1
|
Takahata S, Taguchi A, Takenaka A, Mori M, Chikashige Y, Tsutsumi C, Hiraoka Y, Murakami Y. The HMG-box module in FACT is critical for suppressing epigenetic variegation of heterochromatin in fission yeast. Genes Cells 2024; 29:567-583. [PMID: 38837646 DOI: 10.1111/gtc.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by epe1+ disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Asahi Taguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Ayaka Takenaka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Miyuki Mori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutsumi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Zheng J, Tang H, Wang J, Liu Y, Ge L, Liu G, Shi Q, Zhang Y. Genome-Wide Identification and Expression Analysis of the High-Mobility Group B ( HMGB) Gene Family in Plant Response to Abiotic Stress in Tomato. Int J Mol Sci 2024; 25:5850. [PMID: 38892039 PMCID: PMC11172549 DOI: 10.3390/ijms25115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
High-mobility group B (HMGB) proteins are a class of non-histone proteins associated with eukaryotic chromatin and are known to regulate a variety of biological processes in plants. However, the functions of HMGB genes in tomato (Solanum lycopersicum) remain largely unexplored. Here, we identified 11 members of the HMGB family in tomato using BLAST. We employed genome-wide identification, gene structure analysis, domain conservation analysis, cis-acting element analysis, collinearity analysis, and qRT-PCR-based expression analysis to study these 11 genes. These genes were categorized into four groups based on their unique protein domain structures. Despite their structural diversity, all members contain the HMG-box domain, a characteristic feature of the HMG superfamily. Syntenic analysis suggested that tomato SlHMGBs have close evolutionary relationships with their homologs in other dicots. The promoter regions of SlHMGBs are enriched with numerous cis-elements related to plant growth and development, phytohormone responsiveness, and stress responsiveness. Furthermore, SlHMGB members exhibited distinct tissue-specific expression profiles, suggesting their potential roles in regulating various aspects of plant growth and development. Most SlHMGB genes respond to a variety of abiotic stresses, including salt, drought, heat, and cold. For instance, SlHMGB2 and SlHMGB4 showed positive responses to salt, drought, and cold stresses. SlHMGB1, SlHMGB3, and SlHMGB8 were involved in responses to two types of stress: SlHMGB1 responded to drought and heat, while SlHMGB3 and SlHMGB8 responded to salt and heat. SlHMGB6 and SlHMGB11 were solely regulated by drought and heat stress, respectively. Under various treatment conditions, the number of up-regulated genes significantly outnumbered the down-regulated genes, implying that the SlHMGB family may play a crucial role in mitigating abiotic stress in tomato. These findings lay a foundation for further dissecting the precise roles of SlHMGB genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (J.Z.); (H.T.); (J.W.); (Y.L.); (L.G.); (G.L.); (Q.S.)
| |
Collapse
|
3
|
Calderón AA, Almagro L, Martínez-Calderón A, Ferrer MA. Transcriptional reprogramming in sound-treated Micro-Tom plants inoculated with Pseudomonas syringae pv. tomato DC3000. PHYSIOLOGIA PLANTARUM 2024; 176:e14335. [PMID: 38705728 DOI: 10.1111/ppl.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.
Collapse
Affiliation(s)
- Antonio A Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Lorena Almagro
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | | - María A Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
4
|
Ijaz S, Haq IU, Khan IA, Ali HM, Kaur S, Razzaq HA. Identification of resistance gene analogs of the NBS-LRR family through transcriptome probing and in silico prediction of the expressome of Dalbergia sissoo under dieback disease stress. Front Genet 2022; 13:1036029. [PMID: 36276980 PMCID: PMC9585183 DOI: 10.3389/fgene.2022.1036029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia sissoo is an important timber tree, and dieback disease poses a dire threat to it toward extinction. The genomic record of D. sissoo is not available yet on any database; that is why it is challenging to probe the genetic elements involved in stress resistance. Hence, we attempted to unlock the genetics involved in dieback resistance through probing the NBS-LRR family, linked with mostly disease resistance in plants. We analyzed the transcriptome of D. sissoo under dieback challenge through DOP-rtPCR analysis using degenerate primers from conserved regions of NBS domain-encoded gene sequences. The differentially expressed gene sequences were sequenced and in silico characterized for predicting the expressome that contributes resistance to D. sissoo against dieback. The molecular and bioinformatic analyses predicted the presence of motifs including ATP/GTP-binding site motif A (P-loop NTPase domain), GLPL domain, casein kinase II phosphorylation site, and N-myristoylation site that are the attributes of proteins encoded by disease resistance genes. The physicochemical characteristics of identified resistance gene analogs, subcellular localization, predicted protein fingerprints, in silico functional annotation, and predicted protein structure proved their role in disease and stress resistance.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Imran Ul Haq,
