1
|
Ohigashi N, Hirayama S, Yashiroda H, Murata S. Vacuolar Sts1 Degradation-Induced Cytoplasmic Proteasome Translocation Restores Cell Proliferation. Genes Cells 2025; 30:e70004. [PMID: 39904745 DOI: 10.1111/gtc.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
The proteasome is a large multicatalytic complex conserved across eukaryotes that regulates multiple cellular processes through the degradation of ubiquitinated proteins. The proteasome is predominantly localized to the nucleus in proliferating cells and translocates to the cytoplasm in the stationary phase. Sts1 reportedly plays a vital role in the nuclear import of the proteasome during proliferation in yeast Saccharomyces cerevisiae. However, the mechanisms underlying cytoplasmic translocation of the proteasome in the stationary phase remain unknown. Here, we showed that the ubiquitin ligase Hul5 promotes vacuolar sequestration of Sts1 in a catalytic activity-dependent manner and thus suppresses the nuclear import of the proteasome during the stationary phase. We further demonstrated that cytoplasmic translocation of the proteasome plays a vital role in the clearance of ubiquitinated protein aggregates, mitochondrial quality control, and resuming proliferation from cellular quiescence. Our results provide insights into the mechanisms and significance of the cytoplasmic localization of proteasomes in cellular quiescence.
Collapse
Affiliation(s)
- Noritaka Ohigashi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Pereira LMS, Taveira IC, Maués DB, de Paula RG, Silva RN. Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production. Appl Microbiol Biotechnol 2025; 109:19. [PMID: 39841260 PMCID: PMC11754382 DOI: 10.1007/s00253-025-13408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways. The review also emphasizes the potential of genetic engineering to enhance the specificity and efficiency of these transporters, overcoming challenges such as substrate competition and limited pentose metabolism in industrial strains. By integrating the latest research findings, this work underscores the pivotal role of fungal STs in optimizing lignocellulosic bioethanol production and advancing the bioeconomy. Future prospects for engineering transport systems and their implications for industrial biotechnology are also discussed. KEY POINTS: STs present a conserved structure with different sugar affinities STs are involved in the signaling and transport of sugars derived from plant biomass Genetic engineering of STs can improve 2G bioethanol production.
Collapse
Affiliation(s)
- Lucas Matheus Soares Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Iasmin Cartaxo Taveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES, 29047-105, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil.
| |
Collapse
|
3
|
Chen A, Si Q, Xu Q, Pan C, Qu T, Chen J. Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications. Foods 2025; 14:142. [PMID: 39796432 PMCID: PMC11720210 DOI: 10.3390/foods14010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, osmotic stress, acid stress, elevated ethanol concentrations, and temperature fluctuations. Results revealed significant variability in glucose consumption, ethanol production, and stress tolerance across strains. ACY34 and ACY84 demonstrated the highest fermentation efficiency, while ACY19 exhibited exceptional stress resilience, excelling under multiple stress conditions such as osmotic and ethanol stress. The findings highlight strain-specific performance, with some strains suited for high-yield fermentation and others excelling under challenging environmental conditions. These results provide critical insights for selecting and optimizing yeast strains tailored to specific industrial fermentation processes, contributing to improved productivity and product quality in food and beverage production.
Collapse
Affiliation(s)
- Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (Q.S.); (Q.X.); (C.P.); (T.Q.); (J.C.)
| | - Qiqi Si
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (Q.S.); (Q.X.); (C.P.); (T.Q.); (J.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qingyun Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (Q.S.); (Q.X.); (C.P.); (T.Q.); (J.C.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Chenwei Pan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (Q.S.); (Q.X.); (C.P.); (T.Q.); (J.C.)
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Tianzhi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (Q.S.); (Q.X.); (C.P.); (T.Q.); (J.C.)
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; (Q.S.); (Q.X.); (C.P.); (T.Q.); (J.C.)
| |
Collapse
|
4
|
Roldán-López D, Groenewald M, Pérez-Torrado R. Fermentative and metabolic screening of candidate yeast strains hybridisable with Saccharomyces cerevisiae for beer production optimisation. Int J Food Microbiol 2025; 426:110899. [PMID: 39244812 DOI: 10.1016/j.ijfoodmicro.2024.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Yeast optimisation has been crucial in improving the quality and efficiency of beer production, one of the world's most widely consumed beverages. In this context, rare mating hybridisation is a promising technique for yeast optimization to generate novel and improved non-GMO strains. The limitation of this technique is the lack of knowledge and comparable data on yeast strains hybridisable to Saccharomyces cerevisiae, probably the most important yeast species in beer production. Yeast from the genera Saccharomyces, Naumovozyma, Nakaseomyces and Kazachstania have been described to be able to form hybrids with S. cerevisiae. In the present study, 242 yeast strains were analysed under brewing conditions, including Saccharomyces species (S. cerevisiae, S. kudriavzevii, S. uvarum, S. eubayanus, S. paradoxus, S. mikatae, S. jurei and S. arboricola) and non-Saccharomyces species (Naumovozyma, Nakaseomyces and Kazaschtania), representing the full genetic variability (species and subpopulations) described up to the start of the study. The fermentation profile was analysed by monitoring weight loss during fermentation to determine kinetic parameters and CO2 production. Metabolic analysis was performed to determine the concentration of sugars (maltotriose, maltose and glucose), alcohols (ethanol, glycerol and 2,3-butanediol) and organic acids (malic acid, succinic acid and acetic acid). Maltose and maltotriose are the predominant sugars in beer wort. The ability to consume these sugars determines the characteristics of the final product. Dataset comparisons were then made at species, subpopulation and isolation source level. The results obtained in this study demonstrate the great phenotypic variability that exists within the genus Saccharomyces and within each species of this genus, which could be useful in the generation of optimised brewing hybrids. Yeasts with different fermentative capacities and fermentative behaviours can be found under brewing conditions. S. cerevisiae, S. uvarum and S. eubayanus are the species that contain strains with similar fermentation performance to commercial strains.
Collapse
Affiliation(s)
- David Roldán-López
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain
| | | | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Pandita M, Shoket H, Kumar R, Bairwa NK. Genetic Interaction Between F-Box Encoding UCC1 and RRM3 Regulates Growth Rate, Cell Size, and Stress Tolerance in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2024; 38:e70059. [PMID: 39558808 DOI: 10.1002/jbt.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Ucc1, an F-box motif-containing protein of Saccharomyces cerevisiae encoded by UCC1 regulates energy metabolism through proteasomal degradation of citrate synthase Cit2 and inactivation of the glyoxylate cycle when glucose is present as the main carbon source in the growth medium. Rrm3, a Pif1 family DNA helicase, encoded by RRM3 regulates the movement of the replication forks during the DNA replication process. Here in this study, we present evidence of binary genetic interaction between both the genes, UCC1 and RRM3, that determine the growth rate, cell morphology, cell size, apoptosis, and stress response. The absence of both genes UCC1 and RRM3 leads to altered cell morphology, increased growth rate, utilization of alternate carbon sources, resistance to hydrogen peroxide, and susceptibility to acetic acid-induced apoptosis. Further, the genetic interaction network analysis shows both the genes UCC1 and RRM3 interaction through the SGS1 and cross-link among metabolic, glyoxylate, DNA replication, and retrograde signaling pathways.
