1
|
Nguyen LKT, Do MH, Duong PD, Tran TMD, Ngo TQN, Nguyen XT, Le VD, Nguyen CH, Fajgar R, Nguyen TD. In situ synthesis of gold nanoparticles embedded in a magnetic nanocomposite of glucosamine/alginate for enhancing recyclable catalysis performance of nitrophenol reduction. NANOSCALE ADVANCES 2024:d4na00979g. [PMID: 39720124 PMCID: PMC11664256 DOI: 10.1039/d4na00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
In this study, we introduce an in situ synthesis technique for incorporating gold nanoparticles (AuNPs) into a magnetic nanocomposite made of glucosamine and alginate (GluN/Alg) via ionotropic gelation. GluN acted as a reducing agent for gold ions, leading to the formation of AuNPs which embedded in the nanocomposite Fe3O4@GluN/Alg. Analytical techniques confirmed the crystallite structure of the nanocomposite AuNPs/Fe3O4@GluN/Alg, which had an average size of 30-40 nm. This nanocomposite demonstrated high catalytic efficiency in reducing 2-, 3-, and 4-nitrophenols, exhibiting rapid kinetics with pseudo-first order rate constants between 1.16 × 10-3 s-1 and 2.29 × 10-3 s-1. The reduction rates and recyclability for nitrophenols followed the order: 4-nitrophenol > 2-nitrophenol ∼ 3-nitrophenol. These results indicate that the nanocomposite holds significant promise for customized applications in environment and medicine, positioning it as a highly versatile material.
Collapse
Affiliation(s)
- Le-Kim-Thuy Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Manh-Huy Do
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Phuoc-Dat Duong
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Thi-My-Duyen Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Thi-Quynh-Nhu Ngo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Xuan-Thom Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
| | - Van-Dung Le
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| | - Cao-Hien Nguyen
- Department of Chemical Technology, Ho Chi Minh City University of Industry and Trade Ho Chi Minh City 700000 Vietnam
| | - Radek Fajgar
- Institute of Chemical Process Fundamentals of the AS CR Prague Czech Republic
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi 11000 Vietnam
| |
Collapse
|
2
|
Chen C, Ding P. Effect of Gold Nanoparticles on Luminescence Enhancement in Antibodies for TORCH Detection. Molecules 2024; 29:5722. [PMID: 39683881 DOI: 10.3390/molecules29235722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 12/18/2024] Open
Abstract
PURPOSES To explore the optimization method and application of Au-NP-enhanced luminol--H2O2 luminescence system in TORCH (TOX, RV, CMV, HSVI, and HSVII) detection. METHOD 4.5 × 10-5 mmol/L gold nano solution was prepared with chloroauric acid as the reducing agent and trisodium citrate as the stabilizer. After curing for 3 days, Au NPs participate in the luminal-H2O2 luminescence system to detect TORCH antibodies and establish the cut off value. SPSS 18.0 software was used to analyze the TORCH antibodies detected by the nano-gold-enhanced luminol luminescence method and TORCH kit. Additionally, its detection performance is studied. RESULTS The results of a paired t-test for the absorbance values of samples with and without gold nanoparticles showed that there were statistically significant differences (p < 0.001) between the two methods in the detection of TOX, RV, CMV, HSVI, and HSVII. The luminescence values with the addition of gold nanoparticles were significantly higher than those without gold nanoparticles. Using the Au NP-luminol-H2O2 chemiluminescence method, 127 serum samples were tested for TORCH antibodies. The sensitivities were 84.6%, 83.3%, 90.9%, 85.7%, and 84.6%, while the specificities were 94.7%, 96.5%, 96.6%, 97.3%, and 95.6%, respectively. The sensitivity and specificity of the chemiluminescence method enhanced by gold nanoparticles are significantly improved compared to the chemiluminescence method without enhancers. CONCLUSIONS Au NPs participate in the luminal-H2O2 luminescent system. The absorbance, sensitivity, and specificity of TORCH antibodies show that Au NPs can enhance the luminol-H2O2 luminescent system. Au NP-luminol-H2O2 luminescence system has broad application prospects in the detection of eugenics.