| | - Iqrar Ahmad Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sukhwinder Kaur
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Hafiza Arooj Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Zhang D, Liu T, Sheng J, Lv S, Ren L. TMT-Based Quantitative Proteomic Analysis Reveals the Physiological Regulatory Networks of Embryo Dehydration Protection in Lotus ( Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2021; 12:792057. [PMID: 34975978 PMCID: PMC8718645 DOI: 10.3389/fpls.2021.792057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Lotus is an aquatic plant that is sensitive to water loss, but its seeds are longevous after seed embryo dehydration and maturation. The great difference between the responses of vegetative organs and seeds to dehydration is related to the special protective mechanism in embryos. In this study, tandem mass tags (TMT)-labeled proteomics and parallel reaction monitoring (PRM) technologies were used to obtain novel insights into the physiological regulatory networks during lotus seed dehydration process. Totally, 60,266 secondary spectra and 32,093 unique peptides were detected. A total of 5,477 proteins and 815 differentially expressed proteins (DEPs) were identified based on TMT data. Of these, 582 DEPs were continuously downregulated and 228 proteins were significantly up-regulated during the whole dehydration process. Bioinformatics and protein-protein interaction network analyses indicated that carbohydrate metabolism (including glycolysis/gluconeogenesis, galactose, starch and sucrose metabolism, pentose phosphate pathway, and cell wall organization), protein processing in ER, DNA repair, and antioxidative events had positive responses to lotus embryo dehydration. On the contrary, energy metabolism (metabolic pathway, photosynthesis, pyruvate metabolism, fatty acid biosynthesis) and secondary metabolism (terpenoid backbone, steroid, flavonoid biosynthesis) gradually become static status during lotus embryo water loss and maturation. Furthermore, non-enzymatic antioxidants and pentose phosphate pathway play major roles in antioxidant protection during dehydration process in lotus embryo. Abscisic acid (ABA) signaling and the accumulation of oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins may be the key factors to ensure the continuous dehydration and storage tolerance of lotus seed embryo. Stress physiology detection showed that H2O2 was the main reactive oxygen species (ROS) component inducing oxidative stress damage, and glutathione and vitamin E acted as the major antioxidant to maintain the REDOX balance of lotus embryo during the dehydration process. These results provide new insights to reveal the physiological regulatory networks of the protective mechanism of embryo dehydration in lotus.
Collapse
Affiliation(s)
- Di Zhang
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Liu
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangyuan Sheng
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Lv
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
HBD1 protein with a tandem repeat of two HMG-box domains is a DNA clip to organize chloroplast nucleoids in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2021; 118:2021053118. [PMID: 33975946 PMCID: PMC8157925 DOI: 10.1073/pnas.2021053118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA-protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9-mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.
Collapse
|
7
|
High-mobility group box 2 reflects exacerbated disease characteristics and poor prognosis in non-small cell lung cancer patients. Ir J Med Sci 2021; 191:155-162. [PMID: 33635447 DOI: 10.1007/s11845-021-02549-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND High-mobility group box 2 (HMGB2) is considered as oncogene in non-small cell lung cancer (NSCLC), while its clinical implication is still unknown. This study aimed to explore the correlation of HMGB2 with clinicopathological characteristics and prognosis in NSCLC patients. METHODS A total of 133 NSCLC patients who received radical excision were enrolled. HMGB2 expression in the tumor specimens and paired adjacent tissue specimens was determined by immunohistochemical assay (for protein expression) and reverse transcription quantitative polymerase chain reaction assay (for gene expression), respectively. RESULTS HMGB2 protein expression was higher in tumor tissue compared with adjacent tissue, and it could distinguish tumor tissue from adjacent tissue (area under the curve (AUC): 0.775, 95%confidence interval (95%CI): 0.720-0.830). Meanwhile, tumor HMGB2 protein high expression correlated with lymph node (LYN) metastasis and advanced TNM stage. Additionally, tumor HMGB2 protein high expression associated with worse disease-free survival (DFS), while HMGB2 protein expression did not correlate with overall survival (OS). Besides, HMGB2 mRNA expression was raised in tumor tissue compared with adjacent tissue, and it had a good value in differentiating tumor tissue from adjacent tissue (AUC: 0.875, 95% CI: 0.834-0.915). Furthermore, tumor HMGB2 mRNA high expression correlated with higher Eastern Cooperative Oncology Group performance status score, LYN metastasis, and advanced TNM stage. Meanwhile, tumor HMGB2 mRNA high expression associated with shorter DFS and OS. CONCLUSION HMGB2 could be a biomarker that reflects disease features and prognosis of NSCLC, which is beneficial to improve clinical efficacy in NSCLC patients.
