1
|
Dong Q, Zhou J, Feng M, Kong L, Fang B, Zhang Z. A review of bacterial and osteoclast differentiation in bone infection. Microb Pathog 2024; 197:107102. [PMID: 39505086 DOI: 10.1016/j.micpath.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Bone infections are characterized by bacterial invasion of the bone microenvironment and subsequent bone structure deterioration. This holds significance because osteoclasts, which are the only cells responsible for bone resorption, are abnormally stimulated during bone infections. Multiple communication factors secreted by bone stromal cells regulate the membrane of osteoclast progenitor cells, thereby maintaining bone homeostasis through the expression of many types of receptors. During infection, the immunoinflammatory response triggered by bacterial invasion and multiple virulence factors of bacterial origin can disrupt osteoclast homeostasis. Therefore, clarifying the pathways through which bacteria affect osteoclasts can offer a theoretical basis for preventing and treating bone infections. This review summarizes studies investigating bone destruction caused by different bacterial infections. In conclusion, bacteria can affect osteoclast metabolic activity through multiple pathways, including direct contact, release of virulence factors, induction of immunoinflammatory responses, influence on bone stromal cell metabolism, and intracellular infections.
Collapse
Affiliation(s)
- Qi Dong
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiuqin Zhou
- Department of Infectious Disease of Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mingzhe Feng
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Lingqiang Kong
- Department of Orthopedics, the Central Hospital Affiliated to Shaoxing University, Shaoxing, 312030, China.
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Zhen Zhang
- Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Wu X, Chen P, Huang D, Pan Y, Chen S. Bone and periosteum protein analysis via tandem mass tag quantitative proteomics in pediatric patients with osteomyelitis. Biomed Chromatogr 2024:e5999. [PMID: 39380190 DOI: 10.1002/bmc.5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024]
Abstract
Bone healing is crucial in managing osteomyelitis after fracture fixation. Understanding the mechanism of extensive callus formation in pediatric osteomyelitis is highly important. This study aims to analyze bone and periosteum samples from pediatric patients to elucidate the essential processes involved in callus formation during osteomyelitis. The study included eight patients from our hospital: four with positive microbial culture who underwent osteomyelitis debridement and four who had osteotomy surgery as contral. We used tandem mass tag quantitative proteomics to investigate proteomic changes in bone and periosteum tissues obtained from these patients. Differential expression proteins were analyzed for their pathways through Gene Ontology (GO) annotation, GO enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction networks. A total of 4737 proteins were successfully identified. About 2224 differentially expressed proteins were detected in the bone tissues group and periosteum tissues group. Among the differentially expressed proteins, 10 protein genes in the bone group were associated with inflammation and osteogenesis, while in the periosteum group were nine. Cytochrome b-245, beta polypeptide (CYBB), nicotinamide phosphoribosyltransferase (NAMPT), tissue inhibitor of metalloproteinases 1 (TIMP-1), Raf-1 proto-oncogene, serine/threonine kinase (RAF-1), RELA proto-oncogene, NF-KB subunit (RELA), and sphingomyelin synthase 2 (SGMS2) may play an important role in callus formation in patients with osteomyelitis. This study provides novel clues for understanding callus formation in pediatric patients with osteomyelitis.
Collapse
Affiliation(s)
- Xinwu Wu
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Peisheng Chen
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Dianhua Huang
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Yuchen Pan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shunyou Chen
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| |
Collapse
|
3
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
4
|
Shi X, Ni H, Tang L, Li M, Wu Y, Xu Y. Comprehensive Gene Analysis Reveals Cuproptosis-Related Gene Signature Associated with M2 Macrophage in Staphylococcus aureus-Infected Osteomyelitis. J Inflamm Res 2024; 17:3057-3077. [PMID: 38770176 PMCID: PMC11104443 DOI: 10.2147/jir.s457414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Objective Osteomyelitis is a challenging disease in the field of bone infections, with its immune and molecular regulatory mechanisms still poorly understood. The aim of this study is to explore the value and potential mechanisms of cuproptosis-related genes (CRGs) in Staphylococcus aureus (S. aureus)-infected osteomyelitis from an immunological perspective. Methods Initially, three transcriptomic datasets from public databases were integrated and analyzed, and consistent expression of CRGs in S. aureus-infected osteomyelitis was identified. Subsequently, immune infiltration analysis was performed, and M2 macrophage-related CRGs (M2R-CRGs) were further identified. Their potential molecular mechanisms were evaluated using Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Finally, distinct osteomyelitis subtypes and diagnostic models based on characteristic M2R-CRGs were constructed. Results Through correlation analysis with immune cell infiltration, three characteristic M2R-CRGs (SLC31A1, DLD, and MTF1) were identified. Further analysis using unsupervised clustering and immune microenvironment analysis indicated that cluster 1 might activate pro-inflammatory responses, while cluster 2 was shown to exhibit anti-inflammatory effects in osteomyelitis. Compared to Cluster A, Cluster B demonstrated higher levels and a greater diversity of immune cell infiltrations in CRG-related molecular patterns, suggesting a potential anti-inflammatory role in osteomyelitis. A diagnostic model for S. aureus-infected osteomyelitis, based on the three M2R-CRGs, was constructed, exhibiting excellent diagnostic performance and validated with an independent dataset. Significant upregulation in mRNA and protein expression levels of the three M2R-CRGs was observed in rat models of S. aureus-infected osteomyelitis, aligning with bioinformatic results. Conclusion The M2R-CRGs (SLC31A1, DLD, and MTF1) may be considered characteristic genes for early diagnosis and personalized immune therapy in patients with S. aureus-infected osteomyelitis.
Collapse
Affiliation(s)
- Xiangwen Shi
- Graduate School, Kunming Medical University, Kunming, People’s Republic of China
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People’s Republic of China
| | - Haonan Ni
- First People’s Hospital of Huzhou, the First affiliated Hospital of Huzhou University, Huzhou, People’s Republic of China
| | - Linmeng Tang
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Mingjun Li
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People’s Republic of China
| | - Yipeng Wu
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, People’s Republic of China
| | - Yongqing Xu
- First People’s Hospital of Huzhou, the First affiliated Hospital of Huzhou University, Huzhou, People’s Republic of China
| |
Collapse
|
5
|
Seebach E, Kraus FV, Elschner T, Kubatzky KF. Staphylococci planktonic and biofilm environments differentially affect osteoclast formation. Inflamm Res 2023:10.1007/s00011-023-01745-9. [PMID: 37329360 DOI: 10.1007/s00011-023-01745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Franziska V Kraus
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Internal Medicine 5 - Hematology Oncology Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tabea Elschner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Institute for Cardiovascular Sciences and Institute of Neurovascular Cell Biology (INVZ), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Guo X. Antibacterial and anti-inflammatory effects of genistein in Staphylococcus aureus induced osteomyelitis in rats. J Biochem Mol Toxicol 2023; 37:e23298. [PMID: 36727417 DOI: 10.1002/jbt.23298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly infectious Gram-positive pathogen known to cause severe diseases such as endocarditis, food poisoning, pneumonia, osteomyelitis, and septicemia. MRSA is a major public health issue. Among these, osteomyelitis is inflammation of the bone caused by the invasion of the bacterial pathogen in the bones. Its prominent symptoms include fever, pain, and redness of bones. In the case of children, it affects the long bones of arms and legs, whereas in the case of adults it affects the hip, feet, and spine. Bacterial osteomyelitis can trigger pathological remodeling of bones and hence causes substantial morbidity and mortality. The present study aims to evaluate the isoflavone genistein's (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one,4',5,7 trihydroxyisoflavone) antimicrobial and anti-inflammatory effects against osteomyelitis induced by MRSA in male Wistar rats. Classification of the animals was into the following: sham (Group I), osteomyelitis (Group II, control), genistein (25 mg/kg body weight, Group III), and genistein (50 mg/kg body weight, Group IV). The rats did not receive any treatment for 4 weeks after bacterial inoculation. Genistein was then administered twice daily for 2 weeks. Bacterial growth, mean body weight bone infection status, and side effects of genistein treatment were assessed. Furthermore, lipid peroxidation, superoxide dismutase, glutathione (GSH) peroxidase, catalase, reduced GSH, tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 were also determined. Two days after treatment, it was found that genistein significantly suppressed bacterial growth and reduced serum pro-inflammatory cytokines TNF-α and IL-6. Therefore, the study suggests that genistein could be a promising lead against MRSA-induced osteomyelitis.
