1
|
Wang Z, Zhou Y, Tang F. RNAi-mediated silencing of transferrin promotes entomopathogens lethality in Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106149. [PMID: 39477602 DOI: 10.1016/j.pestbp.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Transferrin (Tsf) is a highly conserved multifunctional protein involved in insect physiology, defense and development that has been developed as a novel RNA interference (RNAi)-based target for pest control. The function study of the Tsf gene in Odontotermes formosanu (Shiraki) was evaluated for synergistic control of this agroforestry pest with Serratia marcescens (SM1), Bacillus thuringiensis (Bt) or Beauveria bassiana (Bb). The Tsf gene of O. formosanus was identified and characterized. Real-time fluorescent quantitative PCR (qPCR) analysis demonstrated that OfTsf was most highly expressed in the male dealate of O. formosanus, and OfTsf was highly expressed in the hemolymph. OfTsf expression was considerably elevated after SM1, Bt or Bb infection. Furthermore, dsOfTsf treatment was effective in increasing the virulence of entomopathogens to O. formosanus. In addition, OfTsf expression was markedly upregulated in O. formosanus fed with oxidative stress inducers; reactive oxygen species (ROS) levels were significantly increased after dsOfTsf treatment. Therefore, OfTsf gene played an important role in defending against entomopathogen infection and antioxidant stress. Most importantly, our work suggested OfTsf as a potential RNAi target for the control of O. formosanus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Weber JJ, Geisbrecht BV, Kanost MR, Gorman MJ. A conserved asparagine residue stabilizes iron binding in Manduca sexta transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 168:104109. [PMID: 38494145 PMCID: PMC11018507 DOI: 10.1016/j.ibmb.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Transferrin 1 (Tsf1) is an insect-specific iron-binding protein that is abundant in hemolymph and other extracellular fluids. It binds iron tightly at neutral pH and releases iron under acidic conditions. Tsf1 influences the distribution of iron in the body and protects against infection. Elucidating the mechanisms by which Tsf1 achieves these functions will require an understanding of how Tsf1 binds and releases iron. Previously, crystallized Tsf1 from Manduca sexta was shown to have a novel type of iron coordination that involves four iron-binding ligands: two tyrosine residues (Tyr90 and Tyr204), a buried carbonate anion, and a solvent-exposed carbonate anion. The solvent-exposed carbonate anion was bound by a single amino acid residue, a highly conserved asparagine at position 121 (Asn121); thus, we predicted that Asn121 would be essential for high-affinity iron binding. To test this hypothesis, we analyzed the iron-binding and -release properties of five forms of recombinant Tsf1: wild-type, a Y90F/Y204F double mutant (negative control), and three Asn121 mutants (N121A, N121D and N121S). Each of the Asn121 mutants exhibited altered spectral properties, confirming that Asn121 contributes to iron coordination. The N121D and N121S mutations resulted in slightly lower affinity for iron, especially at acidic pH, while iron binding and release by the N121A mutant was indistinguishable from that of the wild-type protein. The surprisingly minor consequences of mutating Asn121, despite its high degree of conservation in diverse insect species, suggest that Asn121 may play a role that is essential in vivo but non-essential for high affinity iron binding in vitro.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
3
|
Alrouji M, Yasmin S, Furkan M, Alhumaydhi FA, Sharaf SE, Khan RH, Shamsi A. Unveiling the Molecular Interactions Between Human Transferrin and Limonene: Natural Compounds in Alzheimer's Disease Therapeutics. J Alzheimers Dis 2024; 99:333-343. [PMID: 38701154 DOI: 10.3233/jad-240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, United Arab Emirates
| |
Collapse
|
4
|
Shamsi A, Furkan M, Khan RH, Khan MS, Shahwan M, Yadav DK. Comprehensive insight into the molecular interaction of rutin with human transferrin: Implication of natural compounds in neurodegenerative diseases. Int J Biol Macromol 2023; 253:126643. [PMID: 37657585 DOI: 10.1016/j.ijbiomac.2023.126643] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Neurodegeneration, a process of irreversible neuronal damage, is characterized by a damaged neuronal structure and function. The interplay between various proteins maintains homeostasis of essential metals in the brain, shielding neurons from degeneration; human transferrin (Htf) is essential in maintaining iron homeostasis. Any disruption in iron homeostasis results in the development of neurodegenerative diseases (NDs) and their pathology, mainly Alzheimer's disease (AD). Rutin is a known compound for its neuroprotective effects. In this work, we deciphered the binding of rutin with Htf in a bid to understand the interaction mechanism. The results of fluorescence and UV-vis spectroscopy demonstrated strong interaction between rutin and Htf. The enthalpy change (∆H°) and entropy change (∆S°) analysis demonstrated hydrophobic interactions as the prevalent forces. The binding mechanism of rutin was further assessed atomistically by molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies; molecular docking showed binding of rutin within Htf's binding pocket. MD results suggested that binding of rutin to Htf does not cause significant structural switching or disruption of the protein's native packing. Overall, the study deciphers the binding of rutin with hTf, delineating the binding mechanism and providing a platform to use rutin in NDs therapeutics.
Collapse
Affiliation(s)
- Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia.
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates.