Collapse
|
8
|
Xu K, Chen S, Li T, Yu S, Zhao H, Liu H, Luo L. Overexpression of OsHMGB707, a High Mobility Group Protein, Enhances Rice Drought Tolerance by Promoting Stress-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:711271. [PMID: 34421959 PMCID: PMC8375505 DOI: 10.3389/fpls.2021.711271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 05/05/2023]
Abstract
Drought stress adversely affects crop growth and productivity worldwide. In response, plants have evolved several strategies in which numerous genes are induced to counter stress. High mobility group (HMG) proteins are the second most abundant family of chromosomal proteins. They play a crucial role in gene transcriptional regulation by modulating the chromatin/DNA structure. In this study, we isolated a novel HMG gene, OsHMGB707, one of the candidate genes localized in the quantitative trait loci (QTL) interval of rice drought tolerance, and examined its function on rice stress tolerance. The expression of OsHMGB707 was up-regulated by dehydration and high salt treatment. Its overexpression significantly enhanced drought tolerance in transgenic rice plants, whereas its knockdown through RNA interference (RNAi) did not affect the drought tolerance of the transgenic rice plants. Notably, OsHMGB707-GFP is localized in the cell nucleus, and OsHMGB707 is protein-bound to the synthetic four-way junction DNA. Several genes were up-regulated in OsHMGB707-overexpression (OE) rice lines compared to the wild-type rice varieties. Some of the genes encode stress-related proteins (e.g., DREB transcription factors, heat shock protein 20, and heat shock protein DnaJ). In summary, OsHMGB707 encodes a stress-responsive high mobility group protein and regulates rice drought tolerance by promoting the expression of stress-related genes.
Collapse
Affiliation(s)
- Kai Xu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Shoujun Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Zhao
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
- *Correspondence: Hongyan Liu,
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Lijun Luo,
| |
Collapse
|
9
|
Li S, Xin M, Luan J, Liu D, Wang C, Liu C, Zhang W, Zhou X, Qin Z. Overexpression of CsHMGB Alleviates Phytotoxicity and Propamocarb Residues in Cucumber. FRONTIERS IN PLANT SCIENCE 2020; 11:738. [PMID: 32595667 PMCID: PMC7304447 DOI: 10.3389/fpls.2020.00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Cucumber (Cucumis sativus L.) is one of the most economically important fruits of the Cucurbitaceae family, therefore consideration of potential pesticide residues in the fruit in the context of cucumber breeding and production programs is important. Propamocarb (a pesticide commonly used to prevent downy mildew) is widely used in cucumber cultivation, but the molecular mechanism underlying the degradation and metabolism of propamocarb in cucumber is not well understood. We screened a candidate CsHMGB gene (CsaV3-5G28190) for response to propamocarb exposure using transcriptome data. The coding region of CsHMGB was 624 bp in length and encoded the conserved HMB-box region. CsHMGB expression differed significantly between the "D0351" genotype, which accumulated low levels of propamocarb, and the "D9320" genotype, which accumulated high levels of propamocarb. CsHMGB expression was positively correlated with propamocarb levels in the cucumber peel. CsHMGB expression was upregulated in the fruit peels of the "D0351" genotype following exposure to propamocarb stress for 3-120 h, but no difference was observed in expression between propamocarb treatment and control for the "D9320" genotype. For the "D0351" genotype, CsHMGB expression was higher in the fruit peels and leaves than that in female flowers; expression was moderate in the stems and fruit pulps, and weak in male flowers and roots. The CsHMGB protein was targeted to the nucleus in Arabidopsis protoplasts and in the epidermis of Nicotiana benthamiana leaves. We measured MDA, O2 -, and H2O2 levels in cucumber plants and found that they were likely to accumulate reactive oxygen species (ROS) in response to propamocarb stress. Analysis of antioxidant enzyme activity (SOD, POD, CAT, APX, GPX, GST, and GR) and the ascorbate-glutathione (AsA-GSH) system showed that the resistance of the plants was reduced and the levels of propamocarb residue was increased in CsHMGB-silenced plants in response to propamocarb stress. Conversely, overexpression of CsHMGB promoted glutathione-dependent detoxification by AsA-GSH system and improved the antioxidant potential, reduced the accumulation of ROS. Ultimately, the metabolism of propamocarb in cucumber was increased via increase in the wax levels and the stomatal conductance.
Collapse
Affiliation(s)
- Shengnan Li
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Jie Luan
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Dong Liu
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Chunhua Wang
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunhong Liu
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Wenshuo Zhang
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Xiuyan Zhou
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| | - Zhiwei Qin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
|
11
|
de Abreu da Silva IC, Vicentino ARR, Dos Santos RC, da Fonseca RN, de Mendonça Amarante A, Carneiro VC, de Amorim Pinto M, Aguilera EA, Mohana-Borges R, Bisch PM, da Silva-Neto MAC, Fantappié MR. Molecular and functional characterization of single-box high-mobility group B (HMGB) chromosomal protein from Aedes aegypti. Gene 2018; 671:152-160. [PMID: 29859286 DOI: 10.1016/j.gene.2018.05.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Abstract
High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis.
