1
|
Chaubey S, Singh L. Deciphering the mechanisms underlying the neuroprotective potential of kaempferol: a comprehensive investigation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03515-8. [PMID: 39414700 DOI: 10.1007/s00210-024-03515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Neurodegenerative disorders are characterized by neuronal degradation, dysfunction, or death within the CNS. Oxidative and inflammatory stress play crucial roles in the pathogenesis of various neurodegenerative diseases. The interplay between these stressors and dysregulated cellular signaling pathways contributes to neurodegeneration. Downregulation of NRF-2 compromises antioxidant defense, exacerbating neuronal damage, while increased TLR-4/MAPK and TLR-4/NF-κB signaling promotes neuroinflammation. Excessive ROS production by NADPH oxidase leads to oxidative damage and neuronal apoptosis. The strategies targeting NRF-2, TLR-4-mediated inflammatory stress, and NADPH oxidase activity promise to mitigate neuronal damage and halt the progression of the disease. Kaempferol is a flavonoid polyphenol antioxidant found abundantly in various fruits and vegetables, including apples, grapes, tomatoes, and broccoli. It is widely found in medicinal plants including Equisetum spp., Sophora japonica, Ginkgo biloba, and Euphorbia pekinensis (Rupr.). A substantial body of in vitro and in vivo evidences have demonstrated the neuroprotective potential of kaempferol against neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Kaempferol demonstrates multifaceted potential in mitigating neuroinflammation, apoptosis, and oxidative stress in different neurodegenerative diseases through the modulation of various pathways including NRF-2, NADPH oxidase, TLR-4/MAPK, and TLR-4/NF-κB. This review article was developed through a comprehensive analysis and interpretation of research published between 2009 and 2024, sourced from multiple scientific databases, including PubMed, Scopus, ScienceDirect, and Web of Science. This review aims to provide an in-depth overview of the neuroprotective effects of kaempferol, focusing on its underlying molecular mechanisms. A total of 24 research evidence were included to elucidate the molecular pathways by which kaempferol exerts its protective effects against neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyam Chaubey
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
2
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
3
|
Vijayarangam V, Gopalakrishnan Deviparasakthi MK, Balasubramanian P, Palaniyandi T, Ravindran R, Suliman M, Saeed M, Natarajan S, Sivaji A, Baskar G. Ferroptosis as a hero against oral cancer. Pathol Res Pract 2024; 263:155637. [PMID: 39393267 DOI: 10.1016/j.prp.2024.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Cancer is an abnormal condition altering the cells to proliferate out of control simultaneously being susceptible to evolution. The lining which is made up of tissues in the lips, upper throat and mouth can undergo mutations, is recognised as mouth cancer or oral cancer. Substantial number of mouth lesions are identified at a point where it is typically not possible to get effective remedial care. Ferroptosis is a cutting-edge instance of cellular destruction which stands out in distinction to other sorts of cell death. It appears to have distinctive cellular, molecular and gene-level attributes and scavenges on deposits of reactive oxygen species triggered via iron-induced lipid peroxidation. It is said to be involved dichotomously in cancer development. Because the ferroptotic tumour cells put out numerous chemicals that alternatively signal for cancer attenuation or growth. There is increasing proof that researchers are now keenly investigating to stimulate ferroptosis through various inducers and pathways in the intent for oral cancer therapeutics, specifically to kill malignant tumours that refuse to respond well to conventional treatments. Also, it has the ability to reverse chemotherapy and radiotherapy resistance in victims maximising the success rate of the treatments. This review centres on the stimulation of ferroptosis as a stand-alone therapy for oral cancer, or in combination with other medicines, agents and pathways.
Collapse
Affiliation(s)
- Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | | | - Priyanka Balasubramanian
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India; ACS-Advanced Medical Research Institute, Dr. M.G.R Educational and Research Institute, Chennai 600077, India.
| | - Rekha Ravindran
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai 600031, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore 632001, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai 600095, India
| |
Collapse
|
4
|
Aslan C, Eraslan G. Effect of baicalin and baicalin-bovine serum albumin nanoparticle against bendiocarb exposure in rats. Toxicol Res (Camb) 2024; 13:tfae134. [PMID: 39233847 PMCID: PMC11369930 DOI: 10.1093/toxres/tfae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/17/2024] [Indexed: 09/06/2024] Open
Abstract
Background The aim of the study was to investigate the effect of baicalin and baicalin-bovine serum albumin nanoparticles against bendiocarb exposure in rats. Methods Eighty male Wistar Albino rats aged 4-6 weeks were used. Corn oil (vehicle) alone was administered to the control group. To other groups, BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 20 mg/kg.bw baicalin, baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw, 4 mg/kg.bw bendiocarb, combination of 4 mg/kg.bw bendiocarb and 20 mg/kg.bw baicalin, combination of 4 mg/kg.bw bendiocarb and BSA-nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw and combination of 4 mg/kg.bw bendiocarb and baicalin-BSA nanoparticle equivalent to that binding baicalin at a dose of 20 mg/kg.bw was administered to animals by oral gavage with vehicle for 21 days, after which organs (liver, kidney, brain, testes, heart and lung) and blood samples were collected. Blood/tissue oxidative stress (MDA, NO, GSH, SOD, CAT, GSH-Px, GR, GST, G6PD), serum biochemical (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, total protein, albumin, LDH, AST, ALT, ALP and pseudocholinesterase) and liver and kidney apoptotic/anti-apoptotic (caspase 3, 9, p53, Bcl-2 and Bax) parameters were evaluated. Body weights/organ weights and plasma/liver bendiocarb analyses were obtained. Conclusion While bendiocarb administered alone caused oxidative stress/tissue damage, baicalin and baicalin-BSA nanoparticle showed a mitigating effect. However, this effect was more pronounced in the baicalin-BSA nanoparticle group. BSA-nanoparticle alone did not have a significant effect in reversing the adverse effect caused by bendiocarb.
Collapse
Affiliation(s)
- Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, 50700, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, 38039, Turkey
| |
Collapse
|
5
|
Ghazaiean M, Aliasgharian A, Karami H, Ghasemi MM, Darvishi‐Khezri H. Antioxidative effects of N-acetylcysteine in patients with β-thalassemia: A quick review on clinical trials. Health Sci Rep 2024; 7:e70096. [PMID: 39381531 PMCID: PMC11458667 DOI: 10.1002/hsr2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background and Aims Several studies have highlighted the potent antioxidant properties of N-acetyl cysteine (NAC). This review aimed to assess the impact of NAC on oxidative stress biomarkers in patients with β-thalassemia. Methods The review included articles published before 2024 that investigated the effects of NAC on oxidative stress in individuals with β-thalassemia. A comprehensive search was conducted across various databases, including Scopus, PubMed, Web of Science, Trip, and CENTRAL. Only English-language clinical trials were considered for inclusion in this review. Besides, the number needed to treat (NNT) was calculated based on the included studies. Results Ninety-nine articles were retrieved from electronic databases, and after a thorough review, eight articles were selected for comprehensive text analysis. The highest dose of NAC administered was 10 mg/kg/day (equivalent to 600 mg/day) over a period of 3-6 months. All the studies assessing the impact of NAC on oxidative stress indicators in β-thalassemia patients demonstrated positive effects during the 3-month follow-up period. Most estimated NNTs fell into 1-5, suggesting significant clinical therapeutic value in this context. Conclusion The current potency of NAC alone appears to be effective in ameliorating oxidative stress in patients with β-thalassemia major. While a 3-month duration seems adequate to demonstrate the antioxidant properties of NAC in this population, larger and well-designed clinical trials are warranted. Current clinical evidence possesses a high risk of bias.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Gut and Liver Research Center, Non‐Communicable Disease InstituteMazandaran University of Medical SciencesSariIran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| | - Hossein Karami
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| | - Mohammad Mohsen Ghasemi
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Hadi Darvishi‐Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
6
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Cao HH, Kong WW, Ling B, Wang ZY, Zhang Y, Guo ZX, Liu SH, Xu JP. Bmo-miR-3351 modulates glutathione content and inhibits BmNPV proliferation by targeting BmGSTe6 in Bombyx mori. INSECT SCIENCE 2024; 31:1378-1396. [PMID: 38258370 DOI: 10.1111/1744-7917.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.
