1
|
Ouyang D, Dan A, Lin Z, Cai Z. Spherical covalent-organic framework-assisted laser desorption ionization mass spectrometry reveals the promotional effect of triphenyl phosphate on breast cancer in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177155. [PMID: 39447910 DOI: 10.1016/j.scitotenv.2024.177155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Triphenyl phosphate (TPP), a wide-used organophosphate flame retardants (OPFRs), is suspected to be a risk factor for the female-specific cancers, but underlying toxicity mechanisms of environmentally relevant dose exposure remain unclear. Herein, a strategy of spherical covalent organic framework (TPB-BPTP-COF)-assisted laser desorption ionization mass spectrometry (LDI-MS), which benefited from fast analysis speed, facile sample preprocessing, and high throughput, was proposed for unveiling the biomarkers of breast cancer (BC) and the relationship between TPP exposure and progression of BC in mice by serum metabolism analysis. The results displayed that 13 metabolites associated with BC development were up-regulated in experimental group versus healthy control mice. Moreover, long-term exposure to environmentally relevant doses of TPP was found to promote BC, mainly by affecting glycolysis/gluconeogenesis, pyrimidine metabolism, pantothenic acid and CoA biosynthesis, and β-alanine metabolism. This work proved the potential application of COFs as LDI-MS substrates in analyzing complex biological samples, and also revealed the risk of long-term low-dose exposure to TPP in the development of BC.
Collapse
Affiliation(s)
- Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Akang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Attah CO, Alhaji UI, Ameh DA, Forcados GE, Muhammad A, Bashir M, Ibrahim S. In Vivo Chemosuppressive Effects of Kolaviron on 7,12-Dimethylbenzanthracene-Induced Mammary Lesions are Associated with Changes in Levels of Estrogen Receptor-α, CYP 1A1, Proinflammatory Cytokines, and Alterations to Metabolic Pathways Implicated in Mammary Carcinogenesis. J Med Food 2024; 27:940-950. [PMID: 39093123 DOI: 10.1089/jmf.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Garcinia kola is a medicinal food commonly consumed in Sub-Sahara Africa, for which Kolaviron (KV) is the active portion. As a follow-up to our earlier chemopreventive studies, we investigated the chemotherapeutic effects of KV on experimentally induced mammary carcinogenesis in female Wistar rats. Mammary carcinogenesis was induced using 80 mg/kg of 7,12-dimethylbenzanthracene (DMBA) administered by oral gavage. One hundred-fifty days post-DMBA induction, estrogen receptor-α (ER-α) levels were determined in the experimental rats before treatment with KV commenced. Treatment was done using 50, 100, and 200 mg/kg KV thrice a week for 4 weeks, after which the experiment was terminated. Significantly higher levels of estrogen receptor-α, CYP 1A1, malondialdehyde, formation of lobular neoplastic cells, epithelial hyperplasia, lymphocyte infiltration, and increased cytokine (interleukin-6 and tumor necrosis factor-α) activity were observed in DMBA-induced rats, which were attenuated in KV-treated rats. Tyrosine metabolism was exclusively enriched in DMBA-induced rats in contrast to KV-treated rats. Collectively, the results point to the chemotherapeutic potential of KV.
Collapse
Affiliation(s)
- Catherine Ojebbah Attah
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Umar Ismail Alhaji
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Danladi Amodu Ameh
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Musa Bashir
- Center for Dryland Agriculture, Bayero University, Kano, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| |
Collapse
|
3
|
Zhang Q, Lu R, Wu Y, Hong Y, Wang N, Wang C. Use of ultra-high performance liquid chromatography-high-resolution mass spectroscopy to profile the metabolites from the serum of patients with breast cancer. Oncol Lett 2024; 27:209. [PMID: 38549802 PMCID: PMC10973928 DOI: 10.3892/ol.2024.14342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/07/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer (BC) is the most common type of malignancy and the leading cause of cancer-associated mortality in women worldwide. As such, assessing the metabolic changes during human breast carcinogenesis is key for developing disease prevention methods and treatment. In the present study, non-targeted metabolomics with chemometrics based on ultra-high performance liquid chromatography-high-resolution mass spectrometry were performed to assess differences in serum metabolite patterns between patients with BC and healthy individuals. A total of 3,246 metabolites in the sera of healthy controls and patients with BC were found. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that arginine, proline, nicotinate, nicotinamide, caffeine and arachidonic acid metabolism, as well as fatty acid biosynthesis were significantly altered in patients with BC in comparison with controls. These results suggested that serum metabolic profiling has potential for discovering molecular biomarkers for the detection of BC. It may also further the understanding of the underlying mechanisms associated with this disease.