Collapse
Affiliation(s)
- Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | | | | | - Anderson de Mendonça Amarante
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | - Marcia de Amorim Pinto
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Brazil.
| |
Collapse
|
12
|
Ramos-Sánchez JM, Triozzi PM, Moreno-Cortés A, Conde D, Perales M, Allona I. Real-time monitoring of PtaHMGB activity in poplar transactivation assays. PLANT METHODS 2017; 13:50. [PMID: 28638438 PMCID: PMC5472981 DOI: 10.1186/s13007-017-0199-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/08/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Precise control of gene expression is essential to synchronize plant development with the environment. In perennial plants, transcriptional regulation remains poorly understood, mainly due to the long time required to perform functional studies. Transcriptional reporters based on luciferase have been useful to study circadian and diurnal regulation of gene expression, both by transcription factors and chromatin remodelers. The high mobility group proteins are considered transcriptional chaperones that also modify the chromatin architecture. They have been found in several species, presenting in some cases a circadian expression of their mRNA or protein. RESULTS Transactivation experiments have been shown as a powerful and fast method to obtain information about the potential role of transcription factors upon a certain reporter. We designed and validated a luciferase transcriptional reporter using the 5' sequence upstream ATG of Populus tremula × alba LHY2 gene. We showed the robustness of this reporter line under long day and continuous light conditions. Moreover, we confirmed that pPtaLHY2::LUC activity reproduces the accumulation of PtaLHY2 mRNA. We performed transactivation studies by transient expression, using the reporter line as a genetic background, unraveling a new function of a high mobility group protein in poplar, which can activate the PtaLHY2 promoter in a gate-dependent manner. We also showed PtaHMGB2/3 needs darkness to produce that activation and exhibits an active degradation after dawn, mediated by the 26S proteasome. CONCLUSIONS We generated a stable luciferase reporter poplar line based on the circadian clock gene PtaLHY2, which can be used to investigate transcriptional regulation and signal transduction pathway. Using this reporter line as a genetic background, we established a methodology to rapidly assess potential regulators of diurnal and circadian rhythms. This tool allowed us to demonstrate that PtaHMGB2/3 promotes the transcriptional activation of our reporter in a gate-dependent manner. Moreover, we added new information about the PtaHMGB2/3 protein regulation along the day. This methodology can be easily adapted to other transcription factors and reporters.
Collapse
Affiliation(s)
- José M. Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alicia Moreno-Cortés
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
13
|
Antosch M, Schubert V, Holzinger P, Houben A, Grasser KD. Mitotic lifecycle of chromosomal 3xHMG-box proteins and the role of their N-terminal domain in the association with rDNA loci and proteolysis. THE NEW PHYTOLOGIST 2015; 208:1067-1077. [PMID: 26213803 DOI: 10.1111/nph.13575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/16/2015] [Indexed: 05/21/2023]
Abstract
The high mobility group (HMG)-box is a DNA-binding domain characteristic of various eukaryotic DNA-binding proteins. 3xHMG-box proteins (containing three copies of the HMG-box domain and a unique basic N-terminal domain) are specific for plants and the Arabidopsis genome encodes two versions termed 3xHMG-box1 and 3xHMG-box2, whose expression is cell cycle-dependent, peaking during mitosis. Here, we analysed in detail the spatiotemporal expression, subcellular localisation and chromosome association of the Arabidopsis thaliana 3xHMG-box proteins. Live cell imaging and structured illumination microscopy revealed that the expression of the 3xHMG-box proteins is induced in late G2 phase of the cell cycle and upon nuclear envelope breakdown in prophase they rapidly associate with the chromosomes. 3xHMG-box1 associates preferentially with 45S rDNA loci and the basic N-terminal domain is involved in the targeting of rDNA loci. Shortly after mitosis the 3xHMG-box proteins are degraded and an N-terminal destruction-box mediates the proteolysis. Ectopic expression/localisation of 3xHMG-box1 in interphase nuclei results in reduced plant growth and various developmental defects including early bolting and abnormal flower morphology. The remarkable conservation of 3xHMG-box proteins within the plant kingdom, their characteristic expression during mitosis, and their striking association with chromosomes, suggest that they play a role in the organisation of plant mitotic chromosomes.
Collapse
Affiliation(s)
- Martin Antosch
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, D-06466, Stadt Seeland, Germany
| | - Philipp Holzinger
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, D-06466, Stadt Seeland, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
14
|
Chinpongpanich A, Phean-O-Pas S, Thongchuang M, Qu LJ, Buaboocha T. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein. Acta Biochim Biophys Sin (Shanghai) 2015; 47:880-9. [PMID: 26423116 DOI: 10.1093/abbs/gmv097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 11/14/2022] Open
Abstract
A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.
Collapse
Affiliation(s)
- Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Srivilai Phean-O-Pas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mayura Thongchuang
- Division of Food Safety Management and Technology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
16
|
Xia C, Wang YJ, Liang Y, Niu QK, Tan XY, Chu LC, Chen LQ, Zhang XQ, Ye D. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:741-56. [PMID: 24923357 DOI: 10.1111/tpj.12582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 05/22/2023]
Abstract
In flowering plants, male gametes (sperm cells) develop within male gametophytes (pollen grains) and are delivered to female gametes for double fertilization by pollen tubes. Therefore, pollen tube growth is crucial for reproduction. The mechanisms that control pollen tube growth remain poorly understood. In this study, we demonstrated that the ARID-HMG DNA-binding protein AtHMGB15 plays an important role in pollen tube growth. This protein is preferentially expressed in pollen grains and pollen tubes and is localized in the vegetative nuclei of the tricellular pollen grains and pollen tubes. Knocking down AtHMGB15 expression via a Ds insertion caused retarded pollen tube growth, leading to a significant reduction in the seed set. The athmgb15-1 mutation affected the expression of 1686 genes in mature pollen, including those involved in cell wall formation and modification, cell signaling and cellular transport during pollen tube growth. In addition, it was observed that AtHMGB15 binds to DNA in vitro and interacts with the transcription factors AGL66 and AGL104, which are required for pollen maturation and pollen tube growth. These results suggest that AtHMGB15 functions in pollen tube growth through the regulation of gene expression.