Collapse
Affiliation(s)
- Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou 423000, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
3
|
Yu Y, Xie H, Zhou T, Zhang H, Lu C, Tao R, Tang Z, Luo J. Real-Time and Ultrasensitive Prostate-Specific Antigen Sensing Using Love-Mode Surface Acoustic Wave Immunosensor Based on MoS 2@Cu 2O-Au Nanocomposites. SENSORS (BASEL, SWITZERLAND) 2024; 24:7636. [PMID: 39686170 DOI: 10.3390/s24237636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Prostate-specific antigen (PSA) is a well-established tumour marker for prostatic carcinoma. In this study, we present a novel, real-time, and ultrasensitive Love-mode surface acoustic wave (L-SAW) immunosensor for PSA detection enhanced by MoS2@Cu2O-Au nanocomposite conjugation. The MoS2@Cu2O-Au nanocomposites were analyzed by SEM, XRD, and EDS. The experiments show a significant improvement in sensitivity and detection limit compared with the previous detection methods utilizing nanogold alone to detect PSA biomolecules. The experimental results show a good linear relationship when the range of PSA concentrations between 200 pg/mL and 5 ng/mL was tested. The experimental results also show good specificity against alpha 1 fetoprotein and L-tryptophan disruptors.
Collapse
Affiliation(s)
- Yan Yu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiyu Xie
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tao Zhou
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haonan Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ran Tao
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Centre, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, GuangDong Engineering Technology Research Centre of Breath Test, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Esporrín‐Ubieto D, Huck‐Iriart C, Picco AS, Beloqui A, Calderón M. Hybrid Nanogel-Wrapped Anisotropic Gold Nanoparticles Feature Enhanced Photothermal Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404097. [PMID: 39221696 PMCID: PMC11600699 DOI: 10.1002/smll.202404097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Anisotropic gold nanoparticles (AuNPs) are renowned for their unique properties - including localized surface plasmon resonance (LSPR) and adjustable optical responses to light exposure - that enable the conversion of light into heat and make them a promising tool in cancer therapy. Nonetheless, their tendency to aggregate and consequently lose their photothermal conversion capacity during prolonged irradiation periods represents a central challenge in developing anisotropic AuNPs for clinical use. To overcome this issue, an innovative approach that facilitates the encapsulation of individual anisotropic AuNPs within thin nanogels, forming hybrid nanomaterials that mirror the inorganic core's morphology while introducing a negligible (2-8 nm) increase in overall diameter is proposed. The encapsulation of rod- and star-shaped anisotropic AuNPs within poly-acrylamide (pAA) or poly-(N-isopropylacrylamide) (pNIPAM) nanogels is successfully demonstrated. The ultrathin polymeric layers display remarkable durability, significantly enhancing the photothermal stability of anisotropic AuNPs during their interaction with near-infrared light and effectively boosting their photothermal capacities for extended irradiation periods. The outcomes of the research thus support the development of more stable and reliable AuNPs as hybrid nanomaterials, positioning them as promising nanomedicinal platforms.
Collapse
Affiliation(s)
- David Esporrín‐Ubieto
- POLYMATApplied Chemistry Department, Faculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Donostia‐San Sebastián20018Spain
| | - Cristián Huck‐Iriart
- ALBA Synchrotron Light SourceCarrer de la Llum 2–26Cerdanyola del Vallès08290BarcelonaSpain
| | - Agustin S. Picco
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA)Universidad Nacional de La Plata (UNLP) – CONICETDiagonal 113 y Calle 64La Plata1900Argentina
| | - Ana Beloqui
- POLYMATApplied Chemistry Department, Faculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Donostia‐San Sebastián20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Marcelo Calderón
- POLYMATApplied Chemistry Department, Faculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Donostia‐San Sebastián20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| |
Collapse
|
5
|
Saibene M, Serchi T, Bonfanti P, Colombo A, Nelissen I, Halder R, Audinot JN, Pelaz B, Soliman MG, Parak WJ, Mantecca P, Gutleb AC, Cambier S. The use of a complex tetra-culture alveolar model to study the biological effects induced by gold nanoparticles with different physicochemical properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104353. [PMID: 38163529 DOI: 10.1016/j.etap.2023.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
A substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models. This study utilized an in vitro human alveolar barrier model at air-liquid-interface with four cell lines, for evaluating the biological effects of different gold nanoparticles. Exposure to PEGylated gold nanospheres, nanorods, and nanostars did not significantly impact viability after 24 h, yet all AuNPs induced cytotoxicity in the form of membrane integrity impairment. Gold quantification revealed cellular uptake and transport. Transcriptomic analysis identified gene expression changes, particularly related to the enhancement of immune cells. Despite limited impact, distinct effects were observed, emphasizing the influence of nanoparticles physicochemical parameters while demonstrating the model's efficacy in investigating particle biological effects.