Collapse
Affiliation(s)
- Xinyi Guo
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hosptial of Shanxi Medical University, Taiyuan, China.,Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Neutralization of Staphylococcus aureus Protein A Prevents Exacerbated Osteoclast Activity and Bone Loss during Osteomyelitis. Antimicrob Agents Chemother 2023; 67:e0114022. [PMID: 36533935 PMCID: PMC9872667 DOI: 10.1128/aac.01140-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus is an important and current health care problem worldwide. Treatment of this infection frequently fails not only due to the increasing incidence of antimicrobial-resistant isolates but also because of the ability of S. aureus to evade the immune system, adapt to the bone microenvironment, and persist within this tissue for decades. We have previously demonstrated the role of staphylococcal protein A (SpA) in the induction of exacerbated osteoclastogenesis and increased bone matrix degradation during osteomyelitis. The aim of this study was to evaluate the potential of using anti-SpA antibodies as an adjunctive therapy to control inflammation and bone damage. By using an experimental in vivo model of osteomyelitis, we demonstrated that the administration of an anti-SpA antibody by the intraperitoneal route prevented excessive inflammatory responses in the bone upon challenge with S. aureus. Ex vivo assays indicated that blocking SpA reduced the priming of osteoclast precursors and their response to RANKL. Moreover, the neutralization of SpA was able to prevent the differentiation and activation of osteoclasts in vivo, leading to reduced expression levels of cathepsin K, reduced expression of markers associated with abnormal bone formation, and decreased trabecular bone loss during osteomyelitis. Taken together, these results demonstrate the feasibility of using anti-SpA antibodies as an antivirulence adjunctive therapy that may prevent the development of pathological conditions that not only damage the bone but also favor bacterial escape from antimicrobials and the immune system.
Collapse
|
8
|
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204502. [PMID: 36453574 PMCID: PMC9839869 DOI: 10.1002/advs.202204502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- School of Medical and Life SciencesSunway UniversityDarul EhsanSelangor47500Malaysia
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaochan Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Lee Wei Lim
- Neuromodulation LaboratorySchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong KongP. R. China
| | - Wang Li
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Zigang Ge
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
9
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
10
|
Billings C, Rifkin R, Abouelkhair M, Jones RD, Bow A, Kolape J, Rajeev S, Kania S, Anderson DE. In vitro and in vivo assessment of caprine origin Staphylococcus aureus ST398 strain UTCVM1 as an osteomyelitis pathogen. Front Cell Infect Microbiol 2022; 12:1015655. [PMID: 36726643 PMCID: PMC9885270 DOI: 10.3389/fcimb.2022.1015655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus (SA) is a significant and well-recognized causative organism of bacterial osteomyelitis. Osteomyelitis is an inflammatory bone disease characterized by progressive bone destruction and loss. This disease causes significant morbidity and mortality to the patient and poses therapeutic challenges for clinicians. To improve the efficacy of therapeutic strategies to combat bacterial osteomyelitis, there is a need to define the molecular epidemiology of bacterial organisms more clearly and further the understanding of the pathogenesis of SA osteomyelitis. We conducted in vitro characterization of the pathogenic capabilities of an isolate of SA ST398 derived from a clinical case of osteomyelitis in a goat. We also report a rodent mandibular defect model to determine the ability of ST398 to cause reproducible osteomyelitis. Our results indicate that ST398 can invade and distort pre-osteoblastic cells in culture, induce significant inflammation and alter expression of osteoregulatory cytokines. We also demonstrate the ability of ST398 to induce osteomyelitis in a rat mandibular model. When compiled, these data support ST398 as a competent osteomyelitis pathogen.
Collapse
Affiliation(s)
- Caroline Billings
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States,*Correspondence: Caroline Billings,
| | - Rebecca Rifkin
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Mohamed Abouelkhair
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Rebekah Duckett Jones
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Austin Bow
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Jaydeep Kolape
- Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, TN, United States
| | - Sreekumari Rajeev
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - Stephen Kania
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| | - David E. Anderson
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
11
|
Tong Z, Chen Z, Li Z, Xie Z, Zhang H. Mechanisms of promoting the differentiation and bone resorption function of osteoclasts by Staphylococcus aureus infection. Int J Med Microbiol 2022; 312:151568. [PMID: 36240531 DOI: 10.1016/j.ijmm.2022.151568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Bone infection is a common and serious complication in the field of orthopedics, which frequently leads to excessive bone destruction and fracture nonunion. Staphylococcus aureus (S. aureus) infection affects bone cell function which, in turn, causes bone destruction. Bone is mainly regulated by osteoblasts and osteoclasts. Osteoclasts are the only cell type with bone resorptive function. Their over-activation is closely associated with excessive bone loss. Understanding how S. aureus changes the functional state of osteoclasts is the key to effective treatment. By reviewing the literature, this paper summarizes several mechanisms of bone destruction caused by S. aureus influencing osteoclasts, thereby stimulating new ideas for the treatment of bone infection.