Collapse
Affiliation(s)
- Chuan Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bigeard J, Rayapuram N, Bonhomme L, Hirt H, Pflieger D. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana. Proteomics 2014; 14:2141-55. [PMID: 24889360 DOI: 10.1002/pmic.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 11/09/2022]
Abstract
The nucleus is the organelle where basically all DNA-related processes take place in eukaryotes, such as replication, transcription, and splicing as well as epigenetic regulation. The identification and description of the nuclear proteins is one of the requisites toward a comprehensive understanding of the biological functions accomplished in the nucleus. Many of the regulatory mechanisms of protein functions rely on their PTMs among which phosphorylation is probably one of the most important properties affecting enzymatic activity, interaction with other molecules, localization, or stability. So far, the nuclear and subnuclear proteome and phosphoproteome of the model plant Arabidopsis thaliana have been the subject of very few studies. In this work, we developed a purification protocol of Arabidopsis chromatin-associated proteins and performed proteomic and phosphoproteomic analyses identifying a total of 879 proteins of which 198 were phosphoproteins that were mainly involved in chromatin remodeling, transcriptional regulation, and RNA processing. From 230 precisely localized phosphorylation sites (phosphosites), 52 correspond to hitherto unidentified sites. This protocol and data thereby obtained should be a valuable resource for many domains of plant research.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | | | |
Collapse
|
18
|
Bigeard J, Rayapuram N, Pflieger D, Hirt H. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. Proteomics 2014; 14:2127-40. [PMID: 24889195 DOI: 10.1002/pmic.201400073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022]
Abstract
In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, Evry, France
| | | | | | | |
Collapse
|
19
|
Zhuang Q, Smallman H, Lambert SJ, Sodngam SS, Reynolds CD, Evans K, Dickman MJ, Baldwin JP, Wood CM. Cofractionation of HMGB proteins with histone dimers. Anal Biochem 2014; 447:98-106. [PMID: 24239809 DOI: 10.1016/j.ab.2013.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
An effective and flexible method is presented that can be used to investigate cofractionation of groups of nuclear proteins. The method was used to analyze chromatin-related proteins, of which high-mobility group B (HMGB) proteins consistently cofractionated by cation-exchange chromatography with the histone dimer (H2A-H2B). This led to the hypothesis that the two form a complex, further suggested by gel filtration, in which the HMGBs with core histones eluted as a defined high-molecular-weight peak. A necessary requirement for further studying protein interactions is that the constituents are of the highest possible purity and the pure histone dimers and tetramers used in this study were derived from pure histone octamers with their native marks. There is a growing interest in protein-protein interactions and an increasing focus on protein-interaction domains: most frequently, pull-down assays are used to examine these. The technology presented here can provide an effective system that complements pull-down assays.
Collapse
Affiliation(s)
- Qinqin Zhuang
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Hugh Smallman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stanley J Lambert
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Sirirath S Sodngam
- Natural Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Colin D Reynolds
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Katie Evans
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - John P Baldwin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Christopher M Wood
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
20
|
Localization and functional analysis of HmgB3p, a novel protein containing high-mobility-group-box domain from Tetrahymena thermophila. Gene 2013; 526:87-95. [PMID: 23685281 DOI: 10.1016/j.gene.2013.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/22/2022]
Abstract
The high-mobility-group (HMG)-box domain represents a very versatile protein domain that mediates the DNA-binding of non-sequence-specific and sequence-specific proteins. HMG-box proteins are involved in various nuclear functions, including modulating chromatin structure and genomic stability. In this study, we identified the gene HMGB3 in Tetrahymena thermophila. The predicted HmgB3p contained a single HMG-box, an SK-rich-repeat domain and a neutral phosphorylated C-terminal. HMGB3 was expressed in the growth and starvation stages. Furthermore, HMGB3 showed a higher expression levels during the conjugation stage. HMGB3 knockout strains showed no obvious cytological defects, although initiation of HMGB3 knockout strain mating was delayed and maximum mating was decreased. HA-HmgB3p localized on the micronucleus (MIC) during the vegetative growth and starvation stages. Furthermore, HA-HmgB3p specially decorated the meiotic and mitotic functional MIC during the conjugation stage. Truncated HMGB3 lacking the HMG box domain disappeared from MICs and diffused in the cytoplasm. Overexpressed HmgB3p was abnormally maintained in newly developing macronuclei and affected the viability of progeny. Taken together, these results show that HmgB3p is a germline micronuclear-specific marker protein. It may bind to micronucleus-specific DNA sequences or structures and is likely to have some function specific to micronuclei of T. thermophila.