Collapse
Affiliation(s)
- Melissa Saibene
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg; Polaris Research Centre, DISAT, University of Milano-Bicocca, Italy
| | - Tommaso Serchi
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg
| | | | - Anita Colombo
- Polaris Research Centre, DISAT, University of Milano-Bicocca, Italy
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Rashi Halder
- Sequencing platform, LCSB, University of Luxembourg, Luxembourg
| | - Jean-Nicolas Audinot
- AINA Group, SIPT Unit, MRT Department, Luxembourg Institute of Science and Technology, Luxembourg
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Spain; Departamento de Química Inorgánica, Grupo de Física de Coloides y Polímeros, Universidade de Santiago de Compostela, Spain
| | - Mahmoud G Soliman
- Center for Hybrid Nanostructures, University of Hamburg, Germany; Chemistry Department, RCSI, Ireland; Physics Department, Faculty of Science, Al-Azhar University, Egypt
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures, University of Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Germany
| | - Paride Mantecca
- Polaris Research Centre, DISAT, University of Milano-Bicocca, Italy
| | - Arno C Gutleb
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg
| | - Sebastien Cambier
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg.
| |
Collapse
|
6
|
Wang J, Liang J. Functionalized Gold Nanoparticles for Facile Pattern-Controlled Surface Coatings. Biomimetics (Basel) 2024; 9:146. [PMID: 38534831 DOI: 10.3390/biomimetics9030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Gold nanoparticles (AuNPs) have been widely investigated as surface modifiers; nevertheless, most methods still require the pretreatment of surfaces and several steps to control coating efficiency and patterns for improved functionality. We developed functionalized AuNPs through borate-protected dopamine (B-AuNPs). The simple activation of B-AuNPs with a strong acid to remove the protected borate groups produces adhesive dopamine AuNPs (D-AuNPs). D-AuNP-coated surfaces with varied but controlled features and properties such as coating density and surface pattern were achieved using D-AuNPs with a precisely controlled dopamine density and coating conditions. Such adhesive and easily manipulated AuNPs provide a facile and time-saving technology to achieve sophisticated surface coatings using AuNPs.
Collapse
Affiliation(s)
- Jue Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Junfeng Liang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
7
|
Deinavizadeh M, Kiasat AR, Shafiei M, Sabaeian M, Mirzajani R, Zahraei SM, Khalili F, Shao M, Wu A, Makvandi P, Hooshmand N. Synergistic chemo-photothermal therapy using gold nanorods supported on thiol-functionalized mesoporous silica for lung cancer treatment. Sci Rep 2024; 14:4373. [PMID: 38388553 PMCID: PMC10884026 DOI: 10.1038/s41598-024-54778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Cancer therapy necessitates the development of novel and effective treatment modalities to combat the complexity of this disease. In this project, we propose a synergistic approach by combining chemo-photothermal treatment using gold nanorods (AuNRs) supported on thiol-functionalized mesoporous silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous MCM-41 was synthesized using a surfactant-templated sol-gel method, chosen for its desirable porous structure, excellent biocompatibility, and non-toxic properties. Further, thiol-functionalized MCM-41 was achieved through a simple grafting process, enabling the subsequent synthesis of AuNRs supported on thiol-functionalized MCM-41 (AuNR@S-MCM-41) via a gold-thiol interaction. The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in AuNR@S-MCM-41-DOX. Remarkably, the nanocomposite exhibited pH/NIR dual-responsive drug release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined photothermal-chemo therapy by AuNR@S-MCM-41-DOX exhibited superior efficacy in killing cancer cells compared to single chemo- or photothermal therapies. This study showcases the potential of the AuNR@S-MCM-41-DOX nanocomposite as a promising candidate for combined chemo-photothermal therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol-functionalized mesoporous silica, and pH/NIR dual-responsive drug release provides a comprehensive and effective therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on this strategy hold promise for addressing the challenges posed by cancer and transforming patient care.
