1
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
2
|
Jokumsen KV, Huhle VH, Hägglund PM, Davies MJ, Gamon LF. Elevated levels of iodide promote peroxidase-mediated protein iodination and inhibit protein chlorination. Free Radic Biol Med 2024; 220:207-221. [PMID: 38663830 DOI: 10.1016/j.freeradbiomed.2024.04.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024]
Abstract
At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed. Excessive or misplaced HOCl formation damages host tissues with this linked to multiple inflammatory diseases. Previously (Redox Biology, 2020, 28, 101331) we reported that iodide (I⁻) modulates MPO-mediated protein damage by decreasing HOCl generation with concomitant hypoiodous acid (HOI) formation. HOI may however impact on protein structure, so in this study we examined whether and how HOI, from peroxidase/H₂O₂/I⁻ systems ± Cl⁻, modifies proteins. Experiments employed MPO and lactoperoxidase (LPO) and multiple proteins (serum albumins, anastellin), with both chemical (intact protein and peptide mass mapping, LC-MS) and structural (SDS-PAGE) changes assessed. LC-MS analyses revealed dose-dependent iodination of anastellin and albumins by LPO/H2O2 with increasing I⁻. Incubation of BSA with MPO/H2O2/Cl⁻ revealed modest chlorination (Tyr286, Tyr475, ∼4 %) and Met modification. Lower levels of these species, and extensive iodination at specific Tyr and His residues (>20 % modification with ≥10 μM I⁻) were detected with increasing I⁻. Anastellin dimerization was inhibited by increasing I⁻, but less marked changes were observed with albumins. These data confirm that I⁻ competes with Cl⁻ for MPO and is an efficient HOCl scavenger. These processes decrease protein chlorination and oxidation, but result in extensive iodination. This is consistent with published data on the presence of iodinated Tyr on neutrophil proteins. The biological implications of protein iodination relative to chlorination require further clarification.
Collapse
Affiliation(s)
| | - Valerie H Huhle
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Per M Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Rajizadeh MA, Hosseini MH, Bahrami M, Bahri F, Rostamabadi F, Bagheri F, Khoramipour K, Najafipour H, Bejeshk MA. High-intensity intermittent training ameliorates methotrexate-induced acute lung injury. BMC Pulm Med 2024; 24:45. [PMID: 38245672 PMCID: PMC10800073 DOI: 10.1186/s12890-024-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Inflammation and oxidative stress are recognized as two primary causes of lung damage induced by methotrexate, a drug used in the treatment of cancer and immunological diseases. This drug triggers the generation of oxidants, leading to lung injury. Given the antioxidant and anti-inflammatory effects of high-intensity intermittent training (HIIT), our aim was to evaluate the therapeutic potential of HIIT in mitigating methotrexate-induced lung damage in rats. Seventy male Wistar rats were randomly divided into five groups: CTL (Control), HIIT (High-intensity intermittent training), ALI (Acute Lung Injury), HIIT+ALI (pretreated with HIIT), and ALI + HIIT (treated with HIIT).HIIT sessions were conducted for 8 weeks. At the end of the study, assessments were made on malondialdehyde, total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (Gpx), myeloperoxidase (MPO), interleukin 10 (IL-10), tumor necrosis factor-alpha (TNF-α), gene expression of T-bet, GATA3, FOXP3, lung wet/dry weight ratio, pulmonary capillary permeability, apoptosis (Caspase-3), and histopathological indices.Methotrexate administration resulted in increased levels of TNF-α, MPO, GATA3, caspase-3, and pulmonary edema indices, while reducing the levels of TAC, SOD, Gpx, IL-10, T-bet, and FOXP3. Pretreatment and treatment with HIIT reduced the levels of oxidant and inflammatory factors, pulmonary edema, and other histopathological indicators. Concurrently, HIIT increased the levels of antioxidant and anti-inflammatory factors.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Haj Hosseini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mina Bahrami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Faegheh Bahri
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research center, Bam university of medical sciences, Bam, Iran
- Department of Medical Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Abbas Bejeshk
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Ivanov SV, Rose KL, Colon S, Hudson BG, Bhave G, Voziyan P. Mechanism of peroxidasin inactivation in hyperglycemia: Heme damage by reactive oxygen species. Biochem Biophys Res Commun 2023; 689:149237. [PMID: 37984175 PMCID: PMC10702573 DOI: 10.1016/j.bbrc.2023.149237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Diabetic complications present a serious health problem. Functional damage to proteins due to post-translational modifications by glycoxidation reactions is a known factor contributing to pathology. Extracellular proteins are especially vulnerable to diabetic damage because robust antioxidant defenses are lacking outside the cell. We investigated glucose-induced inactivation of peroxidasin (PXDN), a heme protein catalyzing sulfilimine crosslinking of collagen IV that reinforce the basement membranes (BM). Experiments using physiological diabetic glucose levels were carried out to exclude several potential mechanisms of PXDN inactivation i.e., direct adduction of glucose, reactive carbonyl damage, steric hindrance, and osmotic stress. Further experiments established that PXDN activity was inhibited via heme degradation by reactive oxygen species. Activity of another extracellular heme protein, myeloperoxidase, was unaffected by glucose because its heme was resistant to glucose-induced oxidative degradation. Our findings point to specific mechanisms which may compromise BM structure and stability in diabetes and suggest potential modes of protection.
