Burden Correlates with Cognitive Performance, Cortical Atrophy, and Network Measures in a Memory Clinic Population. J Alzheimers Dis 2018; 63:1485-1497. [DOI: 10.3233/jad-170943] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Hyemin Jang
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jae Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kiho Im
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Duk L. Na
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - David John Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
42
|
The relationship of cerebral microbleeds to cognition and incident dementia in non-demented older individuals. Brain Imaging Behav 2018; 13:750-761. [DOI: 10.1007/s11682-018-9883-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
van Leijsen EMC, Kuiperij HB, Kersten I, Bergkamp MI, van Uden IWM, Vanderstichele H, Stoops E, Claassen JAHR, van Dijk EJ, de Leeuw FE, Verbeek MM. Plasma Aβ (Amyloid-β) Levels and Severity and Progression of Small Vessel Disease. Stroke 2018. [PMID: 29540613 DOI: 10.1161/strokeaha.117.019810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease (SVD) is a frequent pathology in aging and contributor to the development of dementia. Plasma Aβ (amyloid β) levels may be useful as early biomarker, but the role of plasma Aβ in SVD remains to be elucidated. We investigated the association of plasma Aβ levels with severity and progression of SVD markers. METHODS We studied 487 participants from the RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort) of whom 258 participants underwent 3 MRI assessments during 9 years. We determined baseline plasma Aβ38, Aβ40, and Aβ42 levels using ELISAs. We longitudinally assessed volume of white matter hyperintensities semiautomatically and manually rated lacunes and microbleeds. We analyzed associations between plasma Aβ and SVD markers by ANCOVA adjusted for age, sex, and hypertension. RESULTS Cross-sectionally, plasma Aβ40 levels were elevated in participants with microbleeds (mean, 205.4 versus 186.4 pg/mL; P<0.01) and lacunes (mean, 194.8 versus 181.2 pg/mL; P<0.05). Both Aβ38 and Aβ40 were elevated in participants with severe white matter hyperintensities (Aβ38, 25.3 versus 22.7 pg/mL; P<0.01; Aβ40, 201.8 versus 183.3 pg/mL; P<0.05). Longitudinally, plasma Aβ40 levels were elevated in participants with white matter hyperintensity progression (mean, 194.6 versus 182.9 pg/mL; P<0.05). Both Aβ38 and Aβ40 were elevated in participants with incident lacunes (Aβ38, 24.5 versus 22.5 pg/mL; P<0.05; Aβ40, 194.9 versus 181.2 pg/mL; P<0.01) and Aβ42 in participants with incident microbleeds (62.8 versus 60.4 pg/mL; P<0.05). CONCLUSIONS Plasma Aβ levels are associated with both presence and progression of SVD markers, suggesting that Aβ pathology might contribute to the development and progression of SVD. Plasma Aβ levels might thereby serve as inexpensive and noninvasive measure for identifying individuals with increased risk for progression of SVD.
Collapse
Affiliation(s)
- Esther M C van Leijsen
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - H Bea Kuiperij
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Iris Kersten
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Mayra I Bergkamp
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Ingeborg W M van Uden
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Hugo Vanderstichele
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Erik Stoops
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Jurgen A H R Claassen
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Ewoud J van Dijk
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Frank-Erik de Leeuw
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.)
| | - Marcel M Verbeek
- From the Department of Neurology (E.M.C.v.L., H.B.K., I.K., M.I.B., I.W.M.v.U., E.J.v.D., F.-E.d.L., M.M.V.), Department of Laboratory Medicine (H.B.K., I.K., M.M.V.), and Department of Geriatric Medicine (J.A.H.R.C.), Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands; and ADx NeuroSciences, Ghent, Belgium (H.V., E.S.).