Collapse
Affiliation(s)
- Hui-Hua Cao
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Wei-Wei Kong
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Bing Ling
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhi-Yi Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying Zhang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhe-Xiao Guo
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shi-Huo Liu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
8
|
Müller-Schüssele SJ. Chloroplast thiol redox dynamics through the lens of genetically encoded biosensors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5312-5324. [PMID: 38401159 DOI: 10.1093/jxb/erae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
Chloroplasts fix carbon by using light energy and have evolved a complex redox network that supports plastid functions by (i) protecting against reactive oxygen species and (ii) metabolic regulation in response to environmental conditions. In thioredoxin- and glutathione/glutaredoxin-dependent redox cascades, protein cysteinyl redox steady states are set by varying oxidation and reduction rates. The specificity and interplay of these different redox-active proteins are still under investigation, for example to understand how plants cope with adverse environmental conditions by acclimation. Genetically encoded biosensors with distinct specificity can be targeted to subcellular compartments such as the chloroplast stroma, enabling in vivo real-time measurements of physiological parameters at different scales. These data have provided unique insights into dynamic behaviours of physiological parameters and redox-responsive proteins at several levels of the known redox cascades. This review summarizes current applications of different biosensor types as well as the dynamics of distinct protein cysteinyl redox steady states, with an emphasis on light responses.
Collapse
|
9
|
Kamble OS, Chatterjee R, Abishek KG, Chandra J, Alsayari A, Wahab S, Sahebkar A, Kesharwani P, Dandela R. Small molecules targeting mitochondria as an innovative approach to cancer therapy. Cell Signal 2024; 124:111396. [PMID: 39251050 DOI: 10.1016/j.cellsig.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cellular death evasion is a defining characteristic of human malignancies and a significant contributor to therapeutic inefficacy. As a result of oncogenic inhibition of cell death mechanisms, established therapeutic regimens seems to be ineffective. Mitochondria serve as the cellular powerhouses, but they also function as repositories of self-destructive weaponry. Changes in the structure and activities of mitochondria have been consistently documented in cancer cells. In recent years, there has been an increasing focus on using mitochondria as a targeted approach for treating cancer. Considerable attention has been devoted to the development of delivery systems that selectively aim to deliver small molecules called "mitocans" to mitochondria, with the ultimate goal of modulating the physiology of cancer cells. This review summarizes the rationale and mechanism of mitochondrial targeting with small molecules in the treatment of cancer, and their impact on the mitochondria. This paper provides a concise overview of the reasoning and mechanism behind directing treatment towards mitochondria in cancer therapy, with a particular focus on targeting using small molecules. This review also examines diverse small molecule types within each category as potential therapeutic agents for cancer.
Collapse
Affiliation(s)
- Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - K G Abishek
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
10
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
11
|
Yang J, Fu Q, Jiang H, Zhong H, Qin HK, Miao X, Li Y, Liu M, Yao J. Blue light photobiomodulation induced osteosarcoma cell death by facilitating ferroptosis and eliciting an incomplete tumor cell stress response. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:113003. [PMID: 39121719 DOI: 10.1016/j.jphotobiol.2024.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
To investigate the potential of blue light photobiomodulation (PBM) in inducing ferroptosis, a novel form of regulated cell death, in OS cells, considering its known effectiveness in various cancer models. In this investigation, we exposed human OS cell lines, HOS and MG63, to different wavelengths (420, 460 and 480 nm) of blue light at varying irradiances, and examined cellular responses such as viability, apoptosis, levels of reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Transcriptome sequencing was employed to unravel the molecular mechanisms underlying blue light-induced effects, with validation via quantitative real-time PCR (qRT-PCR). Our findings revealed a wavelength- and time-dependent decrease in cell viability, accompanied by increased apoptosis and oxidative stress. Transcriptomic analysis identified differential expression of genes associated with ferroptosis, oxidative stress, and iron metabolism, further validated by qRT-PCR. These results implicated ferroptosis as a significant mechanism in the blue light-induced death of OS cells, potentially mediated by ROS generation and disruption of iron homeostasis. Also, An incomplete stress response was observed in MG63 cells induced by blue light exposure. Hence, blue light PBM holds promise as a therapeutic approach in OS clinical investigations; however, additional exploration of its underlying mechanisms remains imperative.
Collapse
Affiliation(s)
- Jiali Yang
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Qiqi Fu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hongyu Zhong
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University, No.183, Zhongshan Avenue West, Guangzhou 510515, China
| | - Hao Kuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Xiaojing Miao
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Yinghua Li
- Shanghai Fifth People's Hospital, Fudan University, 801th Heqing Road, Shanghai 200240, China.
| | - Muqing Liu
- School of information science and technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 28403, China.
| | - Jinghui Yao
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University, No.183, Zhongshan Avenue West, Guangzhou 510515, China.
| |
Collapse
|
12
|
Jahankhani K, Taghipour N, Nikoonezhad M, Behboudi H, Mehdizadeh M, Kadkhoda D, Hajifathali A, Mosaffa N. Adjuvant therapy with zinc supplementation; anti-inflammatory and anti-oxidative role in multiple myeloma patients receiving autologous hematopoietic stem cell transplantation: a randomized controlled clinical trial. Biometals 2024:10.1007/s10534-024-00630-0. [PMID: 39217594 DOI: 10.1007/s10534-024-00630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Multiple myeloma (MM) patients are often accompanied by heightened levels of oxidative stress, even following bone marrow transplantation. Trace mineral supplements have been found to regulate and inhibit the activity of oxidative radicals and inflammatory factors, which are involved in the pathogenesis of MM. The study sought to evaluate the effectiveness of the supplementation by analyzing changes in oxidative, anti-oxidative, and inflammation markers. Patients were randomly assigned to a zinc or placebo group, with the former receiving 30 mg of zinc or placebo tablets daily for 1 month. Blood samples were collected from the patients on the day of transplantation, 15 days, and 30 days post-transplantation. Real-time PCR was employed to measure the expression of oxidative/antioxidative genes. Furthermore, the protein level of oxidative markers in serum samples was assessed. Finally, serum TNF-α concentrations were measured using the ELISA technique. The expression levels of SOD1, SOD2, and NRF2 genes were significantly higher on days 15 and 30 compared to the control group (P < 0.05), with a greater increase on day 30 (P < 0.05). Conversely, the expression levels of Keap1 and NOX2 genes were lower on day 30 than those of the control group (P < 0.05), with a further decrease from day 15 to day 30 (P < 0.05). The experimental group exhibited a notable reduction in TNF-α cytokine levels on day 30 compared to the control and placebo groups (P < 0.05). All findings were coordinated according to the nutritional questionnaire. Our findings suggest a potential benefit of zinc supplementation in managing the adverse effects of chemotherapy in MM patients, warranting further investigation.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Behboudi
- Faculty of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Dariush Kadkhoda
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Holendová B, Benáková Š, Křivonosková M, Plecitá-Hlavatá L. Redox Status as a Key Driver of Healthy Pancreatic Beta-Cells. Physiol Res 2024; 73:S139-S152. [PMID: 38647167 PMCID: PMC11412338 DOI: 10.33549/physiolres.935259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Redox status plays a multifaceted role in the intricate physiology and pathology of pancreatic beta-cells, the pivotal regulators of glucose homeostasis through insulin secretion. They are highly responsive to changes in metabolic cues where reactive oxygen species are part of it, all arising from nutritional intake. These molecules not only serve as crucial signaling intermediates for insulin secretion but also participate in the nuanced heterogeneity observed within the beta-cell population. A central aspect of beta-cell redox biology revolves around the localized production of hydrogen peroxide and the activity of NADPH oxidases which are tightly regulated and serve diverse physiological functions. Pancreatic beta-cells possess a remarkable array of antioxidant defense mechanisms although considered relatively modest compared to other cell types, are efficient in preserving redox balance within the cellular milieu. This intrinsic antioxidant machinery operates in concert with redox-sensitive signaling pathways, forming an elaborate redox relay system essential for beta-cell function and adaptation to changing metabolic demands. Perturbations in redox homeostasis can lead to oxidative stress exacerbating insulin secretion defect being a hallmark of type 2 diabetes. Understanding the interplay between redox signaling, oxidative stress, and beta-cell dysfunction is paramount for developing effective therapeutic strategies aimed at preserving beta-cell health and function in individuals with type 2 diabetes. Thus, unraveling the intricate complexities of beta-cell redox biology presents exciting avenues for advancing our understanding and treatment of metabolic disorders.