Collapse
Affiliation(s)
- Sergey V Ivanov
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Selene Colon
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Billy G Hudson
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Gautam Bhave
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37212, USA; Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Paul Voziyan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
6
|
Cristol JP, Thierry AR, Bargnoux AS, Morena-Carrere M, Canaud B. What is the role of the neutrophil extracellular traps in the cardiovascular disease burden associated with hemodialysis bioincompatibility? Front Med (Lausanne) 2023; 10:1268748. [PMID: 38034546 PMCID: PMC10684960 DOI: 10.3389/fmed.2023.1268748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite significant progress in dialysis modalities, intermittent renal replacement therapy remains an "unphysiological" treatment that imperfectly corrects uremic disorders and may lead to low-grade chronic inflammation, neutrophil activation, and oxidative stress due to repetitive blood/membrane interactions contributing to the "remaining uremic syndrome" and cardiovascular disease burden of hemodialysis patients. Understanding dialysis bioincompatibility pathways still remains a clinical and biochemical challenge. Indeed, surrogate biomarkers of inflammation including C-reactive protein could not discriminate between all components involved in these complex pathways. A few examples may serve to illustrate the case. Cytokine release during dialysis sessions may be underestimated due to their removal using high-flux dialysis or hemodiafiltration modalities. Complement activation is recognized as a key event of bioincompatibility. However, it appears as an early and transient event with anaphylatoxin level normalization at the end of the dialysis session. Complement activation is generally assumed to trigger leukocyte stimulation leading to proinflammatory mediators' secretion and oxidative burst. In addition to being part of the innate immune response involved in eliminating physically and enzymatically microbes, the formation of Neutrophil Extracellular Traps (NETs), known as NETosis, has been recently identified as a major harmful component in a wide range of pathologies associated with inflammatory processes. NETs result from the neutrophil degranulation induced by reactive oxygen species overproduction via NADPH oxidase and consist of modified chromatin decorated with serine proteases, elastase, bactericidal proteins, and myeloperoxidase (MPO) that produces hypochlorite anion. Currently, NETosis remains poorly investigated as a sensitive and integrated marker of bioincompatibility in dialysis. Only scarce data could be found in the literature. Oxidative burst and NADPH oxidase activation are well-known events in the bioincompatibility phenomenon. NET byproducts such as elastase, MPO, and circulating DNA have been reported to be increased in dialysis patients more specifically during dialysis sessions, and were identified as predictors of poor outcomes. As NETs and MPO could be taken up by endothelium, NETs could be considered as a vascular memory of intermittent bioincompatibility phenomenon. In this working hypothesis article, we summarized the puzzle pieces showing the involvement of NET formation during hemodialysis and postulated that NETosis may act as a disease modifier and may contribute to the comorbid burden associated with dialysis bioincompatibility.
Collapse
Affiliation(s)
- Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
- Charles Mion Foundation, AIDER-Santé, Montpellier, France
| | - Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM, IRCM, ICM, University of Montpellier, Montpellier, France
| | - Anne-Sophie Bargnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Marion Morena-Carrere
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Bernard Canaud
- School of Medicine, University of Montpellier, Montpellier, France
- MTX Consulting Int., Montpellier, France
| |
Collapse
|
7
|
Mihalic ZN, Kloimböck T, Cosic-Mujkanovic N, Valadez-Cosmes P, Maitz K, Kindler O, Wadsack C, Heinemann A, Marsche G, Gauster M, Pollheimer J, Kargl J. Myeloperoxidase enhances the migration and invasion of human choriocarcinoma JEG-3 cells. Redox Biol 2023; 67:102885. [PMID: 37776707 PMCID: PMC10556814 DOI: 10.1016/j.redox.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundant proteins in neutrophil granules. It catalyzes the production of reactive oxygen species, which are important in inflammation and immune defense. MPO also binds to several proteins, lipids, and DNA to alter their function. MPO is present at the feto-maternal interface during pregnancy, where neutrophils are abundant. In this study, we determined the effect of MPO on JEG-3 human choriocarcinoma cells as a model of extravillous trophoblasts (EVTs) during early pregnancy. We found that MPO was internalized by JEG-3 cells and localized to the cytoplasm and nuclei. MPO internalization and activity enhanced JEG-3 cell migration and invasion, whereas this effect was impaired by pre-treating cells with heparin, to block cellular uptake, and MPO-activity inhibitor 4-ABAH. This study identifies a novel mechanism for the effect of MPO on EVT function during normal pregnancy and suggests a potential role of MPO in abnormal pregnancies.
Collapse
Affiliation(s)
- Z N Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - T Kloimböck
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - N Cosic-Mujkanovic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - P Valadez-Cosmes
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - K Maitz
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - O Kindler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria
| | - C Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - A Heinemann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - G Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria
| | - M Gauster
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-Fetal Immunology Group, Medical University of Vienna, Austria
| | - J Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
8
|
Yu Y, Zhou M, Long X, Yin S, Hu G, Yang X, Jian W, Yu R. Study on the mechanism of action of colchicine in the treatment of coronary artery disease based on network pharmacology and molecular docking technology. Front Pharmacol 2023; 14:1147360. [PMID: 37405052 PMCID: PMC10315633 DOI: 10.3389/fphar.2023.1147360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Objective: This is the first study to explore the mechanism of colchicine in treating coronary artery disease using network pharmacology and molecular docking technology, aiming to predict the key targets and main approaches of colchicine in treating coronary artery disease. It is expected to provide new ideas for research on disease mechanism and drug development. Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Swiss Target Prediction and PharmMapper databases were used to obtain drug targets. GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), DrugBank and DisGeNET databases were utilized to gain disease targets. The intersection of the two was taken to access the intersection targets of colchicine for the treatment of coronary artery disease. The Sting database was employed to analyze the protein-protein interaction network. Gene Ontology (GO) functional enrichment analysis was performed using Webgestalt database. Reactom database was applied for Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking was simulated using AutoDock 4.2.6 and PyMOL2.4 software. Results: A total of 70 intersecting targets of colchicine for the treatment of coronary artery disease were obtained, and there were interactions among 50 targets. GO functional enrichment analysis yielded 13 biological processes, 18 cellular components and 16 molecular functions. 549 signaling pathways were obtained by KEGG enrichment analysis. The molecular docking results of key targets were generally good. Conclusion: Colchicine may treat coronary artery disease through targets such as Cytochrome c (CYCS), Myeloperoxidase (MPO) and Histone deacetylase 1 (HDAC1). The mechanism of action may be related to the cellular response to chemical stimulus and p75NTR-mediated negative regulation of cell cycle by SC1, which is valuable for further research exploration. However, this research still needs to be verified by experiments. Future research will explore new drugs for treating coronary artery disease from these targets.