Collapse
|
21
|
Narayanan MS, Rudenko G. TDP1 is an HMG chromatin protein facilitating RNA polymerase I transcription in African trypanosomes. Nucleic Acids Res 2013; 41:2981-92. [PMID: 23361461 PMCID: PMC3597664 DOI: 10.1093/nar/gks1469] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unusually for a eukaryote, Trypanosoma brucei transcribes its variant surface glycoprotein (VSG) gene expression sites (ESs) in a monoallelic fashion using RNA polymerase I (Pol I). It is still unclear how ES transcription is controlled in T. brucei. Here, we show that the TDP1 architectural chromatin protein is an essential high mobility group box (HMGB) protein facilitating Pol I transcription in T. brucei. TDP1 is specifically enriched at the active compared with silent VSG ES and immediately downstream of ribosomal DNA promoters and is abundant in the nucleolus and the expression site body subnuclear compartments. Distribution of TDP1 at Pol I-transcribed loci is inversely correlated with histones. Depletion of TDP1 results in up to 40–90% reduction in VSG and rRNA transcripts and a concomitant increase in histones H3, H2A and H1 at these Pol I transcription units. TDP1 shares features with the Saccharomyces cerevisiae HMGB protein Hmo1, but it is the first architectural chromatin protein facilitating Pol I-mediated transcription of both protein coding genes as well as rRNA. These results show that TDP1 has a mutually exclusive relationship with histones on actively transcribed Pol I transcription units, providing insight into how Pol I transcription is controlled.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | |
Collapse
|
22
|
Antosch M, Mortensen SA, Grasser KD. Plant proteins containing high mobility group box DNA-binding domains modulate different nuclear processes. PLANT PHYSIOLOGY 2012; 159:875-83. [PMID: 22585776 PMCID: PMC3387713 DOI: 10.1104/pp.112.198283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
23
|
Teng M, Balch C, Liu Y, Li M, Huang THM, Wang Y, Nephew KP, Li L. The influence of cis-regulatory elements on DNA methylation fidelity. PLoS One 2012; 7:e32928. [PMID: 22412954 PMCID: PMC3295790 DOI: 10.1371/journal.pone.0032928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation (“methylome”), i.e., predominant hypomethylation and localized hypermethylation, within “CpG islands” (CGIs). Moreover, although cancer cells have reduced methylation “fidelity” and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical Bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high- methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable “random” methylation (582 loci). These results support a “stochastic model” of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10−5) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having “random” methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs.
Collapse
Affiliation(s)
- Mingxiang Teng
- Harbin Institute of Technology, School of Computer Science and Technology, Harbin, Heilongjiang, China
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Curt Balch
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
| | - Meng Li
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
| | - Tim H. M. Huang
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Yadong Wang
- Harbin Institute of Technology, School of Computer Science and Technology, Harbin, Heilongjiang, China
- * E-mail: (YW); (KPN); (LL)
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
- Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (YW); (KPN); (LL)
| | - Lang Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
- Indiana Institute of Personalized Medicine, Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (YW); (KPN); (LL)
| |
Collapse
|
24
|
de Souza TA, Soprano AS, de Lira NPV, Quaresma AJC, Pauletti BA, Leme AFP, Benedetti CE. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA. PLoS One 2012; 7:e32305. [PMID: 22384209 PMCID: PMC3285215 DOI: 10.1371/journal.pone.0032305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/26/2012] [Indexed: 11/29/2022] Open
Abstract
Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Celso Eduardo Benedetti
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
25
|
Jerzmanowski A, Kotlinski M. Conserved chromatin structural proteins--a source of variation enabling plant-specific adaptations? THE NEW PHYTOLOGIST 2011; 192:563-566. [PMID: 22007881 DOI: 10.1111/j.1469-8137.2011.03918.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Andrzej Jerzmanowski
- Laboratory of Plant Molecular Biology, Warsaw University and Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
26
|
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GTS, Houben A, Grasser KD. The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. THE NEW PHYTOLOGIST 2011; 192:577-89. [PMID: 21781122 DOI: 10.1111/j.1469-8137.2011.03828.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. • DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. • The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. • In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.
Collapse
Affiliation(s)
- Dorthe S Pedersen
- Cell Biology and Plant Biochemistry, Regensburg University, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Merkle T, Grasser KD. Unexpected mobility of plant chromatin-associated HMGB proteins. PLANT SIGNALING & BEHAVIOR 2011; 6:878-80. [PMID: 21543902 PMCID: PMC3218493 DOI: 10.4161/psb.6.6.15255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High mobility group (HMG) proteins of the HMGB family containing a highly conserved HMG box are chromatin-associated proteins that interact with DNA and nucleosomes and catalyze changes in DNA topology, thereby facilitating important DNA-dependent processes. The genome of Arabidopsis thaliana encodes 15 different HMG-box proteins that are further subdivided into four groups: HMGB-type proteins, ARID-HMG proteins, 3xHMG proteins that contain three HMG boxes and the structure-specific recognition protein 1 (SSRP1). Typically, HMGB proteins are localized exclusively to the nucleus, like Arabidopsis HMGB1 and B5. However, these Arabidopsis HMGB proteins showed a very high mobility within the nuclear compartment. Recent studies revealed that Arabidopsis HMGB2/3 and B4 proteins are predominantly nuclear but also exist in the cytoplasm, suggesting an as yet unknown cytoplasmic function of these chromosomal HMG proteins.
