1
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
3
|
Teng FY, Feng JM, Ma FC, Wang ZX, Lu YY, Qi YX. Characterization of an agmatine N-acetyltransferase from Bactrocera dorsalis that modulates ovary development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104130. [PMID: 38734116 DOI: 10.1016/j.ibmb.2024.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.
Collapse
Affiliation(s)
- Fei-Yue Teng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ji-Mei Feng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fu-Cai Ma
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhuo-Xin Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Zakirova NF, Khomich OA, Smirnova OA, Molle J, Duponchel S, Yanvarev DV, Valuev-Elliston VT, Monnier L, Grigorov B, Ivanova ON, Karpenko IL, Golikov MV, Bovet C, Rindlisbacher B, Khomutov AR, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis C Virus Dysregulates Polyamine and Proline Metabolism and Perturbs the Urea Cycle. Cells 2024; 13:1036. [PMID: 38920664 PMCID: PMC11201506 DOI: 10.3390/cells13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.
Collapse
Affiliation(s)
- Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Olga A. Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Jennifer Molle
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Sarah Duponchel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Lea Monnier
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Boyan Grigorov
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Barbara Rindlisbacher
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Birke Bartosch
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| |
Collapse
|
5
|
Marangon D, Castro e Silva JH, Cerrato V, Boda E, Lecca D. Oligodendrocyte Progenitors in Glial Scar: A Bet on Remyelination. Cells 2024; 13:1024. [PMID: 38920654 PMCID: PMC11202012 DOI: 10.3390/cells13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) represent a subtype of glia, giving rise to oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). While OPCs are highly proliferative during development, they become relatively quiescent during adulthood, when their fate is strictly influenced by the extracellular context. In traumatic injuries and chronic neurodegenerative conditions, including those of autoimmune origin, oligodendrocytes undergo apoptosis, and demyelination starts. Adult OPCs become immediately activated; they migrate at the lesion site and proliferate to replenish the damaged area, but their efficiency is hampered by the presence of a glial scar-a barrier mainly formed by reactive astrocytes, microglia and the deposition of inhibitory extracellular matrix components. If, on the one hand, a glial scar limits the lesion spreading, it also blocks tissue regeneration. Therapeutic strategies aimed at reducing astrocyte or microglia activation and shifting them toward a neuroprotective phenotype have been proposed, whereas the role of OPCs has been largely overlooked. In this review, we have considered the glial scar from the perspective of OPCs, analysing their behaviour when lesions originate and exploring the potential therapies aimed at sustaining OPCs to efficiently differentiate and promote remyelination.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Juliana Helena Castro e Silva
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy; (V.C.); (E.B.)
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (J.H.C.e.S.)
| |
Collapse
|
6
|
Murakami Y, Ikuta S, Fukuda W, Akasaka N, Maruyama JI, Shinma S, Fukusaki E, Fujiwara S. Identification and enzymatic properties of arginine decarboxylase from Aspergillus oryzae. Appl Environ Microbiol 2024; 90:e0029424. [PMID: 38624200 PMCID: PMC11107147 DOI: 10.1128/aem.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.
Collapse
Affiliation(s)
- Yui Murakami
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Soichiro Ikuta
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Naoki Akasaka
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Laboratory for Circular Bioeconomy Development, Office of Society-Academia Collaboration for Innovation, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shuichi Shinma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| |
Collapse
|
7
|
Ji XT, Yu WL, Jin MJ, Lu LJ, Yin HP, Wang HH. Possible Role of Cellular Polyamine Metabolism in Neuronal Apoptosis. Curr Med Sci 2024; 44:281-290. [PMID: 38453792 DOI: 10.1007/s11596-024-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Recent studies have shown that cellular levels of polyamines (PAs) are significantly altered in neurodegenerative diseases. Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress, mitochondrial metabolism, cellular immunity, and ion channel functions. Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases. Therefore, in the current work, evidence was collected to determine the possible associations between cellular levels of PAs, and related enzymes and the development of several neurodegenerative diseases, which could provide a new idea for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Xin-Tong Ji
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Wen-Lei Yu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital, Huzhou, 313008, China
| | - Meng-Jia Jin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Pharmacy, Zhejiang University, Hangzhou, 310030, China
| | - Lin-Jie Lu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine, Jiaxing, 314400, China
| | - Hong-Ping Yin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huan-Huan Wang
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
8
|
Feng Q, Wang H, Shao Y, Xu X. Antizyme inhibitor family: biological and translational research implications. Cell Commun Signal 2024; 22:11. [PMID: 38169396 PMCID: PMC10762828 DOI: 10.1186/s12964-023-01445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Metabolism of polyamines is of critical importance to physiological processes. Ornithine decarboxylase (ODC) antizyme inhibitors (AZINs) are capable of interacting with antizymes (AZs), thereby releasing ODC from ODC-AZs complex, and promote polyamine biosynthesis. AZINs regulate reproduction, embryonic development, fibrogenesis and tumorigenesis through polyamine and other signaling pathways. Dysregulation of AZINs has involved in multiple human diseases, especially malignant tumors. Adenosine-to-inosine (A-to-I) RNA editing is the most common type of post-transcriptional nucleotide modification in humans. Additionally, the high frequencies of RNA-edited AZIN1 in human cancers correlates with increase of cancer cell proliferation, enhancement of cancer cell stemness, and promotion of tumor angiogenesis. In this review, we summarize the current knowledge on the various contribution of AZINs related with potential cancer promotion, cancer stemness, microenvironment and RNA modification, especially underlying molecular mechanisms, and furthermore explored its promising implication for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiaohui Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Huijie Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China
| | - Youcheng Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| |
Collapse
|
9
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
10
|
Guo Q, Chen X, Li B. Purification and characterization of tomato arginine decarboxylase and its inhibition by the bacterial small molecule phevamine A. Protein Expr Purif 2023; 210:106326. [PMID: 37348664 PMCID: PMC10510110 DOI: 10.1016/j.pep.2023.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Polyamines play essential roles in plant growth and survival. Arginine decarboxylase (ADC), which converts arginine to agmatine, catalyzes the first step in polyamine biosynthesis from arginine. However, few biochemical studies with purified plant ADCs have been conducted to evaluate their catalytic efficiency. Tomato genome encodes two arginine decarboxylases: SlADC1 and SlADC2, which are critical for growth, development, and immune responses against bacterial pathogens. We expressed and purified soluble SlADC1 as a recombinant protein fused with maltose-binding protein tag from E. coli Rosetta 2(DE3) cells. Using the purified fusion protein, we characterized the biochemical properties of SlADC1 in vitro and explored it as a target of the bacterial small molecule phevamine A. We confirmed that the activity of SlADC1 depends on the cofactor pyridoxal 5'-phosphate. SlADC1 is specific toward l-arginine and its kinetic parameters were measured using a liquid chromatography-mass spectrometry method. Phevamine A is a competitive inhibitor of SlADC1 and reduces the activity of SlADC1 at high micromolar concentrations. Our purification and biochemical characterization of SlADC1 sets the stage for inhibition studies of this enzyme.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States
| | - Xiaoyan Chen
- Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, North Carolina, 27599, United States.