Collapse
Affiliation(s)
- Yunfeng Yu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Manli Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xi Long
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shuang Yin
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gang Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Weixiong Jian
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Chinese Medicine Diagnostics in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
Ting JA, Barbir EB, McRae SA, Schachter M, De Luca L, Riazy M, Levin A. Double-Positive Anti-Glomerular Basement Membrane Antibody and Myeloperoxidase Antineutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis Post COVID-19 mRNA vaccine: A Case Series of 4 Patients. Can J Kidney Health Dis 2023; 10:20543581231153217. [PMID: 36794121 PMCID: PMC9925863 DOI: 10.1177/20543581231153217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2022] [Indexed: 02/16/2023] Open
Abstract
Rationale Vaccines remain central to the management of COVID-19 pandemic, including the need for repeat doses of vaccines to boost immunity. There has been an accumulating case count of glomerulopathies temporally associated with COVID-19 vaccination. This case series presents 4 patients who developed double-positive anti-glomerular basement membrane antibody (anti-GBM) and myeloperoxidase (MPO) antineutrophil cytoplasmic autoantibody (ANCA)-associated glomerulonephritis after COVID-19 mRNA vaccination. This report contributes to our collective knowledge about the pathophysiology and clinical outcomes associated with this rare complication. Presenting Concerns of the Patient Four patients developed nephritic syndrome within 1 to 6 weeks after receiving a COVID-19 mRNA vaccine (3 post Pfizer-BioNTech and 1 post Moderna vaccination). Three of the 4 patients also had hemoptysis. Diagnosis Three of the 4 patients had double-positive serology, whereas the fourth patient had renal biopsy findings consistent with double-positive disease, although anti-GBM serology was negative. All patients had renal biopsy findings consistent with double-positive anti-GBM and ANCA-associated glomerulonephritis. Interventions All 4 patients were treated with pulse steroids, cyclophosphamide, and plasmapheresis. Outcomes Of the 4 patients, 1 demonstrated complete remission, 2 remained dialysis-dependent, and the fourth is deceased. Of the 2 patients who received repeat vaccination with COVID-19 mRNA vaccine, 1 patient had second serologic flare of anti-GBM in response to the vaccine. Novel Findings This case series reinforces growing evidence that COVID-19 mRNA vaccine-induced glomerulonephritis is a rare but real phenomenon. Dual ANCA and anti-GBM nephritis can present after the first dose of COVID-19 mRNA vaccine or after several administrations of the vaccine. We are the first to report cases of double-positive MPO ANCA and anti-GBM nephritis after Pfizer-BioNTech vaccination. To our knowledge, we are also the first to report outcomes of repeat COVID-19 vaccination in patients with de novo flare of ANCA and anti-GBM nephritis temporally associated with COVID-19 vaccination.
Collapse
Affiliation(s)
- Julie Anne Ting
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Elena-Bianca Barbir
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Susanna A. McRae
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
- Department of Pathology, The University of British Columbia, Vancouver, Canada
| | - Michael Schachter
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Linda De Luca
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Maziar Riazy
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
- Department of Pathology, The University of British Columbia, Vancouver, Canada
| | - Adeera Levin
- Division of Nephrology, Department of Medicine, The University of British Columbia, Vancouver, Canada
- St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
10
|
Xu S, Chuang CY, Malle E, Gamon LF, Hawkins CL, Davies MJ. Influence of plasma halide, pseudohalide and nitrite ions on myeloperoxidase-mediated protein and extracellular matrix damage. Free Radic Biol Med 2022; 188:162-174. [PMID: 35718304 DOI: 10.1016/j.freeradbiomed.2022.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase (MPO) mediates pathogen destruction by generating the bactericidal oxidant hypochlorous acid (HOCl). Formation of this oxidant is however associated with host tissue damage and disease. MPO also utilizes H2O2 to oxidize other substrates, and we hypothesized that mixtures of other plasma anions, including bromide (Br-), iodide (I-), thiocyanate (SCN-) and nitrite (NO2-), at normal or supplemented concentrations, might modulate MPO-mediated HOCl damage. For the (pseudo)halide anions, only SCN- significantly modulated HOCl formation (IC50 ∼33 μM), which is within the normal physiological range, as judged by damage to human plasma fibronectin or extracellular matrix preparations detected by ELISA and LC-MS. NO2- modulated HOCl-mediated damage, in a dose-dependent manner, at physiologically-attainable anion concentrations. However, this was accompanied by increased tyrosine and tryptophan nitration (detected by ELISA and LC-MS), and the overall extent of damage remained approximately constant. Increasing NO2- concentrations (0.5-20 μM) diminished HOCl-mediated modification of tyrosine and methionine, whereas tryptophan loss was enhanced. At higher NO2- concentrations, enhanced tyrosine and methionine loss was detected. These analytical data were confirmed in studies of cell adhesion and metabolic activity. Together, these data indicate that endogenous plasma levels of SCN- (but not Br- or I-) can modulate protein modification induced by MPO, including the extent of chlorination. In contrast, NO2- alters the type of modification, but does not markedly decrease its extent, with chlorination replaced by nitration. These data also indicate that MPO could be a major source of nitration in vivo, and particularly at inflammatory sites where NO2- levels are often elevated.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Kremserová S, Kocurková A, Chorvátová M, Klinke A, Kubala L. Myeloperoxidase Deficiency Alters the Process of the Regulated Cell Death of Polymorphonuclear Neutrophils. Front Immunol 2022; 13:707085. [PMID: 35211113 PMCID: PMC8860816 DOI: 10.3389/fimmu.2022.707085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/18/2022] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a key role in host defense. However, their massive accumulation at the site of inflammation can delay regenerative healing processes and can initiate pathological inflammatory processes. Thus, the efficient clearance of PMNs mediated by the induction of regulated cell death is a key process preventing the development of these pathological conditions. Myeloperoxidase (MPO), a highly abundant enzyme in PMN granules, primarily connected with PMN defense machinery, is suggested to play a role in PMN-regulated cell death. However, the contribution of MPO to the mechanisms of PMN cell death remains incompletely characterized. Herein, the process of the cell death of mouse PMNs induced by three different stimuli – phorbol 12-myristate 13-acetate (PMA), opsonized streptococcus (OST), and N-formyl-met-leu-phe (fMLP) – was investigated. MPO-deficient PMNs revealed a significantly decreased rate of cell death characterized by phosphatidylserine surface exposure and cell membrane permeabilization. An inhibitor of MPO activity, 4-aminobenzoic acid hydrazide, did not exhibit a significant effect on PMA-induced cell death compared to MPO deficiency. Interestingly, only the limited activation of markers related to apoptotic cell death was observed (e.g. caspase 8 activation, Bax expression) and they mostly did not correspond to phosphatidylserine surface exposure. Furthermore, a marker characterizing autophagy, cleavage of LC3 protein, as well as histone H3 citrullination and its surface expression was observed. Collectively, the data show the ability of MPO to modulate the life span of PMNs primarily through the potentiation of cell membrane permeabilization and phosphatidylserine surface exposure.