Collapse
Affiliation(s)
- B Holendová
- Laboratory of Pancreatic Islet Research, Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
16
|
Teng X, Stefaniak E, Willison KR, Ying L. Interplay between Copper, Phosphatidylserine, and α-Synuclein Suggests a Link between Copper Homeostasis and Synaptic Vesicle Cycling. ACS Chem Neurosci 2024; 15:2884-2896. [PMID: 39013013 PMCID: PMC11311125 DOI: 10.1021/acschemneuro.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Copper homeostasis is critical to the functioning of the brain, and its breakdown is linked with many brain diseases. Copper is also known to interact with the negatively charged lipid, phosphatidylserine (PS), as well as α-synuclein, an aggregation-prone protein enriched in the synapse, which plays a role in synaptic vesicle docking and fusion. However, the interplay between copper, PS lipid, and α-synuclein is not known. Herein, we report a detailed and predominantly kinetic study of the interactions among these three components pertinent to copper homeostasis and neurotransmission. We found that synaptic vesicle-mimicking small unilamellar vesicles (SUVs) can sequester any excess free Cu2+ within milliseconds, and bound Cu2+ on SUVs can be reduced to Cu+ by GSH at a nearly constant rate under physiological conditions. Moreover, we revealed that SUV-bound Cu2+ does not affect the binding between wild-type α-synuclein and SUVs but affect that between N-terminal acetylated α-synuclein and SUVs. In contrast, Cu2+ can effectively displace both types of α-synuclein from the vesicles. Our results suggest that synaptic vesicles may mediate copper transfer in the brain, while copper could participate in synaptic vesicle docking to the plasma membrane via its regulation of the interaction between α-synuclein and synaptic vesicle.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ewelina Stefaniak
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| | - Keith R. Willison
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
17
|
Songoen W, Wenisch D, Jakupec MA, Phanchai W, Sukkhaeng S, Brecker L, Schinnerl J, Tharamak S, Pluempanupat W. Flavan-Benzofurans from Artocarpus lacucha: Their Intracellular Antioxidant Activity and Molecular Docking to Glutathione Reductase. ACS OMEGA 2024; 9:33888-33899. [PMID: 39130579 PMCID: PMC11307289 DOI: 10.1021/acsomega.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Phytochemical investigation of Artocarpus lacucha Buch.-Ham (Moraceae) leaves led to the identification of three of the rarely found flavan-benzofuranes named artocarpinol C (1), 3-epi-artocarpinol C (2), and artocarpinol D (6) along with six known flavan derivatives. Thus, a total of six artocarpinols are now described. All their chemical structures and absolute configurations were established by one dimensional (1D)- and two-dimensional (2D) NMR, infrared (IR), electronic circular dichroism (ECD), high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS), and optical rotation (OR). Density functional theory (DFT) calculations based on the B3LYP theory level were conducted to determine the stereochemistry at positions 2 and 3 in the C-ring. All compounds exhibited in vitro radical scavenging activities, and compounds 3 and 5 demonstrated pronounced intracellular antioxidative effects in colon carcinoma cells (SW480), as determined by the DCFH-DA assay. Compounds 3 and 5 exhibited further high affinities for binding to the active site of human glutathione reductase. These molecular properties are discussed with regard to possible applications.
Collapse
Affiliation(s)
- Weerasak Songoen
- Central
Laboratory and Greenhouse Complex, Research and Academic Service Center,
Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Dominik Wenisch
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Witthawat Phanchai
- Department
of Physics, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Siriphan Sukkhaeng
- Central
Laboratory and Greenhouse Complex, Research and Academic Service Center,
Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Lothar Brecker
- Department
of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Johann Schinnerl
- Department
of Botany and Biodiversity Research, University
of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Sorachat Tharamak
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Special Research Unit for Advanced Magnetic Resonance, Faculty of
Science, Kasetsart University, Bangkok 10900, Thailand
| | - Wanchai Pluempanupat
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Special Research Unit for Advanced Magnetic Resonance, Faculty of
Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
19
|
Seese MH, Steelman AJ, Erdman JW. The Impact of LPS on Inflammatory Responses in Alpha-Tocopherol Deficient Mice. Curr Dev Nutr 2024; 8:104416. [PMID: 39185446 PMCID: PMC11342875 DOI: 10.1016/j.cdnut.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Background To facilitate the evaluation of vitamin E (α-tocopherol, αT) status on health outcomes, the αT transfer protein knockout (Ttpa -/- ) mouse model has proved to be an effective tool for lowering αT body stores. Our previous study showed a further reduction in grip strength in LPS-treated Ttpa -/- compared with wild-type (WT) mice during a 9-wk αT-deficient diet feeding period but did not find a difference in LPS-induced inflammatory response markers. Further optimization of this mouse model is warranted to determine the appropriate depletion period and biomarkers endpoints. Objectives The objective was to examine whether 12 wk of an αT-deficient diet altered the inflammatory response 4 and/or 24 h after LPS injection in WT and Ttpa -/- mice. Methods WT and Ttpa -/- weanling littermates were fed an αT-deficient diet ad libitum for 12 wk. Mice were then injected with LPS (10 μg/mouse) or saline (control) intraperitoneally and killed 4 (Study 1) or 24 h (Study 2) later. Concentrations of αT in tissues were measured via HPLC. Grip strength and burrowing were evaluated to assess sickness behaviors before/after LPS injection. Expression of genes related to inflammatory responses was examined via RT-PCR. Results αT concentrations in the brain, liver, and serum of Ttpa -/- mice were notably lower or undetectable compared with WT mice in both studies. Hepatic αT concentrations were further decreased 24 h after LPS injection. Grip strength was reduced at 4 h post-injection but partially recovered to baseline values 24 h after LPS injection. The expression of genes related to inflammatory responses were altered by LPS. However, neither measure of sickness behavior nor gene expression markers differed between genotypes. Conclusions A 4-h LPS challenge reduced grip strength and resulted in an inflammatory response. At 24 h post-dosing, there was a partial, transitory recovery response in both Ttpa -/- and WT mice.
Collapse
Affiliation(s)
- Megumi H Seese
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- USDA-ARS Children's Nutrition Research Center, Houston, TX, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
20
|
Cecerska-Heryć E, Polikowska A, Serwin N, Michalczyk A, Stodolak P, Goszka M, Zoń M, Budkowska M, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Samochowiec A, Misiak B, Sagan L, Samochowiec J, Dołęgowska B. The importance of oxidative biomarkers in diagnosis, treatment, and monitoring schizophrenia patients. Schizophr Res 2024; 270:44-56. [PMID: 38851167 DOI: 10.1016/j.schres.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION The etiology of schizophrenia (SCZ), an incredibly complex disorder, remains multifaceted. Literature suggests the involvement of oxidative stress (OS) in the pathophysiology of SCZ. OBJECTIVES Determination of selected OS markers and brain-derived neurotrophic factor (BDNF) in patients with chronic SCZ and those in states predisposing to SCZ-first episode psychosis (FP) and ultra-high risk (UHR). MATERIALS AND METHODS Determination of OS markers and BDNF levels by spectrophotometric methods and ELISA in 150 individuals (116 patients diagnosed with SCZ or in a predisposed state, divided into four subgroups according to the type of disorder: deficit schizophrenia, non-deficit schizophrenia, FP, UHR). The control group included 34 healthy volunteers. RESULTS Lower activities of analyzed antioxidant enzymes and GSH and TAC concentrations were found in all individuals in the study group compared to controls (p < 0.001). BDNF concentration was also lower in all groups compared to controls except in the UHR subgroup (p = 0.01). Correlations were observed between BDNF, R-GSSG, GST, GPx activity, and disease duration (p < 0.02). A small effect of smoking on selected OS markers was also noted (rho<0.06, p < 0.03). CONCLUSIONS OS may play an important role in the pathophysiology of SCZ before developing the complete clinical pattern of the disorder. The redox imbalance manifests itself with such severity in individuals with SCZ and in a state predisposing to the development of this psychiatric disease that natural antioxidant systems become insufficient to compensate against it completely. The discussed OS biomarkers may support the SCZ diagnosis and predict its progression.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Patrycja Stodolak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Martyn Zoń
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Marta Budkowska
- Department of Analytical Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University of Szczecin, 71-460 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
21
|
Dawood SA, Asseri AA, Shati AA, Eid RA, El-Gamal B, Zaki MSA. L-Carnitine Ameliorates Amiodarone-Mediated Alveolar Damage: Oxidative Stress Parameters, Inflammatory Markers, Histological and Ultrastructural Insights. Pharmaceuticals (Basel) 2024; 17:1004. [PMID: 39204109 PMCID: PMC11357083 DOI: 10.3390/ph17081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
The aim of this study was to assess L-carnitine's effects on adult male rats' lung damage brought on by amiodarone, which is a potent antiarrhythmic with limited clinical efficacy due to potentially life-threatening amiodarone-induced lung damage. Because of the resemblance among the structural abnormalities in rats' lungs that follows amiodarone medication and pulmonary toxicity in human beings, this animal model may be an appropriate example for this disease entity. Amiodarone produced pulmonary toxicity in twenty-four healthy male albino rats (150-180 g) over a period of 6 weeks. Four groups of six rats each were established: control, sham, amiodarone, and L-carnitine plus amiodarone. Histological, ultrastructural, oxidative stress, and inflammatory markers were determined during a 6-week exposure experiment. Amiodarone-induced lung damage in rats may be brought on due to oxidative stress producing significant pulmonary cytotoxicity, as evidenced by the disruption of the mitochondrial structure, severe fibrosis, and inflammatory response of the lung tissue. Lungs already exposed to such harmful effects may be partially protected by the antioxidant L-carnitine. Biochemical markers of lung damage brought on by amiodarone include lung tissue levels of the enzyme's catalase, superoxide dismutase, and reduced glutathione. The levels of lipid peroxides in lung tissue measured as malondialdehyde increased significantly upon exposure to amiodarone. In addition, the levels of tumor necrosis factor alpha were significantly elevated in response to amiodarone. The effect of L-carnitine on amiodarone-induced pulmonary toxicity was studied in rats. It is interesting to note that the intake of L-carnitine in rats treated with amiodarone partially restored the biochemical and histopathological alterations brought on by amiodarone to their original levels. Tumor necrosis factor alpha levels were significantly reduced upon L-carnitine exposure. These results suggest that L-carnitine can be used to treat amiodarone-induced pulmonary dysfunction.