Collapse
Affiliation(s)
- Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Rakesh Kumar
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| |
Collapse
|
6
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Zaccaron AZ, Chen LH, Stergiopoulos I. Transcriptome analysis of two isolates of the tomato pathogen Cladosporium fulvum, uncovers genome-wide patterns of alternative splicing during a host infection cycle. PLoS Pathog 2024; 20:e1012791. [PMID: 39693392 DOI: 10.1371/journal.ppat.1012791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Alternative splicing (AS) is a key element of eukaryotic gene expression that increases transcript and proteome diversity in cells, thereby altering their responses to external stimuli and stresses. While AS has been intensively researched in plants and animals, its frequency, conservation, and putative impact on virulence, are relatively still understudied in plant pathogenic fungi. Here, we profiled the AS events occurring in genes of Cladosporium fulvum isolates Race 5 and Race 4, during nearly a complete compatible infection cycle on their tomato host. Our studies revealed extensive heterogeneity in the transcript isoforms assembled from different isolates, infections, and infection timepoints, as over 80% of the transcript isoforms were singletons that were detected in only a single sample. Despite that, nearly 40% of the protein-coding genes in each isolate were predicted to be recurrently AS across the disparate infection timepoints, infections, and the two isolates. Of these, 37.5% were common to both isolates and 59% resulted in multiple protein isoforms, thereby putatively increasing proteome diversity in the pathogen by 31% during infections. An enrichment analysis showed that AS mostly affected genes likely to be involved in the transport of nutrients, regulation of gene expression, and monooxygenase activity, suggesting a role for AS in finetuning adaptation of C. fulvum on its tomato host during infections. Tracing the location of the AS genes on the fungal chromosomes showed that they were mostly located in repeat-rich regions of the core chromosomes, indicating a causal connection between gene location on the genome and propensity to AS. Finally, multiple cases of differential isoform usage in AS genes of C. fulvum were identified, suggesting that modulation of AS at different infection stages may be another way by which pathogens refine infections on their hosts.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis (UC Davis), California, United States of America
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| |
Collapse
|
8
|
Schlarmann P, Sakuragi K, Ikeda A, Yang Y, Sasaki S, Hanaoka K, Araki M, Shibata T, Kanai M, Funato K. The tricalbin family of membrane contact site tethers is involved in the transcriptional responses of Saccharomyces cerevisiae to glucose. J Biol Chem 2024; 300:107665. [PMID: 39128724 PMCID: PMC11408865 DOI: 10.1016/j.jbc.2024.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cellular organelles maintain areas of close apposition with other organelles at which the cytosolic gap in between them is reduced to a minimum. These membrane contact sites (MCS) are vital for organelle communication and are formed by molecular tethers that physically connect opposing membranes. Although many regulatory pathways are known to converge at MCS, a link between MCS and transcriptional regulation-the primary mechanism through which cells adapt their metabolism to environmental cues-remains largely elusive. In this study, we performed RNA-sequencing on Saccharomyces cerevisiae cells lacking tricalbin proteins (Tcb1, Tcb2, and Tcb3), a family of tethering proteins that connect the endoplasmic reticulum with the plasma membrane and Golgi, to investigate if gene expression is altered when MCS are disrupted. Our results indicate that in the tcb1Δ2Δ3Δ strain, pathways responsive to a high-glucose environment, including glycolysis, fermentation, amino acid synthesis, and low-affinity glucose uptake, are upregulated. Conversely, pathways crucial during glucose depletion, such as the tricarboxylic acid cycle, respiration, high-affinity glucose uptake, and amino acid uptake are downregulated. In addition, we demonstrate that the altered gene expression of tcb1Δ2Δ3Δ in glucose metabolism correlates with increased growth, glucose consumption, CO2 production, and ethanol generation. In conclusion, our findings reveal that tricalbin protein deletion induces a shift in gene expression patterns mimicking cellular responses to a high-glucose environment. This suggests that MCS play a role in sensing and signaling pathways that modulate gene transcription in response to glucose availability.
Collapse
Affiliation(s)
- Philipp Schlarmann
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Keiko Sakuragi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yujia Yang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Saku Sasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kazuki Hanaoka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Misako Araki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tomoko Shibata
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
9
|
Ibisoglu MS, Tan M, Yilmazer M, Yilmaz S, Uzuner SK, Topal-Sarikaya A, Palabiyik B. Effects of ScRgt1-Like DNA-binding transcription factor SpRgt1 (SPCC320.03) on Hexose transporters gene expression in Schizosaccharomyces pombe. Arch Microbiol 2024; 206:155. [PMID: 38480568 DOI: 10.1007/s00203-024-03901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/17/2024]
Abstract
Glucose, which plays an essential role in carbon and energy metabolism in eukaryotes, is vital in directing various energy-consuming cellular processes. In S. cerevisiae, transcription factors involved in regulating hexose transporters and their mechanisms of action under different carbon sources were revealed in detail. However, there is limited information on these processes in S. pombe. In this study, the effect of SPCC320.03 (named SpRgt1), the ortholog of ScRgt1 whose molecular mechanism is known in detail in S. cerevisiae, on the transcriptional regulation of hexose transporters (ght1-8) dependent on different carbon sources was investigated. We measured the transcript levels of ght1-8 using the qPCR technique and performed relative evaluation in S. pombe strains (parental, rgt1 deleted mutant, rgt1 overexpressed, and vectoral rgt1 carrying mutant). We aimed to investigate the transcriptional changes caused by the protein product of the rgt1 (SPCC320.03) gene in terms of ght1-8 genes in strains that are grown in different carbon sources (2% glucose, 2% glycerol + 0.1% glucose, and 2% gluconate). Here, we show that SpRgt1 is involved in the regulation of the ght3, ght4, ght6, and ght7 genes but that the ght1, ght2, ght5, and ght8 gene expression vary depending on carbon sources, independently of SpRgt1.
Collapse
Affiliation(s)
- Merve Seda Ibisoglu
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Medet Tan
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Merve Yilmazer
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Sibel Yilmaz
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Semian Karaer Uzuner
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşegül Topal-Sarikaya
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
- Department of Medical Biology and Genetics, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Bedia Palabiyik
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
10
|
Niphadkar S, Karinje L, Laxman S. The PP2A-like phosphatase Ppg1 mediates assembly of the Far complex to balance gluconeogenic outputs and enables adaptation to glucose depletion. PLoS Genet 2024; 20:e1011202. [PMID: 38452140 PMCID: PMC10950219 DOI: 10.1371/journal.pgen.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
To sustain growth in changing nutrient conditions, cells reorganize outputs of metabolic networks and appropriately reallocate resources. Signaling by reversible protein phosphorylation can control such metabolic adaptations. In contrast to kinases, the functions of phosphatases that enable metabolic adaptation as glucose depletes are poorly studied. Using a Saccharomyces cerevisiae deletion screen, we identified the PP2A-like phosphatase Ppg1 as required for appropriate carbon allocations towards gluconeogenic outputs-trehalose, glycogen, UDP-glucose, UDP-GlcNAc-after glucose depletion. This Ppg1 function is mediated via regulation of the assembly of the Far complex-a multi-subunit complex that tethers to the ER and mitochondrial outer membranes forming localized signaling hubs. The Far complex assembly is Ppg1 catalytic activity-dependent. Ppg1 regulates the phosphorylation status of multiple ser/thr residues on Far11 to enable the proper assembly of the Far complex. The assembled Far complex is required to maintain gluconeogenic outputs after glucose depletion. Glucose in turn regulates Far complex amounts. This Ppg1-mediated Far complex assembly, and Ppg1-Far complex dependent control of gluconeogenic outputs enables adaptive growth under glucose depletion. Our study illustrates how protein dephosphorylation is required for the assembly of a multi-protein scaffold present in localized cytosolic pools, to thereby alter gluconeogenic flux and enable cells to metabolically adapt to nutrient fluctuations.
Collapse
Affiliation(s)
- Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lavanya Karinje
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| |
Collapse
|
11
|
Watanabe D. Sake yeast symbiosis with lactic acid bacteria and alcoholic fermentation. Biosci Biotechnol Biochem 2024; 88:237-241. [PMID: 38006236 DOI: 10.1093/bbb/zbad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The yeast Saccharomyces cerevisiae plays a pivotal role in the production of fermented foods by converting sugars in ingredients into ethanol through alcoholic fermentation. However, how accurate is our understanding of its biological significance? Although yeast is essential to produce alcoholic beverages and bioethanol, yeast does not yield ethanol for humankind. Yeast obtains energy in the form of ATP for its own vital processes through alcoholic fermentation, which generates ethanol as a byproduct. The production of ethanol may have more significance for yeast, since many other organisms do not produce ethanol, a highly toxic substance, to obtain energy. The key to address this issue has not been found using conventional microbiology, where yeasts are isolated and cultured in pure form. This review focuses on a possible novel role of yeast alcohol fermentation, which is revealed through our recent studies of microbial interactions.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
12
|
Kim JH, Mailloux L, Bloor D, Tae H, Nguyen H, McDowell M, Padilla J, DeWaard A. Multiple roles for the cytoplasmic C-terminal domains of the yeast cell surface receptors Rgt2 and Snf3 in glucose sensing and signaling. Sci Rep 2024; 14:4055. [PMID: 38374219 PMCID: PMC10876965 DOI: 10.1038/s41598-024-54628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
The plasma membrane proteins Rgt2 and Snf3 are glucose sensing receptors (GSRs) that generate an intracellular signal for the induction of gene expression in response to high and low extracellular glucose concentrations, respectively. The GSRs consist of a 12-transmembrane glucose recognition domain and a cytoplasmic C-terminal signaling tail. The GSR tails are dissimilar in length and sequence, but their distinct roles in glucose signal transduction are poorly understood. Here, we show that swapping the tails between Rgt2 and Snf3 does not alter the signaling activity of the GSRs, so long as their tails are phosphorylated in a Yck-dependent manner. Attachment of the GSR tails to Hxt1 converts the transporter into a glucose receptor; however, the tails attached to Hxt1 are not phosphorylated by the Ycks, resulting in only partial signaling. Moreover, in response to non-fermentable carbon substrates, Rgt2 and Hxt1-RT (RT, Rgt2-tail) are efficiently endocytosed, whereas Snf3 and Hxt1-ST (ST, Snf3-tail) are endocytosis-impaired. Thus, the tails are important regulatory domains required for the endocytosis of the Rgt2 and Snf3 glucose sensing receptors triggered by different cellular stimuli. Taken together, these results suggest multiple roles for the tail domains in GSR-mediated glucose sensing and signaling.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA.