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
5
|
Zhang X, Zuo R, Xiao S, Wang L. Association between iron metabolism and non-alcoholic fatty liver disease: results from the National Health and Nutrition Examination Survey (NHANES 2017-2018) and a controlled animal study. Nutr Metab (Lond) 2022; 19:81. [PMID: 36514155 PMCID: PMC9749311 DOI: 10.1186/s12986-022-00715-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron metabolism may be involved in the pathogenesis of the non-alcoholic fatty liver disease (NAFLD). The relationship between iron metabolism and NAFLD has not been clearly established. This study aimed to clarify the relationship between biomarkers of iron metabolism and NAFLD. METHODS Based on the National Health and Nutrition Examination Survey (NHANES), restricted cubic spline models and multivariable logistic regression were used to examine the association between iron metabolism [serum iron (SI), serum ferritin (SF), transferrin saturation (TSAT), and soluble transferrin receptor (sTfR)] and the risk for NAFLD. In addition, stratified subgroup analysis was performed for the association between TSAT and NAFLD. Moreover, serum TSAT levels were determined in male mice with NAFLD. The expression of hepcidin and ferroportin, vital regulators of iron metabolism, were analyzed in the livers of mice by quantitative real-time PCR (qRT-PCR) and patients with NAFLD by microarray collected from the GEO data repository. RESULTS Patients with NAFLD showed decreased SI, SF, and TSAT levels and increased STfR levels based on the NHANES. After adjusting for confounding factors, TSAT was significantly negatively correlated with NAFLD. Of note, the relationship between TSAT and NAFLD differed in the four subgroups of age, sex, race, and BMI (P for interaction < 0.05). Consistently, mice with NAFLD exhibited decreased serum TSAT levels. Decreased hepcidin and increased ferroportin gene expression were observed in the livers of patients and mice with NAFLD. CONCLUSION Serum TSAT levels and hepatic hepcidin expression were decreased in both patients and mice with NAFLD. Among multiple biomarkers of iron metabolism, lower TSAT levels were significantly associated with a higher risk of NAFLD in the U.S. general population. These findings might provide new ideas for the prediction, diagnosis, and mechanistic exploration of NAFLD.
Collapse
Affiliation(s)
- Xinxin Zhang
- grid.254147.10000 0000 9776 7793School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Ronghua Zuo
- grid.412676.00000 0004 1799 0784Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Shengjue Xiao
- grid.263826.b0000 0004 1761 0489Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009 China
| | - Lirui Wang
- grid.41156.370000 0001 2314 964XInstitute of Modern Biology, Nanjing University, 22 Hankou Road, Gulou, Nanjing, 210093 China
| |
Collapse
|
6
|
Weber JJ, Brummett LM, Coca ME, Tabunoki H, Kanost MR, Ragan EJ, Park Y, Gorman MJ. Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103811. [PMID: 35781032 PMCID: PMC9869689 DOI: 10.1016/j.ibmb.2022.103811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Transferrin-1 (Tsf1) is an extracellular insect protein with a high affinity for iron. The functions of Tsf1 are still poorly understood; however, Drosophila melanogaster Tsf1 has been shown to influence iron distribution in the fly body and to protect flies against some infections. The goal of this study was to better understand the physiological functions of Tsf1 in D. melanogaster by 1) investigating Tsf1 null phenotypes, 2) determining tissue-specific localization of Tsf1, 3) measuring the concentration of Tsf1 in hemolymph, 4) testing Tsf1 for bacteriostatic activity, and 5) evaluating the effect of metal and paraquat treatments on Tsf1 abundance. Flies lacking Tsf1 had more iron than wild-type flies in specialized midgut cells that take up iron from the diet; however, the absence of Tsf1 had no effect on the iron content of whole midguts, fat body, hemolymph, or heads. Thus, as previous studies have suggested, Tsf1 appears to have a minor role in iron transport. Tsf1 was abundant in hemolymph from larvae (0.4 μM), pupae (1.4 μM), adult females (4.4 μM) and adult males (22 μM). Apo-Tsf1 at 1 μM had bacteriostatic activity whereas holo-Tsf1 did not, suggesting that Tsf1 can inhibit microbial growth by sequestering iron in hemolymph and other extracellular environments. This hypothesis was supported by detection of secreted Tsf1 in tracheae, testes and seminal vesicles. Colocalization of Tsf1 with an endosome marker in oocytes suggested that Tsf1 may provide iron to developing eggs; however, eggs from mothers lacking Tsf1 had the same amount of iron as control eggs, and they hatched at a wild-type rate. Thus, the primary function of Tsf1 uptake by oocytes may be to defend against infection rather than to provide eggs with iron. In beetles, Tsf1 plays a role in protection against oxidative stress. In contrast, we found that flies lacking Tsf1 had a typical life span and greater resistance to paraquat-induced oxidative stress. In addition, Tsf1 abundance remained unchanged in response to ingestion of iron, cadmium or paraquat or to injection of iron. These results suggest that Tsf1 has a limited role in protection against oxidative stress in D. melanogaster.