Collapse
Affiliation(s)
- Zelei Tong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zonggang Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Pesce Viglietti AI, Sviercz FA, López CAM, Freiberger RN, Quarleri J, Delpino MV. Proinflammatory Microenvironment During Kingella kingae Infection Modulates Osteoclastogenesis. Front Immunol 2021; 12:757827. [PMID: 34925328 PMCID: PMC8674944 DOI: 10.3389/fimmu.2021.757827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pathogen that causes septic arthritis, osteomyelitis, and bacteremia in children from 6 to 48 months of age. The presence of bacteria within or near the bone is associated with an inflammatory process that results in osteolysis, but the underlying pathogenic mechanisms involved are largely unknown. To determine the link between K. kingae and bone loss, we have assessed whether infection per se or through the genesis of a pro-inflammatory microenvironment can promote osteoclastogenesis. For that purpose, we examined both the direct effect of K. kingae and the immune-mediated mechanism involved in K. kingae-infected macrophage-induced osteoclastogenesis. Our results indicate that osteoclastogenesis is stimulated by K. kingae infection directly and indirectly by fueling a potent pro-inflammatory response that drives macrophages to undergo functional osteoclasts via TNF-α and IL-1β induction. Such osteoclastogenic capability of K. kingae is counteracted by their outer membrane vesicles (OMV) in a concentration-dependent manner. In conclusion, this model allowed elucidating the interplay between the K. kingae and their OMV to modulate osteoclastogenesis from exposed macrophages, thus contributing to the modulation in joint and bone damage.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Agustín Sviercz
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cinthya Alicia Marcela López
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa Nicole Freiberger
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Alkam D, Jenjaroenpun P, Ramirez AM, Beenken KE, Spencer HJ, Smeltzer MS. The Increased Accumulation of Staphylococcus aureus Virulence Factors Is Maximized in a purR Mutant by the Increased Production of SarA and Decreased Production of Extracellular Proteases. Infect Immun 2021; 89:e00718-20. [PMID: 33468580 PMCID: PMC8090970 DOI: 10.1128/iai.00718-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 01/18/2023] Open
Abstract
Mutation of purR was previously shown to enhance the virulence of Staphylococcus aureus in a murine sepsis model, and this cannot be fully explained by increased expression of genes within the purine biosynthesis pathway. Rather, the increased production of specific S. aureus virulence factors, including alpha toxin and the fibronectin-binding proteins, was shown to play an important role. Mutation of purR was also shown previously to result in increased abundance of SarA. Here, we demonstrate by transposon sequencing that mutation of purR in the USA300 strain LAC increases fitness in a biofilm while mutation of sarA has the opposite effect. Therefore, we assessed the impact of sarA on reported purR-associated phenotypes by characterizing isogenic purR, sarA, and sarA/purR mutants. The results confirmed that mutation of purR results in increased abundance of alpha toxin, protein A, the fibronectin-binding proteins, and SarA, decreased production of extracellular proteases, an increased capacity to form a biofilm, and increased virulence in an osteomyelitis model. Mutation of sarA had the opposite effects on all of these phenotypes and, other than bacterial burdens in the bone, all of the phenotypes of sarA/purR mutants were comparable to those of sarA mutants. Limiting the production of extracellular proteases reversed all of the phenotypes of sarA mutants and most of those of sarA/purR mutants. We conclude that a critical component defining the virulence of a purR mutant is the enhanced production of SarA, which limits protease production to an extent that promotes the accumulation of critical S. aureus virulence factors.
Collapse
Affiliation(s)
- Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aura M Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
14
|
Ledo C, Gonzalez CD, Garofalo A, Sabbione F, Keitelman IA, Giai C, Stella I, Trevani AS, Gómez MI. Protein A Modulates Neutrophil and Keratinocyte Signaling and Survival in Response to Staphylococcus aureus. Front Immunol 2021; 11:524180. [PMID: 33692774 PMCID: PMC7937904 DOI: 10.3389/fimmu.2020.524180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
The type 1 TNF-α receptor (TNFR1) has a central role in initiating both pro-inflammatory and pro-apoptotic signaling cascades in neutrophils. Considering that TNFR1 signals Staphylococcus aureus protein A (SpA), the aim of this study was to explore the interaction of this bacterial surface protein with neutrophils and keratinocytes to underscore the signaling pathways that may determine the fate of these innate immune cells in the infected tissue during staphylococcal skin infections. Using human neutrophils cultured in vitro and isogenic staphylococcal strains expressing or not protein A, we demonstrated that SpA is a potent inducer of IL-8 in neutrophils and that the induction of this chemokine is dependent on the SpA-TNFR1 interaction and p38 activation. In addition to IL-8, protein A induced the expression of TNF-α and MIP-1α highlighting the importance of SpA in the amplification of the inflammatory response. Protein A contributed to reduce neutrophil mortality prolonging their lifespan upon the encounter with S. aureus. Signaling initiated by SpA modulated the type of neutrophil cell death in vitro and during skin and soft tissue infections (SSTI) in vivo triggering the apoptotic pathway instead of necrosis. Moreover, SpA induced pro-inflammatory cytokines in keratinocytes, modulating their survival in vitro and preventing the exacerbated necrosis and ulceration of the epithelium during SSTI in vivo. Taken together, these results highlight the importance of the inflammatory signaling induced by protein A in neutrophils and skin epithelial cells. The ability of protein A to modulate the neutrophil/epithelial cell death program in the skin is of clinical relevance considering that lysis of neutrophils and epithelial cells will promote an intense inflammatory response and contribute to tissue damage, a non-desirable feature of complicated SSTI.
Collapse
Affiliation(s)
- Camila Ledo
- Centro de Estudios Biomédicos, Aplicados y Desarrollo (CEBBAD), Departamento de Ciencias Biológicas y Biomédicas, Universidad Maimonides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia D Gonzalez
- Instituto de investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ailin Garofalo
- Instituto de investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Sabbione
- Departamento de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene A Keitelman
- Departamento de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Constanza Giai
- Instituto de investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Inés Stella
- Facultad de Ciencias de la Salud, Universidad Maimónides, Buenos Aires, Argentina
| | - Analía S Trevani
- Departamento de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa I Gómez
- Centro de Estudios Biomédicos, Aplicados y Desarrollo (CEBBAD), Departamento de Ciencias Biológicas y Biomédicas, Universidad Maimonides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Oliveira TC, Gomes MS, Gomes AC. The Crossroads between Infection and Bone Loss. Microorganisms 2020; 8:microorganisms8111765. [PMID: 33182721 PMCID: PMC7698271 DOI: 10.3390/microorganisms8111765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Bone homeostasis, based on a tight balance between bone formation and bone degradation, is affected by infection. On one hand, some invading pathogens are capable of directly colonizing the bone, leading to its destruction. On the other hand, immune mediators produced in response to infection may dysregulate the deposition of mineral matrix by osteoblasts and/or the resorption of bone by osteoclasts. Therefore, bone loss pathologies may develop in response to infection, and their detection and treatment are challenging. Possible biomarkers of impaired bone metabolism during chronic infection need to be identified to improve the diagnosis and management of infection-associated osteopenia. Further understanding of the impact of infections on bone metabolism is imperative for the early detection, prevention, and/or reversion of bone loss. Here, we review the mechanisms responsible for bone loss as a direct and/or indirect consequence of infection.
Collapse
Affiliation(s)
- Tiago Carvalho Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Cordeiro Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.C.O.); (M.S.G.)