Collapse
Affiliation(s)
- Samy A. Dawood
- Department of Child Health, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia; (S.A.D.); (A.A.A.); (A.A.S.)
| | - Ali Alsuheel Asseri
- Department of Child Health, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia; (S.A.D.); (A.A.A.); (A.A.S.)
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia; (S.A.D.); (A.A.A.); (A.A.S.)
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia
| | - Basiouny El-Gamal
- Clinical Biochemistry Department, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia;
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha 12573, Saudi Arabia;
| |
Collapse
|
22
|
Fenton Navarro B, Casimiro Aguayo AA, Torres Gómez YL, Cervantes Alfaro M, Torner L. Early Life Stress Influences Oxidative Stress Enzyme Activities in Liver, Heart, Kidney, Suprarenal Glands, and Pancreas in Male and Female Rat Pups. Antioxidants (Basel) 2024; 13:802. [PMID: 39061871 PMCID: PMC11273735 DOI: 10.3390/antiox13070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Early life stress (ELS) is a risk factor for the development of chronic diseases resulting from functional alterations of organs in the cardiorespiratory and renal systems. This work studied the changes in oxidative stress enzyme activities (EAs) of SOD, CAT, GPX, GR, GST, NOS, MDA, and FRAP in different organs (heart, liver, kidney, adrenal glands (AGs), and pancreas) of male and female Sprague-Dawley rat pups on postnatal day (PN) 15, immediately after basal and acute or chronic stress conditions were accomplished, as follows: basal control (BC; undisturbed maternal pups care), stress control (SC; 3 h maternal separation on PN15), basal maternal separation (BMS; daily 3 h maternal separation on PN 1-14), and stress maternal separation (SMS; daily 3 h maternal separation on PN 1-14 and 3 h maternal separation on PN15). Acute or long-term stress resulted in overall oxidative stress, increase in EA, and reduced antioxidant capacity in these organs. Some different response patterns, due to precedent SMS, were observed in specific organs, especially in the AGs. Acute stress exposure increases the EA, but chronic stress generates a response in the antioxidant system in some of the organs studied and is damped in response to a further challenge.
Collapse
Affiliation(s)
- Bertha Fenton Navarro
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Alexis Abraham Casimiro Aguayo
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Yayr Luis Torres Gómez
- Laboratorio de Glicobiología y Farmacognosia, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo. Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, Cuauhtémoc, Morelia 58020, Michoacán, Mexico; (A.A.C.A.); (Y.L.T.G.)
| | - Miguel Cervantes Alfaro
- Laboratorio de Neurociencias, Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico;
| | - Luz Torner
- Laboratorio de Neuroendocrinología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social; Cam. de La Arboleda # 300, La Huerta, Morelia 58341, Michoacán, Mexico
| |
Collapse
|
23
|
Sun M, Wei J, Su Y, He Y, Ge L, Shen Y, Xu B, Bi Y, Zheng C. Red Blood Cell-Hitchhiking Delivery of Simvastatin to Relieve Acute Respiratory Distress Syndrome. Int J Nanomedicine 2024; 19:5317-5333. [PMID: 38859953 PMCID: PMC11164090 DOI: 10.2147/ijn.s460890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.
Collapse
Affiliation(s)
- Mengjuan Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jun Wei
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yanhui Su
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yangjingwan He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Liang Ge
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, People’s Republic of China
| | - Yanlong Bi
- Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
24
|
Magaji UF, Coremen M, Karabulut Bulan O, Sacan O, Yanardag R. Biochemical and Histological Effects of Moringa oleifera Extract against Valproate-Induced Kidney Damage. J Med Food 2024; 27:533-544. [PMID: 38836511 DOI: 10.1089/jmf.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.
Collapse
Affiliation(s)
- Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
25
|
Oyeyemi A, Owonikoko W, Okoro T, Adagbonyi O, Ajeigbe K. Water contamination: A culprit of serum heavy metals concentration, oxidative stress and health risk among residents of a Nigerian crude oil-producing community. Toxicol Rep 2024; 12:375-388. [PMID: 38584719 PMCID: PMC10995875 DOI: 10.1016/j.toxrep.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.
Collapse
Affiliation(s)
- A.W. Oyeyemi
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Osun State University, Osogbo, Nigeria
| | - W.M. Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - T.D. Okoro
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - O. Adagbonyi
- Department of Anatomy, Igbinedion University, Okada, Nigeria
| | - K.O. Ajeigbe
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Federal University, Oye-Ekiti, Nigeria
| |
Collapse
|
26
|
Zhou Y, Zhang X, Baker JS, Davison GW, Yan X. Redox signaling and skeletal muscle adaptation during aerobic exercise. iScience 2024; 27:109643. [PMID: 38650987 PMCID: PMC11033207 DOI: 10.1016/j.isci.2024.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Redox regulation is a fundamental physiological phenomenon related to oxygen-dependent metabolism, and skeletal muscle is mainly regarded as a primary site for oxidative phosphorylation. Several studies have revealed the importance of reactive oxygen and nitrogen species (RONS) in the signaling process relating to muscle adaptation during exercise. To date, improving knowledge of redox signaling in modulating exercise adaptation has been the subject of comprehensive work and scientific inquiry. The primary aim of this review is to elucidate the molecular and biochemical pathways aligned to RONS as activators of skeletal muscle adaptation and to further identify the interconnecting mechanisms controlling redox balance. We also discuss the RONS-mediated pathways during the muscle adaptive process, including mitochondrial biogenesis, muscle remodeling, vascular angiogenesis, neuron regeneration, and the role of exogenous antioxidants.