| |
Collapse
|
11
|
Wei X, Chow HY, Chong HC, Leung SL, Ho MK, Lee MY, Leung YC. Arginine Is a Novel Drug Target for Arginine Decarboxylase in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:13741. [PMID: 37762044 PMCID: PMC10531272 DOI: 10.3390/ijms241813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.
Collapse
Affiliation(s)
- Xinlei Wei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hiu-Chi Chong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siu-Lun Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mei-Ki Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Hassanshahi A, Janahmadi M, Razavinasab M, Ranjbar H, Hosseinmardi N, Behzadi G, Kohlmeier KA, Ilaghi M, Shabani M. Preventive putative effect of agmatine on cognitive and molecular outcomes in ventral tegmental area of male offspring following physical and psychological prenatal stress. Dev Psychobiol 2023; 65:e22410. [PMID: 37607891 DOI: 10.1002/dev.22410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 08/24/2023]
Abstract
Prenatal stress (PS) results from a maternal experience of stressful events during pregnancy, which has been associated with an increased risk of behavioral disorders including substance abuse and anxiety in the offspring. PS is known to result in heightened dopamine release in the ventral tegmental area (VTA), in part through the effects of corticotropin-releasing hormone, which directly excites dopaminergic cells. It has recently been suggested that agmatine plays a role in modulating anxiety-like behaviors. In this study, we investigated whether agmatine could reduce negative cognitive outcomes in male mice prenatally exposed to psychological/physical stress, and whether this could be associated with molecular changes in VTA. Agmatine (37.5 mg/kg) was administrated 30 min prior to PS induction in pregnant Swiss mice. Male offspring were evaluated in a series of behavioral and molecular assays. Findings demonstrated that agmatine reduced the impairment in locomotor activity induced by both psychological and physical PS. Agmatine also decreased heightened conditioned place preference to morphine seen in PS offspring. Moreover, agmatine ameliorated the anxiety-like behavior and drug-seeking behavior induced by PS in the male offspring. Molecular effects were seen in VTA as the enhanced brain-derived neurotrophic factor (BDNF) induced by PS in the VTA was reduced by agmatine. Behavioral tests indicate that agmatine exerts a protective effect on PS-induced impairments in male offspring, which could be due in part to agmatine-associated molecular alterations in the VTA. Taken together, our data suggest that prenatal treatment with agmatine exerts protective effect against negative consequences of PS on the development of affective circuits in the offspring.
Collapse
Affiliation(s)
- Amin Hassanshahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Hosseinmardi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mehran Ilaghi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Antizyme Inhibitor 2-Deficient Mice Exhibit Altered Brain Polyamine Levels and Reduced Locomotor Activity. Biomolecules 2022; 13:biom13010014. [PMID: 36671399 PMCID: PMC9855896 DOI: 10.3390/biom13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alterations in the neural polyamine system are known to be associated with different brain pathological conditions. In addition, the regulation of enzymes involved in polyamine metabolism such as ornithine decarboxylase (ODC), antizymes (AZs), and antizyme inhibitors (AZINs) is critical during brain development. However, while most studies focus on ODC and AZs, less is known about AZIN expression and function in the brain. Thus, our aim was to analyze the expression pattern of AZIN2 during postnatal development, its brain distribution, and its possible implication in phenotypical alterations. METHODS The expression pattern of Azin2 and other genes related to polyamine metabolism was analyzed by RT-qPCR. β-D-galactosidase staining was used to determine the anatomical distribution of AZIN2 in a Azin2 knockout model containing the βGeo marker. Brain polyamine content was determined by HPLC. The Rota-Rod and Pole functional tests were used to evaluate motor skills in Azin2-lacking mice. RESULTS Our results showed that expression of genes codifying for AZs and AZINs showed a similar increasing pattern over time that coincided with a decrease in ODC activity and putrescine levels. The analysis of AZIN2 distribution demonstrated that it is strongly expressed in the cerebellum and distributed along the neuron body and dendrites. The ablation of Azin2 showed a decrease in putrescine levels and is related to reduced motor skills. CONCLUSIONS Our study revealed that AZIN2 expression in the brain is particularly limited to the cerebellum. In addition, the ablation of Azin2 leads to a reduction in putrescine that relates to alterations in motor function, suggesting the role of AZIN2 in the functioning of dopaminergic neurons.