- Correspondence:
| |
Collapse
|
16
|
Kamohara A, Hirata H, Xu X, Shiraki M, Yamada S, Zhang JQ, Kukita T, Toyonaga K, Hara H, Urano Y, Yamashita Y, Miyamoto H, Kukita A. IgG immune complexes with Staphylococcus aureus protein A enhance osteoclast differentiation and bone resorption by stimulating Fc receptors and TLR2. Int Immunol 2020; 32:89-104. [PMID: 31713625 DOI: 10.1093/intimm/dxz063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/26/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a main pathogen of osteomyelitis and protein A is a virulence factor with high affinity for IgG. In this study, we investigated whether S. aureus affects the differentiation and bone resorption of osteoclasts through the IgG-binding capacity of protein A. Staphylococcus aureus pre-treated with serum or IgG showed marked enhancement in osteoclastogenesis and bone resorption compared to non-treated S. aureus or a protein A-deficient mutant. Blocking of the Fc receptor and deletion of the Fcγ receptor gene in osteoclast precursor cells showed that enhanced osteoclastogenesis stimulated by S. aureus IgG immune complexes (ICs) was mediated by the Fc receptor on osteoclast precursor cells. In addition, osteoclastogenesis stimulated by S. aureus ICs but not the protein A-deficient mutant was markedly reduced in osteoclast precursor cells of Myd88-knockout mice. Moreover, NFATc1, Syk and NF-κB signals were necessary for osteoclastogenesis stimulated by S. aureus ICs. The results suggest the contribution of a of Toll-like receptor 2 (TLR2)-Myd88 signal to the activity of S. aureus ICs. We further examined the expression of pro-inflammatory cytokines that is known to be enhanced by FcγR-TLR cross-talk. Osteoclasts induced by S. aureus ICs showed higher expression of TNF-α and IL-1β, and marked stimulation of proton secretion of osteoclasts activated by pro-inflammatory cytokines. Finally, injection of S. aureus, but not the protein A-deficient mutant, exacerbated bone loss in implantation and intra-peritoneal administration mouse models. Our results provide a novel mechanistic aspect of bone loss induced by S. aureus in which ICs and both Fc receptors and TLR pathways are involved.
Collapse
Affiliation(s)
- Asana Kamohara
- Department of Pathology and Microbiology, Saga, Japan.,Department of Oral & Maxillofacial Surgery, Saga, Japan
| | - Hirohito Hirata
- Department of Pathology and Microbiology, Saga, Japan.,Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Xianghe Xu
- Department of Pathology and Microbiology, Saga, Japan.,Department of Molecular Cell Biology & Oral Anatomy, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | - Makoto Shiraki
- Department of Pathology and Microbiology, Saga, Japan.,Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Sakuo Yamada
- Department of Medical Technology, Department of Clinical Nutrition, Faculty of Health Science & Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Jing-Qi Zhang
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology & Oral Anatomy, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | - Kenji Toyonaga
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuteru Urano
- Department of Chemical Biology & Molecular Imaging, Graduate School of Medicine , Hongo, Tokyo, Japan.,Department of Chemistry & Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, Japan
| | | | | | - Akiko Kukita
- Department of Pathology and Microbiology, Saga, Japan
| |
Collapse
|
17
|
Multitasking by the OC Lineage during Bone Infection: Bone Resorption, Immune Modulation, and Microbial Niche. Cells 2020; 9:cells9102157. [PMID: 32987689 PMCID: PMC7598711 DOI: 10.3390/cells9102157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Bone infections, also known as infectious osteomyelitis, are accompanied by significant inflammation, osteolysis, and necrosis. Osteoclasts (OCs) are the bone-resorbing cells that work in concert with osteoblasts and osteocytes to properly maintain skeletal health and are well known to respond to inflammation by increasing their resorptive activity. OCs have typically been viewed merely as effectors of pathologic bone resorption, but recent evidence suggests they may play an active role in the progression of infections through direct effects on pathogens and via the immune system. This review discusses the host- and pathogen-derived factors involved in the in generation of OCs during infection, the crosstalk between OCs and immune cells, and the role of OC lineage cells in the growth and survival of pathogens, and highlights unanswered questions in the field.
Collapse
|
18
|
Acapsular Staphylococcus aureus with a non-functional agr regains capsule expression after passage through the bloodstream in a bacteremia mouse model. Sci Rep 2020; 10:14108. [PMID: 32839485 PMCID: PMC7445255 DOI: 10.1038/s41598-020-70671-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/23/2020] [Indexed: 01/18/2023] Open
Abstract
Selection pressures exerted on Staphylococcus aureus by host factors during infection may lead to the emergence of regulatory phenotypes better adapted to the infection site. Traits convenient for persistence may be fixed by mutation thus turning these mutants into microevolution endpoints. The feasibility that stable, non-encapsulated S. aureus mutants can regain expression of key virulence factors for survival in the bloodstream was investigated. S. aureus agr mutant HU-14 (IS256 insertion in agrC) from a patient with chronic osteomyelitis was passed through the bloodstream using a bacteriemia mouse model and derivative P3.1 was obtained. Although IS256 remained inserted in agrC, P3.1 regained production of capsular polysaccharide type 5 (CP5) and staphyloxanthin. Furthermore, P3.1 expressed higher levels of asp23/SigB when compared with parental strain HU-14. Strain P3.1 displayed decreased osteoclastogenesis capacity, thus indicating decreased adaptability to bone compared with strain HU-14 and exhibited a trend to be more virulent than parental strain HU-14. Strain P3.1 exhibited the loss of one IS256 copy, which was originally located in the HU-14 noncoding region between dnaG (DNA primase) and rpoD (sigA). This loss may be associated with the observed phenotype change but the mechanism remains unknown. In conclusion, S. aureus organisms that escape the infected bone may recover the expression of key virulence factors through a rapid microevolution pathway involving SigB regulation of key virulence factors.
Collapse
|
19
|
Butrico CE, Cassat JE. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins (Basel) 2020; 12:toxins12080516. [PMID: 32806558 PMCID: PMC7471978 DOI: 10.3390/toxins12080516] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen capable of infecting nearly every vertebrate organ. Among these tissues, invasive infection of bone (osteomyelitis) is particularly common and induces high morbidity. Treatment of osteomyelitis is notoriously difficult and often requires debridement of diseased bone in conjunction with prolonged antibiotic treatment to resolve infection. During osteomyelitis, S. aureus forms characteristic multicellular microcolonies in distinct niches within bone. Virulence and metabolic responses within these multicellular microcolonies are coordinated, in part, by quorum sensing via the accessory gene regulator (agr) locus, which allows staphylococcal populations to produce toxins and adapt in response to bacterial density. During osteomyelitis, the Agr system significantly contributes to dysregulation of skeletal homeostasis and disease severity but may also paradoxically inhibit persistence in the host. Moreover, the Agr system is subject to complex crosstalk with other S. aureus regulatory systems, including SaeRS and SrrAB, which can significantly impact the progression of osteomyelitis. The objective of this review is to highlight Agr regulation, its implications on toxin production, factors that affect Agr activation, and the potential paradoxical influences of Agr regulation on disease progression during osteomyelitis.