Collapse
Affiliation(s)
- Qinqin Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Rongzhao Lu
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying Wu
- School of Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
| | - Yong Hong
- Department of Thyroid and Breast Surgery, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region 541002, P.R. China
| | - Ningxia Wang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
4
|
Wu K, Gong W, Lin S, Huang S, Mu H, Wang M, Sheng J, Zhao C. Regulation of Sacha Inchi protein on fecal metabolism and intestinal microorganisms in mice. Front Nutr 2024; 11:1354486. [PMID: 38524850 PMCID: PMC10959099 DOI: 10.3389/fnut.2024.1354486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.
Collapse
Affiliation(s)
- Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Shiyang Lin
- Pu'er Agricultural Science Research Institute, Pu-er, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongyu Mu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming, Yunnan, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
5
|
Tardito S, MacKay C. Rethinking our approach to cancer metabolism to deliver patient benefit. Br J Cancer 2023; 129:406-415. [PMID: 37340094 PMCID: PMC10403540 DOI: 10.1038/s41416-023-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Altered cellular metabolism is a major mechanism by which tumours support nutrient consumption associated with increased cellular proliferation. Selective dependency on specific metabolic pathways provides a therapeutic vulnerability that can be targeted in cancer therapy. Anti-metabolites have been used clinically since the 1940s and several agents targeting nucleotide metabolism are now well established as standard of care treatment in a range of indications. However, despite great progress in our understanding of the metabolic requirements of cancer and non-cancer cells within the tumour microenvironment, there has been limited clinical success for novel agents targeting pathways outside of nucleotide metabolism. We believe that there is significant therapeutic potential in targeting metabolic processes within cancer that is yet to be fully realised. However, current approaches to identify novel targets, test novel therapies and select patient populations most likely to benefit are sub-optimal. We highlight recent advances in technologies and understanding that will support the identification and validation of novel targets, re-evaluation of existing targets and design of optimal clinical positioning strategies to deliver patient benefit.
Collapse
Affiliation(s)
- Saverio Tardito
- The Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
6
|
Lacticaseibacillus rhamnosus Probio-M9-Driven Mouse Mammary Tumor-Inhibitory Effect Is Accompanied by Modulation of Host Gut Microbiota, Immunity, and Serum Metabolome. Nutrients 2022; 15:nu15010005. [PMID: 36615662 PMCID: PMC9824041 DOI: 10.3390/nu15010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiome may influence tumor growth and cancer treatment efficacy, so it is a potential target for tumor prevention/treatment. This pilot study investigated the preventive and therapeutic effects of a probiotic strain, Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9), against murine mammary cancer. Thirty-six female mice were randomly divided into three groups (n = 12 per group): control (without tumor transplantation), model (tumor transplantation; no probiotic administration), and probiotic (30-day oral gavage of probiotic, started seven days before tumor transplantation). Changes in tumor size were recorded, and blood, tumor tissue, and stool samples were collected at the end of the trial for analyses. Comparing with the model group, the probiotic group had a significantly smaller tumor volume (p < 0.05), a higher fecal microbiota Shannon diversity index, with significant modifications in the gut microbiota structure (p < 0.05), characterized by more Alistipes sp._2, Porphyromonadaceae bacterium_7, and Bacteroidales bacterium 55_9 (p < 0.05). Additionally, Probio-M9 administration elevated the serum IFN-γ, IL-9, IL-13, and IL-27 levels and several metabolites (e.g., pyridoxal, nicotinic acid, 3-hydroxybutyric acid, glutamine; p < 0.05), while reducing IL-5 (p < 0.05). These changes might be associated with the protective effect of Probio-M9 against mammary tumor growth. Thus, probiotic administration could harness host gut microbiome in anti-cancer responses.
Collapse
|
7
|
Araújo R, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Metabolic Adaptations in an Endocrine-Related Breast Cancer Mouse Model Unveil Potential Markers of Tumor Response to Hormonal Therapy. Front Oncol 2022; 12:786931. [PMID: 35299741 PMCID: PMC8921989 DOI: 10.3389/fonc.2022.786931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone receptor activation is the primary treatment strategy, however, about half of the patients, develop resistance in time. This involves the development of hormone independent tumors that initially are ET-responsive (HI), which may subsequently become resistant (HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and not completely understood. The aim of this work was to characterize the metabolic adaptations accompanying this conversion through the analysis of the polar metabolomes of tumor tissue and non-compromised mammary gland from mice implanted subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate (MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance (NMR) spectroscopy of tissue polar extracts and data mining through multivariate and univariate statistical analysis. Initial results unveiled marked changes between global tumor profiles and non-compromised mammary gland tissues, as expected. More importantly, specific metabolic signatures were found to accompany progression from HD, through HI and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and metabolites related to oxidative stress protection mechanisms. For each transition, sets of polar metabolites are advanced as potential markers of progression, including acquisition of resistance to ET. Putative biochemical interpretation of such signatures are proposed and discussed.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Victoria Fabris
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Luisa A Helguero
- Institute of Biomedicine (iBIMED), Department of Medical Sciences, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
8
|
Lu Y, Lin L, Ye J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater Today Bio 2022; 13:100205. [PMID: 35118368 PMCID: PMC8792281 DOI: 10.1016/j.mtbio.2022.100205] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Metabolites are important biomarkers in human body fluids, conveying direct information of cellular activities and physical conditions. Metabolite detection has long been a research hotspot in the field of biology and medicine. Surface-enhanced Raman spectroscopy (SERS), based on the molecular “fingerprint” of Raman spectrum and the enormous signal enhancement (down to a single-molecule level) by plasmonic nanomaterials, has proven to be a novel and powerful tool for metabolite detection. SERS provides favorable properties such as ultra-sensitive, label-free, rapid, specific, and non-destructive detection processes. In this review, we summarized the progress in recent 10 years on SERS-based sensing of endogenous metabolites at the cellular level, in tissues, and in biofluids, as well as drug metabolites in biofluids. We made detailed discussions on the challenges and optimization methods of SERS technique in metabolite detection. The combination of SERS with modern biomedical technology were also anticipated.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Corresponding author.