Collapse
|
14
|
Park YM, Kim JH, Lee JE. Neural Stem Cells Overexpressing Arginine Decarboxylase Improve Functional Recovery from Spinal Cord Injury in a Mouse Model. Int J Mol Sci 2022; 23:ijms232415784. [PMID: 36555425 PMCID: PMC9779865 DOI: 10.3390/ijms232415784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Current therapeutic strategies for spinal cord injury (SCI) cannot fully facilitate neural regeneration or improve function. Arginine decarboxylase (ADC) synthesizes agmatine, an endogenous primary amine with neuroprotective effects. Transfection of human ADC (hADC) gene exerts protective effects after injury in murine brain-derived neural precursor cells (mNPCs). Following from these findings, we investigated the effects of hADC-mNPC transplantation in SCI model mice. Mice with experimentally damaged spinal cords were divided into three groups, separately transplanted with fluorescently labeled (1) control mNPCs, (2) retroviral vector (pLXSN)-infected mNPCs (pLXSN-mNPCs), and (3) hADC-mNPCs. Behavioral comparisons between groups were conducted weekly up to 6 weeks after SCI, and urine volume was measured up to 2 weeks after SCI. A subset of animals was euthanized each week after cell transplantation for molecular and histological analyses. The transplantation groups experienced significantly improved behavioral function, with the best recovery occurring in hADC-mNPC mice. Transplanting hADC-mNPCs improved neurological outcomes, induced oligodendrocyte differentiation and remyelination, increased neural lineage differentiation, and decreased glial scar formation. Moreover, locomotor and bladder function were both rehabilitated. These beneficial effects are likely related to differential BMP-2/4/7 expression in neuronal cells, providing an empirical basis for gene therapy as a curative SCI treatment option.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- CHA Advanced Research Institute, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, CHA University, CHA Bio-Complex, 335, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2228-1646
| |
Collapse
|
15
|
Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022; 12:biom12040501. [PMID: 35454090 PMCID: PMC9025450 DOI: 10.3390/biom12040501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.
Collapse
Affiliation(s)
- Julian Rieck
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
- Correspondence: (S.N.S.); (R.W.V.)
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Centrum 2, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany;
- Correspondence: (S.N.S.); (R.W.V.)
| |
Collapse
|
16
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
17
|
Sikorski Ł, Baciak M, Bęś A, Adomas B. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:70-80. [PMID: 30739875 DOI: 10.1016/j.aquatox.2019.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 05/25/2023]
Abstract
Research into plants plays an important role in evaluations of water pollution with pesticides. Lemna minor (common duckweed) is widely used as an indicator organism in environmental risk assessments. The aim of this study was to determine by biological Lemna test and chemical methods the effect of glyphosate (GlyPh) concentrations of 0-40 μM on duckweed, an important link in the food chain. There are no published data on glyphosate's effects on the activity of enzymes of the amine biosynthesis pathway: ornithine decarboxylase, S-adenosylmethionine decarboxylase, tyrosine decarboxylase, lysine decarboxylase and arginine decarboxylase, and the content of shikimic acid and glyphosate residues in the tissues of common duckweed. It was found that glyphosate was taken up by duckweed. In plants exposed to 3 μM of glyphosate for 7 days, glyphosate content exceeded the acceptable Maximum Residue Level (MRL) 10-fold. Glyphosate accumulation in plant tissues exerted toxic effects on duckweed by decreasing its growth and yield, inhibiting the synthesis of chlorophyll a and b and carotenoids, and decreasing the photochemical activity of photosystem II (PSII). However, glyphosate increased the concentration of shikimic acid in the tested plants. The activity of ornithine decarboxylase increased 4-fold in plants exposed to 20 μM of the herbicide. As a water pollutant, glyphosate increased the content of biogenic amines tyramine, putrescine, cadaverine, spermidine and spermine. The activity of peroxidase and catalase was highest in duckweed exposed to 20 μM and 7 μM of the herbicide, respectively. The predicted toxic units were calculated based on glyphosate content and the computed EC values. The mean effective concentration calculated for all morphological and biochemical parameters of duckweed was determined at EC10 = 1.55, EC25 = 3.36, EC50 = 6.62 and EC90 = 14.08 μM of glyphosate. The study demonstrated that glyphosate, the active ingredient of Roundup Ultra 360 SL herbicide, induces morphological and biochemical changes in non-target plants and exerts toxic effects on aquatic ecosystems even during short-term exposure.
Collapse
Affiliation(s)
- Łukasz Sikorski
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
| | - Michał Baciak
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Agnieszka Bęś
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| | - Barbara Adomas
- Department of Chemistry, Research Group of Environmental Toxicology, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland
| |
Collapse
|
18
|
The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 2019; 52:181-197. [DOI: 10.1007/s00726-019-02720-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
|
19
|
Ramos-Molina B, Queipo-Ortuño MI, Lambertos A, Tinahones FJ, Peñafiel R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front Nutr 2019; 6:24. [PMID: 30923709 PMCID: PMC6426781 DOI: 10.3389/fnut.2019.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are widely distributed polycationic compounds essential for cellular functions. Intracellular polyamine pools are tightly regulated by a complex regulatory mechanism involving de novo biosynthesis, catabolism, and transport across the plasma membrane. In mammals, both the production of polyamines and their uptake from the extracellular space are controlled by a set of proteins named antizymes and antizyme inhibitors. Dysregulation of polyamine levels has been implicated in a variety of human pathologies, especially cancer. Additionally, decreases in the intracellular and circulating polyamine levels during aging have been reported. The differences in the polyamine content existing among tissues are mainly due to the endogenous polyamine metabolism. In addition, a part of the tissue polyamines has its origin in the diet or their production by the intestinal microbiome. Emerging evidence has suggested that exogenous polyamines (either orally administrated or synthetized by the gut microbiota) are able to induce longevity in mice, and that spermidine supplementation exerts cardioprotective effects in animal models. Furthermore, the administration of either spermidine or spermine has been shown to be effective for improving glucose homeostasis and insulin sensitivity and reducing adiposity and hepatic fat accumulation in diet-induced obesity mouse models. The exogenous addition of agmatine, a cationic molecule produced through arginine decarboxylation by bacteria and plants, also exerts significant effects on glucose metabolism in obese models, as well as cardioprotective effects. In this review, we will discuss some aspects of polyamine metabolism and transport, how diet can affect circulating and local polyamine levels, and how the modulation of either polyamine intake or polyamine production by gut microbiota can be used for potential therapeutic purposes.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria Isabel Queipo-Ortuño