Collapse
Affiliation(s)
- Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-936-6494
| |
Collapse
|
20
|
Ji Z, Su J, Hou Y, Yao Z, Yu B, Zhang X. EGFR/FAK and c-Src signalling pathways mediate the internalisation of Staphylococcus aureus by osteoblasts. Cell Microbiol 2020; 22:e13240. [PMID: 32584493 DOI: 10.1111/cmi.13240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023]
Abstract
Internalisation of Staphylococcus aureus in osteoblasts plays a critical role in the persistence and recurrence of osteomyelitis, the mechanisms involved in this process remain largely unknown. In the present study, evidence of internalised S. aureus in osteoblasts was found in long bone of haematogenous osteomyelitis in mice after 2 weeks of infection. Meanwhile, eliminating extracellular S. aureus by gentamicin can partially rescue bone loss, whereas the remaining intracellular S. aureus in osteoblasts may be associated with continuous bone destruction. In osteoblastic MC3T3 cells, intracellular S. aureus was detectable as early as 15 min after infection, and the internalisation rates increased with the extension of infection time. Additionally, S. aureus invasion stimulated the expression of phosphor-focal adhesion kinase (FAK), phosphor-epidermal growth factor receptor (EGFR) and phosphor-c-Src in a time-dependent way, and blocking EGFR/FAK or c-Src signalling significantly reduced the internalisation rate of S. aureus in osteoblasts. Our findings provide new insights into the mechanism of S. aureus internalisation in osteoblast and raise the potential of targeting EGFR/FAK and c-Src as adjunctive therapeutics for treating chronic S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Zhiguo Ji
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zilong Yao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Abstract
Osteomyelitis, or inflammation of bone, is most commonly caused by invasion of bacterial pathogens into the skeleton. Bacterial osteomyelitis is notoriously difficult to treat, in part because of the widespread antimicrobial resistance in the preeminent etiologic agent, the Gram-positive bacterium Staphylococcus aureus Bacterial osteomyelitis triggers pathological bone remodeling, which in turn leads to sequestration of infectious foci from innate immune effectors and systemically delivered antimicrobials. Treatment of osteomyelitis therefore typically consists of long courses of antibiotics in conjunction with surgical debridement of necrotic infected tissues. Even with these extreme measures, many patients go on to develop chronic infection or sustain disease comorbidities. A better mechanistic understanding of how bacteria invade, survive within, and trigger pathological remodeling of bone could therefore lead to new therapies aimed at prevention or treatment of osteomyelitis as well as amelioration of disease morbidity. In this minireview, we highlight recent developments in our understanding of how pathogens invade and survive within bone, how bacterial infection or resulting innate immune responses trigger changes in bone remodeling, and how model systems can be leveraged to identify new therapeutic targets. We review the current state of osteomyelitis epidemiology, diagnostics, and therapeutic guidelines to help direct future research in bacterial pathogenesis.
Collapse
|
22
|
Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1151-1163. [PMID: 32194053 DOI: 10.1016/j.ajpath.2020.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023]
Abstract
Osteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis. Advanced in vitro cell culture models, such as ex vivo culture models or organoids, have also been developed over the past decade, and have become widespread in many fields, including infectious diseases. These models better mimic the in vivo environment, allow the use of human cells, and can reduce our reliance on animals in osteomyelitis research. In this review, we provide an overview of the main pathologic concepts in osteomyelitis, with a focus on the new discoveries in recent years. Furthermore, we outline the value of modern in vitro cell culture techniques, with a focus on their current application to infectious diseases and osteomyelitis in particular.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, Davos, Switzerland; Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Mario Morgenstern
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | | | | | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
23
|
Ramirez AM, Byrum SD, Beenken KE, Washam C, Edmondson RD, Mackintosh SG, Spencer HJ, Tackett AJ, Smeltzer MS. Exploiting Correlations between Protein Abundance and the Functional Status of saeRS and sarA To Identify Virulence Factors of Potential Importance in the Pathogenesis of Staphylococcus aureus Osteomyelitis. ACS Infect Dis 2020; 6:237-249. [PMID: 31722523 PMCID: PMC7294808 DOI: 10.1021/acsinfecdis.9b00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We used a murine model of postsurgical osteomyelitis (OM) to evaluate the relative virulence of the Staphylococcus aureus strain LAC and five isogenic variants that differ in the functional status of saeRS and sarA relative to each other. LAC and a variant in which saeRS activity is increased (saeC) were comparably virulent to each other, while ΔsaeRS, ΔsarA, ΔsaeRS/ΔsarA, and saeC/ΔsarA mutants were all attenuated to a comparable degree. Phenotypic comparisons including a mass-based proteomics approach that allowed us to assess the number and abundance of full-length proteins suggested that mutation of saeRS attenuates virulence in our OM model owing primarily to the decreased production of S. aureus virulence factors, while mutation of sarA does so owing to protease-mediated degradation of these same virulence factors. This was confirmed by demonstrating that eliminating protease production restored virulence to a greater extent in a LAC sarA mutant than in the isogenic saeRS mutant. Irrespective of the mechanism involved, mutation of saeRS or sarA was shown to result in reduced accumulation of virulence factors of potential importance. Thus, using our proteomics approach we correlated the abundance of specific proteins with virulence in these six strains and identified 14 proteins that were present in a significantly increased amount (log2 ≥ 5.0) in both virulent strains by comparison to all four attenuated strains. We examined biofilm formation and virulence in our OM model using a LAC mutant unable to produce one of these 14 proteins, specifically staphylocoagulase. The results confirmed that mutation of coa limits biofilm formation and, to a lesser extent, virulence in our OM model, although in both cases the limitation was reduced by comparison to the isogenic sarA mutant.
Collapse
Affiliation(s)
- Aura M. Ramirez
- Department of Microbiology
and Immunology, College of Medicine, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, Arkansas 72205, United States
| | - Stephanie D. Byrum
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 516, Little Rock, Arkansas 72205, United States,Arkansas
Children’s Research Institute, 1 Children’s Way, Little Rock, Arkansas 72202, United States
| | - Karen E. Beenken
- Department of Microbiology
and Immunology, College of Medicine, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, Arkansas 72205, United States
| | - Charity Washam
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 516, Little Rock, Arkansas 72205, United States,Arkansas
Children’s Research Institute, 1 Children’s Way, Little Rock, Arkansas 72202, United States
| | - Rick D. Edmondson
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 516, Little Rock, Arkansas 72205, United States
| | - Samuel G. Mackintosh
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 516, Little Rock, Arkansas 72205, United States
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, Arkansas 72205, United States
| | - Alan J. Tackett
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 516, Little Rock, Arkansas 72205, United States,Arkansas
Children’s Research Institute, 1 Children’s Way, Little Rock, Arkansas 72202, United States
| | - Mark S. Smeltzer
- Department of Microbiology
and Immunology, College of Medicine, University
of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, Arkansas 72205, United States,Department
of Orthopaedic Surgery, University of Arkansas
for Medical Sciences, 4301 W. Markham Street, Slot 531, Little Rock, Arkansas 72205, United States,Phone: 501-686-7958. E-mail:
| |
Collapse
|
24
|
Li H, Zhang S, Huo S, Tang H, Nie B, Qu X, Yue B. Effects of staphylococcal infection and aseptic inflammation on bone mass and biomechanical properties in a rabbit model. J Orthop Translat 2019; 21:66-72. [PMID: 32099806 PMCID: PMC7029375 DOI: 10.1016/j.jot.2019.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 01/18/2023] Open
Abstract
Background/objective Orthopaedic implants are important devices aimed at relieving pain and improving mobility. Staphylococcal infection and aseptic loosening are two common events associated with inflammatory osteolysis that lead to implant failures. Bone mass and biomechanical properties are important indicators that could influence patient outcomes after revision surgery. However, the dynamics of bacterial infections and their influence on bone mass and biomechanical properties remain unclear. Hence, in this study, we developed rabbit aseptic inflammation and staphylococcal infection models to determine the effects of coagulase-positive and coagulase-negative bacterial infection, as well as aseptic inflammation, on the mass and biomechanical properties of the bone. Methods Sixty New Zealand white rabbits were randomly assigned to 6 groups, and each group had 10 rabbits. The medullary cavities in rabbits of each group were injected with phosphate-buffered saline (100 μL), titanium (Ti)-wear particles (300 μg/100 μL), a low concentration of Staphylococcus epidermidis (105/100 μL), a high concentration of S. epidermidis (108/100 μL), a low concentration of Staphylococcus aureus (105/100 μL), and a high concentration of S. aureus (108/100 μL), respectively. At four and eight weeks after surgery, the rabbits were sacrificed, and the tibias on the surgical side were analysed via histopathology, microcomputed tomography, and nanoindentation testing. Results Histopathological analysis demonstrated that inflammatory responses and bacterial loads caused by high concentrations of staphylococcal infections, particularly coagulase-positive staphylococci, are more detrimental than low concentrations of bacterial infection and Ti-wear particles. Meanwhile, microcomputed tomography and nanoindentation testing showed that high concentrations of S. aureus caused the highest loss in bone mass and most biomechanical function impairment in rabbits experiencing aseptic inflammation and staphylococcal infections. Conclusions Inflammatory osteolysis caused by a high concentration of coagulase-positive staphylococci is significantly associated with low bone mass and impaired biomechanical properties. The translational potential of this article It is necessary to obtain an overall assessment of the bone mass and biomechanical properties before revision surgery, especially when S. aureus infection is involved. In addition, a better understanding of these two parameters might help develop a reasonable treatment regimen and reduce the risk of adverse events after revision surgery.