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Haeun Tae
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Han Nguyen
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Morgan McDowell
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Jaqueline Padilla
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Anna DeWaard
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| |
Collapse
|
13
|
Milanes JE, Kwain S, Drawdy A, Dodson L, Monaghan MT, Rice CA, Dominy BN, Whitehead DC, Morris JC. Glucose metabolism in the pathogenic free-living amoebae: Tempting targets for treatment development. Chem Biol Drug Des 2024; 103:e14377. [PMID: 37864277 PMCID: PMC10843269 DOI: 10.1111/cbdd.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
Pathogenic free-living amoebae (pFLA) are single-celled eukaryotes responsible for causing intractable infections with high morbidity and mortality in humans and animals. Current therapeutic approaches include cocktails of antibiotic, antifungal, and antimicrobial compounds. Unfortunately, the efficacy of these can be limited, driving the need for the discovery of new treatments. Pan anti-amebic agents would be ideal; however, identifying these agents has been a challenge, likely due to the limited evolutionary relatedness of the different pFLA. Here, we discuss the potential of targeting amoebae glucose metabolic pathways as the differences between pFLA and humans suggest specific inhibitors could be developed as leads for new therapeutics.
Collapse
Affiliation(s)
- Jillian E. Milanes
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Samuel Kwain
- Eukaryotic Pathogens Innovation Center, Department of Chemistry, Clemson University, Clemson SC 29634
| | - Allyson Drawdy
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Laura Dodson
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Matthew T. Monaghan
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Christopher A. Rice
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Drug Discovery (PIDD), Purdue University, West Lafayette, IN 47907
- Purdue Institute of Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette, IN 47907
| | - Brian N. Dominy
- Department of Chemistry, Clemson University, Clemson SC 29634
| | - Daniel C. Whitehead
- Eukaryotic Pathogens Innovation Center, Department of Chemistry, Clemson University, Clemson SC 29634
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| |
Collapse
|
14
|
Watanabe D, Kumano M, Sugimoto Y, Takagi H. Spontaneous Attenuation of Alcoholic Fermentation via the Dysfunction of Cyc8p in Saccharomyces cerevisiae. Int J Mol Sci 2023; 25:304. [PMID: 38203474 PMCID: PMC10778621 DOI: 10.3390/ijms25010304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
A cell population characterized by the release of glucose repression and known as [GAR+] emerges spontaneously in the yeast Saccharomyces cerevisiae. This study revealed that the [GAR+] variants exhibit retarded alcoholic fermentation when glucose is the sole carbon source. To identify the key to the altered glucose response, the gene expression profile of [GAR+] cells was examined. Based on RNA-seq data, the [GAR+] status was linked to impaired function of the Cyc8p-Tup1p complex. Loss of Cyc8p led to a decrease in the initial rate of alcoholic fermentation under glucose-rich conditions via the inactivation of pyruvate decarboxylase, an enzyme unique to alcoholic fermentation. These results suggest that Cyc8p can become inactive to attenuate alcoholic fermentation. These findings may contribute to the elucidation of the mechanism of non-genetic heterogeneity in yeast alcoholic fermentation.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan (H.T.)
| | - Maika Kumano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan (H.T.)
| | - Yukiko Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan (H.T.)
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan (H.T.)
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma 630-0192, Nara, Japan
| |
Collapse
|
15
|
Chen A, Gibney PA. Disruption of GRR1 in Saccharomyces cerevisiae rescues tps1Δ growth on fermentable carbon sources. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000927. [PMID: 37602281 PMCID: PMC10436075 DOI: 10.17912/micropub.biology.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
In Saccharomyces cerevisiae , trehalose-6-phosphate synthase (Tps1) catalyzes the formation of trehalose-6-phophate in trehalose synthesis. Deletion of the TPS1 gene is associated with phenotypes including inability to grow on fermentable carbon sources, survive at elevated temperatures, or sporulate. To further understand these pleiotropic phenotypes, we conducted a genetic suppressor screen and identified a novel suppressor, grr1 Δ, able to restore tps1 Δ growth on rapidly fermentable sugars. However, disruption of GRR1 did not rescue tps1 Δ thermosensitivity. These results support the model that trehalose metabolism has important roles in regulating glucose sensing and signaling in addition to regulating stress resistance.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, United States
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Patrick A. Gibney
- Department of Food Science, Cornell University, Ithaca, New York, United States
| |
Collapse
|
16
|
Chen L, Chen B, Zhu QH, Zhang X, Sun T, Liu F, Yang Y, Sun J, Li Y. Identification of sugar transporter genes and their roles in the pathogenicity of Verticillium dahliae on cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1123523. [PMID: 36778686 PMCID: PMC9910176 DOI: 10.3389/fpls.2023.1123523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Verticillium wilt (VW) caused by Verticillium dahliae is a soil-borne vascular fungal disease that severely affects cotton yield and fiber quality. Sugar metabolism plays an important role in the growth and pathogenicity of V. dahliae. However, limited information is known about the sugar transporter genes and their roles in the growth and pathogenicity of V. dahliae. METHOD In this study, genome-wide identification of sugar transporter genes in V. dahliae was conducted and the expression profiles of these genes in response to root exudates from cotton varieties susceptible or resistant to V. dahliae were investigated based on RNA-seq data. Tobacco Rattle Virus-based host-induced gene silencing (TRV-based HIGS) and artificial small interfering RNAs (asiRNAs) were applied to investigate the function of candidate genes involved in the growth and pathogenic process of V. dahliae. RESULTS A total of 65 putative sugar transporter genes were identified and clustered into 8 Clades. Of the 65 sugar transporter genes, 9 were found to be induced only by root exudates from the susceptible variety, including VdST3 and VdST12 that were selected for further functional study. Silencing of VdST3 or VdST12 in host plants by TRV-based HIGS reduced fungal biomass and enhanced cotton resistance against V. dahliae. Additionally, silencing of VdST12 and VdST3 by feeding asiRNAs targeting VdST12 (asiR815 or asiR1436) and VdST3 (asiR201 or asiR1238) inhibited fungal growth, exhibiting significant reduction in hyphae and colony diameter, with a more significant effect observed for the asiRNAs targeting VdST12. The inhibitory effect of asiRNAs on the growth of V. dahliae was enhanced with the increasing concentration of asiRNAs. Silencing of VdST12 by feeding asiR815+asiR1436 significantly decreased the pathogenicity of V. dahliae. DISCUSSION The results suggest that VdST3 and VdST12 are sugar transporter genes required for growth and pathogenicity of V. dahliae and that asiRNA is a valuable tool for functional characterization of V. dahliae genes.
Collapse
Affiliation(s)
- Lihua Chen
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Bin Chen
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | | | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Feng Liu
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
17
|
Botman D, Kanagasabapathi S, Savakis P, Teusink B. Using the AKAR3-EV biosensor to assess Sch9p- and PKA-signalling in budding yeast. FEMS Yeast Res 2023; 23:foad029. [PMID: 37173282 PMCID: PMC10237333 DOI: 10.1093/femsyr/foad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.