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Department of Medical Oncology, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research of Malaga, University and Malaga, Malaga, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
20
|
Ramos-Molina B, Lambertos A, Peñafiel R. Antizyme Inhibitors in Polyamine Metabolism and Beyond: Physiopathological Implications. ACTA ACUST UNITED AC 2018; 6:medsci6040089. [PMID: 30304856 PMCID: PMC6313458 DOI: 10.3390/medsci6040089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022]
Abstract
The intracellular levels of polyamines, cationic molecules involved in a myriad of cellular functions ranging from cellular growth, differentiation and apoptosis, is precisely regulated by antizymes and antizyme inhibitors via the modulation of the polyamine biosynthetic and transport systems. Antizymes, which are mainly activated upon high polyamine levels, inhibit ornithine decarboxylase (ODC), the key enzyme of the polyamine biosynthetic route, and exert a negative control of polyamine intake. Antizyme inhibitors (AZINs), which are proteins highly homologous to ODC, selectively interact with antizymes, preventing their action on ODC and the polyamine transport system. In this review, we will update the recent advances on the structural, cellular and physiological functions of AZINs, with particular emphasis on the action of these proteins in the regulation of polyamine metabolism. In addition, we will describe emerging evidence that suggests that AZINs may also have polyamine-independent effects on cells. Finally, we will discuss how the dysregulation of AZIN activity has been implicated in certain human pathologies such as cancer, fibrosis or neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Laboratory of Cellular and Molecular Endocrinology, Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain.
- Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain.
| |
Collapse
|
21
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
Benítez J, García D, Romero N, González A, Martínez-Oyanedel J, Figueroa M, Salas M, López V, García-Robles M, Dodd PR, Schenk G, Carvajal N, Uribe E. Metabolic strategies for the degradation of the neuromodulator agmatine in mammals. Metabolism 2018; 81:35-44. [PMID: 29162499 DOI: 10.1016/j.metabol.2017.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
Agmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and antidepressant actions in the brain. In this context it has emerged as an important mediator of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat alcoholism and related addiction disorders. Agmatine results from the decarboxylation of L-arginine in a reaction catalyzed by arginine decarboxylase (ADC), and can be converted to either guanidine butyraldehyde by diamine oxidase (DAO) or putrescine and urea by the enzyme agmatinase (AGM) or the more recently identified AGM-like protein (ALP). In rat brain, agmatine, AGM and ALP are predominantly localised in areas associated with roles in appetitive and craving (drug-reinstatement) behaviors. Thus, inhibitors of AGM or ALP are promising agents for the treatment of addictions. In this review, the properties of DAO, AGM and ALP are discussed with a view to their role in the agmatine metabolism in mammals.
Collapse
Affiliation(s)
- José Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - David García
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Nicol Romero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Arlette González
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Mónica Salas
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Vasthi López
- Departamento de Ciencias Biomédicas, Universidad Católica del Norte, Coquimbo, Chile
| | - María García-Robles
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Peter R Dodd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nelson Carvajal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
23
|
Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol Rev 2018; 98:641-665. [PMID: 29412048 PMCID: PMC5966718 DOI: 10.1152/physrev.00037.2016] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The arginase enzyme developed in early life forms and was maintained during evolution. As the last step in the urea cycle, arginase cleaves l-arginine to form urea and l-ornithine. The urea cycle provides protection against excess ammonia, while l-ornithine is needed for cell proliferation, collagen formation, and other physiological functions. In mammals, increases in arginase activity have been linked to dysfunction and pathologies of the cardiovascular system, kidney, and central nervous system and also to dysfunction of the immune system and cancer. Two important aspects of the excessive activity of arginase may be involved in diseases. First, overly active arginase can reduce the supply of l-arginine needed for the production of nitric oxide (NO) by NO synthase. Second, too much l-ornithine can lead to structural problems in the vasculature, neuronal toxicity, and abnormal growth of tumor cells. Seminal studies have demonstrated that increased formation of reactive oxygen species and key inflammatory mediators promote this pathological elevation of arginase activity. Here, we review the involvement of arginase in diseases affecting the cardiovascular, renal, and central nervous system and cancer and discuss the value of therapies targeting the elevated activity of arginase.
Collapse
Affiliation(s)
- R William Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Paulo C Rodriguez
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - S Priya Narayanan
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| | - Ruth B Caldwell
- Department of Pharmacology & Toxicology, Vision Discovery Institute, Department of Medicine-Hematology and Oncology, Department of Occupational Therapy, School of Allied Health Sciences, and Vascular Biology Center, Medical College of Georgia, Augusta University , Augusta, Georgia ; and VA Medical Center, Augusta, Georgia
| |
Collapse
|
24
|
Abstract
The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.
Collapse
Affiliation(s)
- Rebecca S Hesterberg
- University of South Florida Cancer Biology Graduate Program, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA.
- Department Immunology, PharmD, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, 23033 SRB, Tampa, FL 33612, USA.