Collapse
Affiliation(s)
- Hui Li
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Shicheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|
25
|
Downregulated Expression of Virulence Factors Induced by Benzyl Isothiocyanate in Staphylococcus Aureus: A Transcriptomic Analysis. Int J Mol Sci 2019; 20:ijms20215441. [PMID: 31683671 PMCID: PMC6862589 DOI: 10.3390/ijms20215441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a common foodborne pathogen that leads to various diseases; therefore, we urgently need to identify different means to control this harmful pathogen in food. In this study, we monitored the transcriptional changes of S. aureus by RNA-seq analysis to better understand the effect of benzyl isothiocyanate (BITC) on the virulence inhibition of S. aureus and determined the bacteriostatic effect of BITC at subinhibitory concentrations. Our results revealed that, compared with the control group (SAC), the BITC-treated experimental group (SAQ_BITC) had 708 differentially expressed genes (DEGs), of which 333 genes were downregulated and the capsular polysaccharide (cp) was significantly downregulated. Furthermore, we screened five of the most virulent factors of S. aureus, including the capsular polysaccharide biosynthesis protein (cp5D), capsular polysaccharide synthesis enzyme (cp8F), thermonuclease (nuc), clumping factor (clf), and protein A (spa), and verified the accuracy of these significantly downregulated genes by qRT-PCR. At the same time, we used light microscopy, scanning electron microscopy (SEM) and inverted fluorescence microscopy (IFM) to observe changes in biofilm associated with the cp5D and cp8F. Therefore, these results will help to further study the basis of BITC for the antibacterial action of foodborne pathogenic bacteria.
Collapse
|
26
|
Abstract
The inflammation of bone tissue is called osteomyelitis, and most cases are caused by an infection with the bacterium Staphylococcus aureus. To date, the bone-building cells, osteoblasts, have been implicated in the progression of these infections, but not much is known about how the bone-resorbing cells, osteoclasts, participate. In this study, we show that S. aureus can infect osteoclasts and proliferate inside these cells, whereas bone-residing macrophages, immune cells related to osteoclasts, destroy the bacteria. These findings elucidate a unique role for osteoclasts to harbor bacteria during infection, providing a possible mechanism by which bacteria could evade destruction by the immune system. Osteomyelitis (OM), or inflammation of bone tissue, occurs most frequently as a result of bacterial infection and severely perturbs bone structure. OM is predominantly caused by Staphylococcus aureus, and even with proper treatment, OM has a high rate of recurrence and chronicity. While S. aureus has been shown to infect osteoblasts, it remains unclear whether osteoclasts (OCs) are also a target of intracellular infection. Here, we demonstrate the ability of S. aureus to intracellularly infect and divide within OCs. OCs were differentiated from bone marrow macrophages (BMMs) by exposure to receptor activator of nuclear factor kappa-B ligand (RANKL). By utilizing an intracellular survival assay and flow cytometry, we found that at 18 h postinfection the intracellular burden of S. aureus increased dramatically in cells with at least 2 days of RANKL exposure, while the bacterial burden decreased in BMMs. To further explore the signals downstream of RANKL, we manipulated factors controlling OC differentiation, NFATc1 and alternative NF-κB, and found that intracellular bacterial growth correlates with NFATc1 levels in RANKL-treated cells. Confocal and time-lapse microscopy in mature OCs showed a range of intracellular infection that correlated inversely with S. aureus-phagolysosome colocalization. The propensity of OCs to become infected, paired with their diminished bactericidal capacity compared to BMMs, could promote OM progression by allowing S. aureus to evade initial immune regulation and proliferate at the periphery of lesions where OCs are most abundant.
Collapse
|
27
|
The good side of inflammation: Staphylococcus aureus proteins SpA and Sbi contribute to proper abscess formation and wound healing during skin and soft tissue infections. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2657-2670. [PMID: 31299217 DOI: 10.1016/j.bbadis.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus is the most prominent cause of skin and soft tissue infections (SSTI) worldwide. Mortality associated with invasive SSTI is a major threat to public health considering the incidence of antibiotic resistant isolates in particular methicillin resistant S. aureus both in the hospital (HA-MRSA) and in the community (CA-MRSA). To overcome the increasing difficulties in the clinical management of SSTI due to MRSA, new prophylactic and therapeutic approaches are urgently needed and a preventive vaccine would be welcome. The rational design of an anti-S. aureus vaccine requires a deep knowledge of the role that the different bacterial virulence factors play according to the type of infection. In the present study, using a set of isogenic deficient mutants and their complemented strains we determined that the staphylococcal surface proteins SpA and Sbi play an important role in the induction of inflammatory cytokines and chemokines in the skin during SSTI. SpA and Sbi initiate signaling cascades that lead to the early recruitment of neutrophils, modulate their lifespan in the skin milieu and contribute to proper abscess formation and bacterial eradication. Moreover, the expression of SpA and Sbi appear critical for skin repair and wound healing. Thus, these results indicate that SpA and Sbi can promote immune responses in the skin that are beneficial for the host and therefore, should not be neutralized with vaccine formulations designed to prevent SSTI.