Collapse
Affiliation(s)
- Dennis Botman
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sineka Kanagasabapathi
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Philipp Savakis
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, AIMMS/A-LIFE, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Del'Olio S, Barrientos A. Systematic Analysis of Assembly Intermediates in Yeast to Decipher the Mitoribosome Assembly Pathway. Methods Mol Biol 2023; 2661:163-191. [PMID: 37166638 PMCID: PMC10654547 DOI: 10.1007/978-1-0716-3171-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Studies of yeast mitoribosome assembly have been historically hampered by the difficulty of generating mitoribosome protein-coding gene deletion strains with a stable mitochondrial genome. The identification of mitochondrial DNA-stabilizing approaches allows for the generation of a complete set of yeast deletion strains covering all mitoribosome proteins and known assembly factors. These strains can be used to analyze the integrity and assembly state of mitoribosomes by determining the sedimentation profile of these structures by sucrose gradient centrifugation of mitochondrial extracts, coupled to mass spectrometry analysis of mitoribosome composition. Subsequent hierarchical cluster analysis of mitoribosome subassemblies accumulated in mutant strains reveals details regarding the order of protein association during the mitoribosome biogenetic process. These strains also allow the expression of truncated protein variants to probe the role of mitochondrion-specific protein extensions, the relevance of protein cofactors, or the importance of RNA-protein interactions in functional sites of the mitoribosome. In this chapter, we will detail the methodology involved in these studies.
Collapse
Affiliation(s)
- Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
19
|
Kulik N, Kale D, Spurna K, Shamayeva K, Hauser F, Milic S, Janout H, Zayats V, Jacak J, Ludwig J. Dimerisation of the Yeast K + Translocation Protein Trk1 Depends on the K + Concentration. Int J Mol Sci 2022; 24:ijms24010398. [PMID: 36613841 PMCID: PMC9820094 DOI: 10.3390/ijms24010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In baker's yeast (Saccharomyces cerevisiae), Trk1, a member of the superfamily of K-transporters (SKT), is the main K+ uptake system under conditions when its concentration in the environment is low. Structurally, Trk1 is made up of four domains, each similar and homologous to a K-channel α subunit. Because most K-channels are proteins containing four channel-building α subunits, Trk1 could be functional as a monomer. However, related SKT proteins TrkH and KtrB were crystallised as dimers, and for Trk1, a tetrameric arrangement has been proposed based on molecular modelling. Here, based on Bimolecular Fluorescence Complementation experiments and single-molecule fluorescence microscopy combined with molecular modelling; we provide evidence that Trk1 can exist in the yeast plasma membrane as a monomer as well as a dimer. The association of monomers to dimers is regulated by the K+ concentration.
Collapse
Affiliation(s)
- Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Deepika Kale
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Karin Spurna
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Fabian Hauser
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Sandra Milic
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Hannah Janout
- Bioinformatics, University of Applied Sciences Upper Austria, 4232 Hagenberg, Austria
- Institute of Symbolic AI, Johannes Kepler University, 4040 Linz, Austria
| | - Vasilina Zayats
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
| | - Jaroslaw Jacak
- School of Medical Engineering and Applied Social Sciences, University of Applied Sciences Upper Austria, Garnisonstr, 21, 4020 Linz, Austria
| | - Jost Ludwig
- Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 3733 Nove Hrady, Czech Republic
- Correspondence:
| |
Collapse
|
20
|
Minden S, Aniolek M, Noorman H, Takors R. Performing in spite of starvation: How Saccharomyces cerevisiae maintains robust growth when facing famine zones in industrial bioreactors. Microb Biotechnol 2022; 16:148-168. [PMID: 36479922 PMCID: PMC9803336 DOI: 10.1111/1751-7915.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022] Open
Abstract
In fed-batch operated industrial bioreactors, glucose-limited feeding is commonly applied for optimal control of cell growth and product formation. Still, microbial cells such as yeasts and bacteria are frequently exposed to glucose starvation conditions in poorly mixed zones or far away from the feedstock inlet point. Despite its commonness, studies mimicking related stimuli are still underrepresented in scale-up/scale-down considerations. This may surprise as the transition from glucose limitation to starvation has the potential to provoke regulatory responses with negative consequences for production performance. In order to shed more light, we performed gene-expression analysis of Saccharomyces cerevisiae grown in intermittently fed chemostat cultures to study the effect of limitation-starvation transitions. The resulting glucose concentration gradient was representative for the commercial scale and compelled cells to tolerate about 76 s with sub-optimal substrate supply. Special attention was paid to the adaptation status of the population by discriminating between first time and repeated entry into the starvation regime. Unprepared cells reacted with a transiently reduced growth rate governed by the general stress response. Yeasts adapted to the dynamic environment by increasing internal growth capacities at the cost of rising maintenance demands by 2.7%. Evidence was found that multiple protein kinase A (PKA) and Snf1-mediated regulatory circuits were initiated and ramped down still keeping the cells in an adapted trade-off between growth optimization and down-regulation of stress response. From this finding, primary engineering guidelines are deduced to optimize both the production host's genetic background and the design of scale-down experiments.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Maria Aniolek
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Henk Noorman
- Royal DSMDelftThe Netherlands,Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
21
|
Guzikowski AR, Harvey AT, Zhang J, Zhu S, Begovich K, Cohn MH, Wilhelm JE, Zid BM. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast. RNA Biol 2022; 19:636-649. [PMID: 35491906 PMCID: PMC9067459 DOI: 10.1080/15476286.2022.2065784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein synthesis is energetically expensive and its rate is influenced by factors such as cell type and environment. Suppression of translation is a canonical response to stressful changes in the cellular environment. In particular, inhibition of the initiation step of translation has been highlighted as the key control step in stress-induced translational suppression as mechanisms that quickly suppress initiation are well-conserved. However, cells have evolved complex regulatory means to control translation apart from initiation. Here, we examine the role of the elongation step of translation in yeast subjected to acute glucose deprivation. The use of ribosome profiling and in vivo reporter assays demonstrated elongation rates slow progressively following glucose removal. We observed that ribosome distribution broadly shifts towards the downstream ends of transcripts after both acute and gradual glucose deprivation but not in response to other stressors. Additionally, on assessed mRNAs, a correlation existed between ribosome occupancy and protein production pre-stress but was lost after stress. These results indicate that stress-induced elongation regulation causes ribosomes to slow down and build up on a considerable proportion of the transcriptome in response to glucose withdrawal. Finally, we report ribosomes that built up along transcripts are competent to resume elongation and complete protein synthesis after readdition of glucose to starved cells. This suggests that yeast has evolved mechanisms to slow translation elongation in response to glucose starvation which do not preclude continuation of protein production from those ribosomes, thereby averting a need for new initiation events to take place to synthesize proteins. Abbreviations: AUG: start codon, bp: base pair(s), CDS: coding sequence, CHX: cycloheximide, eEF2: eukaryotic elongation factor 2, LTM: lactimidomycin, nt: nucleotide, PGK1: 3-phosphoglycerate kinase, ribosomal biogenesis: ribi, RO: ribosome occupancy, RPF: ribosome protected fragment, TE: translational efficiency
Collapse
Affiliation(s)
- Anna R. Guzikowski
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Alex T. Harvey
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Jingxiao Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Shihui Zhu
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Molly H. Cohn
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - James E. Wilhelm
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
23
|
Persson S, Shashkova S, Österberg L, Cvijovic M. Modelling of glucose repression signalling in yeast Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:foac012. [PMID: 35238938 PMCID: PMC8916112 DOI: 10.1093/femsyr/foac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae has a sophisticated signalling system that plays a crucial role in cellular adaptation to changing environments. The SNF1 pathway regulates energy homeostasis upon glucose derepression; hence, it plays an important role in various processes, such as metabolism, cell cycle and autophagy. To unravel its behaviour, SNF1 signalling has been extensively studied. However, the pathway components are strongly interconnected and inconstant; therefore, elucidating its dynamic behaviour based on experimental data only is challenging. To tackle this complexity, systems biology approaches have been successfully employed. This review summarizes the progress, advantages and disadvantages of the available mathematical modelling frameworks covering Boolean, dynamic kinetic, single-cell models, which have been used to study processes and phenomena ranging from crosstalks to sources of cell-to-cell variability in the context of SNF1 signalling. Based on the lessons from existing models, we further discuss how to develop a consensus dynamic mechanistic model of the entire SNF1 pathway that can provide novel insights into the dynamics of nutrient signalling.