| |
Collapse
|
44
|
Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Stroke Vasc Neurol 2018; 3:131-139. [PMID: 30294468 PMCID: PMC6169607 DOI: 10.1136/svn-2017-000080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 01/26/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
Vascular cognitive impairment (VCI) describes all forms of cognitive impairment caused by any type of cerebrovascular disease. Early identification of VCI is quite difficult due to the lack of both sensitive and specific biomarkers. Extensive damage to the white matter tracts, which connect the cortical and subcortical regions, has been shown in subcortical VCI (SVCI), the most common subtype of VCI that is caused by small vessel disease. Two specific MRI sequences, including diffusion tensor imaging (DTI) and functional MRI (fMRI), have emerged as useful tools for identifying subtle white matter changes and the intrinsic connectivity between distinct cortical regions. This review describes the advantages of these two modalities in SVCI research and the current DTI and fMRI findings on SVCI. Using DTI technique, a variety of studies found that white matter microstructural damages in the anterior and superior areas are more specific to SVCI. Similarly, functional brain abnormalities detected by fMRI have also been mainly shown in anterior brain areas in SVCI. The characteristic distribution of brain abnormalities in SVCI interrupts the prefrontal-subcortical loop that results in cognitive impairments in particular domains, which further confirms the ‘disconnection syndrome’ hypothesis. In addition, another MRI technique, arterial spin labelling (ASL), has been used to describe the disconnection patterns in a variety of conditions by measuring cerebral blood flow. The role of the ASL technique in SVCI research is also assessed. Finally, the review proposes the application of multimodality fusion in the investigation of SVCI pathogenesis.
Collapse
Affiliation(s)
- Qing Ye
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
45
|
Wallin A, Román GC, Esiri M, Kettunen P, Svensson J, Paraskevas GP, Kapaki E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J Alzheimers Dis 2018; 62:1417-1441. [PMID: 29562536 PMCID: PMC5870030 DOI: 10.3233/jad-170803] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer's disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder.
Collapse
Affiliation(s)
- Anders Wallin
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden and Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University, Hospital, Gothenburg, Sweden
| | - Gustavo C. Román
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Margaret Esiri
- Neuropathology Department, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden and Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University, Hospital, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Johan Svensson
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - George P. Paraskevas
- 1st Department of Neurology, Neurochemistry Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, Neurochemistry Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
van Leijsen EMC, van Uden IWM, Ghafoorian M, Bergkamp MI, Lohner V, Kooijmans ECM, van der Holst HM, Tuladhar AM, Norris DG, van Dijk EJ, Rutten-Jacobs LCA, Platel B, Klijn CJM, de Leeuw FE. Nonlinear temporal dynamics of cerebral small vessel disease: The RUN DMC study. Neurology 2017; 89:1569-1577. [PMID: 28878046 PMCID: PMC5634663 DOI: 10.1212/wnl.0000000000004490] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/10/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the temporal dynamics of cerebral small vessel disease (SVD) by 3 consecutive assessments over a period of 9 years, distinguishing progression from regression. METHODS Changes in SVD markers of 276 participants of the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort (RUN DMC) cohort were assessed at 3 time points over 9 years. We assessed white matter hyperintensities (WMH) volume by semiautomatic segmentation and rated lacunes and microbleeds manually. We categorized baseline WMH severity as mild, moderate, or severe according to the modified Fazekas scale. We performed mixed-effects regression analysis including a quadratic term for increasing age. RESULTS Mean WMH progression over 9 years was 4.7 mL (0.54 mL/y; interquartile range 0.95-5.5 mL), 20.3% of patients had incident lacunes (2.3%/y), and 18.9% had incident microbleeds (2.2%/y). WMH volume declined in 9.4% of the participants during the first follow-up interval, but only for 1 participant (0.4%) throughout the whole follow-up. Lacunes disappeared in 3.6% and microbleeds in 5.7% of the participants. WMH progression accelerated over time: including a quadratic term for increasing age during follow-up significantly improved the model (p < 0.001). SVD progression was predominantly seen in participants with moderate to severe WMH at baseline compared to those with mild WMH (odds ratio [OR] 35.5, 95% confidence interval [CI] 15.8-80.0, p < 0.001 for WMH progression; OR 5.7, 95% CI 2.8-11.2, p < 0.001 for incident lacunes; and OR 2.9, 95% CI 1.4-5.9, p = 0.003 for incident microbleeds). CONCLUSIONS SVD progression is nonlinear, accelerating over time, and a highly dynamic process, with progression interrupted by reduction in some, in a population that on average shows progression.