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Corresponding author. State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
9
|
Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice. Int J Biol Macromol 2021; 182:595-611. [PMID: 33836198 DOI: 10.1016/j.ijbiomac.2021.03.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharides (MOP) on the serum indexes, small intestinal morphology, small intestinal metabolic profile, and caecal microbiota of mice. A new type of polysaccharides with 104,031 Da molecular weight and triple helix structure was isolated from M. oleifera leaves for in vivo experiment. Forty male SPF C57BL/6 mice aged 4 weeks were average divided into four groups randomly according to the MOP gavaged daily (0, 20, 40 and 60 mg/kg body weight MOP). After a 7-day preliminary trial period and a 28-day official trial period, the mice were slaughtered. Results showed that MOP reduced glucose, total cholesterol, and malondialdehyde. It also improved superoxide dismutase and catalase in serum (P < 0.05). For small intestinal morphology, MOP improved the villi length and crypt depth in both ileum and jejunum (P < 0.05); the ratio of villi length to crypt depth in jejunum increased (P < 0.05). MOP could cause the increase of beneficial bacteria and the decrease of harmful bacteria in caecum, further affecting the function of microbiota. In addition, MOP regulated 114 metabolites enriched in the pathway related to the synthesis and metabolism of micromolecules. In sum, MOP exerted positive effects on the serum indexes and intestinal health of mice.
Collapse
|
10
|
"Oncometabolism: The switchboard of cancer - An editorial". Biochim Biophys Acta Mol Basis Dis 2020; 1867:166031. [PMID: 33310398 DOI: 10.1016/j.bbadis.2020.166031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Bispo D, Fabris V, Lamb CA, Lanari C, Helguero LA, Gil AM. Hormone-Independent Mouse Mammary Adenocarcinomas with Different Metastatic Potential Exhibit Different Metabolic Signatures. Biomolecules 2020; 10:E1242. [PMID: 32867141 PMCID: PMC7563858 DOI: 10.3390/biom10091242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
The metabolic characteristics of metastatic and non-metastatic breast carcinomas remain poorly studied. In this work, untargeted Nuclear Magnetic Resonance (NMR) metabolomics was used to compare two medroxyprogesterone acetate (MPA)-induced mammary carcinomas lines with different metastatic abilities. Different metabolic signatures distinguished the non-metastatic (59-2-HI) and the metastatic (C7-2-HI) lines, with glucose, amino acid metabolism, nucleotide metabolism and lipid metabolism as the major affected pathways. Non-metastatic tumours appeared to be characterised by: (a) reduced glycolysis and tricarboxylic acid cycle (TCA) activities, possibly resulting in slower NADH biosynthesis and reduced mitochondrial transport chain activity and ATP synthesis; (b) glutamate accumulation possibly related to reduced glutathione activity and reduced mTORC1 activity; and (c) a clear shift to lower phosphoscholine/glycerophosphocholine ratios and sphingomyelin levels. Within each tumour line, metabolic profiles also differed significantly between tumours (i.e., mice). Metastatic tumours exhibited marked inter-tumour changes in polar compounds, some suggesting different glycolytic capacities. Such tumours also showed larger intra-tumour variations in metabolites involved in nucleotide and cholesterol/fatty acid metabolism, in tandem with less changes in TCA and phospholipid metabolism, compared to non-metastatic tumours. This study shows the valuable contribution of untargeted NMR metabolomics to characterise tumour metabolism, thus opening enticing opportunities to find metabolic markers related to metastatic ability in endocrine breast cancer.
Collapse
Affiliation(s)
- Daniela Bispo
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Victoria Fabris
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Caroline A. Lamb
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Claudia Lanari
- IByME—Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina; (V.F.); (C.A.L.); (C.L.)
| | - Luisa A. Helguero
- iBIMED—Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal;
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|