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Pearlie K Epling-Burnette
- Department Immunology, PharmD, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, 23033 SRB, Tampa, FL 33612, USA.
| |
Collapse
|
25
|
Fung MKL, Chan GCF. Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol 2017; 10:144. [PMID: 28750681 PMCID: PMC5530962 DOI: 10.1186/s13045-017-0509-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer is caused by uncontrollable growth of neoplastic cells, leading to invasion of adjacent and distant tissues resulting in death. Cancer cells have specific nutrient(s) auxotrophy and have a much higher nutrient demand compared to normal tissues. Therefore, different metabolic inhibitors or nutrient-depleting enzymes have been tested for their anti-cancer activities. We review recent available laboratory and clinical data on using various specific amino acid metabolic pathways inhibitors in treating cancers. Our focus is on glutamine, asparagine, and arginine starvation. These three amino acids are chosen due to their better scientific evidence compared to other related approaches in cancer treatment. Amino acid-specific depleting enzymes have been adopted in different standard chemotherapy protocols. Glutamine starvation by glutaminase inhibitior, transporter inhibitor, or glutamine depletion has shown to have significant anti-cancer effect in pre-clinical studies. Currently, glutaminase inhibitor is under clinical trial for testing anti-cancer efficacy. Clinical data suggests that asparagine depletion is effective in treating hematologic malignancies even as a single agent. On the other hand, arginine depletion has lower toxicity profile and can effectively reduce the level of pro-cancer biochemicals in patients as shown by ours and others’ data. This supports the clinical use of arginine depletion as anti-cancer therapy but its exact efficacy in various cancers requires further investigation. However, clinical application of these enzymes is usually hindered by common problems including allergy to these foreign proteins, off-target cytotoxicity, short half-life and rapidly emerging chemoresistance. There have been efforts to overcome these problems by modifying the drugs in different ways to circumvent these hindrance such as (1) isolate human native enzymes to reduce allergy, (2) isolate enzyme isoforms with higher specificities and efficiencies, (3) pegylate the enzymes to reduce allergy and prolong the half-lives, and (4) design drug combinations protocols to enhance the efficacy of chemotherapy by drug synergy and minimizing resistance. These improvements can potentially lead to the development of more effective anti-cancer treatment with less adverse effects and higher therapeutic efficacy.
Collapse
Affiliation(s)
- Marcus Kwong Lam Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
26
|
Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 2017; 474:2619-2640. [DOI: 10.1042/bcj20170007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Agmatine, the decarboxylation product of arginine, was largely neglected as an important player in mammalian metabolism until the mid-1990s, when it was re-discovered as an endogenous ligand of imidazoline and α2-adrenergic receptors. Since then, a wide variety of agmatine-mediated effects have been observed, and consequently agmatine has moved from a wallflower existence into the limelight of clinical neuroscience research. Despite this quantum jump in scientific interest, the understanding of the anabolism and catabolism of this amine is still vague. The purification and biochemical characterization of natural mammalian arginine decarboxylase and agmatinase still are open issues. Nevertheless, the agmatinergic system is currently one of the most promising candidates in order to pharmacologically interfere with some major diseases of the central nervous system, which are summarized in the present review. Particularly with respect to major depression, agmatine, its derivatives, and metabolizing enzymes show great promise for the development of an improved treatment of this common disease.
Collapse
|
27
|
Albaugh VL, Pinzon-Guzman C, Barbul A. Arginine-Dual roles as an onconutrient and immunonutrient. J Surg Oncol 2016; 115:273-280. [PMID: 27861915 DOI: 10.1002/jso.24490] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/22/2016] [Indexed: 12/12/2022]
Abstract
Arginine is an important player in numerous biologic processes and studies have demonstrated its importance for cellular growth that becomes limiting in states of rapid turnover (e.g., malignancy). Thus, arginine deprivation therapy is being examined as an adjuvant cancer therapy, however, arginine is also necessary for immune destruction of malignant cells. Herein we review the data supporting arginine deprivation or supplementation in cancer treatment and the currently registered trials aimed at understanding these divergent strategies. J. Surg. Oncol. 2017;115:273-280. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vance L Albaugh
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Carolina Pinzon-Guzman
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Adrian Barbul
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
28
|
Sai L, Dong Z, Li L, Guo Q, Jia Q, Xie L, Bo C, Liu Y, Qu B, Li X, Shao H, Ng JC, Peng C. Gene expression profiles in testis of developing male Xenopus laevis damaged by chronic exposure of atrazine. CHEMOSPHERE 2016; 159:145-152. [PMID: 27288644 DOI: 10.1016/j.chemosphere.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
As a widely used herbicide, atrazine (AZ) has been extensively studied for its adverse effects on the reproductive system, especially feminization in male animals. However, the relationship of gene expression changes and associated toxicological endpoints remains unclear. In this study, developing Xenopus laevis tadpoles were exposed to concentration of AZ at 0.1, 1, 10 or 100 μg/L continuously. Compared with froglets in the control group, there were no significant differences in body length, body weight, liver weight and hepatosomatic index (HSI) of males in groups treated with AZ for 90 d. At 100 μg/L AZ treatment caused a significant reduction of gonad weight and gonadosomatic index (GSI) of males (p < 0.01). In addition, AZ at all dose levels caused testicular degeneration, especially in froglets from the groups with 0.1 and 100 μg/L which exhibited U-shaped dose-response trend. We further investigated the gene expression changes associated with the testicular degeneration induced by AZ. We found that the expression of 1165 genes was significantly altered with 616 upregulated and 549 downregulated compared to the expression profile of the control animals. KEGG analysis showed that genes which were significantly affected by AZ are mainly involved in arginine and proline metabolism, cell cycle, riboflavin metabolism, spliceosome, base excision repair and progesterone-mediated oocyte maturation pathway. Our results show that AZ may affect reproductive and immune systems by interference with the related gene expression changes during the male X. laevis development. The findings may help to clarify the feminization mechanisms of AZ in male X. laevis.
Collapse
Affiliation(s)
- Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Zhihua Dong
- The 404th Hospital of PLA, Weihai, Shandong, China
| | - Ling Li
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Qiming Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Lin Xie
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Yanzhong Liu
- Weihai Wendeng Center Hospital, Weihai, Shandong, China
| | - Binpeng Qu
- Shandong Medical College, Ji'nan, Shandong, China
| | - Xiangxin Li
- Heze Center for Disease Control and Prevention, Heze, Shandong, China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China.