Collapse
Affiliation(s)
- Silvie Kremserová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Anna Kocurková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Michaela Chorvátová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Klinke
- Clinic of General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute of Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Lukáš Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
12
|
Barinov NA, Pavlova ER, Tolstova AP, Matveeva AG, Moskalets AP, Dubrovin EV, Klinov DV. Myeloperoxidase-induced fibrinogen unfolding and clotting. Microsc Res Tech 2022; 85:2537-2548. [PMID: 35315962 DOI: 10.1002/jemt.24107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/08/2022]
Abstract
Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin-free environment, for example, in the presence of different salts. Here, we report the novel type of non-conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (<0.1 mg/ml). We have revealed fibrillar nature of myeloperoxidase-mediated fibrinogen clots, which differ morphologically from fibrin clots. We have shown that fibrinogen clotting is mediated by direct interaction of myeloperoxidase molecules with the outer globular regions of fibrinogen molecules followed by fibrinogen unfolding from its natural trinodular to a fibrillar structure. We have demonstrated a major role of the Debye screening effect in regulating of myeloperoxidase-induced fibrinogen clotting, which is facilitated by small ionic strength. While fibrinogen in an aqueous solution with myeloperoxidase undergoes changes, the enzymatic activity of myeloperoxidase is not inhibited in excess of fibrinogen. The obtained results open new insights into fibrinogen clotting, give new possibilities for the development of fibrinogen-based functional biomaterials, and provide the novel concepts of protein unfolding.
Collapse
Affiliation(s)
- Nikolay A Barinov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Elizaveta R Pavlova
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Anna P Tolstova
- Laboratory of protein conformational polymorphism in health and disease, Engelhardt Institute of Molecular Biology, Moscow, Russian Federation
| | - Ainur G Matveeva
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Aleksandr P Moskalets
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Evgeniy V Dubrovin
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory of Biophysics, National University of Science and Technology MISIS, Moscow, Russian Federation
| | - Dmitry V Klinov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russian Federation.,Scientific and educational resource center for innovative technologies of immunophenotyping, digital spatial profiling and ultrastructural analysis (molecular morphology), Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
13
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
14
|
Kolářová H, Víteček J, Černá A, Černík M, Přibyl J, Skládal P, Potěšil D, Ihnatová I, Zdráhal Z, Hampl A, Klinke A, Kubala L. Myeloperoxidase mediated alteration of endothelial function is dependent on its cationic charge. Free Radic Biol Med 2021; 162:14-26. [PMID: 33271281 DOI: 10.1016/j.freeradbiomed.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Endothelial cell (EC) glycocalyx (GLX) comprise a multicomponent layer of proteoglycans and glycoproteins. Alteration of its integrity contributes to chronic vascular inflammation and leads to the development of cardiovascular diseases. Myeloperoxidase (MPO), a highly abundant enzyme released by polymorphonuclear neutrophils, binds to the GLX and deleteriously affects vascular EC functions. The focus of this study was to elucidate the mechanisms of MPO-mediated alteration of GLX molecules, and to unravel subsequent changes in endothelial integrity and function. MPO binding to GLX of human ECs and subsequent internalization was mediated by cell surface heparan sulfate chains. Moreover, interaction of MPO, which is carrying a cationic charge, with anionic glycosaminoglycans (GAGs) resulted in reduction of their relative charge. By means of micro-viscometry and atomic force microscopy, we disclosed that MPO can crosslink GAG chains. MPO-dependent modulation of GLX structure was further supported by alteration of wheat germ agglutinin staining. Increased expression of ICAM-1 documented endothelial cell activation by both catalytically active and also inactive MPO. Furthermore, MPO increased vascular permeability connected with reorganization of intracellular junctions, however, this was dependent on MPO's catalytic activity. Novel proteins interacting with MPO during transcytosis were identified by proteomic analysis. Altogether, these findings provide evidence that MPO through interaction with GAGs modulates overall charge of the GLX, causing modification of its structure and thus affecting EC function. Importantly, our results also suggest a number of proteins interacting with MPO that possess a variety of cellular localizations and functions.
Collapse
Affiliation(s)
- Hana Kolářová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Jan Víteček
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Anna Černá
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Marek Černík
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Petr Skládal
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - David Potěšil
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Ivana Ihnatová
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Aleš Hampl
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic
| | - Anna Klinke
- Clinic of General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute of Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Lukáš Kubala
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic.
| |
Collapse
|
15
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
16
|
Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. Int J Mol Sci 2020; 21:E8057. [PMID: 33137905 PMCID: PMC7663354 DOI: 10.3390/ijms21218057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany
| |
Collapse
|
17
|
Vanichkitrungruang S, Chuang CY, Hawkins CL, Davies MJ. Myeloperoxidase-derived damage to human plasma fibronectin: Modulation by protein binding and thiocyanate ions (SCN -). Redox Biol 2020; 36:101641. [PMID: 32863239 PMCID: PMC7378696 DOI: 10.1016/j.redox.2020.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Endothelial cell dysfunction is an early event in cardiovascular disease and atherosclerosis. The origin of this dysfunction is unresolved, but accumulating evidence implicates damaging oxidants, including hypochlorous acid (HOCl), a major oxidant produced by myeloperoxidase (MPO), during chronic inflammation. MPO is released extracellularly by activated leukocytes and binds to extracellular molecules including fibronectin, a major matrix glycoprotein involved in endothelial cell binding. We hypothesized that MPO binding might influence the modifications induced on fibronectin, when compared to reagent HOCl, with this including alterations to the extent of damage to protein side-chains, modified structural integrity, changes to functional domains, and impact on naïve human coronary artery endothelial cell (HCAEC) adhesion and metabolic activity. The effect of increasing concentrations of the alternative MPO substrate thiocyanate (SCN-), which might decrease HOCl formation were also examined. Exposure of fibronectin to MPO/H2O2/Cl- is shown to result in damage to the functionally important cell-binding and heparin-binding fragments, gross structural changes to the protein, and altered HCAEC adhesion and activity. Differences were observed between stoichiometric, and above-stoichiometric MPO concentrations consistent with an effect of MPO binding to fibronectin. In contrast, MPO/H2O2/SCN- induced much less marked changes and limited protein damage. Addition of increasing SCN- concentrations to the MPO/H2O2/Cl- system provided protection, with 20 μM of this anion rescuing damage to functionally-important domains, decreasing chemical modification, and maintaining normal HCAEC behavior. Modulating MPO binding to fibronectin, or enhancing SCN- levels at sites of inflammation may therefore limit MPO-mediated damage, and be of therapeutic value.