Collapse
Affiliation(s)
- Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Michelle E Coca
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Emily J Ragan
- Department of Chemistry and Biochemistry, Metropolitan State University of Denver, Denver, CO, 80217, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
8
|
Rani J, De TD, Chauhan C, Kumari S, Sharma P, Tevatiya S, Chakraborti S, Pandey KC, Singh N, Dixit R. Functional disruption of transferrin expression alters reproductive physiology in Anopheles culicifacies. PLoS One 2022; 17:e0264523. [PMID: 35245324 PMCID: PMC8896695 DOI: 10.1371/journal.pone.0264523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Iron metabolism is crucial to maintain optimal physiological homeostasis of every organism and any alteration of the iron concentration (i.e. deficit or excess) can have adverse consequences. Transferrins are glycoproteins that play important role in iron transportation and have been widely characterized in vertebrates and insects, but poorly studied in blood-feeding mosquitoes. RESULTS We characterized a 2102 bp long transcript AcTrf1a with complete CDS of 1872bp, and 226bp UTR region, encoding putative transferrin homolog protein from mosquito An. culicifacies. A detailed in silico analysis predicts AcTrf1a encodes 624 amino acid (aa) long polypeptide that carries transferrin domain. AcTrf1a also showed a putative N-linked glycosylation site, a characteristic feature of most of the mammalian transferrins and certain non-blood feeding insects. Structure modelling prediction confirms the presence of an iron-binding site at the N-terminal lobe of the transferrin. Our spatial and temporal expression analysis under altered pathophysiological conditions showed that AcTrf1a is abundantly expressed in the fat-body, ovary, and its response is significantly altered (enhanced) after blood meal uptake, and exogenous bacterial challenge. Additionally, non-heme iron supplementation of FeCl3 at 1 mM concentration not only augmented the AcTrf1a transcript expression in fat-body but also enhanced the reproductive fecundity of gravid adult female mosquitoes. RNAi-mediated knockdown of AcTrf1a causes a significant reduction in fecundity, confirming the important role of transferrin in oocyte maturation. CONCLUSION All together our results advocate that detailed characterization of newly identified AcTrf1a transcript may help to select it as a unique target to impair the mosquito reproductive outcome.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Soumyananda Chakraborti
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Namita Singh
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
9
|
Pryshchepa O, Sagandykova G, Rudnicka J, Pomastowski P, Sprynskyy M, Buszewski B. Synthesis and physicochemical characterization of zinc-lactoferrin complexes. J Dairy Sci 2022; 105:1940-1958. [PMID: 35033339 DOI: 10.3168/jds.2021-20538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023]
Abstract
One trend of the modern world is the search for new biologically active substances based on renewable resources. Milk proteins can be a solution for such purposes as they have been known for a long time as compounds that can be used for the manufacturing of multiple food and non-food products. Thus, the goal of the work was to investigate the parameters of Zn-bovine lactoferrin (bLTF) interactions, which enables the synthesis of Zn-rich protein complexes. Zinc-bLTF complexes can be used as food additives or wound-healing agents. Methodology of the study included bLTF characterization by sodium dodecyl sulfate-PAGE, MALDI-TOF, and MALDI-TOF/TOF mass spectrometry as well Zn-bLTF interactions by attenuated total reflection-Fourier-transform infrared, Raman spectroscopy, scanning and transmission microscopy, and zeta potential measurements. The obtained results revealed that the factors that affect Zn-bLTF interactions most significantly were found to be pH and ionic strength of the solution and, in particular, the concentration of Zn2+. These findings imply that these factors should be considered when aiming at the synthesis of Zn-bLTF metallocomplexes.
Collapse
Affiliation(s)
- Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Joanna Rudnicka
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
10
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
11
|
Campos-Escamilla C, Siliqi D, Gonzalez-Ramirez LA, Lopez-Sanchez C, Gavira JA, Moreno A. X-ray Characterization of Conformational Changes of Human Apo- and Holo-Transferrin. Int J Mol Sci 2021; 22:13392. [PMID: 34948188 PMCID: PMC8705962 DOI: 10.3390/ijms222413392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Human serum transferrin (Tf) is a bilobed glycoprotein whose function is to transport iron through receptor-mediated endocytosis. The mechanism for iron release is pH-dependent and involves conformational changes in the protein, thus making it an attractive system for possible biomedical applications. In this contribution, two powerful X-ray techniques, namely Macromolecular X-ray Crystallography (MX) and Small Angle X-ray Scattering (SAXS), were used to study the conformational changes of iron-free (apo) and iron-loaded (holo) transferrin in crystal and solution states, respectively, at three different pH values of physiological relevance. A crystallographic model of glycosylated apo-Tf was obtained at 3.0 Å resolution, which did not resolve further despite many efforts to improve crystal quality. In the solution, apo-Tf remained mostly globular in all the pH conditions tested; however, the co-existence of closed, partially open, and open conformations was observed for holo-Tf, which showed a more elongated and flexible shape overall.
Collapse
Affiliation(s)
- Camila Campos-Escamilla
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Av. Universidad 3000, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Dritan Siliqi
- Istitituto di Cristallografia (IC), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Luis A. Gonzalez-Ramirez
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, C.S.I.C. University of Granada, Avenida de las Palmeras No. 4, 18100 Armilla, Granada, Spain; (L.A.G.-R.); (C.L.-S.); (J.A.G.)
| | - Carmen Lopez-Sanchez
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, C.S.I.C. University of Granada, Avenida de las Palmeras No. 4, 18100 Armilla, Granada, Spain; (L.A.G.-R.); (C.L.-S.); (J.A.G.)
| | - Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, C.S.I.C. University of Granada, Avenida de las Palmeras No. 4, 18100 Armilla, Granada, Spain; (L.A.G.-R.); (C.L.-S.); (J.A.G.)