Collapse
Affiliation(s)
- Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Xuan Zhang
- School of Wealth Management, Ningbo University of Finance and Economics, Ningbo, China
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast BT15 IED, UK
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Muñoz E, Fuentes F, Felmer R, Arias ME, Yeste M. Effects of Reactive Oxygen and Nitrogen Species on Male Fertility. Antioxid Redox Signal 2024; 40:802-836. [PMID: 38019089 DOI: 10.1089/ars.2022.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: In recent decades, male fertility has been severely reduced worldwide. The causes underlying this decline are multifactorial, and include, among others, genetic alterations, changes in the microbiome, and the impact of environmental pollutants. Such factors can dysregulate the physiological levels of reactive species of oxygen (ROS) and nitrogen (RNS) in the patient, generating oxidative and nitrosative stress that impairs fertility. Recent Advances: Recent studies have delved into other factors involved in the dysregulation of ROS and RNS levels, such as diet, obesity, persistent infections, environmental pollutants, and gut microbiota, thus leading to new strategies to solve male fertility problems, such as consuming prebiotics to regulate gut flora or treating psychological conditions. Critical Issues: The pathways where ROS or RNS may be involved as modulators are still under investigation. Moreover, the extent to which treatments can rescue male infertility as well as whether they may have side effects remains, in most cases, to be elucidated. For example, it is known that prescription of antioxidants to treat nitrosative stress can alter sperm chromatin condensation, which makes DNA more exposed to ROS and RNS, and may thus affect fertilization and early embryo development. Future Directions: The involvement of extracellular vesicles, which might play a crucial role in cell communication during spermatogenesis and epididymal maturation, and the relevance of other factors such as sperm epigenetic signatures should be envisaged in the future.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Excellence in Reproductive Biotechnology (CEBIOR), Universidad de La Frontera, Temuco, Chile
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
29
|
Chen X, Poetsch A. The Role of Cdo1 in Ferroptosis and Apoptosis in Cancer. Biomedicines 2024; 12:918. [PMID: 38672271 PMCID: PMC11047957 DOI: 10.3390/biomedicines12040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cysteine dioxygenase type 1 (Cdo1) is a tumor suppressor gene. It regulates the metabolism of cysteine, thereby influencing the cellular antioxidative capacity. This function puts Cdo1 in a prominent position to promote ferroptosis and apoptosis. Cdo1 promotes ferroptosis mainly by decreasing the amounts of antioxidants, leading to autoperoxidation of the cell membrane through Fenton reaction. Cdo1 promotes apoptosis mainly through the product of cysteine metabolism, taurine, and low level of antioxidants. Many cancers exhibit altered function of Cdo1, underscoring its crucial role in cancer cell survival. Genetic and epigenetic alterations have been found, with methylation of Cdo1 promoter as the most common mutation. The fact that no cancer was found to be caused by altered Cdo1 function alone indicates that the tumor suppressor role of Cdo1 is mild. By compiling the current knowledge about apoptosis, ferroptosis, and the role of Cdo1, this review suggests possibilities for how the mild anticancer role of Cdo1 could be harnessed in new cancer therapies. Here, developing drugs targeting Cdo1 is considered meaningful in neoadjuvant therapies, for example, helping against the development of anti-cancer drug resistance in tumor cells.
Collapse
Affiliation(s)
| | - Ansgar Poetsch
- Queen Mary School, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
30
|
Canzian J, Borba JV, Ames J, Silva RM, Resmim CM, Pretzel CW, Duarte MCF, Storck TR, Mohammed KA, Adedara IA, Loro VL, Gerlai R, Rosemberg DB. The influence of acute dopamine transporter inhibition on manic-, depressive-like phenotypes, and brain oxidative status in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110961. [PMID: 38325745 DOI: 10.1016/j.pnpbp.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Jaíne Ames
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Maria Cecília F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Tamiris R Storck
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
31
|
Dolgova N, Uhlemann EME, Boniecki MT, Vizeacoumar FS, Ara A, Nouri P, Ralle M, Tonelli M, Abbas SA, Patry J, Elhasasna H, Freywald A, Vizeacoumar FJ, Dmitriev OY. MEMO1 binds iron and modulates iron homeostasis in cancer cells. eLife 2024; 13:e86354. [PMID: 38640016 PMCID: PMC11081632 DOI: 10.7554/elife.86354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.
Collapse
Affiliation(s)
- Natalia Dolgova
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Michal T Boniecki
- Protein Characterization and Crystallization Facility, University of SaskatchewanSaskatoonCanada
| | | | - Anjuman Ara
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Paria Nouri
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences UniversityPortlandUnited States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of WisconsinMadisonUnited States
| | - Syed A Abbas
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Jaala Patry
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| | - Hussain Elhasasna
- Department of Pathology and Laboratory Medicine, University of SaskatchewanSaskatoonCanada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of SaskatchewanSaskatoonCanada
| | - Franco J Vizeacoumar
- Cancer Research Department, Saskatchewan Cancer AgencySaskatoonCanada
- Division of Oncology, University of SaskatchewanSaskatoonCanada
| | - Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of SaskatchewanSaskatoonCanada
| |
Collapse
|
32
|
Sánchez Pérez LDC, Zubillaga RA, García-Gutiérrez P, Landa A. Sigma-Class Glutathione Transferases (GSTσ): A New Target with Potential for Helminth Control. Trop Med Infect Dis 2024; 9:85. [PMID: 38668546 PMCID: PMC11053550 DOI: 10.3390/tropicalmed9040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Glutathione transferases (GSTs EC 2.5.1.18) are critical components of phase II metabolism, instrumental in xenobiotics' metabolism. Their primary function involves conjugating glutathione to both endogenous and exogenous toxic compounds, which increases their solubility and enables their ejection from cells. They also play a role in the transport of non-substrate compounds and immunomodulation, aiding in parasite establishment within its host. The cytosolic GST subfamily is the most abundant and diverse in helminths, and sigma-class GST (GSTσ) belongs to it. This review focuses on three key functions of GSTσ: serving as a detoxifying agent that provides drug resistance, functioning as an immune system modulator through its involvement in prostaglandins synthesis, and acting as a vaccine antigen.
Collapse
Affiliation(s)
| | - Rafael A. Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City C.P. 09310, Mexico; (L.d.C.S.P.); (P.G.-G.)
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| |
Collapse
|
33
|
Doumi I, Lang L, Vileno B, Deponte M, Faller P. Glutathione Protects other Cellular Thiols against Oxidation by Cu II-Dp44mT. Chemistry 2024; 30:e202304212. [PMID: 38408264 DOI: 10.1002/chem.202304212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 02/28/2024]
Abstract
Cu-thiosemicarbazones have been intensively investigated for their application in cancer therapy or as antimicrobials. Copper(II)-di-2-pyridylketone-4,4-dimethyl-thiosemicarbazone (CuII-Dp44mT) showed anticancer activity in the submicromolar concentration range in cell culture. The interaction of CuII-Dp44mT with thiols leading to their depletion or inhibition was proposed to be involved in this activity. Indeed, CuII-Dp44mT can catalyze the oxidation of thiols although with slow kinetics. The present work aims to obtain insights into the catalytic activity and selectivity of CuII-Dp44mT toward the oxidation of different biologically relevant thiols. Reduced glutathione (GSH), L-cysteine (Cys), N-acetylcysteine (NAC), D-penicillamine (D-Pen), and the two model proteins glutaredoxin (Grx) and thioredoxin (Trx) were investigated. CuII-Dp44mT catalyzed the oxidation of these thiols with different kinetics, with rates in the following order D-Pen>Cys≫NAC>GSH and Trx>Grx. CuII-Dp44mT was more efficient than CuII chloride for the oxidation of NAC and GSH, but not D-Pen and Cys. In mixtures of biologically relevant concentrations of GSH and either Cys, Trx, or Grx, the oxidation kinetics and spectral properties were similar to that of GSH alone, indicating that the interaction of these thiols with CuII-Dp44mT is dominated by GSH. Hence GSH could protect other thiols against potential deleterious oxidation by CuII-Dp44mT.