Collapse
Affiliation(s)
- Siriluck Vanichkitrungruang
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Chaikijurajai T, Tang WHW. Myeloperoxidase: a potential therapeutic target for coronary artery disease. Expert Opin Ther Targets 2020; 24:695-705. [PMID: 32336171 PMCID: PMC7387188 DOI: 10.1080/14728222.2020.1762177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/26/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Coronary artery disease (CAD) poses significant morbidity and mortality globally. Despite significant advances in treatment interventions, residual cardiovascular risks remain unchecked. Recent clinical trials have shed light on the potential therapeutic benefits of targeting anti-inflammatory pathways. Myeloperoxidase (MPO) plays an important role in atherosclerotic plaque formation and destabilization of the fibrous cap; both increase the risk of atherosclerotic cardiovascular disease and especially CAD. AREAS COVERED This article examines the role of MPO in the pathogenesis of atherosclerotic CAD and the mechanistic data from several key therapeutic drug targets. There have been numerous interesting studies on prototype compounds that directly or indirectly attenuate the enzymatic activities of MPO, and subsequently exhibit atheroprotective effects; these include aminobenzoic acid hydrazide, ferulic acid derivative (INV-315), thiouracil derivatives (PF-1355 and PF-06282999), 2-thioxanthines derivative (AZM198), triazolopyrimidines, acetaminophen, N-acetyl lysyltyrosylcysteine (KYC), flavonoids, and alternative substrates such as thiocyanate and nitroxide radical. EXPERT OPINION Future investigations must determine if the cardiovascular benefits of direct systemic inhibition of MPO outweigh the risk of immune dysfunction, which may be less likely to arise with alternative substrates or MPO inhibitors that selectively attenuate atherogenic effects of MPO.
Collapse
Affiliation(s)
- Thanat Chaikijurajai
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| | - W. H. Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
19
|
Zacharias T, Flouda K, Jepps TA, Gammelgaard B, Schiesser CH, Davies MJ. Effects of a novel selenium substituted-sugar (1,4-anhydro-4-seleno-d-talitol, SeTal) on human coronary artery cell lines and mouse aortic rings. Biochem Pharmacol 2020; 173:113631. [DOI: 10.1016/j.bcp.2019.113631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
|
20
|
Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep 2020; 10:666. [PMID: 31959784 PMCID: PMC6971288 DOI: 10.1038/s41598-019-57299-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
The extracellular matrix (ECM) of tissues is susceptible to modification by inflammation-associated oxidants. Considerable data support a role for hypochlorous acid (HOCl), generated by the leukocyte-derived heme-protein myeloperoxidase (MPO) in these changes. HOCl can modify isolated ECM proteins and cell-derived matrix, with this resulting in decreased cell adhesion, modulated proliferation and gene expression, and phenotypic changes. Whether this arises from free HOCl, or via site-specific reactions is unresolved. Here we examine the mechanisms of MPO-mediated changes to human coronary smooth muscle cell ECM. MPO is shown to co-localize with matrix fibronectin as detected by confocal microscopy, and bound active MPO can initiate ECM modification, as detected by decreased antibody recognition of fibronectin, versican and type IV collagen, and formation of protein carbonyls and HOCl-mediated damage. These changes are recapitulated by a glucose/glucose oxidase/MPO system where low continuous fluxes of H2O2 are generated. HOCl-induced modifications enhance MPO binding to ECM proteins as detected by ELISA and MPO activity measurements. These data demonstrate that MPO-generated HOCl induces ECM modification by interacting with ECM proteins in a site-specific manner, and generates alterations that increase MPO adhesion. This is proposed to give rise to an increasing cycle of alterations that contribute to tissue damage.
Collapse
|
21
|
Cai H, Chuang CY, Vanichkitrungruang S, Hawkins CL, Davies MJ. Hypochlorous acid-modified extracellular matrix contributes to the behavioral switching of human coronary artery smooth muscle cells. Free Radic Biol Med 2019; 134:516-526. [PMID: 30716431 DOI: 10.1016/j.freeradbiomed.2019.01.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023]
Abstract
The extracellular matrix (ECM) influences the structure and function of the arterial wall and modulates the behavior of vascular cells through ECM-cell interactions. Alterations to the ECM have been implicated in multiple pathological processes, including atherosclerosis which is characterized by low-grade chronic inflammation and the infiltration and proliferation of smooth muscle cells during disease development. Considerable evidence has been presented for a role for inflammation-derived oxidation in atherogenesis, with enzymatically-active myeloperoxidase (MPO), elevated levels of 3-chlorotyrosine (a biomarker of MPO-catalyzed damage) and oxidized ECM materials detected in advanced human atherosclerotic lesions. Whether oxidant-modified ECM contributes to the altered behavior of smooth muscle cells is however unclear. This study therefore investigated the effects of hypochlorous acid (HOCl), a major MPO-derived oxidant, on the structure of the native ECM synthesized by human coronary artery smooth muscle cells (HCAMSCs) and whether modified ECM proteins affected HCASMC adhesion, proliferation and gene expression. Exposure of native HCASMC-derived ECM to reagent HOCl or a MPO-Cl--H2O2 system resulted in extensive ECM modifications as evidenced by the loss of antibody recognition of epitopes on type IV collagen, laminin, versican and fibronectin. Oxidation of HCASMC ECM markedly reduced HCASMC adhesion to matrix components, but facilitated subsequent proliferation in vitro. Multiple genes were upregulated in HCASMCs in response to HOCl-modified HCASMC-ECM including interleukin-6 (IL-6), fibronectin (FN1) and matrix-metalloproteinases (MMPs). These data reveal a mechanism through which inflammation-induced ECM-modification may contribute to the behavioral switching of HCASMCs, a key process in plaque formation during the development of atherosclerosis.