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de Mexico, Av. Universidad 3000, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, C.S.I.C. University of Granada, Avenida de las Palmeras No. 4, 18100 Armilla, Granada, Spain; (L.A.G.-R.); (C.L.-S.); (J.A.G.)
| |
Collapse
|
12
|
Transferrin Biosynthesized in the Brain Is a Novel Biomarker for Alzheimer's Disease. Metabolites 2021; 11:metabo11090616. [PMID: 34564432 PMCID: PMC8470343 DOI: 10.3390/metabo11090616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/23/2023] Open
Abstract
Glycosylation is a cell type-specific post-translational modification that can be used for biomarker identification in various diseases. Aim of this study is to explore glycan-biomarkers on transferrin (Tf) for Alzheimer’s disease (AD) in cerebrospinal fluid (CSF). Glycan structures of CSF Tf were analyzed by ultra-performance liquid chromatography followed by mass spectrometry. We found that a unique mannosylated-glycan is carried by a Tf isoform in CSF (Man-Tf). The cerebral cortex contained Man-Tf as a major isofom, suggesting that CSF Man-Tf is, at least partly, derived from the cortex. Man-Tf levels were analyzed in CSF of patients with neurological diseases. Concentrations of Man-Tf were significantly increased in AD and mild cognitive impairment (MCI) comparing with other neurological diseases, and the levels correlated well with those of phosphorylated-tau (p-tau), a representative AD marker. Consistent with the observation, p-tau and Tf were co-expressed in hippocampal neurons of AD, leading to the notion that a combined p-tau and Man-Tf measure could be a biomarker for AD. Indeed, levels of p-tau x Man-Tf showed high diagnostic accuracy for MCI and AD; 84% sensitivities and 90% specificities for MCI and 94% sensitivities and 89% specificities for AD. Thus Man-Tf could be a new biomarker for AD.
Collapse
|
13
|
Khajeh E, Jamshidian-Mojaver M, Naeemipour M, Farzin H. The Identification of a Novel Peptide Derived from Lactoferrin Isolated from Camel Milk with Potential Antimicrobial Activity. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2021. [DOI: 10.30699/ijmm.15.3.302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Najera DG, Dittmer NT, Weber JJ, Kanost MR, Gorman MJ. Phylogenetic and sequence analyses of insect transferrins suggest that only transferrin 1 has a role in iron homeostasis. INSECT SCIENCE 2021; 28:495-508. [PMID: 32237057 PMCID: PMC7668117 DOI: 10.1111/1744-7917.12783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 05/20/2023]
Abstract
Iron is essential to life, but surprisingly little is known about how iron is managed in nonvertebrate animals. In mammals, the well-characterized transferrins bind iron and are involved in iron transport or immunity, whereas other members of the transferrin family do not have a role in iron homeostasis. In insects, the functions of transferrins are still poorly understood. The goals of this project were to identify the transferrin genes in a diverse set of insect species, resolve the evolutionary relationships among these genes, and predict which of the transferrins are likely to have a role in iron homeostasis. Our phylogenetic analysis of transferrins from 16 orders of insects and two orders of noninsect hexapods demonstrated that there are four orthologous groups of insect transferrins. Our analysis suggests that transferrin 2 arose prior to the origin of insects, and transferrins 1, 3, and 4 arose early in insect evolution. Primary sequence analysis of each of the insect transferrins was used to predict signal peptides, carboxyl-terminal transmembrane regions, GPI-anchors, and iron binding. Based on this analysis, we suggest that transferrins 2, 3, and 4 are unlikely to play a major role in iron homeostasis. In contrast, the transferrin 1 orthologs are predicted to be secreted, soluble, iron-binding proteins. We conclude that transferrin 1 orthologs are the most likely to play an important role in iron homeostasis. Interestingly, it appears that the louse, aphid, and thrips lineages have lost the transferrin 1 gene and, thus, have evolved to manage iron without transferrins.
Collapse
Affiliation(s)
- Diana G Najera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Jacob J Weber
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Weber JJ, Kashipathy MM, Battaile KP, Go E, Desaire H, Kanost MR, Lovell S, Gorman MJ. Structural insight into the novel iron-coordination and domain interactions of transferrin-1 from a model insect, Manduca sexta. Protein Sci 2021; 30:408-422. [PMID: 33197096 PMCID: PMC7784759 DOI: 10.1002/pro.3999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Transferrins function in iron sequestration and iron transport by binding iron tightly and reversibly. Vertebrate transferrins coordinate iron through interactions with two tyrosines, an aspartate, a histidine, and a carbonate anion, and conformational changes that occur upon iron binding and release have been described. Much less is known about the structure and functions of insect transferrin-1 (Tsf1), which is present in hemolymph and influences iron homeostasis mostly by unknown mechanisms. Amino acid sequence and biochemical analyses have suggested that iron coordination by Tsf1 differs from that of the vertebrate transferrins. Here we report the first crystal structure (2.05 Å resolution) of an insect transferrin. Manduca sexta (MsTsf1) in the holo form exhibits a bilobal fold similar to that of vertebrate transferrins, but its carboxyl-lobe adopts a novel orientation and contacts with the amino-lobe. The structure revealed coordination of a single Fe3+ ion in the amino-lobe through Tyr90, Tyr204, and two carbonate anions. One carbonate anion is buried near the ferric ion and is coordinated by four residues, whereas the other carbonate anion is solvent exposed and coordinated by Asn121. Notably, these residues are highly conserved in Tsf1 orthologs. Docking analysis suggested that the solvent exposed carbonate position is capable of binding alternative anions. These findings provide a structural basis for understanding Tsf1 function in iron sequestration and transport in insects as well as insight into the similarities and differences in iron homeostasis between insects and humans.