Collapse
|
28
|
Putnam NE, Fulbright LE, Curry JM, Ford CA, Petronglo JR, Hendrix AS, Cassat JE. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus osteomyelitis. PLoS Pathog 2019; 15:e1007744. [PMID: 30978245 PMCID: PMC6481883 DOI: 10.1371/journal.ppat.1007744] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is able to infect virtually all organ systems and is a frequently isolated etiologic agent of osteomyelitis, a common and debilitating invasive infection of bone. Treatment of osteomyelitis requires invasive surgical procedures and prolonged antibiotic therapy, yet is frequently unsuccessful due to extensive pathogen-induced bone damage that can limit antibiotic penetration and immune cell influx to the infectious focus. We previously established that S. aureus triggers profound alterations in bone remodeling in a murine model of osteomyelitis, in part through the production of osteolytic toxins. However, staphylococcal strains lacking osteolytic toxins still incite significant bone destruction, suggesting that host immune responses are also major drivers of pathologic bone remodeling during osteomyelitis. The objective of this study was to identify host immune pathways that contribute to antibacterial immunity during S. aureus osteomyelitis, and to define how these immune responses alter bone homeostasis and contribute to bone destruction. We specifically focused on the interleukin-1 receptor (IL-1R) and downstream adapter protein MyD88 given the prominent role of this signaling pathway in both antibacterial immunity and osteo-immunologic crosstalk. We discovered that while IL-1R signaling is necessary for local control of bacterial replication during osteomyelitis, it also contributes to bone loss during infection. Mechanistically, we demonstrate that S. aureus enhances osteoclastogenesis of myeloid precursors in vitro, and increases the abundance of osteoclasts residing on bone surfaces in vivo. This enhanced osteoclast abundance translates to trabecular bone loss, and is dependent on intact IL-1R signaling. Collectively, these data define IL-1R signaling as a critical component of the host response to S. aureus osteomyelitis, but also demonstrate that IL-1R-dependent immune responses trigger collateral bone damage through activation of osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Nicole E. Putnam
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jenna R. Petronglo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew S. Hendrix
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Cassat
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
29
|
Ricciardi BF, Muthukrishnan G, Masters E, Ninomiya M, Lee CC, Schwarz EM. Staphylococcus aureus Evasion of Host Immunity in the Setting of Prosthetic Joint Infection: Biofilm and Beyond. Curr Rev Musculoskelet Med 2018; 11:389-400. [PMID: 29987645 DOI: 10.1007/s12178-018-9501-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW The incidence of complications from prosthetic joint infection (PJI) is increasing, and treatment failure remains high. We review the current literature with a focus on Staphylococcus aureus pathogenesis and biofilm, as well as treatment challenges, and novel therapeutic strategies. RECENT FINDINGS S. aureus biofilm creates a favorable environment that increases antibiotic resistance, impairs host immunity, and increases tolerance to nutritional deprivation. Secreted proteins from bacterial cells within the biofilm and the quorum-sensing agr system contribute to immune evasion. Additional immunoevasive properties of S. aureus include the formation of staphylococcal abscess communities (SACs) and canalicular invasion. Novel approaches to target biofilm and increase resistance to implant colonization include novel antibiotic therapy, immunotherapy, and local implant treatments. Challenges remain given the diverse mechanisms developed by S. aureus to alter the host immune responses. Further understanding of these processes should provide novel therapeutic mechanisms to enhance eradication after PJI.
Collapse
Affiliation(s)
- Benjamin F Ricciardi
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Elysia Masters
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Mark Ninomiya
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Charles C Lee
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
30
|
Kavanagh N, O’Brien FJ, Kerrigan SW. Staphylococcus aureus protein A causes osteoblasts to hyper-mineralise in a 3D extra-cellular matrix environment. PLoS One 2018; 13:e0198837. [PMID: 29927956 PMCID: PMC6013232 DOI: 10.1371/journal.pone.0198837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/25/2018] [Indexed: 01/18/2023] Open
Abstract
Osteomyelitis is an inflammatory bone infection that is caused most commonly by the opportunistic pathogen Staphylococcus aureus. Research into staphylococcal induced bone infection is typically conducted using traditional 2D in vitro culture settings, which is not fully representative of the dynamic in vivo environment. In this study we utilised a collagen glycosaminoglycan scaffold, previously developed for bone tissue engineering, as a representative 3D model of infection. The scaffold resisted degradation and retained its pore structure, which is important for cellular function and survival, when seeded with both cells and bacteria. Using this model, we showed that in the presence of S. aureus, osteoblast proliferation was reduced over 21 days. Interestingly however these cells were more metabolically active compared to the uninfected cells and demonstrated increased mineralisation. Protein A (SpA) is a virulence factor found on the surface of S. aureus and has been shown to interact with osteoblasts. When SpA was removed from the surface of S. aureus, the osteoblasts show comparable activity with the uninfected cells-demonstrating the importance of SpA in the interaction between bone cells and S. aureus. Our results suggest that infected osteoblasts are capable of over-compensating for bone loss and bone destruction by increasing mineralisation in a 3D environment, key elements required for ensuring bone strength. It also reinforces our previously established result that S. aureus SpA is a critical mediator in osteomyelitis and might be a potential novel drug target to treat osteomyelitis by preventing the interaction between S. aureus and osteoblasts.
Collapse
Affiliation(s)
- Nicola Kavanagh
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Steve W. Kerrigan
- Cardiovascular Infection Research Group, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
31
|
Brandt SL, Putnam NE, Cassat JE, Serezani CH. Innate Immunity to Staphylococcus aureus: Evolving Paradigms in Soft Tissue and Invasive Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3871-3880. [PMID: 29866769 PMCID: PMC6028009 DOI: 10.4049/jimmunol.1701574] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023]
Abstract
Staphylococcus aureus causes a wide range of diseases that together embody a significant public health burden. Aided by metabolic flexibility and a large virulence repertoire, S. aureus has the remarkable ability to hematogenously disseminate and infect various tissues, including skin, lung, heart, and bone, among others. The hallmark lesions of invasive staphylococcal infections, abscesses, simultaneously denote the powerful innate immune responses to tissue invasion as well as the ability of staphylococci to persist within these lesions. In this article, we review the innate immune responses to S. aureus during infection of skin and bone, which serve as paradigms for soft tissue and bone disease, respectively.
Collapse
Affiliation(s)
- Stephanie L Brandt
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Nicole E Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232; and
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - C Henrique Serezani
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
32
|
Staphylococcal Osteomyelitis: Disease Progression, Treatment Challenges, and Future Directions. Clin Microbiol Rev 2018; 31:31/2/e00084-17. [PMID: 29444953 DOI: 10.1128/cmr.00084-17] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteomyelitis is an inflammatory bone disease that is caused by an infecting microorganism and leads to progressive bone destruction and loss. The most common causative species are the usually commensal staphylococci, with Staphylococcus aureus and Staphylococcus epidermidis responsible for the majority of cases. Staphylococcal infections are becoming an increasing global concern, partially due to the resistance mechanisms developed by staphylococci to evade the host immune system and antibiotic treatment. In addition to the ability of staphylococci to withstand treatment, surgical intervention in an effort to remove necrotic and infected bone further exacerbates patient impairment. Despite the advances in current health care, osteomyelitis is now a major clinical challenge, with recurrent and persistent infections occurring in approximately 40% of patients. This review aims to provide information about staphylococcus-induced bone infection, covering the clinical presentation and diagnosis of osteomyelitis, pathophysiology and complications of osteomyelitis, and future avenues that are being explored to treat osteomyelitis.