Collapse
Affiliation(s)
- Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Siriluck Vanichkitrungruang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; The Heart Research Institute, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
22
|
Brown KL, Hudson BG, Voziyan PA. Halogens are key cofactors in building of collagen IV scaffolds outside the cell. Curr Opin Nephrol Hypertens 2019; 27:171-175. [PMID: 29547404 DOI: 10.1097/mnh.0000000000000401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent advances in understanding the molecular assembly of basement membranes, as exemplified by the glomerular basement membrane (GBM) of the kidney filtration apparatus. In particular, an essential role of halogens in the basement membrane formation has been discovered. RECENT FINDINGS Extracellular chloride triggers a molecular switch within non collagenous domains of collagen IV that induces protomer oligomerization and scaffold assembly outside the cell. Moreover, bromide is an essential cofactor in enzymatic cross-linking that reinforces the stability of scaffolds. Halogenation and halogen-induced oxidation of the collagen IV scaffold in disease states damage scaffold function. SUMMARY Halogens play an essential role in the formation of collagen IV scaffolds of basement membranes. Pathogenic damage of these scaffolds by halogenation and halogen-induced oxidation is a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Medicine, Division of Nephrology.,Center for Structural Biology.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G Hudson
- Department of Medicine, Division of Nephrology.,Department of Biochemistry.,Department of Cell and Developmental Biology.,Department of Pathology, Microbiology and Immunology.,Center for Structural Biology.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul A Voziyan
- Department of Medicine, Division of Nephrology.,Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Liu S, Mou S, Zhou C, Guo L, Zhong A, Yang J, Yuan Q, Wang J, Sun J, Wang Z. Off-the-Shelf Biomimetic Graphene Oxide-Collagen Hybrid Scaffolds Wrapped with Osteoinductive Extracellular Matrix for the Repair of Cranial Defects in Rats. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42948-42958. [PMID: 30421913 DOI: 10.1021/acsami.8b11071] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogels such as type I collagen (COL) have been widely studied in bone tissue repair, whereas their weak mechanical strength has limited their clinical application. By adding graphene oxide (GO) nanosheets, researchers have successfully improved the mechanical properties and biocompatibility of the hydrogels. However, for large bone defects, the osteoinductive and cell adhesion ability of the GO hybrid hydrogels need to be improved. Mesenchymal stem cell (MSC) secreted extracellular matrix (ECM), which is an intricate network, could provide a biomimetic microenvironment and functional molecules that enhance the cell proliferation and survival rate. To synergize the advantages of MSC-ECM with GO-COL hybrid implants, we developed a novel ECM scaffold construction method. First, an osteoinductive extracellular matrix (OiECM) was created by culturing osteodifferentiated bone marrow mesenchymal stem cells (BMSCs) for 21 days. Then, the GO-COL scaffold was fully wrapped with the OiECM to construct the OiECM-GO-COL composite for implantation. The morphology, physical properties, biocompatibility, and osteogenic performance of the OiECM-GO-COL implants were assessed in vitro and in vivo (5 mm rat cranial defect model). Both gene expression and cell level assessments suggested that the BMSCs cultured on OiECM-GO-COL implants had a higher proliferation rate and osteogenic ability compared to the COL or GO-COL groups. In vivo results showed that the OiECM-GO-COL implants achieved better repair effects in a rat critical cranial defect model, whereas bone formation in other groups was limited. This study provides a promising strategy, which greatly improves the osteogenic ability and biocompatibility of the GO hydrogels without the procedure of seeding and culturing MSCs on scaffolds in vitro, demonstrating its potential as an off-the-shelf method for bone tissue engineering.
Collapse
Affiliation(s)
- Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Chuchao Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Quan Yuan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , 1277 Jiefang Avenue , Wuhan 430022 , China
| |
Collapse
|
24
|
Barinov NA, Vlasova II, Sokolov AV, Kostevich VA, Dubrovin EV, Klinov DV. High-resolution atomic force microscopy visualization of metalloproteins and their complexes. Biochim Biophys Acta Gen Subj 2018; 1862:2862-2868. [DOI: 10.1016/j.bbagen.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
|
25
|
Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018; 23:E2561. [PMID: 30297621 PMCID: PMC6222727 DOI: 10.3390/molecules23102561] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Department of Biophysics, Malaya Pirogovskaya, 1a, Moscow 119435, Russia.
- Institute for Regenerative Medicine, Laboratory of Navigational Redox Lipidomics, Sechenov University, 8-2 Trubetskaya St., Moscow 119991, Russia.
| |
Collapse
|
26
|
Nybo T, Cai H, Chuang CY, Gamon LF, Rogowska-Wrzesinska A, Davies MJ. Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biol 2018; 19:388-400. [PMID: 30237127 PMCID: PMC6142189 DOI: 10.1016/j.redox.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) occurs as both a soluble form, in plasma and at sites of tissue injury, and a cellular form in tissue extracellular matrices (ECM). FN is critical to wound repair, ECM structure and assembly, cell adhesion and proliferation. FN is reported to play a critical role in the development, progression and stability of cardiovascular atherosclerotic lesions, with high FN levels associated with a thick fibrotic cap, stable disease and a low risk of rupture. Evidence has been presented for FN modification by inflammatory oxidants, and particularly myeloperoxidase (MPO)-derived species including hypochlorous acid (HOCl). The targets and consequences of FN modification are poorly understood. Here we show, using a newly-developed MS protocol, that HOCl and an enzymatic MPO system, generate site-specific dose-dependent Tyr chlorination and dichlorination (up to 16 of 100 residues modified), and oxidation of Trp (7 of 39 residues), Met (3 of 26) and His (1 of 55) within selected FN domains, and particularly the heparin- and cell-binding regions. These alterations increase FN binding to heparin-containing columns. Studies using primary human coronary artery smooth muscle cells (HCASMC) show that exposure to HOCl-modified FN, results in decreased adherence, increased proliferation and altered expression of genes involved in ECM synthesis and remodelling. These findings indicate that the presence of modified fibronectin may play a major role in the formation, development and stabilisation of fibrous caps in atherosclerotic lesions and may play a key role in the switching of quiescent contractile smooth muscle cells to a migratory, synthetic and proliferative phenotype.