Collapse
Affiliation(s)
- Jacob J. Weber
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology CenterUniversity of KansasLawrenceKansasUSA
| | | | - Eden Go
- Department of ChemistryUniversity of KansasLawrenceKansasUSA
| | - Heather Desaire
- Department of ChemistryUniversity of KansasLawrenceKansasUSA
| | - Michael R. Kanost
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology CenterUniversity of KansasLawrenceKansasUSA
| | - Maureen J. Gorman
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansasUSA
| |
Collapse
|
16
|
Hayashi K, Longenecker KL, Liu YL, Faust B, Prashar A, Hampl J, Stoll V, Vivona S. Complex of human Melanotransferrin and SC57.32 Fab fragment reveals novel interdomain arrangement with ferric N-lobe and open C-lobe. Sci Rep 2021; 11:566. [PMID: 33436675 PMCID: PMC7804310 DOI: 10.1038/s41598-020-79090-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Melanotransferrin (MTf) is an iron-binding member of the transferrin superfamily that can be membrane-anchored or secreted in serum. On cells, it can mediate transferrin-independent iron uptake and promote proliferation. In serum, it is a transcytotic iron transporter across the blood-brain barrier. MTf has been exploited as a drug delivery carrier to the brain and as an antibody-drug conjugate (ADC) target due to its oncogenic role in melanoma and its elevated expression in triple-negative breast cancer (TNBC). For treatment of TNBC, an MTf-targeting ADC completed a phase I clinical trial (NCT03316794). The structure of its murine, unconjugated Fab fragment (SC57.32) is revealed here in complex with MTf. The MTf N-lobe is in an active and iron-bound, closed conformation while the C-lobe is in an open conformation incompatible with iron binding. This combination of active and inactive domains displays a novel inter-domain arrangement in which the C2 subdomain angles away from the N-lobe. The C2 subdomain also contains the SC57.32 glyco-epitope, which comprises ten protein residues and two N-acetylglucosamines. Our report reveals novel features of MTf and provides a point of reference for MTf-targeting, structure-guided drug design.
Collapse
Affiliation(s)
- Kristyn Hayashi
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | | | - Yi-Liang Liu
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Bryan Faust
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Aditi Prashar
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Johannes Hampl
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Vincent Stoll
- Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sandro Vivona
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
17
|
Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2020; 329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Serum protein as naturally essential biomacromolecules has recently emerged as a versatile carrier for diagnostic and therapeutic drug delivery for cancer nanomedicine with superior biocompatibility, improved pharmacokinetics and enhanced targeting capacity. A variety of serum proteins have been utilized for drug delivery, mainly including albumin, ferritin/apoferritin, transferrin, low-density lipoprotein, high-density lipoprotein and hemoglobin. As evidenced by the success of paclitaxel-bound albumin nanoparticles (AbraxaneTM), serum protein-based nanoparticles have gained attractive attentions for precise biological design and potential clinical application. In this review, we summarize the general design strategies, targeting mechanisms and recent development of serum protein-based nanoparticles in the field of cancer nanomedicine. Moreover, we also concisely specify the current challenges to be addressed for a bright future of serum protein-based nanomedicines.
Collapse
Affiliation(s)
- Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Miya Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
18
|
Fernandes MA, Hanck-Silva G, Baveloni FG, Oshiro Junior JA, de Lima FT, Eloy JO, Chorilli M. A Review of Properties, Delivery Systems and Analytical Methods for the Characterization of Monomeric Glycoprotein Transferrin. Crit Rev Anal Chem 2020; 51:399-410. [DOI: 10.1080/10408347.2020.1743639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mariza Aires Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Franciele Garcia Baveloni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- College of Pharmacy, Dentistry and Nursing, Federal University of Ceara (UFC), Fortaleza, Ceará, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
20
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
21
|
Gaus HJ, Gupta R, Chappell AE, Østergaard ME, Swayze EE, Seth PP. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res 2019; 47:1110-1122. [PMID: 30566688 PMCID: PMC6379706 DOI: 10.1093/nar/gky1260] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Interactions of chemically modified nucleic acid therapeutics with plasma proteins play an important role in facilitating distribution from the injection site to peripheral tissues by reducing renal clearance. Despite the importance of these interactions, analytical methods that can characterize binding constants with individual plasma proteins in a reliable and high throughput manner are not easily available. We developed a fluorescence polarization (FP) based assay and measured binding constants for the 25 most abundant human plasma proteins with phosphorothioate (PS) modified antisense oligonucleotides (ASOs). We evaluated the influence of sequence, sugar modifications, and PS content on ASO interactions with several abundant human plasma proteins and determined the effect of salt and pH on these interactions. PS ASOs were found to associate predominantly with albumin and histidine-rich glycoprotein (HRG) in mouse and human plasma by size-exclusion chromatography. In contrast, PS ASOs associate predominantly with HRG in monkey plasma because of higher concentrations of this protein in monkeys. Finally, plasma proteins capable of binding PS ASOs in human plasma were confirmed by employing affinity chromatography and proteomics. Our results indicate distinct differences in contributions from the PS backbone, nucleobase composition and oligonucleotide flexibility to protein binding.