Collapse
|
33
|
Cao F, Zhou W, Liu G, Xia T, Liu M, Mi B, Liu Y. Staphylococcus aureus peptidoglycan promotes osteoclastogenesis via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway. Am J Transl Res 2017; 9:5022-5030. [PMID: 29218100 PMCID: PMC5714786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Staphylococcus aureus (S. aureus) peptidoglycan (PGN-sa), the major cell wall component of S. aureus, has been demonstrated to be an important virulence factor in the pathogenesis of S. aureus-induced osteomyelitis. However, the exact role of PGN-sa in osteoclastogenesis during S. aureus-induced osteomyelitis and its underlying molecular mechanisms remain unclear. In this study, we found that PGN-sa promoted receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation. Quantitative real-time polymerase chain reaction results showed that the mRNA expression of osteoclast-specific marker genes, including tartrate-resistant acid phosphatase, cathepsin K, matrix metalloproteinase-9, and calcitonin receptor was upregulated by PGN-sa treatment. The results of enzyme linked immunosorbent assay showed that PGN-sa promoted the production of proinflammatory cytokines in mouse bone marrow macrophages (mBMMs) treated with RANKL. PGN-sa enhanced RANKL-stimulated protein expression of Toll-like receptor 2 (TLR2), p-IκBα, and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Luciferase reporter assay showed that PGN-sa increased the transcriptional activity of TLR2 and NF-κB in mBMMs treated with RANKL. In addition, we found that downregulation of TLR2 attenuated the effect of PGA-sa on RANKL-induced osteoclastogenesis and activation of the NF-κB/NFATc1 signaling pathway. Taken together, this study revealed that PGN-sa promotes osteoclast formation via TLR2-mediated activation of the NF-κB/NFATc1 signaling pathway, revealing a potential effect of PGN-sa on osteomyelitis. These findings provide new insights into the pathogenic role of PGN-sa in S. aureus-induced osteomyelitis and may help to develop new therapeutic strategies for osteomyelitis.
Collapse
Affiliation(s)
- Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Tian Xia
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, P.R. China
| |
Collapse
|
34
|
Ren LR, Wang H, He XQ, Song MG, Chen XQ, Xu YQ. Staphylococcus aureus Protein A induces osteoclastogenesis via the NF‑κB signaling pathway. Mol Med Rep 2017; 16:6020-6028. [PMID: 28849198 PMCID: PMC5865801 DOI: 10.3892/mmr.2017.7316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 06/29/2017] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is the most common organism causing osteomyelitis, and Staphylococcus aureus protein A (SpA) is an important virulence factor anchored in its cell wall. However, the precise mechanisms underlying the bone loss caused by SpA have not been well understood. The present study aimed to investigate the effect of SpA on osteoclast differentiation, and the probable mechanism was investigated. Raw264.7 cells were treated with SpA in the absence or presence of receptor-activated (NF)-κB ligand for 5 days, and morphological and biochemical assays were used to assess osteoclastogenesis and explore the underlying mechanisms. Data demonstrated that SpA induced osteoclast differentiation and promoted bone resorption in a dose-dependent manner in the absence or presence of RANKL. In addition, the expression of osteoclast-specific genes, such as the tartrate resistant acid phosphatase, matrix metalloproteinase-9, cathepsin K, calcitonin receptors and d2 isoform of the vacuolar ATPase Vo domain, were enhanced by SpA. Furthermore, the SpA-induced osteoclast differentiation was associated with the degradation of inhibitor of κB-α, phosphorylation of NF-κB p65 and increased expression of nuclear factor of activated T-cells. However, by treatment with JSH-23, an NF-κB inhibitor, the formation of osteoclast-like cells and resorption pits was significantly reduced, and the expression of osteoclast-specific genes was also inhibited. Collectively, in the present study SpA induced osteoclast differentiation, promoted bone resorption, and the NF-κB signaling pathway was involved in this process.
Collapse
Affiliation(s)
- Li-Rong Ren
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hai Wang
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Xiao-Qing He
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Mu-Guo Song
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Xue-Qiu Chen
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Yong-Qing Xu
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
35
|
Wang Y, Liu X, Dou C, Cao Z, Liu C, Dong S, Fei J. Staphylococcal protein A promotes osteoclastogenesis through MAPK signaling during bone infection. J Cell Physiol 2017; 232:2396-2406. [PMID: 28185243 PMCID: PMC5485048 DOI: 10.1002/jcp.25774] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 01/31/2023]
Abstract
Bone infection is a common and serious complication in the orthopedics field, which often leads to excessive bone destruction and non‐union. Osteoclast is the only type of cells which have the function of bone resorption. Its over activation is closely related to excessive bone loss. Staphylococcus aureus (S. aureus) is a major pathogen causing bone infection, which can produce a large number of strong pathogenic substances staphylococcal protein A (SPA). However, few studies were reported about the effects of SPA on osteoclastogenesis. In our study, we observed that S. aureus activated osteoclasts and promoted bone loss in bone infection specimens. Then, we investigated the effects of SPA on RANKL‐induced osteoclastogenesis in vitro, the results revealed that SPA promoted osteoclastic differentiation and fusion, and enhanced osteoclastic bone resorption. In addition, we also showed that SPA upregulated the expression of NFATc1 and c‐FOS through the activation of MAPK signaling to promote osteoclastogenesis. Our findings might help us better understand the pathogenic role of S. aureus in bone infection and develop new therapeutic strategies for infectious bone diseases.
Collapse
Affiliation(s)
- Yuan Wang
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jun Fei
- Center of Trauma of Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
36
|
Ren L, Xu Y, Wang H, He X, Song M, Chen X. [Effect of staphylococcal lipoteichoic acid on differentiation of RAW264.7 cells into osteoclasts]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:180-184. [PMID: 29786250 DOI: 10.7507/1002-1892.201610077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective To investigate the effect of staphylococcal lipoteichoic acid (LTA-sa) on RAW264.7 cells differentiation into osteoclasts. Methods RAW264.7 cells were cultured with LTA-sa of 100 ng/mL (group A), LTA-sa of 200 ng/mL (group B), LTA-sa of 400 ng/mL (group C), receptor activator of nuclear factor κB (NF-κB) ligand (RANKL) of 100 ng/mL as positive control (group D), and equal volume of PBS as blank control (group E) respectively for 5 days. And then, tartrate resistant acid phosphatase staining (TRAP) was used to detect the formation of osteoclast-like cells, Image-Pro Plus 6.0 software to measure the areas of bone resorption pits in Corning Osteo Assay Surface (COAS) wells, and MTT assay to observe the proliferation activity of RAW264.7 cells in group A, B, C, and E. Results After cultured for 5 days, the formation of osteoclast-like cells and bone resorption pits were observed in all groups. The number of osteoclast-like cells and the area of bone resorption pits in groups A, B, C, and D were more than those in group E. And with the increased concentration of LTA-sa, the indexes in groups A, B, and C increased gradually, but were lower than those in group D, and differences were significant between groups ( P<0.05). At 5 days after culture, there was no significant difference in absorbance value among the experimental groups (groups A, B, C, and E) ( P>0.05). Conclusion LTA-sa has promoting effect on RAW264.7 cells differentiation into osteoclasts.
Collapse
Affiliation(s)
- Lirong Ren
- Department of Traumatic Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650101, P.R.China
| | - Yongqing Xu
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming Yunnan, 650032,
| | - Hai Wang
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming Yunnan, 650032, P.R.China
| | - Xiaoqing He
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming Yunnan, 650032, P.R.China
| | - Muguo Song
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Command, Kunming Yunnan, 650032, P.R.China
| | - Xueqiu Chen
- Department of Traumatic Surgery, the Second Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650101, P.R.China
| |
Collapse
|