Collapse
Affiliation(s)
- Tina Nybo
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Biosynthesis of human myeloperoxidase. Arch Biochem Biophys 2018; 642:1-9. [PMID: 29408362 DOI: 10.1016/j.abb.2018.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/30/2023]
Abstract
Members of Chordata peroxidase subfamily [1] expressed in mammals, including myeloperoxidase (MPO), eosinophil peroxidase (EPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO), express conserved motifs around the heme prosthetic group essential for their activity, a calcium-binding site, and at least two covalent bonds linking the heme group to the protein backbone. Although most studies of the biosynthesis of these peroxidases have focused on MPO, many of the features described occur during biosynthesis of other members of the protein subfamily. Whereas MPO biosynthesis includes events typical for proteins generated in the secretory pathway, the importance and consequences of heme insertion are events uniquely associated with peroxidases. This Review summarizes decades of work elucidating specific steps in the biosynthetic pathway of human MPO. Discussion includes cotranslational glycosylation and subsequent modifications of the N-linked carbohydrate sidechains, contributions by molecular chaperones in the endoplasmic reticulum, cleavage of the propeptide from proMPO, and proteolytic processing of protomers and dimerization to yield mature MPO. Parallels between the biosynthesis of MPO and TPO as well as the impact of inherited mutations in the MPO gene on normal biosynthesis will be summarized. Lastly, specific gaps in our knowledge revealed by this review of our current understanding will be highlighted.
Collapse
|
28
|
Abstract
The pre-metastatic niche — the accumulation of aberrant immune cells and extracellular matrix proteins in target organs — primes the initially healthy organ microenvironment and renders it amenable for subsequent metastatic cell colonization. By attracting metastatic cancer cells, mimics of the pre-metastatic niche offer both diagnostic and therapeutic potential. However, deconstructing the complexity of the niche by identifying the interactions between cell populations and the mediatory roles of the immune system, soluble factors, extracellular matrix proteins, and stromal cells has proved challenging. Experimental models need to recapitulate niche-population biology in situ and mediate in vivo tumour-cell homing, colonization and proliferation. In this Review, we outline the biology of the pre-metastatic niche and discuss advances in engineered niche-mimicking biomaterials that regulate the behaviour of tumour cells at an implant site. Such oncomaterials offer strategies for early detection of metastatic events, inhibiting the formation of the pre-metastatic niche, and attenuating metastatic progression.
Collapse
|
29
|
Arpag H, Gül M, Aydemir Y, Atilla N, Yiğitcan B, Cakir T, Polat C, Þehirli Ö, Sayan M. Protective Effects of Alpha-Lipoic Acid on Methotrexate-Induced Oxidative Lung Injury in Rats. J INVEST SURG 2017; 31:107-113. [PMID: 28340320 DOI: 10.1080/08941939.2017.1296513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Oxidative stress is one of the major causes of methotrexate induced lung injury (MILI). Alpha-lipoic acid (ALA), which occurs naturally in human food, has antioxidative and anti-inflammatory activities. The aim of this study was to research the potential protective role of ALA on MILI in rats. METHODS Twenty one rats were randomly subdivided into three groups: control (group I), methotrexate (MTX) treated (group II), and MTX+ALA treated (group III). Lung injury was performed with a single dose of MTX (20 mg/kg) to groups 2 and 3. On the sixth day, animals in all groups were sacrificed by decapitation and lung tissue and blood samples were removed for histological examination and also measurement the levels of interleukin-1-beta (IL-1β), malondialdehyde (MDA), glutathione (GSH), tumour necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and sodium potassium-adenosine triphosphatase (Na+/K+ATPase). RESULTS In MTX group tissue GSH, Na+/K+ATPase activities were lower, tissue MDA, MPO and plasma IL-1?, TNF-? were significantly higher than the other groups. Histopathological examination showed that lung injury was less severe in group 2 according to group 3. CONCLUSIONS Oxidative damage of MTX in rat lung is partially reduced when combined with ALA.