Collapse
Affiliation(s)
- Thomas Merkle
- Faculty of Biology & Institute for Genome Research and Systems Biology, Bielefeld University, Bielefeld, Germany.
| | | |
Collapse
|
28
|
Itou J, Taniguchi N, Oishi I, Kawakami H, Lotz M, Kawakami Y. HMGB factors are required for posterior digit development through integrating signaling pathway activities. Dev Dyn 2011; 240:1151-62. [PMID: 21384471 DOI: 10.1002/dvdy.22598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2011] [Indexed: 12/13/2022] Open
Abstract
The chromatin factors Hmgb1 and Hmgb2 have critical roles in cellular processes, including transcription and DNA modification. To identify the function of Hmgb genes in embryonic development, we generated double mutants of Hmgb1;Hmgb2 in mice. While double null embryos arrest at E9.5, Hmgb1(-/-) ; Hmgb2(+/-) embryos exhibit a loss of digit5, the most posterior digit, in the forelimb. We show that Hmgb1(-/-) ; Hmgb2(+/-) forelimbs have a reduced level of Shh signaling, as well as a clear downregulation of Wnt and BMP target genes in the posterior region. Moreover, we demonstrate that hmgb1 and hmgb2 in zebrafish embryos enhance Wnt signaling in a variety of tissues, and that double knockdown embryos have reduced Wnt signaling and shh expression in pectoral fin buds. Our data show that Hmgb1 and Hmgb2 function redundantly to enhance Wnt signaling in embryos, and further suggest that integrating Wnt, Shh, and BMP signaling regulates the development of digit5 in forelimbs.
Collapse
Affiliation(s)
- Junji Itou
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
29
|
Pedersen DS, Merkle T, Marktl B, Lildballe DL, Antosch M, Bergmann T, Tönsing K, Anselmetti D, Grasser KD. Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins. PLANT PHYSIOLOGY 2010; 154:1831-41. [PMID: 20940346 PMCID: PMC2996034 DOI: 10.1104/pp.110.163055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/08/2010] [Indexed: 05/19/2023]
Abstract
High mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that as architectural factors are involved in the regulation of transcription and other DNA-dependent processes. HMGB proteins are generally considered nuclear proteins, although mammalian HMGB1 can also be detected in the cytoplasm and outside of cells. Plant HMGB proteins studied so far were found exclusively in the cell nucleus. Using immunofluorescence and fluorescence microscopy of HMGB proteins fused to the green fluorescent protein, we have examined the subcellular localization of the Arabidopsis (Arabidopsis thaliana) HMGB2/3 and HMGB4 proteins, revealing that, in addition to a prominent nuclear localization, they can be detected also in the cytoplasm. The nucleocytoplasmic distribution appears to depend on the cell type. By time-lapse fluorescence microscopy, it was observed that the HMGB2 and HMGB4 proteins tagged with photoactivatable green fluorescent protein can shuttle between the nucleus and the cytoplasm, while HMGB1 remains nuclear. The balance between the basic amino-terminal and the acidic carboxyl-terminal domains flanking the central HMG box DNA-binding domain critically influences the nucleocytoplasmic distribution of the HMGB proteins. Moreover, protein kinase CK2-mediated phosphorylation of the acidic tail modulates the intranuclear distribution of HMGB2. Collectively, our results show that, in contrast to other Arabidopsis HMGB proteins such as HMGB1 and HMGB5, the HMGB2/3 and HMGB4 proteins occur preferentially in the cell nucleus, but to various extents also in the cytoplasm.
Collapse
|
30
|
Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. PLANT, CELL & ENVIRONMENT 2010; 33:604-11. [PMID: 19930132 DOI: 10.1111/j.1365-3040.2009.02076.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants respond and adapt to drought, cold and high-salinity stress in order to survive. Molecular and genomic studies have revealed that many stress-inducible genes with various functions and signalling factors, such as transcription factors, protein kinases and protein phosphatases, are involved in the stress responses. Recent studies have revealed the coordination of the gene expression and chromatin regulation in response to the environmental stresses. Several histone modifications are dramatically altered on the stress-responsive gene regions under drought stress conditions. Several chromatin-related proteins such as histone modification enzymes, linker histone H1 and components of chromatin remodeling complex influence the gene regulation in the stress responses. This review briefly describes chromatin regulation in response to drought, cold and high-salinity stress.
Collapse
Affiliation(s)
- Jong-Myong Kim
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | |
Collapse
|
31
|
Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 2009; 462:99-103. [PMID: 19890330 DOI: 10.1038/nature08512] [Citation(s) in RCA: 528] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/17/2009] [Indexed: 11/09/2022]
Abstract
The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.