Collapse
Affiliation(s)
- Iman Doumi
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Bertrand Vileno
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, Erwin-Schrödinger Straße 54, D-67663, Kaiserslautern, Germany
| | - Peter Faller
- Institut de Chimie (UMR 7177), University of Strasbourg - CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
34
|
da Silva DO, Ratko J, Côrrea APN, da Silva NG, Pereira DMC, Schleger IC, Neundorf AKA, de Souza MRDP, Herrerias T, Donatti L. Assessing physiological responses and oxidative stress effects in Rhamdia voulezi exposed to high temperatures. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:617-633. [PMID: 38175338 DOI: 10.1007/s10695-023-01294-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Exposure to high temperatures induces changes in fish respiration, resulting in an increased production of reactive oxygen species. This, in turn, affects the enzymatic and non-enzymatic components of antioxidant defenses, which are essential for mitigating cellular stress. Rhamdia voulezi, an economically important fish species endemic to Brazil's Iguaçu River, served as the subject of our study. Our goal was to assess enzymatic antioxidant biomarkers (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glucose-6-phosphate dehydrogenase), non-protein thiol levels (reduced glutathione), and markers of oxidative damage (lipoperoxidation and carbonylation) in the liver, gills, and kidneys of R. voulezi after acute exposure to high temperatures (31°C) for 2, 6, 12, 24, and 96 h. Control groups were maintained at 21°C. Our findings revealed that the liver exhibited increased superoxide dismutase levels up to 12 h and elevated glutathione S-transferase levels at 12 and 96 h at 31°C. In the gills, superoxide dismutase levels increased up to 24 h, along with increased lipoperoxidation at 2, 6, 12, and 96 h of exposure to high temperatures. The kidneys responded to heat stress at 12 h, with an increase in superoxide dismutase and catalase activity, and lipid peroxidation was observed at 2 and 6 h at 31°C. The three tissues evaluated responded differently to heat stress, with the liver demonstrating greater physiological adjustment to high temperatures. The intricate interplay of various antioxidant defense biomarkers and oxidative damage suggests the presence of oxidative stress in R. voulezi when exposed to high temperatures.
Collapse
Affiliation(s)
- Diego Ortiz da Silva
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Jonathan Ratko
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ana Paula Nascimento Côrrea
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Niumaique Gonçalves da Silva
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Diego Mauro Carneiro Pereira
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Ananda Karla Alvez Neundorf
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil
| | - Tatiana Herrerias
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Federal University of Paraná, Av. Cel.Francisco H. dos Santos, s/n, Jardim das Américas, 19031, Curitiba, Paraná, CEP: 81531-970, Brazil.
| |
Collapse
|
35
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
36
|
Liu X, Liu R, Liu W, Hua R, Xu H. Association between oxidative balance score and self-reported severe headache or migraine based on NHANES 1999 to 2004 data: A cross-sectional study. Heliyon 2024; 10:e27426. [PMID: 38500974 PMCID: PMC10945180 DOI: 10.1016/j.heliyon.2024.e27426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose The pathophysiological mechanisms underlying migraine remain elusive, with oxidative stress hypothesized as a potential etiological factor. The Oxidative Balance Score (OBS) is a comprehensive tool for assessing the impact of diet and lifestyle on oxidative stress, thereby gauging an individual's overall antioxidant capacity. In this cross-sectional study, we explored the correlation between OBS and migraine prevalence among a cohort of US adults. Methods We analyzed data from 6195 participants aged 20 years and above, drawn from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2004. We employed multiple logistic regression, coupled with sensitivity analyses, to investigate the relationship between OBS and migraine. Subsequent subgroup analyses and interaction tests were performed to assess the consistency of this association across the population. Results Multiple logistic regression revealed an inverse relationship between OBS and the likelihood of experiencing migraines. Specifically, individuals in the highest OBS quartile exhibited a significantly reduced migraine risk compared to those in the lowest quartile (OR = 0.98, 95% Confidence Interval (CI): 0.97-0.99, P = 0.0001). Furthermore, restricted cubic spline curves indicated a non-linear association between dietary OBS and migraine incidence (non-linear P = 0.0258). Discussion Our findings suggest that adherence to an antioxidant-rich diet may be an effective strategy for mitigating migraine, potentially by influencing oxidative balance.
Collapse
Affiliation(s)
- Xinxin Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ran Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Liu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Hua
- The Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoyou Xu
- The Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Chen X, Zhou Q, Chen H, Bai J, An R, Zhang K, Zhang X, An H, Zhang J, Wang Y, Li M. Glutathione Induces Keap1 S-Glutathionylation and Mitigates Oscillating Glucose-Induced β-Cell Dysfunction by Activating Nrf2. Antioxidants (Basel) 2024; 13:400. [PMID: 38671848 PMCID: PMC11047546 DOI: 10.3390/antiox13040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Glutathione (GSH), a robust endogenous antioxidant, actively participates in the modulation of the redox status of cysteine residues in proteins. Previous studies have indicated that GSH can prevent β-cell failure and prediabetes caused by chronic oscillating glucose (OsG) administration. However, the precise mechanism underlying the protective effect is not well understood. Our current research reveals that GSH is capable of reversing the reduction in Nrf2 levels, as well as downstream genes Grx1 and HO-1, in the islet β-cells of rats induced by chronic OsG. In vitro experiments have further demonstrated that GSH can prevent β-cell dedifferentiation, apoptosis, and impaired insulin secretion caused by OsG. Additionally, GSH facilitates the translocation of Nrf2 into the nucleus, resulting in an upregulation of Nrf2-targeted genes such as GCLC, Grx1, HO-1, and NQO1. Notably, when the Nrf2 inhibitor ML385 is employed, the effects of GSH on OsG-treated β-cells are abrogated. Moreover, GSH enhances the S-glutathionylation of Keap1 at Cys273 and Cys288, but not Cys151, in OsG-treated β-cells, leading to the dissociation of Nrf2 from Keap1 and facilitating Nrf2 nuclear translocation. In conclusion, the protective role of GSH against OsG-induced β-cell failure can be partially attributed to its capacity to enhance Keap1 S-glutathionylation, thereby activating the Nrf2 signaling pathway. These findings provide novel insights into the prevention and treatment of β-cell failure in the context of prediabetes/diabetes, highlighting the potential of GSH.
Collapse
Affiliation(s)
- Xiufang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Qian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Huamin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Juan Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Ruike An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Keyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (Q.Z.); (H.C.); (J.B.); (R.A.); (K.Z.)
| | - Xinyue Zhang
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| | - Hui An
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| | - Jitai Zhang
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China;
| | - Ming Li
- Cardiac Regeneration Research Institute, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Z.); (H.A.); (J.Z.)
| |
Collapse
|
38
|
Anber NH, Ahmed Shahin HE, Badawy HK, Oraby EA, Mohammed SA, Shaaban EIA, Attia ZR, Mohamed S, Shabana MF, El-Eshmawy MA, Elsayed R, Elsaid AM, Alalawy AI, Elshazli RM. Potential Impact of SOD2 (rs4880; p.Val16Ala) Variant with the Susceptibility for Childhood Bronchial Asthma. Biochem Genet 2024:10.1007/s10528-024-10742-4. [PMID: 38522064 DOI: 10.1007/s10528-024-10742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Oxidative stress is a sophisticated situation that orignates from the accumulation of reactive free radicals within cellular compartments. The antioxidant mechanism of the MnSOD enzyme facilitates the removal of these lethal oxygen species from cellular components. The main goal of this pertained work is to study the contribution of the SOD2 (rs4880; p.Val16Ala) variant to the development of bronchial asthma among children. The study's design was carried out based on a total of 254 participants including 127 asthmatic children (91 atopic and 36 non-atopic) along with 127 unrelated healthy controls. Allelic discrimination analysis was executed using the T-ARMS-PCR protocol. This potential variant conferred a significant association with decreased risk of bronchial asthmatic children under allelic (OR = 0.56, P-value = 0.002), recessive (OR = 0.32, P-value = 0.011), and dominant (OR = 0.51, P-value = 0.040) models. Additionally, atopic and non-atopic asthmatic children indicated a protection against bronchial asthma development under allelic, and dominant models (p-value < 0.05). Our findings suggested that the SOD2*rs4880 variant was correlated with decreased risk of childhood bronchial asthma.