Collapse
Affiliation(s)
- Sebastian Persson
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Sviatlana Shashkova
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| |
Collapse
|
24
|
Askari F, Rasheed M, Kaur R. The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata. J Biol Chem 2022; 298:101593. [PMID: 35051415 PMCID: PMC8844688 DOI: 10.1016/j.jbc.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
25
|
Kim JH, Bloor D, Rodriguez R, Mohler E, Mailloux L, Melton S, Jung D. Casein kinases are required for the stability of the glucose-sensing receptor Rgt2 in yeast. Sci Rep 2022; 12:1598. [PMID: 35102180 PMCID: PMC8803954 DOI: 10.1038/s41598-022-05569-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
In yeast, glucose induction of HXT (glucose transporter gene) expression is achieved via the Rgt2 and Snf3 glucose sensing receptor (GSR)-mediated signal transduction pathway. The membrane-associated casein kinases Yck1 and Yck2 (Ycks) are involved in this pathway, but their exact role remains unclear. Previous work suggests that the Ycks are activated by the glucose-bound GSRs and transmit the glucose signal from the plasma membrane to the nucleus. However, here we provide evidence that the YCks are constitutively active and required for the stability of the Rgt2 receptor. Cell surface levels of Rgt2 are significantly decreased in a yck1Δyck2ts mutant, but this is not due to endocytosis-mediated vacuolar degradation of the receptor. Similar observations are made in an akr1Δ mutant, where the Ycks are no longer associated with the membrane, and in a sod1Δ mutant in which the kinases are unstable. Of note, in an akr1Δ mutant, both the Ycks and Rgt2 are mislocalized to the cytoplasm, where Rgt2 is stable and functions as an effective receptor for glucose signaling. We also demonstrate that Rgt2 is phosphorylated on the putative Yck consensus phosphorylation sites in its C-terminal domain (CTD) in a Yck-dependent manner and that this glucose-induced modification is critical for its stability and function. Thus, these results indicate a role for the Ycks in stabilizing Rgt2 and suggest that Rgt2 may use glucose binding as a molecular switch not to activate the Ycks but to promote Yck-dependent interaction and phosphorylation of the CTD that increases its stability.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA.
| | - Daniel Bloor
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Rebeca Rodriguez
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Emma Mohler
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Levi Mailloux
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Sarah Melton
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| | - Dajeong Jung
- Department of Biology and Chemistry, Liberty University, 1971 University Blvd, Lynchburg, VA, 24502, USA
| |
Collapse
|
26
|
Dey T, Rangarajan PN. Carbon starvation-induced synthesis of GDH2 and PEPCK is essential for the survival of Pichia pastoris. Biochem Biophys Res Commun 2021; 581:25-30. [PMID: 34653675 DOI: 10.1016/j.bbrc.2021.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022]
Abstract
The industrial yeast Pichia pastoris can utilize amino acids as the sole source of carbon. It possesses a post-transcriptional regulatory circuit that governs the synthesis of cytosolic glutamate dehydrogenase 2 (GDH2) and phosphoenolpyruvate carboxykinase (PEPCK), key enzymes of amino acid catabolism. Here, we demonstrate that the post-transcriptional regulatory circuit is activated during carbon starvation resulting in the translation of GDH2 and PEPCK mRNAs. GDH2 and PEPCK synthesis is abrogated in Δatg1 indicating a key role for autophagy or an autophagy-related process. Finally, carbon-starved Δgdh2 and Δpepck exhibit poor survival. This study demonstrates a key role for amino acid catabolism during carbon starvation, a phenomenon hitherto unreported in other yeast species.
Collapse
Affiliation(s)
- Trishna Dey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
27
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
28
|
Fuchs T, Melcher F, Rerop ZS, Lorenzen J, Shaigani P, Awad D, Haack M, Prem SA, Masri M, Mehlmer N, Brueck TB. Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microb Cell Fact 2021; 20:205. [PMID: 34711240 PMCID: PMC8555327 DOI: 10.1186/s12934-021-01692-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background The oleaginous yeast Cutaneotrichosporon oleaginosus represents one of the most promising microbial platforms for resource-efficient and scalable lipid production, with the capacity to accept a wide range of carbohydrates encapsulated in complex biomass waste or lignocellulosic hydrolysates. Currently, data related to molecular aspects of the metabolic utilisation of oligomeric carbohydrates are sparse. In addition, comprehensive proteomic information for C. oleaginosus focusing on carbohydrate metabolism is not available. Results In this study, we conducted a systematic analysis of carbohydrate intake and utilisation by C. oleaginosus and investigated the influence of different di- and trisaccharide as carbon sources. Changes in the cellular growth and morphology could be observed, depending on the selected carbon source. The greatest changes in morphology were observed in media containing trehalose. A comprehensive proteomic analysis of secreted, cell wall-associated, and cytoplasmatic proteins was performed, which highlighted differences in the composition and quantity of secreted proteins, when grown on different disaccharides. Based on the proteomic data, we performed a relative quantitative analysis of the identified proteins (using glucose as the reference carbon source) and observed carbohydrate-specific protein distributions. When using cellobiose or lactose as the carbon source, we detected three- and five-fold higher diversity in terms of the respective hydrolases released. Furthermore, the analysis of the secreted enzymes enabled identification of the motif with the consensus sequence LALL[LA]L[LA][LA]AAAAAAA as a potential signal peptide. Conclusions Relative quantification of spectral intensities from crude proteomic datasets enabled the identification of new enzymes and provided new insights into protein secretion, as well as the molecular mechanisms of carbo-hydrolases involved in the cleavage of the selected carbon oligomers. These insights can help unlock new substrate sources for C. oleaginosus, such as low-cost by-products containing difficult to utilize carbohydrates. In addition, information regarding the carbo-hydrolytic potential of C. oleaginosus facilitates a more precise engineering approach when using targeted genetic approaches. This information could be used to find new and more cost-effective carbon sources for microbial lipid production by the oleaginous yeast C. oleaginosus. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01692-2.
Collapse
Affiliation(s)
- Tobias Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Felix Melcher
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Zora Selina Rerop
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Jan Lorenzen
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Pariya Shaigani
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sophia Alice Prem
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Mahmoud Masri
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Thomas B Brueck
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
29
|
Chen K, Rong N, Wang S, Luo C. A novel two-layer-integrated microfluidic device for high-throughput yeast proteomic dynamics analysis at the single-cell level. Integr Biol (Camb) 2021; 12:241-249. [PMID: 32995887 DOI: 10.1093/intbio/zyaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 11/14/2022]
Abstract
Current microfluidic methods for studying multicell strains (e.g., m-types) with multienvironments (e.g., n-types) require large numbers of inlets/outlets (m*n), a complicated procedure or expensive machinery. Here, we developed a novel two-layer-integrated method to combine different PDMS microchannel layers with different functions into one chip by a PDMS through-hole array, which improved the design of a PDMS-based microfluidic system. Using this method, we succeeded in converting 2 × m × n inlets/outlets into m + n inlets/outlets and reduced the time cost of loading processing (from m × n to m) of the device for studying multicell strains (e.g., m-types) in varied multitemporal environments (i.e., n-types). Using this device, the dynamic behavior of the cell-stress-response proteins was studied when the glucose concentration decreased from 2% to a series of lower concentrations. Our device could also be widely used in high-throughput studies of various stress responses, and the new concept of a multilayer-integrated fabrication method could greatly improve the design of PDMS-based microfluidic systems.
Collapse
Affiliation(s)
- Kaiyue Chen
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, China
| | - Nan Rong
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, China
| | - Shujing Wang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, China
| |
Collapse
|
30
|
Li G, Fu W, Deng Y, Zhao Y. Role of Calcium/Calcineurin Signalling in Regulating Intracellular Reactive Oxygen Species Homeostasis in Saccharomyces cerevisiae. Genes (Basel) 2021; 12:genes12091311. [PMID: 34573294 PMCID: PMC8466207 DOI: 10.3390/genes12091311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/14/2023] Open
Abstract
The calcium/calcineurin signalling pathway is required for cell survival under various environmental stresses. Using Saccharomyces cerevisiae, we explored the mechanism underlying calcium-regulated homeostasis of intracellular reactive oxygen species (ROS). We found that deletion of acyltransferase Akr1 and C-5 sterol desaturase Erg3 increased the intracellular ROS levels and cell death, and this could be inhibited by the addition of calcium. The hexose transporter Hxt1 and the amino acid permease Agp1 play crucial roles in maintaining intracellular ROS levels, and calcium induced the expression of the HXT1 and AGP1 genes. The cytosolic calcium concentration was decreased in both the akr1Δ and erg3Δ mutants relative to wild-type cells, potentially lowering basal expression of HXT1 and AGP1. Moreover, the calcium/calcineurin signalling pathway also induced the expression of AKR1 and ERG3, indicating that Akr1 and Erg3 might perform functions that help yeast cells to survive under high calcium concentrations. Our results provided mechanistic insight into how calcium regulated intracellular ROS levels in yeast.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (G.L.); (Y.D.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenxuan Fu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (G.L.); (Y.D.)