Collapse
Affiliation(s)
- Maryam Deinavizadeh
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Reza Kiasat
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Petroleum Geology and Geochemistry Research Center (PGGRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Shafiei
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Sabaeian
- Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Center for Research On Laser and Plasma, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roya Mirzajani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Fateme Khalili
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Pooyan Makvandi
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India.
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Saveetha University, Chennai, 600077, India.
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
8
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
9
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Aili M, Zhou K, Zhan J, Zheng H, Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer's disease. J Mater Chem B 2023; 11:8605-8621. [PMID: 37615596 DOI: 10.1039/d3tb01023f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive dysfunction and reduces a person's decision-making and reasoning functions. AD is the leading cause of dementia in the elderly. Patients with AD have increased expression of pro-inflammatory cytokines in the nervous system, and the sustained inflammatory response impairs neuronal function. Meanwhile, long-term use of anti-inflammatory drugs can reduce the incidence of AD to some extent. This confirms that anti-neuroinflammation may be an effective treatment for AD. Gold nanoparticles (AuNPs) are an emerging nanomaterial with promising physicochemical properties, anti-inflammatory and antioxidant. AuNPs reduce neuroinflammation by inducing macrophage polarization toward the M2 phenotype, reducing pro-inflammatory cytokine expression, blocking leukocyte adhesion, and decreasing oxidative stress. Therefore, AuNPs are gradually attracting the interest of scholars and are used for treating inflammatory diseases and drug delivery. Herein, we explored the role and mechanism of AuNPs in treating neuroinflammation in AD. The use of AuNPs for treating AD is a topic worth exploring in the future, not only to help solve a global public health problem but also to provide a reference for treating other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Munire Aili
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Kebing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China
| |
Collapse
|
11
|
Xie C, Zhang L. Design and characterization of antithrombotic ClEKnsTy-Au nanoparticles as diagnostic and therapeutic reagents. Phys Chem Chem Phys 2023. [PMID: 37466214 DOI: 10.1039/d3cp01000g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Thrombosis can cause various cardiovascular diseases, which seriously endanger human life. Development of diagnostic and therapeutic reagents for thrombosis at an early stage would be helpful for the improvement of treatment and the reduction of mortality. In the present study, based on an antithrombotic peptide lEKnsTy (lowercase letters represent D-amino acid residues), a diagnostic and therapeutic reagent targeting collagen and the early stage of thrombosis was proposed, where cysteine was introduced into the amino terminus of lEKnsTy to prepare ClEKnsTy, followed by coupling with AuNPs to prepare nanoconjugate AuNP-Cl. The binding of AuNP-Cl on the collagen surface was then confirmed by the molecular dynamics simulations of the binding of ClEKnsTy on collagen, and the experimental results of the binding of AuNP-Cl on collagen. The inhibition of platelet adhesion on the collagen surface by AuNP-Cl was also confirmed. Moreover, the good imaging ability of AuNP-Cl was confirmed by dark-field microscopy. These results indicated that AuNP-Cl was a potential effective diagnostic and therapeutic reagent targeting collagen, which would be helpful for the research and development of multifunctional antithrombotic reagents.