Collapse
Affiliation(s)
- Nahla H Anber
- Department of Biochemistry, Emergency Hospital, Mansoura University, Mansoura, Egypt
| | - Hanaa Elsayed Ahmed Shahin
- Nursing Department, College of Applied Medial Sciences, Jouf University, ElQurayyat, Saudi Arabia
- Department of Maternity and Newborn Health Nursing, Menoufia University, Menoufia, Egypt
| | - Heba K Badawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, Sinai, Egypt
| | - Enas A Oraby
- Department of Biochemistry, Emergency Hospital, Mansoura University, Mansoura, Egypt
| | - Sameh A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa Ibrahim A Shaaban
- Department of Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Zeinab Rizk Attia
- Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Shereen Mohamed
- Pediatric Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mona Farag Shabana
- Department of Pharmacology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mohamed Adel El-Eshmawy
- Clinical Pathology Department, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Riham Elsayed
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Afaf M Elsaid
- Genetic Unit, Mansoura University Children's Hospital, Mansoura University, Mansoura, Egypt
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt.
| |
Collapse
|
39
|
Zhang X, Yang W, Blair D, Hu W, Yin M. RNA-seq analysis reveals changes in mRNA expression during development in Daphnia mitsukuri. BMC Genomics 2024; 25:302. [PMID: 38515024 PMCID: PMC10958850 DOI: 10.1186/s12864-024-10210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Temporal transcriptional variation is a major contributor to functional evolution and the developmental process. Parthenogenetic water fleas of the genus Daphnia (Cladocera) provide an ideal model to characterize gene expression patterns across distinct developmental stages. Herein, we report RNA-seq data for female Daphnia mitsukuri at three developmental stages: the embryo, juvenile (three timepoints) and adult. Comparisons of gene expression patterns among these three developmental stages and weighted gene co-expression network analysis based on expression data across developmental stages identified sets of genes underpinning each of the developmental stages of D. mitsukuri. Specifically, highly expressed genes (HEGs) at the embryonic developmental stage were associated with cell proliferation, ensuring the necessary foundation for subsequent development; HEGs at the juvenile stages were associated with chemosensory perception, visual perception and neurotransmission, allowing individuals to enhance detection of potential environmental risks; HEGs at the adult stage were associated with antioxidative defensive systems, enabling adults to mount an efficient response to perceived environmental risks. Additionally, we found a significant overlap between expanded gene families of Daphnia species and HEGs at the juvenile stages, and these genes were associated with visual perception and neurotransmission. Our work provides a resource of developmental transcriptomes, and comparative analyses that characterize gene expression dynamics throughout development of Daphnia.
Collapse
Affiliation(s)
- Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Wenwu Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville Qld, 4811, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China.
| |
Collapse
|
40
|
Thapa BS, Pandit S, Mishra RK, Joshi S, Idris AM, Tusher TR. Emergence of per- and poly-fluoroalkyl substances (PFAS) and advances in the remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170142. [PMID: 38242458 DOI: 10.1016/j.scitotenv.2024.170142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Rahul Kumar Mishra
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Sanket Joshi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Kant Kalwar, NH 11C, Jaipur, Rajasthan 303002, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Tanmoy Roy Tusher
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
| |
Collapse
|
41
|
Gutiérrez-Fernández J, Hersleth HP, Hammerstad M. The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria. Acta Crystallogr D Struct Biol 2024; 80:181-193. [PMID: 38372589 PMCID: PMC10910545 DOI: 10.1107/s205979832400113x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.
Collapse
Affiliation(s)
- Javier Gutiérrez-Fernández
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Hans-Petter Hersleth
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
42
|
Schleger IC, Pereira DMC, Resende AC, Romão S, Herrerias T, Neundorf AKA, de Souza MRDP, Donatti L. Metabolic responses in the gills of Yellowtail Lambari Astyanax lacustris under low- and high-temperature thermal stress. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:16-31. [PMID: 38217492 DOI: 10.1002/aah.10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE Ectothermic fish are directly affected by temperature changes in the environment. The aim of this study was to evaluate the metabolic responses in the gills of Yellowtail Lambari Astyanax lacustris under thermal stress. METHODS To this end, we used spectrophotometry to evaluate the biomarkers of carbohydrate and protein metabolism, antioxidant defense, and oxidative damage in fish subjected to low (15°C) and high (31°C) temperatures, with control groups held at 23°C, for 2, 6, 12, 24, 48, and 96 h. RESULT The results showed that cold thermal stress did not change the energy demand, and the antioxidant defense was reduced; therefore, the gills were vulnerable to the action of reactive oxygen species (ROS), presenting increased protein carbonylation at 12 h. With heat thermal stress, a higher energy demand was observed, which was verified by an increase in aerobic metabolism by glycolysis and the citric acid cycle. High-temperature stress also increased the antioxidant defenses, as verified by the increased activities of glutathione peroxidase, glutathione reductase, and glutathione S-transferase. However, the antioxidant defense system could not protect tissues from the action of ROS, as protein carbonylation increased at 6 and 24 h, indicating oxidative stress. CONCLUSION The results showed that (1) temperature variations caused metabolic adjustments in the gills of Yellowtail Lambari, (2) the adaptive responses were different for winter and summer temperatures, and (3) Yellowtail Lambari recovered homeostasis when subjected to thermal stress, even with the occurrence of oxidative stress.
Collapse
Affiliation(s)
- Ieda Cristina Schleger
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Anna Carolina Resende
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul, Paraná, Brazil
| | | | - Ananda Karla Alves Neundorf
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Lucélia Donatti
- Adaptive Biology Laboratory, Cell Biology Department, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
43
|
Tanhan P, Imsilp K, Lansubsakul N, Tantiwisawaruji S, Thong-Asa W. Oxidative response to accumulation of trace metals in tissue of two bivalves, the Asian green mussel Perna viridis and the blood cockle Tegillarca granosa, living in Pattani Bay, Thailand. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:32-44. [PMID: 37753853 DOI: 10.1002/aah.10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Using bivalves to indicate aquatic pollutants was favorable for discerning the negative effects of high levels of metal accumulation in tissue. We investigated the correlation between trace metal accumulation and the tissue oxidative response of two bivalves. METHODS The Asian green mussel Perna viridis and the blood cockle Tegillarca granosa were sampled along with seawater and sediments from three locations around Pattani Bay, Thailand. Accumulation of nine trace metals (cadmium, cobalt, copper, chromium, nickel, manganese, iron, zinc, and lead) in seawater, sediments, and tissue and the oxidative tissue response were evaluated. Metal bioaccumulation factor, biota-sediment accumulation factor, and histopathology were also indicated. RESULT The present study found that P. viridis and T. granosa were macroconcentrators and bioaccumulative of cadmium, and their tissue accumulation of cadmium was strongly related to lipid peroxidation activation. Perna viridis exhibited a higher oxidative response than T. granosa, as indicated by malondialdehyde, catalase, and reduced glutathione levels. CONCLUSION The present study indicated that P. viridis and T. granosa were macroconcentrators and bioaccumulative of cadmium, and their tissue accumulation of cadmium was strongly related to lipid peroxidation activation. Research has shown discernible negative effects of a high level of metal accumulation in tissue, and deformed and damaged tissues were present in the gills, digestive glands, intestines, and feet of P. viridis and T. granosa.
Collapse
Affiliation(s)
- Phanwimol Tanhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kanjana Imsilp
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Niyada Lansubsakul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | - Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
44
|
Geissel F, Lang L, Husemann B, Morgan B, Deponte M. Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nat Commun 2024; 15:1733. [PMID: 38409212 PMCID: PMC10897161 DOI: 10.1038/s41467-024-45808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Glutaredoxins catalyze the reduction of disulfides and are key players in redox metabolism and regulation. While important insights were gained regarding the reduction of glutathione disulfide substrates, the mechanism of non-glutathione disulfide reduction remains highly debated. Here we determined the rate constants for the individual redox reactions between PfGrx, a model glutaredoxin from Plasmodium falciparum, and redox-sensitive green fluorescent protein 2 (roGFP2), a model substrate and versatile tool for intracellular redox measurements. We show that the PfGrx-catalyzed oxidation of roGFP2 occurs via a monothiol mechanism and is up to three orders of magnitude faster when roGFP2 and PfGrx are fused. The oxidation kinetics of roGFP2-PfGrx fusion constructs reflect at physiological GSSG concentrations the glutathionylation kinetics of the glutaredoxin moiety, thus allowing intracellular structure-function analysis. Reduction of the roGFP2 disulfide occurs via a monothiol mechanism and involves a ternary complex with GSH and PfGrx. Our study provides the mechanistic basis for understanding roGFP2 redox sensing and challenges previous mechanisms for protein disulfide reduction.
Collapse
Affiliation(s)
- Fabian Geissel
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
45
|
Costa CF, Lismont C, Chornyi S, Koster J, Li H, Hussein MAF, Van Veldhoven PP, Waterham HR, Fransen M. The solute carrier SLC25A17 sustains peroxisomal redox homeostasis in diverse mammalian cell lines. Free Radic Biol Med 2024; 212:241-254. [PMID: 38159891 DOI: 10.1016/j.freeradbiomed.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.