Collapse
Affiliation(s)
- Hans J Gaus
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Ruchi Gupta
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alfred E Chappell
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Eric E Swayze
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Punit P Seth
- Ionis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
22
|
Yen TJ, Lolicato M, Thomas-Tran R, Du Bois J, Minor DL. Structure of the saxiphilin:saxitoxin (STX) complex reveals a convergent molecular recognition strategy for paralytic toxins. SCIENCE ADVANCES 2019; 5:eaax2650. [PMID: 31223657 PMCID: PMC6584486 DOI: 10.1126/sciadv.aax2650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/13/2023]
Abstract
Dinoflagelates and cyanobacteria produce saxitoxin (STX), a lethal bis-guanidinium neurotoxin causing paralytic shellfish poisoning. A number of metazoans have soluble STX-binding proteins that may prevent STX intoxication. However, their STX molecular recognition mechanisms remain unknown. Here, we present structures of saxiphilin (Sxph), a bullfrog high-affinity STX-binding protein, alone and bound to STX. The structures reveal a novel high-affinity STX-binding site built from a "proto-pocket" on a transferrin scaffold that also bears thyroglobulin domain protease inhibitor repeats. Comparison of Sxph and voltage-gated sodium channel STX-binding sites reveals a convergent toxin recognition strategy comprising a largely rigid binding site where acidic side chains and a cation-π interaction engage STX. These studies reveal molecular rules for STX recognition, outline how a toxin-binding site can be built on a naïve scaffold, and open a path to developing protein sensors for environmental STX monitoring and new biologics for STX intoxication mitigation.
Collapse
Affiliation(s)
- Tien-Jui Yen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
23
|
Anghel L, Radulescu A, Erhan RV. Structural aspects of human lactoferrin in the iron-binding process studied by molecular dynamics and small-angle neutron scattering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:109. [PMID: 30229350 DOI: 10.1140/epje/i2018-11720-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Lactoferrin is a non-heme protein known for its ability to bind tightly Fe(III) ions in various physiological environments. Due to this feature lactoferrin plays an important role in the processes of iron regulation at the cellular level preventing the body from damages produced by high levels of free iron ions. The X-ray crystal structure of human lactoferrin shows that the iron-binding process leads to conformational changes within the protein structure. The present study was addressed to conformation stability of human lactoferrin in solution. Using molecular dynamics simulations, it was shown that Arg121 is the key amino acid in the stabilization of the Fe(III) ion in the N-lobe of human lactoferrin. The small-angle neutron scattering method allowed us to detect the structural differences between the open and closed conformation of human lactoferrin in solution. Our results indicate that the radius of gyration of apolactoferrin appears to be smaller than that of the hololactoferrin, [Formula: see text] Å and [Formula: see text] Å, respectively. The low-resolution three-dimensional models computed for both forms of human lactoferrin in solution also show visible differences, both having a more compact conformation compared to the high-resolution structure.
Collapse
Affiliation(s)
- Lilia Anghel
- Institute of Chemistry (ICh), Academiei 3, MD-2028, Chisinau, Republic of Moldova
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748, Garching, Germany
| | - Raul Victor Erhan
- Neutron materials characterization (NØYTRON), Institute for Energy Technology (IFE), Instituttveien 18, P.O. Box 40, 2027, Kjeller, Norway.
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), Reactorului 30, P.O. Box MG-6, Bucharest - Magurele, Romania.
| |
Collapse
|
24
|
Brummett LM, Kanost MR, Gorman MJ. The immune properties of Manduca sexta transferrin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:1-9. [PMID: 27986638 PMCID: PMC5292288 DOI: 10.1016/j.ibmb.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.
Collapse
Affiliation(s)
- Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, 1711 Claflin Road, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
25
|
Zhang X, Lan L, Yang S, Rui Y, Li Q, Chen H, Sun X, Yang Q, Tang Y. Specific identification of human transferrin conformations using a cyanine dye supramolecular assembly. RSC Adv 2017. [DOI: 10.1039/c7ra04272h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new method to recognize human transferrin open conformation (apo-Tf) was developed using cyanine dye (MTC) supramolecular assembly.
Collapse
Affiliation(s)
- Xiufeng Zhang
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Ling Lan
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan
- P. R. China
- Graduate University of Chinese Academy of Sciences
| | - Shu Yang
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P. R. China
| | - Yulan Rui
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Hongbo Chen
- Graduate University of Chinese Academy of Sciences
- Beijing 100080
- P. R. China
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
| | - Xin Sun
- College of Chemical Engineering
- North China University of Science and Technology
- Tangshan
- P. R. China
| | - Qianfan Yang
- College of Chemistry
- Sichuan University
- Chengdu
- P. R. China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|
26
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Matsuo H, Yokooji T, Taogoshi T. Common food allergens and their IgE-binding epitopes. Allergol Int 2015; 64:332-43. [PMID: 26433529 DOI: 10.1016/j.alit.2015.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
Food allergy is an adverse immune response to certain kinds of food. Although any food can cause allergic reactions, chicken egg, cow's milk, wheat, shellfish, fruit, and buckwheat account for 75% of food allergies in Japan. Allergen-specific immunoglobulin E (IgE) antibodies play a pivotal role in the development of food allergy. Recent advances in molecular biological techniques have enabled the efficient analysis of food allergens. As a result, many food allergens have been identified, and their molecular structure and IgE-binding epitopes have also been identified. Studies of allergens have demonstrated that IgE antibodies specific to allergen components and/or the peptide epitopes are good indicators for the identification of patients with food allergy, prediction of clinical severity and development of tolerance. In this review, we summarize our current knowledge regarding the allergens and IgE epitopes in the well-researched allergies to chicken egg, cow's milk, wheat, shrimp, and peanut.