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (G.L.); (Y.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
- Correspondence:
| |
Collapse
|
31
|
Šoštarić N, Arslan A, Carvalho B, Plech M, Voordeckers K, Verstrepen KJ, van Noort V. Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance. J Proteome Res 2021; 20:3840-3852. [PMID: 34236875 PMCID: PMC8353626 DOI: 10.1021/acs.jproteome.1c00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
For yeast cells,
tolerance to high levels of ethanol is vital both
in their natural environment and in industrially relevant conditions.
We recently genotyped experimentally evolved yeast strains adapted
to high levels of ethanol and identified mutations linked to ethanol
tolerance. In this study, by integrating genomic sequencing data with
quantitative proteomics profiles from six evolved strains (data set
identifier PXD006631) and construction of protein interaction networks,
we elucidate exactly how the genotype and phenotype are related at
the molecular level. Our multi-omics approach points to the rewiring
of numerous metabolic pathways affected by genomic and proteomic level
changes, from energy-producing and lipid pathways to differential
regulation of transposons and proteins involved in cell cycle progression.
One of the key differences is found in the energy-producing metabolism,
where the ancestral yeast strain responds to ethanol by switching
to respiration and employing the mitochondrial electron transport
chain. In contrast, the ethanol-adapted strains appear to have returned
back to energy production mainly via glycolysis and ethanol fermentation,
as supported by genomic and proteomic level changes. This work is
relevant for synthetic biology where systems need to function under
stressful conditions, as well as for industry and in cancer biology,
where it is important to understand how the genotype relates to the
phenotype.
Collapse
Affiliation(s)
- Nikolina Šoštarić
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Ahmed Arslan
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Bernardo Carvalho
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Marcin Plech
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
32
|
Shepherd JW, Payne-Dwyer AL, Lee JE, Syeda A, Leake MC. Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac015d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details of many different biological processes across a wide range of cell types. Fluorescence polarization spectroscopy tools have also enabled important insights into cellular processes through identifying orientational changes of biological molecules typically at an ensemble level. Here, we combine these two biophysical methodologies in a single home-made instrument to enable the simultaneous detection of orthogonal fluorescence polarization signals from single fluorescent protein molecules used as common reporters on the localization of proteins in cellular processes. These enable measurement of spatial location to a super-resolved precision better than the diffraction-limited optical resolution, as well as estimation of molecular stoichiometry based on the brightness of individual fluorophores. In this innovation we have adapted a millisecond timescale microscope used for single-molecule detection to enable splitting of fluorescence polarization emissions into two separate imaging channels for s- and p-polarization signals, which are imaged onto separate halves of the same high sensitivity back-illuminated CMOS camera detector. We applied this fluorescence polarization super-resolved imaging modality to a range of test fluorescent samples relevant to the study of biological processes, including purified monomeric green fluorescent protein, single combed DNA molecules, and protein assemblies and complexes from live Escherichia coli and Saccharomyces cerevisiae cells. Our findings are qualitative but demonstrate promise in showing how fluorescence polarization and super-resolved localization microscopy can be combined on the same sample to enable simultaneous measurements of polarization and stoichiometry of tracked molecular complexes, as well as the translational diffusion coefficient.
Collapse
|
33
|
Inamura SI, Tanabe T, Kawamukai M, Matsuo Y. Expression of Mug14 is regulated by the transcription factor Rst2 through the cAMP-dependent protein kinase pathway in Schizosaccharomyces pombe. Curr Genet 2021; 67:807-821. [PMID: 34086083 DOI: 10.1007/s00294-021-01194-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023]
Abstract
The cAMP-dependent protein kinase (Pka1) regulates many cellular events, including sexual development and glycogenesis, and response to the limitation of glucose, in Schizosaccharomyces pombe. Despite its importance in many cellular events, the targets of the cAMP/PKA pathway have not been fully investigated. Here, we demonstrate that the expression of mug14 is induced by downregulation of the cAMP/PKA pathway and limitation of glucose. This regulation is dependent on the function of Rst2, a transcription factor that regulates transition from mitosis to meiosis. The loss of the C2H2-type zinc finger domain in Rst2, termed Rst2 (C2H2∆), abolished the induction of Mug14 expression. Upon deletion of the stress starvation response element of the S. pombe (STREP: CCCCTC) sequence, which is a potential binding site of Rst2 on mug14, in the pka1∆ strain, its induction was abolished. The expression of Mug14 was significantly reduced and delayed by the limitation of glucose and also by nitrogen starvation in the rst2∆ strain. Mug14 is known to share a common function with Mde1 and Mta3 in the methionine salvage pathway, but the expression of mde1 and mta3 mRNAs was not enhanced by pka1 deletion and limitation of glucose. We conclude that the expression of Mug14 is upregulated by Rst2 under the control of the cAMP/PKA signaling pathway, which senses the limitation of glucose.
Collapse
Affiliation(s)
- Shin-Ich Inamura
- Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan
| | - Takuma Tanabe
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Makoto Kawamukai
- Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan.,Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan
| | - Yasuhiro Matsuo
- Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan. .,Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan. .,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan.
| |
Collapse
|
34
|
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Comput Struct Biotechnol J 2021; 19:1713-1737. [PMID: 33897977 PMCID: PMC8050425 DOI: 10.1016/j.csbj.2021.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin‐related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
Collapse
Key Words
- AAs, amino acids
- ACT, amino Acid/Choline Transporter
- AP, adaptor protein
- APC, amino acid-polyamine-organocation
- Arg, arginine
- Arrestins
- Arts, arrestin‐related trafficking adaptors
- Asp, aspartic acid
- Aspergilli
- Biotechnology
- C, carbon
- C-terminus, carboxyl-terminus
- Cell factories
- Conformational changes
- Cu, copper
- DUBs, deubiquitinating enzymes
- EMCs, eisosome membrane compartments
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- Endocytic signals
- Endocytosis
- Fe, iron
- Fungi
- GAAC, general amino acid control
- Glu, glutamic acid
- H+, proton
- IF, inward-facing
- LAT, L-type Amino acid Transporter
- LID, loop Interaction Domain
- Lys, lysine
- MCCs, membrane compartments containing the arginine permease Can1
- MCCs/eisosomes
- MCPs, membrane compartments of Pma1
- MFS, major facilitator superfamily
- MVB, multi vesicular bodies
- Met, methionine
- Metabolism
- Mn, manganese
- N, nitrogen
- N-terminus, amino-terminus
- NAT, nucleobase Ascorbate Transporter
- NCS1, nucleobase/Cation Symporter 1
- NCS2, nucleobase cation symporter family 2
- NH4+, ammonium
- Nutrient transporters
- OF, outward-facing
- PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)
- PM, plasma membrane
- PVE, prevacuolar endosome
- Saccharomyces cerevisiae
- Signaling pathways
- Structure-function
- TGN, trans-Golgi network
- TMSs, transmembrane segments
- TORC1, target of rapamycin complex 1
- TRY, titer, rate and yield
- Trp, tryptophan
- Tyr, tyrosine
- Ub, ubiquitin
- Ubiquitylation
- VPS, vacuolar protein sorting
- W/V, weight per volume
- YAT, yeast Amino acid Transporter
- Zn, Zinc
- fAATs, fungal AA transporters
Collapse
|
35
|
Glucose regulation of the paralogous glucose sensing receptors Rgt2 and Snf3 of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2021; 1865:129881. [PMID: 33617932 DOI: 10.1016/j.bbagen.2021.129881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae senses extracellular glucose levels through the two paralogous glucose sensing receptors Rgt2 and Snf3, which appear to sense high and low levels of glucose, respectively. METHODS Western blotting and qRT-PCR were used to determine expression levels of the glucose sensing receptors. RESULTS Rgt2 and Snf3 are expressed at different levels in response to different glucose concentrations. SNF3 expression is repressed by high glucose, whereas Rgt2 is turned over in response to glucose starvation. As a result, Rgt2 is predominant in cells grown on high glucose, whereas Snf3 is more abundant of the two paralogs in cells grown on low glucose. When expressed from a constitutive promoter, however, Snf3 behaves like Rgt2, being able to transduce the high glucose signal that induces HXT1 expression. Of note, constitutively active Rgt2 does not undergo glucose starvation-induced endocytic downregulation, whereas signaling defective Rgt2 is constitutively targeted for vacuolar degradation. These results suggest that glucose protects Rgt2 from endocytic degradation and reveal a previously unknown function of glucose as a signaling molecule that regulates the stability of its receptor. CONCLUSION Expression of Rgt2 and Snf3 is regulated by different mechanisms: Rgt2 expression is highly regulated at the level of protein stability; Snf3 expression is mainly regulated at the level of transcription. GENERAL SIGNIFICANCE The difference in the roles of Rgt2 and Snf3 in glucose sensing is a consequence of their cell surface abundance rather than a result of the two paralogous proteins having different functions.