Collapse
Affiliation(s)
- Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium; Department of Biochemistry, Faculty of Pharmacy, Assiut University, 71515, Asyut, Egypt
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
46
|
Dama A, Shpati K, Daliu P, Dumur S, Gorica E, Santini A. Targeting Metabolic Diseases: The Role of Nutraceuticals in Modulating Oxidative Stress and Inflammation. Nutrients 2024; 16:507. [PMID: 38398830 PMCID: PMC10891887 DOI: 10.3390/nu16040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The escalating prevalence of metabolic and cardiometabolic disorders, often characterized by oxidative stress and chronic inflammation, poses significant health challenges globally. As the traditional therapeutic approaches may sometimes fall short in managing these health conditions, attention is growing toward nutraceuticals worldwide; with compounds being obtained from natural sources with potential therapeutic beneficial effects being shown to potentially support and, in some cases, replace pharmacological treatments, especially for individuals who do not qualify for conventional pharmacological treatments. This review delves into the burgeoning field of nutraceutical-based pharmacological modulation as a promising strategy for attenuating oxidative stress and inflammation in metabolic and cardiometabolic disorders. Drawing from an extensive body of research, the review showcases various nutraceutical agents, such as polyphenols, omega-3 fatty acids, and antioxidants, which exhibit antioxidative and anti-inflammatory properties. All these can be classified as novel nutraceutical-based drugs that are capable of regulating pathways to mitigate oxidative-stress- and inflammation-associated metabolic diseases. By exploring the mechanisms through which nutraceuticals interact with oxidative stress pathways and immune responses, this review highlights their potential to restore redox balance and temper chronic inflammation. Additionally, the challenges and prospects of nutraceutical-based interventions are discussed, encompassing bioavailability enhancement, personalized treatment approaches, and clinical translation. Through a comprehensive analysis of the latest scientific reports, this article underscores the potential of nutraceutical-based pharmacological treatment modulation as a novel avenue to fight oxidative stress and inflammation in the complex landscape of metabolic disorders, particularly accentuating their impact on cardiovascular health.
Collapse
Affiliation(s)
- Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Kleva Shpati
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Patricia Daliu
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
| | - Seyma Dumur
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Türkiye;
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, 1017 Tirana, Albania; (A.D.); (K.S.); (P.D.)
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, 8952 Zurich, Switzerland
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
47
|
Jyoti MA, Shah MS, Uddin MN, Hossain MK, Han A, Geng P, Islam MN, Mamun AA. Anti-oxidant and neuro-modulatory effects of bioactive Byttneria pilosa leaf extract in swiss albino mice using behavioral models. Front Chem 2024; 12:1341308. [PMID: 38389724 PMCID: PMC10881790 DOI: 10.3389/fchem.2024.1341308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Byttneria pilosa, a flowering plant from the Malvaceae family traditionally used to treat ailments such as boils and scabies, is here investigated for its potential health benefits. The study focused on evaluating its antioxidant and antidiabetic properties in vitro, as well as the in vivo anxiolytic and antidepressant activities of the methanol extract of B. pilosa leaf (MEBP). The study employed various assays to evaluate antioxidant activity, including 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, reducing power capacity, and quantification of the total phenolic and flavonoid contents of MEBP. Additionally, anxiolytic and antidepressant activities were evaluated through four tests: elevated plus-maze test (EPMT), light-dark box test (LDBT), forced swimming test (FST), and tail suspension test (TST). Antidiabetic effect was determined using α-amylase inhibition assay. Docking analysis was performed using BIOVIA and Schrödinger Maestro (v11.1), and the absorption, distribution, metabolism, and excretion/toxicity (ADME/T) properties of bioactive substances were investigated using a web-based technique. MEBP exhibited moderate antioxidant activity in DPPH radical scavenging and reducing power capacity assays, with a dose-dependent response. The total phenolic and flavonoid contents measured were 70 ± 1.53 mg and 22.33 ± 1.20 mg, respectively. MEBP demonstrated significant effects in α-amylase inhibition comparable to acarbose. In behavioral tests, MEBP dose-dependently altered time spent in open arms/light box and closed arms/dark box, indicating anxiolytic effects. Moreover, MEBP significantly reduced immobility duration in FST and TST, suggesting antidepressant properties. Molecular docking analysis revealed favorable interactions between beta-sitosterol and specific targets, suggesting the potential mediation of anxiolytic and antidiabetic effects. Overall, MEBP exhibits notable anxiolytic and antidepressant properties, along with moderate antioxidant and antidiabetic activities.
Collapse
Affiliation(s)
- Mifta Ahmed Jyoti
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Shahin Shah
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Najim Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Life and Earth Science, Jagannath University, Dhaka,Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Aixia Han
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, China
| |
Collapse
|
48
|
Bohle F, Rossi J, Tamanna SS, Jansohn H, Schlosser M, Reinhardt F, Brox A, Bethmann S, Kopriva S, Trentmann O, Jahns P, Deponte M, Schwarzländer M, Trost P, Zaffagnini M, Meyer AJ, Müller-Schüssele SJ. Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge. Redox Biol 2024; 69:103015. [PMID: 38183796 PMCID: PMC10808970 DOI: 10.1016/j.redox.2023.103015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany; Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Sadia S Tamanna
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Hannah Jansohn
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Marlene Schlosser
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Frank Reinhardt
- Plant Physiology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Alexa Brox
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | - Stephanie Bethmann
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Oliver Trentmann
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Marcel Deponte
- Biochemistry, Department of Chemistry, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | | |
Collapse
|
49
|
Martín-Cano FE, Gaitskell-Phillips G, Becerro-Rey L, da Silva E, Masot J, Redondo E, Silva-Rodríguez A, Ortega-Ferrusola C, Gil MC, Peña FJ. Pyruvate enhances stallion sperm function in high glucose media improving overall metabolic efficiency. Theriogenology 2024; 215:113-124. [PMID: 38029686 DOI: 10.1016/j.theriogenology.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
If a mechanism of more efficient glycolysis depending on pyruvate is present in stallion spermatozoa, detrimental effects of higher glucose concentrations that are common in current commercial extenders could be counteracted. To test this hypothesis, spermatozoa were incubated in a 67 mM Glucose modified Tyrode's media in the presence of 1- or 10-mM pyruvate and in the Tyrode's basal media which contains 5 mM glucose. Spermatozoa incubated for 3 h at 37 °C in 67 mM Tyrode's media with 10 mM pyruvate showed increased motility in comparison with aliquots incubated in Tyrode's 5 mM glucose and Tyrode's 67 mM glucose (57.1 ± 3.5 and 58.1 ± 1.9 to 73.0 ± 1.1 %; P < 0.01). Spermatozoa incubated in Tyrode's with 67 mM glucose 10 mM pyruvate maintained the viability along the incubation (64.03 ± 15.4 vs 61.3 ± 10.2), while spermatozoa incubated in 67 mM Glucose-Tyrode's showed a decrease in viability (38.01 ± 11.2, P < 0.01). 40 mM oxamate, an inhibitor of the lactate dehydrogenase LDH, reduced sperm viability (P < 0.05, from 76 ± 5 in 67 mM Glucose/10 mM pyruvate to 68.0 ± 4.3 %, P < 0.05). Apoptotic markers increased in the presence of oxamate. (P < 0.01). UHPLC/MS/MS showed that 10 mM pyruvate increased pyruvate, lactate, ATP and NAD+ while phosphoenolpyruvate decreased. The mechanisms that explain the improvement of in presence of 10 mM pyruvate involve the conversion of lactate to pyruvate and increased NAD+ enhancing the efficiency of the glycolysis.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
50
|
Timson RC, Khan A, Uygur B, Saad M, Yeh HW, DelGaudio NL, Weber R, Alwaseem H, Gao J, Yang C, Birsoy K. Development of a mouse model expressing a bifunctional glutathione-synthesizing enzyme to study glutathione limitation in vivo. J Biol Chem 2024; 300:105645. [PMID: 38218225 PMCID: PMC10869265 DOI: 10.1016/j.jbc.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.
Collapse
Affiliation(s)
- Rebecca C Timson
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Beste Uygur
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Marwa Saad
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, New York, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Nicole L DelGaudio
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Ross Weber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, New York, USA
| | - Jing Gao
- The CRISPR & Genome Editing Center, The Rockefeller University, New York, New York, USA
| | - Chingwen Yang
- The CRISPR & Genome Editing Center, The Rockefeller University, New York, New York, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA.
| |
Collapse
|