Collapse
Affiliation(s)
- Esther M C van Leijsen
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Ingeborg W M van Uden
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Mohsen Ghafoorian
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Mayra I Bergkamp
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Valerie Lohner
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Eline C M Kooijmans
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Helena M van der Holst
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Anil M Tuladhar
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - David G Norris
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Ewoud J van Dijk
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Loes C A Rutten-Jacobs
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Bram Platel
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Catharina J M Klijn
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Erik de Leeuw
- From the Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroscience, Department of Neurology (E.M.C.v.L., I.W.M.v.U., M.I.B., V.L., E.C.M.K., H.M.v.d.H., A.M.T., E.J.v.D., C.J.M.K., F.-E.d.L.), and Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine (M.G., B.P.), Radboud University Medical Centre; Institute for Computing and Information Sciences (M.G.) and Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging (D.G.N.), Radboud University, Nijmegen, the Netherlands; Department of Clinical Neurosciences, Neurology Unit (L.C.A.R.-J.), University of Cambridge, UK; and Erwin L. Hahn Institute for Magnetic Resonance Imaging (D.G.N.), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
47
|
Kavroulakis E, Simos PG, Kalaitzakis G, Maris TG, Karageorgou D, Zaganas I, Panagiotakis S, Basta M, Vgontzas A, Papadaki E. Myelin content changes in probable Alzheimer's disease and mild cognitive impairment: Associations with age and severity of neuropsychiatric impairment. J Magn Reson Imaging 2017; 47:1359-1372. [PMID: 28861929 DOI: 10.1002/jmri.25849] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/18/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Existing indices of white matter integrity such as fractional anisotropy and magnetization transfer ratio may not provide optimal specificity to myelin content. In contrast, myelin water fraction (MWF) derived from the multiecho T2 relaxation time technique may serve as a more direct measure of myelin content. PURPOSE/HYPOTHESIS The goal of the present study was to identify markers of regional demyelination in patients with probable Alzheimer's disease (AD) and mild cognitive impairment (MCI) in relation to age and severity of neuropsychiatric impairment. POPULATION The sample included patients diagnosed with probable AD (n = 25) or MCI (n = 43), and cognitively intact elderly controls (n = 33). FIELD STRENGTH/SEQUENCE ASSESSMENT Long T2 , short T2 , and MWF values were measured with a 1.5T scanner in periventricular and deep normal-appearing white matter (NAWM), serving as indices of intra/extracellular water content and myelin content. A comprehensive neuropsychological and neuropsychiatric assessment was administered to all participants. STATISTICAL TESTS, RESULTS AD patients displayed higher age-adjusted long and short T2 values and reduced MWF values in left temporal/parietal and bilateral periventricular NAWM than controls and MCI patients (P < 0.004; one-way analysis of covariance [ANCOVA] tests). Short T2 /MWF values in temporal, frontal, and periventricular NAWM of controls and/or MCI patients were significantly associated with episodic and semantic memory performance and depressive symptomatology (P < 0.004; partial correlation indices). The impact of age on memory performance was significantly (P < 0.01; mediated linear regression analyses) mediated by age-related changes in short T2 and MWF values in these regions. DATA CONCLUSION Age-related demyelination is associated with memory impairment (especially in prodromal dementia states) and symptoms of depression in an anatomically specific manner. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1359-1372.