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology-Entox, Brisbane, Australia
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China; The University of Queensland, National Research Centre for Environmental Toxicology-Entox, Brisbane, Australia
| |
Collapse
|
29
|
Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 2016; 35:4957-72. [PMID: 27109103 DOI: 10.1038/onc.2016.37] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities.
Collapse
Affiliation(s)
- M D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - J Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - S Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - U C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | - D Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
A novel role for antizyme inhibitor 2 as a regulator of serotonin and histamine biosynthesis and content in mouse mast cells. Amino Acids 2016; 48:2411-21. [PMID: 27084713 DOI: 10.1007/s00726-016-2230-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.
Collapse
|
31
|
Xiao Y, Zhai Q, Wang G, Liu X, Zhao J, Tian F, Zhang H, Chen W. Metabolomics analysis reveals heavy metal copper-induced cytotoxicity in HT-29 human colon cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra09320e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
LC-MS based metabolomics analysis reveals heavy metal copper-induced cytotoxicity in a human intestinal cell line, HT-29.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
32
|
Sai L, Liu Y, Qu B, Yu G, Guo Q, Bo C, Xie L, Jia Q, Li Y, Li X, Ng JC, Peng C. The Effects of Simazine, a Chlorotriazine Herbicide, on the Expression of Genes in Developing Male Xenopus laevis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:157-163. [PMID: 25634327 DOI: 10.1007/s00128-015-1483-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/24/2015] [Indexed: 06/04/2023]
Abstract
Simazine was investigated for gene expression concurrent with simazine-induced phenotype changes during development of male Xenopus laevis. X. laevis tadpoles (Nieuwkoop-Faber stage 46) were exposed to 0.1, 1.2, 11.0 and 100.9 μg/L simazine for 100 days. The results showed that an increased mortality of X. laevis, decreased gonad weight and altered gonadosomatic index of males significantly (p<0.05) when exposed to simazine at 11.0 and 100.9 µg/L. Significant degeneration in testicular tissues was observed when tadpoles were exposed to simazine at 100.9 µg/L. To investigate the molecular mechanisms behind the testicular degeneration by simazine, we evaluated gene expression in animals treated with 100.9 µg/L simazine and found that 1,315 genes were significantly altered (454 upregulated, 861 downregulated). Genes involved in the cell cycle control, and amino acid metabolism pathways were significantly downregulated. These results indicate that simazine affects the related gene expressions which may be helpful for the understanding of the reason for the reproductive toxicity of simazine on male X. laevis.
Collapse
Affiliation(s)
- Linlin Sai
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rajput B, Murphy TD, Pruitt KD. RefSeq curation and annotation of antizyme and antizyme inhibitor genes in vertebrates. Nucleic Acids Res 2015; 43:7270-9. [PMID: 26170238 PMCID: PMC4551939 DOI: 10.1093/nar/gkv713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022] Open
Abstract
Polyamines are ubiquitous cations that are involved in regulating fundamental cellular processes such as cell growth and proliferation; hence, their intracellular concentration is tightly regulated. Antizyme and antizyme inhibitor have a central role in maintaining cellular polyamine levels. Antizyme is unique in that it is expressed via a novel programmed ribosomal frameshifting mechanism. Conventional computational tools are unable to predict a programmed frameshift, resulting in misannotation of antizyme transcripts and proteins on transcript and genomic sequences. Correct annotation of a programmed frameshifting event requires manual evaluation. Our goal was to provide an accurately curated and annotated Reference Sequence (RefSeq) data set of antizyme transcript and protein records across a broad taxonomic scope that would serve as standards for accurate representation of these gene products. As antizyme and antizyme inhibitor proteins are functionally connected, we also curated antizyme inhibitor genes to more fully represent the elegant biology of polyamine regulation. Manual review of genes for three members of the antizyme family and two members of the antizyme inhibitor family in 91 vertebrate organisms resulted in a total of 461 curated RefSeq records.
Collapse
Affiliation(s)
- Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
34
|
Ramos-Molina B, López-Contreras AJ, Lambertos A, Dardonville C, Cremades A, Peñafiel R. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells. Amino Acids 2015; 47:1025-34. [PMID: 25655388 DOI: 10.1007/s00726-015-1931-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
36
|
Gadkari TV, Cortes N, Madrasi K, Tsoukias NM, Joshi MS. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide 2013; 35:65-71. [PMID: 23994446 DOI: 10.1016/j.niox.2013.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/15/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022]
Abstract
l-Arginine and its decarboxylated product, agmatine are important mediators of NO production and vascular relaxation. However, the underlying mechanisms of their action are not understood. We have investigated the role of arginine and agmatine in resistance vessel relaxation of Sprague-Dawley (SD) and Dahl salt-sensitive hypertensive rats. Second or 3rd-order mesenteric arterioles were cannulated in an organ chamber, pressurized and equilibrated before perfusing intraluminally with agonists. The vessel diameters were measured after mounting on the stage of a microscope fitted with a video camera. The gene expression in Dahl rat vessel homogenates was ascertained by real-time PCR. l-Arginine initiated relaxations (EC50, 5.8±0.7mM; n=9) were inhibited by arginine decarboxylase (ADC) inhibitor, difluoromethylarginine (DFMA) (EC50, 18.3±1.3mM; n=5) suggesting that arginine-induced vessel relaxation was mediated by agmatine formation. Agmatine relaxed the SD rat vessels at significantly lower concentrations (EC50, 138.7±12.1μM; n=22), which was compromised by l-NAME (l-N(G)-nitroarginine methyl ester, an eNOS inhibitor), RX821002 (α-2 AR antagonist) and pertussis toxin (G-protein inhibitor). The agmatine-mediated vessel relaxation from high salt Dahl rats was abolished as compared to that from normal salt rats (EC50, 143.9±23.4μM; n=5). The α-2A AR, α-2B AR and eNOS mRNA expression was downregulated in mesenteric arterioles of high-salt treated Dahl hypertensive rats. These findings demonstrate that agmatine facilitated the relaxation via activation of α-2 adrenergic G-protein coupled receptor and NO synthesis, and this pathway is compromised in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Tushar V Gadkari
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, United States
| | | | | | | | | |
Collapse
|
37
|
Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues ALS, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM. Agmatine: clinical applications after 100 years in translation. Drug Discov Today 2013; 18:880-93. [PMID: 23769988 DOI: 10.1016/j.drudis.2013.05.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/27/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Agmatine (decarboxylated arginine) has been known as a natural product for over 100 years, but its biosynthesis in humans was left unexplored owing to long-standing controversy. Only recently has the demonstration of agmatine biosynthesis in mammals revived research, indicating its exceptional modulatory action at multiple molecular targets, including neurotransmitter systems, nitric oxide (NO) synthesis and polyamine metabolism, thus providing bases for broad therapeutic applications. This timely review, a concerted effort by 16 independent research groups, draws attention to the substantial preclinical and initial clinical evidence, and highlights challenges and opportunities, for the use of agmatine in treating a spectrum of complex diseases with unmet therapeutic needs, including diabetes mellitus, neurotrauma and neurodegenerative diseases, opioid addiction, mood disorders, cognitive disorders and cancer.