Collapse
Affiliation(s)
- Hiroaki Matsuo
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan.
| | - Tomoharu Yokooji
- Department of Pathophysiology and Therapeutics, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takanori Taogoshi
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
28
|
Wei W, Wu Y, Ying Y, Li S, Hu S, Zhang H. Role of augmented transferrin during the retraining for undeveloped left ventricle. J Cell Mol Med 2015; 19:2423-31. [PMID: 26099594 PMCID: PMC4594683 DOI: 10.1111/jcmm.12627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022] Open
Abstract
Transposition of great arteries (TGA) is a common congenital heart disease. Left ventricle (LV) is rapidly regressing and pulmonary artery banding (PAB) is utilized to retrain the undeveloped LV. Hence, it offered a unique human disease model to investigate the process of LV hypertrophy under pressure overload. Eight late referred children with TGA were enrolled. The plasma was collected at the 30 min. before and 48 hrs after PAB, and 25 proteins were identified as having significant change in proteomic analysis. Transferrin (TF) and ceruloplasmin were then confirmed. After 48 hrs incubation with TF, the size of human induced pluripotent stem cell-derived cardiomyocytes increased by two times as large as control. Meanwhile, protein synthesis and the expression of natriuretic peptide precursor A and B were significantly enhanced. TF treatment also activated both extracellular signal-regulated kinase 1/2 and activated protein kinase singling pathways. Our data provided a link to molecular components and pathways that might be involved in LV retraining. TF severed as the carrier to delivery irons, and could directly stimulate cardiomyocytes hypertrophy. TF administration may hold therapeutic potential for the biological LV retraining.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Center for Pediatric Cardiac Surgery and Research Center for Cardiac Regenerative Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihe Wu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Thoracic Surgery, 1st Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yongquan Ying
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shoujun Li
- Center for Pediatric Cardiac Surgery and Research Center for Cardiac Regenerative Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Center for Pediatric Cardiac Surgery and Research Center for Cardiac Regenerative Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Center for Pediatric Cardiac Surgery and Research Center for Cardiac Regenerative Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Iron metallodrugs: stability, redox activity and toxicity against Artemia salina. PLoS One 2015; 10:e0121997. [PMID: 25849743 PMCID: PMC4388346 DOI: 10.1371/journal.pone.0121997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM). However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes), may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug.
Collapse
|
30
|
Bu JT, Bartnikas TB. The use of hypotransferrinemic mice in studies of iron biology. Biometals 2015; 28:473-80. [PMID: 25663418 DOI: 10.1007/s10534-015-9833-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
The hypotransferrinemic (hpx) mouse is a model of inherited transferrin deficiency that originated several decades ago in the BALB/cJ mouse strain. Also known as the hpx mouse, this line is almost completely devoid of transferrin, an abundant serum iron-binding protein. Two of the most prominent phenotypes of the hpx mouse are severe anemia and tissue iron overload. These phenotypes reflect the essential role of transferrin in iron delivery to bone marrow and regulation of iron homeostasis. Over the years, the hpx mouse has been utilized in studies on the role of transferrin, iron and other metals in a variety of organ systems and biological processes. This review summarizes the lessons learned from these studies and suggests possible areas of future exploration using this versatile yet complex mouse model.
Collapse
Affiliation(s)
- Julia T Bu
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | | |
Collapse
|
31
|
Mizutani K. High-throughput plasmid construction using homologous recombination in yeast: its mechanisms and application to protein production for X-ray crystallography. Biosci Biotechnol Biochem 2015; 79:1-10. [DOI: 10.1080/09168451.2014.952614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.
Collapse
Affiliation(s)
- Kimihiko Mizutani
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Hughes AL, Friedman R. Evolutionary diversification of the vertebrate transferrin multi-gene family. Immunogenetics 2014; 66:651-61. [PMID: 25142446 DOI: 10.1007/s00251-014-0798-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, Coker Life Sciences Building, University of South Carolina, 715 Sumter St. Columbia, Columbia, SC, 29208, USA,
| | | |
Collapse
|
33
|
Frazer DM, Anderson GJ. The regulation of iron transport. Biofactors 2014; 40:206-14. [PMID: 24132807 DOI: 10.1002/biof.1148] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
Iron is an essential nutrient, but its concentration and distribution in the body must be tightly controlled due to its inherent toxicity and insolubility in aqueous solution. Living systems have successfully overcome these potential limitations by evolving a range of iron binding proteins and transport systems that effectively maintain iron in a nontoxic and soluble form for much, if not all, of its time within the body. In the circulation, iron is transported to target organs bound to the serum iron binding protein transferrin. Individual cells modulate their uptake of transferrin-bound iron depending on their iron requirements, using both transferrin receptor 1-dependent and independent pathways. Once inside the cell, iron can be chaperoned to sites of need or, if in excess, stored within ferritin. Iron is released from cells by the iron export protein ferroportin1, which requires the ferroxidase activity of ceruloplasmin or hephestin to load iron safely onto transferrin. The regulation of iron export is controlled predominantly at the systemic level by the master regulator of iron homeostasis hepcidin. Hepcidin, in turn, responds to changes in body iron demand, making use of a range of regulatory mechanisms that center on the bone morphogenetic protein signaling pathway. This review provides an overview of recent advances in the field of iron metabolism and outlines the key components of the iron transport and regulation systems.