Collapse
|
36
|
Li J, Liu Q, Li J, Lin L, Li X, Zhang Y, Tian C. RCO-3 and COL-26 form an external-to-internal module that regulates the dual-affinity glucose transport system in Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:33. [PMID: 33509260 PMCID: PMC7841889 DOI: 10.1186/s13068-021-01877-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/07/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Low- and high-affinity glucose transport system is a conserved strategy of microorganism to cope with environmental glucose fluctuation for their growth and competitiveness. In Neurospora crassa, the dual-affinity glucose transport system consists of a low-affinity glucose transporter GLT-1 and two high-affinity glucose transporters HGT-1/HGT-2, which play diverse roles in glucose transport, carbon metabolism, and cellulase expression regulation. However, the regulation of this dual-transporter system in response to environmental glucose fluctuation is not yet clear. RESULTS In this study, we report that a regulation module consisting of a downstream transcription factor COL-26 and an upstream non-transporting glucose sensor RCO-3 regulates the dual-affinity glucose transport system in N. crassa. COL-26 directly binds to the promoter regions of glt-1, hgt-1, and hgt-2, whereas RCO-3 is an upstream factor of the module whose deletion mutant resembles the Δcol-26 mutant phenotypically. Transcriptional profiling analysis revealed that Δcol-26 and Δrco-3 mutants had similar transcriptional profiles, and both mutants had impaired response to a glucose gradient. We also showed that the AMP-activated protein kinase (AMPK) complex is involved in regulation of the glucose transporters. AMPK is required for repression of glt-1 expression in starvation conditions by inhibiting the activity of RCO-3. CONCLUSIONS RCO-3 and COL-26 form an external-to-internal module that regulates the glucose dual-affinity transport system. Transcription factor COL-26 was identified as the key regulator. AMPK was also involved in the regulation of the dual-transporter system. Our findings provide novel insight into the molecular basis of glucose uptake and signaling in filamentous fungi, which may aid in the rational design of fungal strains for industrial purposes.
Collapse
Affiliation(s)
- Jinyang Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Xiaolin Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| |
Collapse
|
37
|
Boocock J, Sadhu MJ, Durvasula A, Bloom JS, Kruglyak L. Ancient balancing selection maintains incompatible versions of the galactose pathway in yeast. Science 2021; 371:415-419. [PMID: 33479156 PMCID: PMC8384573 DOI: 10.1126/science.aba0542] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/08/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023]
Abstract
Metabolic pathways differ across species but are expected to be similar within a species. We discovered two functional, incompatible versions of the galactose pathway in Saccharomyces cerevisiae We identified a three-locus genetic interaction for growth in galactose, and used precisely engineered alleles to show that it arises from variation in the galactose utilization genes GAL2, GAL1/10/7, and phosphoglucomutase (PGM1), and that the reference allele of PGM1 is incompatible with the alternative alleles of the other genes. Multiloci balancing selection has maintained the two incompatible versions of the pathway for millions of years. Strains with alternative alleles are found primarily in galactose-rich dairy environments, and they grow faster in galactose but slower in glucose, revealing a trade-off on which balancing selection may have acted.
Collapse
Affiliation(s)
- James Boocock
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Meru J Sadhu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun Durvasula
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
38
|
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Corrigendum to "Rewiring yeast metabolism to synthesize products beyond ethanol" [Curr Opin Chem Biol 59 (December 2020) 182-192]. Curr Opin Chem Biol 2020; 59:202-204. [PMID: 33199243 PMCID: PMC9744135 DOI: 10.1016/j.cbpa.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Francesca V. Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison
| | - Joshua J. Dietrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA,DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison,DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA,corresponding author
| |
Collapse
|
39
|
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, Monteiro Neto JR, de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys 2020; 697:108701. [PMID: 33259795 DOI: 10.1016/j.abb.2020.108701] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein. This comprehensive review looks at the most important aspects of human SOD1 (hSOD1), including the structure, properties, and characteristics as well as transcriptional and post-translational modifications (PTM) that the enzyme can receive and their effects, and its many functions. We also discuss the strategies currently used to analyze it to better understand its participation in diseases linked to hSOD1 including Amyotrophic Lateral Sclerosis (ALS), cancer, and Parkinson.
Collapse
|
40
|
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Rewiring yeast metabolism to synthesize products beyond ethanol. Curr Opin Chem Biol 2020; 59:182-192. [PMID: 33032255 DOI: 10.1016/j.cbpa.2020.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose. However, in many cases, the demonstrations report titers and yields that fall below thresholds for industrial feasibility. Ethanol synthesis is a central part of S. cerevisiae metabolism, and redirecting flux to other products remains a barrier to industrialize strains for producing other molecules. Removing ethanol producing pathways leads to poor fitness, such as impaired growth on glucose. Here, we review metabolic engineering efforts aimed at restoring growth in non-ethanol producing strains with emphasis on relieving glucose repression associated with the Crabtree effect and rewiring metabolism to provide access to critical cellular building blocks. Substantial progress has been made in the past decade, but many opportunities for improvement remain.
Collapse
Affiliation(s)
- Francesca V Gambacorta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA
| | - Joshua J Dietrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; DOE Great Lakes Bioenergy Research Center, Univ. of Wisconsin-Madison, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, Univ. of Wisconsin-Madison, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Gibney PA, Chen A, Schieler A, Chen JC, Xu Y, Hendrickson DG, McIsaac RS, Rabinowitz JD, Botstein D. A tps1Δ persister-like state in Saccharomyces cerevisiae is regulated by MKT1. PLoS One 2020; 15:e0233779. [PMID: 32470059 PMCID: PMC7259636 DOI: 10.1371/journal.pone.0233779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.
Collapse
Affiliation(s)
- Patrick A. Gibney
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Calico Life Sciences LLC, South San Francisco, California, United States of America
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Ariel Schieler
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan C. Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Yifan Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - David G. Hendrickson
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - R. Scott McIsaac
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| |
Collapse
|
42
|
Tanabe T, Kawamukai M, Matsuo Y. Glucose limitation and pka1 deletion rescue aberrant mitotic spindle formation induced by Mal3 overexpression in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2020; 84:1667-1680. [PMID: 32441227 DOI: 10.1080/09168451.2020.1763157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1-308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1-241) both resulted in more severe phenotypes than Mal3 (1-308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.
Collapse
Affiliation(s)
- Takuma Tanabe
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| |
Collapse
|
43
|
Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in Recombinant Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8010100. [PMID: 31936831 PMCID: PMC7022881 DOI: 10.3390/microorganisms8010100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Efficient utilization of both glucose and xylose from lignocellulosic biomass would be economically beneficial for biofuel production. Recombinant Saccharomyces cerevisiae strains with essential genes and metabolic networks for xylose metabolism can ferment xylose; however, the efficiency of xylose fermentation is much lower than that of glucose, the preferred carbon source of yeast. Implications from our previous work suggest that activation of the glucose sensing system may benefit xylose metabolism. Here, we show that deleting cAMP phosphodiesterase genes PDE1 and PDE2 increased PKA activity of strains, and consequently, increased xylose utilization. Compared to the wild type strain, the specific xylose consumption rate (rxylose) of the pde1Δ pde2Δ mutant strains increased by 50%; the specific ethanol-producing rate (rethanol) of the strain increased by 70%. We also show that HXT1 and HXT2 transcription levels slightly increased when xylose was present. We also show that HXT1 and HXT2 transcription levels slightly increased when xylose was present. Deletion of either RGT2 or SNF3 reduced expression of HXT1 in strains cultured in 1 g L−1 xylose, which suggests that xylose can bind both Snf3 and Rgt2 and slightly alter their conformations. Deletion of SNF3 significantly weakened the expression of HXT2 in the yeast cultured in 40 g L−1 xylose, while deletion of RGT2 did not weaken expression of HXT2, suggesting that S. cerevisiae mainly depends on Snf3 to sense a high concentration of xylose (40 g L−1). Finally, we show that deletion of Rgt1, increased rxylose by 24% from that of the control. Our findings indicate how S. cerevisiae may respond to xylose and this study provides novel targets for further engineering of xylose-fermenting strains.