Collapse
Affiliation(s)
- John E Piletz
- Department of Biology, Mississippi College, Clinton, MS 39058, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 2013; 45:241-56. [DOI: 10.1007/s00726-013-1515-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
39
|
Raber P, Ochoa AC, Rodríguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest 2013; 41:614-34. [PMID: 23017138 DOI: 10.3109/08820139.2012.680634] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Patients with cancer have an impaired T cell response that can decrease the potential therapeutic benefit of cancer vaccines and other forms of immunotherapy. The establishment of a chronic inflammatory environment in patients with cancer plays a critical role in the induction of T cell dysfunction. The accumulation of myeloid-derived suppressor cells (MDSC) in tumor bearing hosts is a hallmark of malignancy-associated inflammation and a major mediator of the induction of T cell suppression in cancer. Recent findings in tumor bearing mice and cancer patients indicate that the increased metabolism of L-Arginine (L-Arg) by MDSC producing Arginase I inhibits T cell lymphocyte responses. Here, we discuss some of the most recent concepts of how MDSC expressing Arginase I may regulate T cell function in cancer and suggest possible therapeutic interventions to overcome this inhibitory effect.
Collapse
Affiliation(s)
- Patrick Raber
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, NewOrleans, Louisiana, USA.
| | | | | |
Collapse
|
40
|
Ring JR, Zheng F, Haubner AJ, Littleton JM, Crooks PA. Improving the inhibitory activity of arylidenaminoguanidine compounds at the N-methyl-D-aspartate receptor complex from a recursive computational-experimental structure-activity relationship study. Bioorg Med Chem 2013; 21:1764-74. [PMID: 23465801 DOI: 10.1016/j.bmc.2013.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 11/28/2022]
Abstract
Using a combination of both the partial least squares (PLS) and back-propagation artificial neural network (ANN) pattern recognition methods, several models have been developed to predict the activity of a series of arylidenaminoguanidine analogs as inhibitory modulators of the N-methyl-D-aspartate receptor complex. This was done by correlating structural and physicochemical descriptors obtained from computation software with the experimentally observed [(3)H]MK-801 displacement ability of a small library of synthesized and in vitro screened arylidenaminoguanidines. Results for the generated PLS model were r(2)=0.814, rmsd=0.208, rCV(2)=0.714, loormsd=0.261. The ANN model was created utilizing the eleven descriptors from the PLS model for comparison. The quality of the ANN model (r(2)=0.828, rmsd=0.200, rCV(2)=0.721, loormsd=0.257) is similar to the PLS model, and indicates that the feature between the inputs and the output is majorly linear. These computational models were able to predict inhibition of the NMDA receptor complex by this series of compounds in silico, affording a predictive structure-based 'pre-screening' paradigm for the arylideneaminoguanidine analogs.
Collapse
Affiliation(s)
- Joshua R Ring
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
41
|
Piletz JE, Klenotich S, Lee KS, Zhu QL, Valente E, Collins MA, Jones V, Lee SN, Yangzheng F. Putative agmatinase inhibitor for hypoxic-ischemic new born brain damage. Neurotox Res 2013; 24:176-90. [PMID: 23334804 DOI: 10.1007/s12640-013-9376-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/10/2012] [Accepted: 01/08/2013] [Indexed: 01/27/2023]
Abstract
Agmatine is an endogenous brain metabolite, decarboxylated arginine, which has neuroprotective properties when injected intraperitoneally (i.p.) into rat pups following hypoxic-ischemia. A previous screen for compounds based on rat brain lysates containing agmatinase with assistance from computational chemistry, led to piperazine-1-carboxamidine as a putative agmatinase inhibitor. Herein, the neuroprotective properties of piperazine-1-carboxamidine are described both in vitro and in vivo. Organotypic entorhinal-hippocampal slices were firstly prepared from 7-day-old rat pups and exposed in vitro to atmospheric oxygen depletion for 3 h. Upon reoxygenation, the slices were treated with piperazine-1-carboxamidine or agmatine (50 μg/ml agents), or saline, and 15 h later propidium iodine was used to stain. Piperazine-1-carboxamidine or agmatine produced substantial in vitro protection compared to post-reoxygenated saline-treated controls. An in vivo model involved surgical right carotid ligation followed by exposure to hypoxic-ischemia (8 % oxygen) for 2.5 h. Piperazine-1-carboxamidine at 50 mg/kg i.p. was given 15 min post-reoxygenation and continued twice daily for 3 days. Cortical agmatine levels were elevated (+28.5 %) following piperazine-1-carboxamidine treatment with no change in arginine or its other major metabolites. Histologic staining with anti-Neun monoclonal antibody also revealed neuroprotection of CA1-3 layers of the hippocampus. Until endpoint at 22 days of age, no adverse events were observed in treated pups' body weights, rectal temperatures, or prompted ambulation. Piperazine-1-carboxamidine therefore appears to be a neuroprotective agent of a new category, agmatinase inhibitor.