Collapse
Affiliation(s)
- David M Frazer
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | | |
Collapse
|
34
|
Sanna D, Micera G, Garribba E. Interaction of insulin-enhancing vanadium compounds with human serum holo-transferrin. Inorg Chem 2013; 52:11975-85. [PMID: 24090437 DOI: 10.1021/ic401716x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The interaction of VO(2+) ion and four insulin-enhancing compounds, [VO(ma)2], [VO(dhp)2], [VO(acac)2], and cis-[VO(pic)2(H2O)], where Hma, Hdhp, Hacac, and Hpic are maltol, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, acetylacetone, and picolinic acid, with holo-transferrin (holo-hTf) was studied through the combined application of electron paramagnetic resonance (EPR) and density functional theory (DFT) methods. Since in holo-hTf all of the specific binding sites of transferrin are saturated by Fe(3+) ions, VO(2+) can interact with surface sites (here named sites C), probably via the coordination of His-N, Asp-COO(-), and Glu-COO(-) donors. In the ternary systems with the insulin-enhancing compounds, mixed species are observed with Hma, Hdhp, and Hpic with the formation of VOL2(holo-hTf), explained through the interaction of cis-[VOL2(H2O)] (L = ma, dhp) or cis-[VOL2(OH)](-) (L = pic) with an accessible His residue that replaces the monodentate H2O or OH(-) ligand. The residues of His-289, His-349, His-473, and His-606 seem the most probable candidates for the complexation of the cis-VOL2 moiety. The lack of a ternary complex with Hacac was attributed to the square-pyramidal structure of [VO(acac)2], which does not possess equatorial sites that can be replaced by the surface His-N. Since holo-transferrin is recognized by the transferrin receptor, the formation of ternary complexes between VO(2+) ion, a ligand L(-), and holo-hTf may be a way to transport vanadium compounds inside the cells.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare , Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | |
Collapse
|
35
|
Liu JM, Chen JT, Yan XP. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal Chem 2013; 85:3238-45. [PMID: 23413985 DOI: 10.1021/ac303603f] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The simplicity of the green-synthesized routine and the availability of surface modification of diverse bioactive molecules make noble metal nanostructures highly suitable as multifunctional biomaterials for biological and biomedical application. Here, we report the preparation of trypsin stabilized gold nanoclusters (try-AuNCs) with near-infrared fluorescence for biosensing heparin based on surface plasmon enhanced energy transfer (SPEET) and folic acid (FA) modified try-AuNCs for in vivo cancer bioimaging. The SPEET/try-AuNCs fluorescence biosensor was designed via heparin mediated energy transfer between try-AuNCs and cysteamine modified gold nanoparticles (cyst-AuNPs). The developed SPEET/try-AuNCs fluorescence biosensor allowed sensitive and selective detection of heparin with a linear range of 0.1-4.0 μg mL(-1) and a detection limit (3s) of 0.05 μg mL(-1). The relative standard deviation for eleven replicate detections of 2.5 μg mL(-1) heparin was 1.1%, and the recoveries of the spiked heparin in human serum samples ranged from 97% to 100%. In addition, folic acid was immobilized on the surface of try-AuNCs to ameliorate the specific affinity of AuNCs for tumors, and the near-infrared fluorescent FA-try-AuNCs were applied for in vivo cancer imaging of high folate receptor (FR) expressing Hela tumor. In vivo study of the dynamic behavior and targeting ability of FA-try-AuNCs probe to Hela tumor bearing mice and normal nude mice validated the high specific affinity of FA-try-AuNCs probe to FR positive tumors. The results show that the prepared try-AuNCs have great potential as multifunctional biomaterials for biosensing biomolecules with SPEET mode and in vivo cancer imaging with high targeting ability.
Collapse
Affiliation(s)
- Jing-Min Liu
- State Key Laboratory of Medicinal Chemical Biology, and Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
36
|
Chaipayang S, Heamatorn N, Keha L, Daduang S, Songsiriritthigul C, Swatsitang P, Dhiravisit A, Thammasirirak S. Purification and Characterization of Ovotransferrin from Crocodylus siamensis. Protein J 2013; 32:89-96. [DOI: 10.1007/s10930-012-9461-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Abstract
Iron is a redox active metal which is abundant in the Earth's crust. It has played a key role in the evolution of living systems and as such is an essential element in a wide range of biological phenomena, being critical for the function of an enormous array of enzymes, energy transduction mechanisms, and oxygen carriers. The redox nature of iron renders the metal toxic in excess and consequently all biological organisms carefully control iron levels. In this overview the mechanisms adopted by man to control body iron levels are described.Low body iron levels are related to anemia which can be treated by various forms of iron fortification and supplementation. Elevated iron levels can occur systemically or locally, each giving rise to specific symptoms. Systemic iron overload results from either the hyperabsorption of iron or regular blood transfusion and can be treated by the use of a selection of iron chelating molecules. The symptoms of many forms of neurodegeneration are associated with elevated levels of iron in certain regions of the brain and iron chelation therapy is beginning to find an application in the treatment of such diseases. Iron chelators have also been widely investigated for the treatment of cancer, tuberculosis, and malaria. In these latter studies, selective removal of iron from key enzymes or iron binding proteins is sought. Sufficient selectivity between the invading organism and the host has yet to be established for such chelators to find application in the clinic.Iron chelation for systemic iron overload and iron supplementation therapy for the treatment of various forms of anemia are now established procedures in clinical medicine. Chelation therapy may find an important role in the treatment of various neurodegenerative diseases in the near future.
Collapse
|