Collapse
|
44
|
Vengayil V, Rashida Z, Laxman S. The E3 ubiquitin ligase Pib1 regulates effective gluconeogenic shutdown upon glucose availability. J Biol Chem 2019; 294:17209-17223. [PMID: 31604822 PMCID: PMC6873170 DOI: 10.1074/jbc.ra119.009822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Cells use multiple mechanisms to regulate their metabolic states in response to changes in their nutrient environment. One example is the response of cells to glucose. In Saccharomyces cerevisiae growing in glucose-depleted medium, the re-availability of glucose leads to the down-regulation of gluconeogenesis and the activation of glycolysis, leading to "glucose repression." However, our knowledge of the mechanisms mediating the glucose-dependent down-regulation of the gluconeogenic transcription factors is limited. Using the major gluconeogenic transcription factor Rds2 as a candidate, we identify here a novel role for the E3 ubiquitin ligase Pib1 in regulating the stability and degradation of Rds2. Glucose addition to cells growing under glucose limitation results in a rapid ubiquitination of Rds2, followed by its proteasomal degradation. Through in vivo and in vitro experiments, we establish Pib1 as the ubiquitin E3 ligase that regulates Rds2 ubiquitination and stability. Notably, this Pib1-mediated Rds2 ubiquitination, followed by proteasomal degradation, is specific to the presence of glucose. This Pib1-mediated ubiquitination of Rds2 depends on the phosphorylation state of Rds2, suggesting a cross-talk between ubiquitination and phosphorylation to achieve a metabolic state change. Using stable isotope-based metabolic flux experiments, we find that the loss of Pib1 results in an imbalanced gluconeogenic state, regardless of glucose availability. Pib1 is required for complete glucose repression and enables cells to optimally grow in competitive environments when glucose again becomes available. Our results reveal the existence of a Pib1-mediated regulatory program that mediates glucose repression when glucose availability is restored.
Collapse
Affiliation(s)
- Vineeth Vengayil
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Zeenat Rashida
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
45
|
Abeln F, Chuck CJ. Achieving a high-density oleaginous yeast culture: Comparison of four processing strategies using Metschnikowia pulcherrima. Biotechnol Bioeng 2019; 116:3200-3214. [PMID: 31429929 DOI: 10.1002/bit.27141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023]
Abstract
Microbial lipids have the potential to displace terrestrial oils for fuel, value chemical, and food production, curbing the growth in tropical oil plantations and helping to reduce deforestation. However, commercialization remains elusive partly due to the lack of suitably robust organisms and their low lipid productivity. Extremely high cell densities in oleaginous cultures are needed to increase reaction rates, reduce reactor volume, and facilitate downstream processing. In this investigation, the oleaginous yeast Metschnikowia pulcherrima, a known antimicrobial producer, was cultured using four different processing strategies to achieve high cell densities and gain suitable lipid productivity. In batch mode, the yeast demonstrated lipid contents more than 40% (w/w) under high osmotic pressure. In fed-batch mode, however, high-lipid titers were prevented through inhibition above 70.0 g L-1 yeast biomass. Highly promising were a semi-continuous and continuous mode with cell recycle where cell densities of up to 122.6 g L-1 and maximum lipid production rates of 0.37 g L-1 h-1 (daily average), a nearly two-fold increase from the batch, were achieved. The findings demonstrate the importance of considering multiple fermentation modes to achieve high-density oleaginous yeast cultures generally and indicate the limitations of processing these organisms under the extreme conditions necessary for economic lipid production.
Collapse
Affiliation(s)
- Felix Abeln
- Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Bath, United Kingdom.,Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Christopher J Chuck
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
46
|
Zhou YR, Song XY, Li Y, Shi JC, Shi WL, Chen XL, Liu WF, Liu XM, Zhang WX, Zhang YZ. Enhancing peptaibols production in the biocontrol fungus Trichoderma longibrachiatum SMF2 by elimination of a putative glucose sensor. Biotechnol Bioeng 2019; 116:3030-3040. [PMID: 31403179 DOI: 10.1002/bit.27138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022]
Abstract
Trichoderma spp. are main producers of peptide antibiotics known as peptaibols. While peptaibols have been shown to possess a range of biological activities, molecular understanding of the regulation of their production is largely unclear, which hampers the production improvement through genetic engineering. Here, we demonstrated that the orthologue of glucose sensors in the outstanding biocontrol fungus Trichoderma longibrachiatum SMF2, TlSTP1, participates in the regulation of peptaibols production. Deletion of Tlstp1 markedly impaired hyphal growth and conidiation, but significantly increased peptaibols yield by 5-fold for Trichokonins A and 2.6-fold for Trichokonins B. Quantitative real-time polymerase chain reaction analyses showed that the increased peptaibols production occurs at the transcriptional levels of the two nonribosomal peptide synthetase encoding genes, tlx1 and tlx2. Transcriptome analyses of the wild type and the Tlstp1 mutant strains indicated that TlSTP1 exerts a regulatory effect on a set of genes that are involved in a number of metabolic and cellular processes, including synthesis of several other secondary metabolites. These results suggest an important role of TlSTP1 in the regulation of vegetative growth and peptaibols production in T. longibrachiatum SMF2 and provide insights into construction of peptaibol-hyperproducing strains through genetic engineering.
Collapse
Affiliation(s)
- Yan-Rong Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yue Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jin-Chao Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Feng Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
47
|
Simpson-Lavy K, Kupiec M. Carbon catabolite repression: not only for glucose. Curr Genet 2019; 65:1321-1323. [PMID: 31119370 DOI: 10.1007/s00294-019-00996-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
Most organisms prefer to utilize glucose as a carbon source. Accordingly, the expression of genes involved in the catabolism of other carbon sources is repressed by the presence of glucose in a process known as (carbon) catabolite repression. However, much less is known about the relationships between "poor" carbon sources. We have recently shown that the enzyme alcohol dehydrogenase of the yeast Saccharomyces cerevisiae (ADH2), required for the utilization of ethanol, is not only inhibited by glucose, but by the acetate imported from the medium or produced by ethanol metabolism. Our study showed that sensing of acetate takes place within the cell, and not in the external medium, and that "poor" carbon sources are also utilized according to a pre-established hierarchy.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
48
|
Simpson-Lavy K, Kupiec M. Carbon Catabolite Repression in Yeast is Not Limited to Glucose. Sci Rep 2019; 9:6491. [PMID: 31019232 PMCID: PMC6482301 DOI: 10.1038/s41598-019-43032-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Cells adapt their gene expression and their metabolism in response to a changing environment. Glucose represses expression of genes involved in the catabolism of other carbon sources in a process known as (carbon) catabolite repression. However, the relationships between “poor” carbon sources is less characterized. Here we show that in addition to the well-characterized glucose (and galactose) repression of ADH2 (alcohol dehydrogenase 2, required for efficient utilization of ethanol as a carbon source), ADH2 expression is also inhibited by acetate which is produced during ethanol catabolism. Thus, repressive regulation of gene expression occurs also between “poor” carbon sources. Acetate repression of ADH2 expression is via Haa1, independently from the well-characterized mechanism of AMPK (Snf1) activation of Adr1. The response to extracellular acetate is attenuated when all three acetate transporters (Ady2, Fps1 and Jen1) are deleted, but these deletions do not affect the acetate response resulting from growth with glucose or ethanol as the carbon source. Furthermore, genetic manipulation of the ethanol catabolic pathway affects this response. Together, our results show that acetate is sensed intracellularly and that a hierarchical control of carbon sources exists even for “poor” carbon sources.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
49
|
Dose dependent gene expression is dynamically modulated by the history, physiology and age of yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:457-471. [DOI: 10.1016/j.bbagrm.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
|
50
|
Evolutionary Transition of GAL Regulatory Circuit from Generalist to Specialist Function in Ascomycetes. Trends Microbiol 2019; 26:692-702. [PMID: 29395731 DOI: 10.1016/j.tim.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]
Abstract
The Gal4 transcription factor (TF) controls gene expression by binding the DNA sequence motif CGG(N11)CCG. Well studied versions regulate metabolism of glucose in Candida albicans and galactose in Saccharomyces cerevisiae. Gal4 is also found within Aspergillus species and shows a wide range of potential binding targets. Members of the CTG clade that reassigned CUG codons from leucine to serine lack the Gal80 binding domain of Gal4, and they use the TF to regulate only glycolytic genes. In this clade, the galactose catabolic pathway (also known as the Leloir pathway) genes are regulated by Rtg1/Rtg3. In the WGD species, the complete Gal4/Gal80 module is limited to regulation of the Leloir pathway, while glycolysis is controlled by Gcr1/Gcr2. This shows a switch of Gal4 from a generalist to a specialist within the ascomycetes, and the split of glucose and galactose metabolism into distinct regulatory circuits.
Collapse
|