Collapse
Affiliation(s)
- John E Piletz
- Department of Psychiatry, Stritch School of Medicine, Loyola University Chicago, Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Molderings GJ, Haenisch B. Agmatine (decarboxylated l-arginine): Physiological role and therapeutic potential. Pharmacol Ther 2012; 133:351-65. [DOI: 10.1016/j.pharmthera.2011.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/14/2023]
|
43
|
Chronic exposure to agmatine results in the selection of agmatine-resistant hepatoma cells. Amino Acids 2011; 42:769-74. [PMID: 21901471 DOI: 10.1007/s00726-011-0993-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/07/2011] [Indexed: 01/20/2023]
Abstract
During our study of the cytostatic effect of agmatine, we were able to isolate an agmatine resistant clone from a parental hepatoma cell line, HTC. These cells, called Agres, had slower growth rate than the parental cells when cultured in normal medium. The modification in polyamine content induced by agmatine was much lower in these cells and ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine/spermine acetyltransferase activities were much less affected. By investigating the mechanism responsible for these modifications, it was shown that agmatine and polyamines were not taken up by Agres cells. Their resistance to the antiproliferative effects of agmatine may thus arise from a lack of the polyamine transport system. Moreover, Agres cells were able to take up both glutamic acid and arginine at a rate significantly higher than that detected for HTC cells, most likely to provide components for compensatory increase of PA synthesis. These results emphasize the importance of polyamine transport for cell growth.
Collapse
|
44
|
Evidence for an inhibitory LIM domain in a rat brain agmatinase-like protein. Arch Biochem Biophys 2011; 512:107-10. [DOI: 10.1016/j.abb.2011.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 11/16/2022]
|
45
|
Castagnolo D, Schenone S, Botta M. Guanylated Diamines, Triamines, and Polyamines: Chemistry and Biological Properties. Chem Rev 2011; 111:5247-300. [PMID: 21657224 DOI: 10.1021/cr100423x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daniele Castagnolo
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy
| | - Silvia Schenone
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy
| |
Collapse
|
46
|
Barclay JJ, Morosi LG, Vanrell MC, Trejo EC, Romano PS, Carrillo C. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology. Enzyme Res 2011; 2011:657460. [PMID: 21687606 PMCID: PMC3112526 DOI: 10.4061/2011/657460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/24/2011] [Accepted: 03/11/2011] [Indexed: 11/20/2022] Open
Abstract
Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP) and a heterologous ornithine decarboxylase (ODC), used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.
Collapse
Affiliation(s)
- Jeremías José Barclay
- Fundación Instituto Leloir-(FIL-IIBBA-) CONICET and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Expression and localization of an agmatinase-like protein in the rat brain. Histochem Cell Biol 2010; 134:137-44. [PMID: 20607275 DOI: 10.1007/s00418-010-0720-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2010] [Indexed: 12/19/2022]
Abstract
Agmatinase catalyzes the hydrolysis of agmatine into putrescine and urea, and agmatine (decarboxylated L: -arginine) plays several roles in mammalian tissues, including neurotransmitter/neuromodulatory actions in the brain. Injection of agmatine in animals produces anticonvulsant, antineurotoxic and antidepressant-like actions. Information regarding the enzymatic aspects of agmatine metabolism in mammals, especially related to its degradation, is relatively scarce. The explanation for this is the lack of enzymatically active preparations of mammalian agmatinase. Recently, we have cloned a protein from a cDNA rat brain library having agmatinase activity although its amino acid sequence greatly differs from all known agmatinases, we called agmatinase-like protein. In this work, we analyzed the expression of this enzyme in the rat brain by means of RT-PCR and immunohistochemical analysis using a polyclonal antibody generated against the recombinant agmatinase-like protein. The agmatinase-like protein was detected in the hypothalamus in glial cells and arcuate nucleus neurons, and in hippocampus astrocytes and neurons, but not in brain cortex. In general, detected localization of agmatinase-like protein coincides with that described for its substrate agmatine and our results help to explain several reported effects of agmatine in the brain. Concretely, a role in the regulation of intracellular concentrations of the neurotransmitter/neuromodulator agmatine is suggested for the brain agmatinase-like protein.
Collapse
|
48
|
López-Contreras AJ, Ramos-Molina B, Cremades A, Peñafiel R. Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 2009; 38:603-11. [PMID: 19956990 DOI: 10.1007/s00726-009-0419-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/24/2009] [Indexed: 01/20/2023]
Abstract
Polyamines are small organic polycations essential for cell proliferation and survival. Antizymes (AZs) are small proteins regulated by polyamines that inhibit polyamine biosynthesis and uptake in mammalian cells. In addition, antizyme functions are also regulated by antizyme inhibitors, homologue proteins of ornithine decarboxylase lacking enzymatic activity. There are two antizyme inhibitors (AZIN), known as AZIN1 and AZIN2, that bind to AZs and negate their effects on polyamine metabolism. Here, we review different molecular and cellular properties of the novel AZIN2 with particular emphasis on the role that this protein may have in brain and testis physiology. Whereas AZIN1 is ubiquitously found in mammalian tissues, AZIN2 expression appears to be restricted to brain and testis. In transfected cells, AZIN2 is mainly located in the endoplasmic reticulum-Golgi intermediate compartment and in the cis-Golgi network. AZIN2 is a labile protein that is degraded by the proteasome by a ubiquitin-dependent mechanism. Regarding its physiological role, spatial and temporal analyses of AZIN2 expression in the mouse testis suggest that this protein may have a role in spermiogenesis.
Collapse
Affiliation(s)
- Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
49
|
Decarboxylases (E.C. 4.1.1.-). Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00506_9.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
ENZYMES. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00506.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|