Collapse
Affiliation(s)
- Hideyuki Yanai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xiao C, Chen F, Yu X, Lin C, Fu YF. Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2009; 71:39-50. [PMID: 19517252 DOI: 10.1007/s11103-009-9507-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/24/2009] [Indexed: 05/08/2023]
Abstract
The Arabidopsis genome encodes 29 AHL (AT-hook motif nuclear localized) proteins, but the function for most of them remains unknown. We report here a study of the AHL22 gene, which was originally identified as a gain-of-function allele that enhanced the phenotype of the cry1 cry2 mutant. AHL22 is a nuclear protein with the binding activity for an AT-rich DNA sequence. AHL22 overexpression delayed flowering and caused a constitutive photomorphogenic phenotype. The loss-of-function AHL22 mutant showed no clear phenotype on flowering, but slightly longer hypocotyls. However, silencing four AHL genes (AHL22, AHL18, AHL27, and AHL29) resulted in early flowering and enhanced ahl22-1 mutant phenotype on the growth of hypocotyls, suggesting genetic redundancy of AHL22 with other AHL genes on these plant developmental events. Further analysis showed that AHL22 controlled flowering and hypocotyl elongation might result from primarily the regulation of FT and PIF4 expression, respectively.
Collapse
Affiliation(s)
- Chaowen Xiao
- Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Hansen FT, Madsen CK, Nordland AM, Grasser M, Merkle T, Grasser KD. A Novel Family of Plant DNA-Binding Proteins Containing both HMG-Box and AT-Rich Interaction Domains. Biochemistry 2008; 47:13207-14. [DOI: 10.1021/bi801772k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederik T. Hansen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Claus K. Madsen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Anne Mette Nordland
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Marion Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Thomas Merkle
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Klaus D. Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| |
Collapse
|
34
|
Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol 2008; 384:9-21. [PMID: 18822296 DOI: 10.1016/j.jmb.2008.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 08/29/2008] [Accepted: 09/08/2008] [Indexed: 12/27/2022]
Abstract
High mobility group (HMG) proteins of the HMGB family are small and relatively abundant chromatin-associated proteins. As architectural factors, the HMGB proteins are involved in the regulation of transcription and other DNA-dependent processes. We have examined Arabidopsis mutant plants lacking the HMGB1 protein, which is a typical representative of the plant HMGB family. In addition, our analyses included transgenic plants overexpressing HMGB1 and mutant plants that were transformed with the HMGB1 genomic region (complementation plants), as well as control plants. Both the absence and overexpression of HMGB1 caused shorter primary roots and affected the sensitivity towards the genotoxic agent methyl methanesulfonate. The overexpression of HMGB1 decreased the seed germination rate in the presence of elevated concentrations of NaCl. The complementation plants that expressed HMGB1 at wild-type levels did not show phenotypic differences compared to the control plants. Transcript profiling by microarray hybridization revealed that a remarkably large number of genes were differentially expressed (up- and down-regulated) in plants lacking HMGB1 compared to control plants. Among the down-regulated genes, the gene ontology category of stress-responsive genes was overrepresented. Neither microscopic analyses nor micrococcal nuclease digestion experiments revealed notable differences in overall chromatin structure, when comparing chromatin from HMGB1-deficient and control plants. Collectively, our results show that despite the presence of several other HMGB proteins, the lack and overexpression of HMGB1 affect certain aspects of plant growth and stress tolerance and it has a marked impact on the transcriptome, suggesting that HMGB1 has (partially) specialized functions in Arabidopsis.
Collapse
Affiliation(s)
- Dorte Launholt Lildballe
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Kiilerich B, Stemmer C, Merkle T, Launholt D, Gorr G, Grasser KD. Chromosomal high mobility group (HMG) proteins of the HMGB-type occurring in the moss Physcomitrella patens. Gene 2007; 407:86-97. [PMID: 17980517 DOI: 10.1016/j.gene.2007.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/28/2007] [Accepted: 09/29/2007] [Indexed: 11/26/2022]
Abstract
High mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that act as architectural factors in nucleoprotein structures, which regulate DNA-dependent processes including transcription. Members of the HMGB family have been characterised from various mono-and dicot plants, but not from lower plant species. Here, we have identified three candidate HMGB proteins encoded in the genome of the moss Physcomitrella patens. The structurally similar HMGB2 and HMGB3 proteins display the typical overall structure of higher plant HMGB proteins consisting of a central HMG-box DNA-binding domain that is flanked by a basic N-terminal and an acidic C-terminal domain. The HMGB1 protein differs from higher plant HMGB proteins by having a very extensive N-terminal domain and by lacking the acidic C-terminal domain. Like higher plant HMGB proteins, HMGB3 localises to the cell nucleus, but HMGB1 is targeted to plastids. Analysis of the HMG-box domains of HMGB1 and HMGB3 by CD revealed that HMGB1box and the HMGB3box have an alpha-helical structure. While the HMGB3box interacts with DNA comparable to typical higher plant counterparts, the HMGB1box has only a low affinity for DNA. Cotransformation assays in Physcomitrella protoplasts demonstrated that expression of HMGB3 resulted in repression of reporter gene expression. In summary, our data show that functional HMGB-type proteins occur in Physcomitrella and most likely in other lower plant species.
Collapse
Affiliation(s)
- Bruno Kiilerich
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|