Collapse
Affiliation(s)
- Huseyin Arpag
- a Department of Chest Disease , Kahramanmaras Sutcu Imam University Medical Faculty , Kahramanmaras , Turkey
| | - Mehmet Gül
- b Department of Histology , Malatya Inonu University Medical Faculty , Malatya , Turkey
| | - Yusuf Aydemir
- c Department of Chest Diseases , Sakarya University Medical Faculty , Sakarya , Turkey
| | - Nurhan Atilla
- a Department of Chest Disease , Kahramanmaras Sutcu Imam University Medical Faculty , Kahramanmaras , Turkey
| | - Birgül Yiğitcan
- b Department of Histology , Malatya Inonu University Medical Faculty , Malatya , Turkey
| | - Tugrul Cakir
- d Department of General Surgery , Antalya Education and Research Hospital , Antalya , Turkey
| | - Cemal Polat
- e Department of Biochemistry , Public Health Laboratuary , Kütahya , Turkey
| | - Özer Þehirli
- f Department of Pharmacology , Marmara University Medicine Faculty, Istanbul, Turkey and Near East University Faculty of Denstry , Nicosia , North Cyprus
| | - Muhammet Sayan
- g Department of Thoracic Surgery , Kahramanmaras Sutcu Imam University , Kahramanmaras , Turkey
| |
Collapse
|
30
|
Aguado BA, Caffe JR, Nanavati D, Rao SS, Bushnell GG, Azarin SM, Shea LD. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomater 2016; 33:13-24. [PMID: 26844426 PMCID: PMC4777643 DOI: 10.1016/j.actbio.2016.01.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/22/2015] [Accepted: 01/30/2016] [Indexed: 12/12/2022]
Abstract
Metastatic tumor cells colonize the pre-metastatic niche, which is a complex microenvironment consisting partially of extracellular matrix (ECM) proteins. We sought to identify and validate novel contributors to tumor cell colonization using ECM-coated poly(ε-caprolactone) (PCL) scaffolds as mimics of the pre-metastatic niche. Utilizing orthotopic breast cancer mouse models, fibronectin and collagen IV-coated scaffolds implanted in the subcutaneous space captured colonizing tumor cells, showing a greater than 2-fold increase in tumor cell accumulation at the implant site compared to uncoated scaffolds. As a strategy to identify additional ECM colonization contributors, decellularized matrix (DCM) from lungs and livers containing metastatic tumors were characterized. In vitro, metastatic cell adhesion was increased on DCM coatings from diseased organs relative to healthy DCM. Furthermore, in vivo implantations of diseased DCM-coated scaffolds had increased tumor cell colonization relative to healthy DCM coatings. Mass-spectrometry proteomics was performed on healthy and diseased DCM to identify candidates associated with colonization. Myeloperoxidase was identified as abundantly present in diseased organs and validated as a contributor to colonization using myeloperoxidase-coated scaffold implants. This work identified novel ECM proteins associated with colonization using decellularization and proteomics techniques and validated candidates using a scaffold to mimic the pre-metastatic niche. STATEMENT OF SIGNIFICANCE The pre-metastatic niche consists partially of ECM proteins that promote metastatic cell colonization to a target organ. We present a biomaterials-based approach to mimic this niche and identify ECM mediators of colonization. Using murine breast cancer models, we implanted microporous PCL scaffolds to recruit colonizing tumor cells in vivo. As a strategy to modulate colonization, we coated scaffolds with various ECM proteins, including decellularized lung and liver matrix from tumor-bearing mice. After characterizing the organ matrices using proteomics, myeloperoxidase was identified as an ECM protein contributing to colonization and validated using our scaffold. Our scaffold provides a platform to identify novel contributors to colonization and allows for the capture of colonizing tumor cells for a variety of downstream clinical applications.
Collapse
Affiliation(s)
- Brian A Aguado
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Jordan R Caffe
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Dhaval Nanavati
- Proteomics Core Facility, Northwestern University, Chicago, IL 60611, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
31
|
Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5219056. [PMID: 26998194 PMCID: PMC4779540 DOI: 10.1155/2016/5219056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 11/18/2022]
Abstract
Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.
Collapse
|
32
|
Gavrilenko TI, Ryzhkova NO, Parkhomenko OM. [DEPENDENCE OF LEVEL OF MYELOPEROXIDASE OF PLASMA OF BLOOD ON FUNCTIONAL STATE OF NEUTROPHILS AT ACUTE INFARCT OF MYOCARDIUM.]. ACTA ACUST UNITED AC 2016; 62:60-65. [PMID: 29975476 DOI: 10.15407/fz62.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this work was to define dependence of maintenance of myeloperoxidase (MPO) in plasma of blood of patients by the acute infarct of myocardium from the state of oxygen metabolism of neutrophils, which was estimated on activity of myeloperoxidases, superoxid-anion and catalase in cells and on maintenance by peroxigens. 19 is inspected practically healthy volunteers and 56 patients with the the acute infarct of myocardium. The got results testify that maintenance of MPO in plasma of blood of patients with acute infarct of myocardium depends on the functional state of neutrophils, which, in its turn, is related to the clinical features of patients. Low maintenance is associated exceptionally with low activity of MPO of neutrophils, and also other oxygen radicals. High maintenance of MPO in plasma accompanied low or high activity of MPO of neutrophils and is pathognomonic for patients with the acute infarct of myocardium.
Collapse
|
33
|
Ero-Tolliver IA, Hudson BG, Bhave G. The Ancient Immunoglobulin Domains of Peroxidasin Are Required to Form Sulfilimine Cross-links in Collagen IV. J Biol Chem 2015; 290:21741-8. [PMID: 26178375 PMCID: PMC4571896 DOI: 10.1074/jbc.m115.673996] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 07/13/2015] [Indexed: 02/02/2023] Open
Abstract
The collagen IV sulfilimine cross-link and its catalyzing enzyme, peroxidasin, represent a dyad critical for tissue development, which is conserved throughout the animal kingdom. Peroxidasin forms novel sulfilimine bonds between opposing methionine and hydroxylysine residues to structurally reinforce the collagen IV scaffold, a function critical for basement membrane and tissue integrity. However, the molecular mechanism underlying cross-link formation remains unclear. In this work, we demonstrate that the catalytic domain of peroxidasin and its immunoglobulin (Ig) domains are required for efficient sulfilimine bond formation. Thus, these molecular features underlie the evolutionarily conserved function of peroxidasin in tissue development and integrity and distinguish peroxidasin from other peroxidases, such as myeloperoxidase (MPO) and eosinophil peroxidase (EPO).
Collapse
Affiliation(s)
- Isi A Ero-Tolliver
- From the Division of Nephrology and Hypertension and Department of Medicine, Center for Matrix Biology
| | - Billy G Hudson
- From the Division of Nephrology and Hypertension and Department of Medicine, Center for Matrix Biology, Departments of Biochemistry and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Gautam Bhave
- From the Division of Nephrology and Hypertension and Department of Medicine, Center for Matrix Biology,
| |
Collapse
|
34
|
Brown KL, Darris C, Rose KL, Sanchez OA, Madu H, Avance J, Brooks N, Zhang MZ, Fogo A, Harris R, Hudson BG, Voziyan P. Hypohalous acids contribute to renal extracellular matrix damage in experimental diabetes. Diabetes 2015; 64:2242-53. [PMID: 25605804 PMCID: PMC4439565 DOI: 10.2337/db14-1001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/10/2015] [Indexed: 12/17/2022]
Abstract
In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid-derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W(28) and W(192) are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid-derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes.
Collapse
Affiliation(s)
- Kyle L Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Carl Darris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Otto A Sanchez
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN
| | - Hartman Madu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Agnes Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Raymond Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Billy G Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Paul Voziyan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|