Collapse
Affiliation(s)
| | - Panagiotis G Simos
- Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Kalaitzakis
- Department of Medical Physics, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Karageorgou
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Zaganas
- Department of Neurology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Maria Basta
- Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
48
|
Disease progression and regression in sporadic small vessel disease-insights from neuroimaging. Clin Sci (Lond) 2017; 131:1191-1206. [PMID: 28566448 DOI: 10.1042/cs20160384] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/17/2023]
Abstract
Cerebral small vessel disease (SVD) is considered the most important vascular contributor to the development of dementia. Comprehensive characterization of the time course of disease progression will result in better understanding of aetiology and clinical consequences of SVD. SVD progression has been studied extensively over the years, usually describing change in SVD markers over time using neuroimaging at two time points. As a consequence, SVD is usually seen as a rather linear, continuously progressive process. This assumption of continuous progression of SVD markers was recently challenged by several studies that showed regression of SVD markers. Here, we provide a review on disease progression in sporadic SVD, thereby taking into account both progression and regression of SVD markers with emphasis on white matter hyperintensities (WMH), lacunes and microbleeds. We will elaborate on temporal dynamics of SVD progression and discuss the view of SVD progression as a dynamic process, rather than the traditional view of SVD as a continuous progressive process, that might better fit evidence from longitudinal neuroimaging studies. We will discuss possible mechanisms and clinical implications of a dynamic time course of SVD, with both progression and regression of SVD markers.
Collapse
|
49
|
Zhong G, Zhang R, Jiaerken Y, Yu X, Zhou Y, Liu C, Lin L, Tong L, Lou M. Better Correlation of Cognitive Function to White Matter Integrity than to Blood Supply in Subjects with Leukoaraiosis. Front Aging Neurosci 2017; 9:185. [PMID: 28659787 PMCID: PMC5466957 DOI: 10.3389/fnagi.2017.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Leukoaraiosis is associated with increased risk of cognitive impairment, but its pathophysiological pathway is unclear. The aim of the present study was to determine whether brain structural damage or cerebral blood supply better correlated with the global cognitive outcome in subjects with leukoaraiosis. Seventy-five subjects with leukoaraiosis were included in present study, with age ranged from 43 to 85 years, with mean white matter hyperintensities (WMH) volume 30.69 ± 24.35 mL. Among them, 19(25.33%) subjects presented with cerebral microbleeds (CMB) and 40 (53.33%) subjects presented with lacunes. These participants received arterial spin labeling perfusion MRI, diffusion-tensor imaging (DTI) and diffusion Kurtosis imaging. We analyzed the cerebral blood flow (CBF) by dividing the brain tissue into three regions: WMH, normal appearing white matter (NAWM) and cortex. After adjusting for age and gender, the CBF of NAWM was significantly correlated with fractional anisotropy (FA) (r = 0.336, p = 0.004) and mean diffusion (MD) (r = -0.271, p = 0.020) of NAWM, while there lacked of association between CBF of cortex and mean kurtosis (MK) of cortex (r = -0.015, p = 0.912). Meanwhile, both NAWM-FA (r = -0.443, p < 0.001) and NAWM-MD (r = 0.293, p = 0.012), as well as cortex-MK (r = -0.341, p = 0.012) was significantly correlated with WMH volume. Univariate regression analysis demonstrated that global cognitive function was significantly associated with mean FA or MD of both WMH and NAWM, and cortex-CBF, but neither with the cortex-MK, nor the presences of CMB or lacunes. Finally, multiple linear regression analysis revealed that global cognitive function was independently associated with NAWM-FA (standardized β = 0.403, p < 0.001) and WMH-FA (Standardized β = 0.211, p = 0.017), but not with the cortex-CBF. A model that contained NAWM-FA, WMH-FA and years of education explained 49% of the variance of global cognitive function. Cerebral perfusion status might have a significant impact on the maintenance of white matter integrity in subjects with leukoaraiosis. Global cognitive function was more strongly associated with white matter integrity than with blood supply. DTI parameters, especially FA could serve as a potent imaging indicator for detecting the invisible alteration of white matter integrity and implying its potential cognitive relevance.
Collapse
Affiliation(s)
- Genlong Zhong
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Ruiting Zhang
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Yerfan Jiaerken
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Xinfeng Yu
- Department of Radiology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Ying Zhou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Chang Liu
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Longting Lin
- The School of Medicine and Public Health, University of Newcastle, NewcastleNSW, Australia
| | - Lusha Tong
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang UniversityHangzhou, China
| |
Collapse
|
50
|
Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. J Neurochem 2017; 140:536-549. [DOI: 10.1111/jnc.13932] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Antero Salminen
- Department of Neurology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| |
Collapse
|