Collapse
Affiliation(s)
- Chen Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
12
|
Negahdary M, Angnes L. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers. Talanta 2023; 259:124548. [PMID: 37062088 DOI: 10.1016/j.talanta.2023.124548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
New technologies have provided suitable tools for rapid diagnosis of cancer which can reduce treatment costs and even increase patients' survival rates. Recently, the development of electrochemical aptamer-based nanobiosensors has raised great hopes for early, sensitive, selective, and low-cost cancer diagnosis. Here, we reviewed the flagged recent research (2021-2023) developed as a series of biosensors equipped with nanomaterials and aptamer sequences (nanoaptasensors) to diagnose/prognosis of various types of cancers. Equipping these aptasensors with nanomaterials and using advanced biomolecular technologies have provided specified biosensing interfaces for more optimal and reliable detection of cancer biomarkers. The primary intention of this review was to present and categorize the latest innovations used in the design of these diagnostic tools, including the hottest surface modifications and assembly of sensing bioplatforms considering diagnostic mechanisms. The main classification is based on applying various nanomaterials and sub-classifications considered based on the type of analyte and other vital features. This review may help design subsequent electrochemical aptasensors. Likewise, the up-to-date status, remaining limitations, and possible paths for translating aptasensors to clinical cancer assay tools can be clarified.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
13
|
AdibAmini S, Sari AH, Dorranian D. Optical properties of synthesized Au/Ag Nanoparticles using 532 nm and 1064 nm pulsed laser ablation: effect of solution concentration. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
AbstractThe primary objective of this experimental research is to introduce the capacity of laser irradiation into the synthesis of bimetallic nanoparticles from noble metals. Gold and silver nanoparticles are produced through the laser ablating gold and silver targets in distilled water. Originally, the samples are synthesized by using Nd:YAG laser with 1064 nm wavelength and 7 ns pulse width. Following this, solutions mixed with different volumetric ratios, are irradiated by the second harmonic of the said laser at 532 nm wavelength. The absorption peak of gold nanoparticles around 530 nm, is used to transfer the laser energy to nanoparticles and synthesize Au/Ag bimetallic nanoparticles. The wavelength and volumetric ratio of solutions are the experiment's variables. The bimetallic nanoparticles are characterized as follows: X-ray diffraction pattern, spectroscopy in the range of UV–Vis-NIR and IR, Photoluminescence spectrum, Dynamic light scattering, and Fourier transform infrared spectroscopy. Additionally, FE-SEM and TEM images are used to study the size and morphology of nanoparticles. One of the aims of the research is to investigate the effects of laser wavelength and different volumetric concentrations on the optical properties of Au/Ag bimetallic nanoparticles. On the other hand, the study revealed that silver concentration and laser wavelength in the synthesis of Au/Ag bimetallic nanoparticles with different structures, cause the formation of crystalline structure, growth of grain size, and therefore silver oxide reduction.
Collapse
|
14
|
Summers PK, Angeloski A, Wuhrer R, Cortie MB, McDonagh AM. The fate of organic species upon sintering of thiol-stabilised gold nanoparticles under different atmospheric conditions. Phys Chem Chem Phys 2023; 25:7170-7175. [PMID: 36810448 DOI: 10.1039/d2cp05822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Understanding and controlling the sintering behavior of gold nanoparticles is important for applications such as printed electronics, catalysis and sensing that utilise these materials. Here we examine the processes by which thiol-protected gold nanoparticles thermally sinter under a variety of atmospheres. We find that upon sintering, the surface-bound thiyl ligands exclusively form the corresponding disulfide species when released from the gold surface. Experiments conducted using air, hydrogen, nitrogen, or argon atmospheres revealed no significant differences between the temperatures of the sintering event nor on the composition of released organic species. When conducted under high vacuum, the sintering event occurred at lower temperatures compared to ambient pressures in cases where the resulting disulfide had relatively high volatility (dibutyl disulfide). Hexadecylthiol-stabilized particles exhibited no significant differences in the temperatures of the sintering event under ambient pressures compared to high vacuum conditions. We attribute this to the relatively low volatility of the resultant dihexadecyl disulfide product.
Collapse
Affiliation(s)
- Paige K Summers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia.
| | - Alexander Angeloski
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia. .,Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Richard Wuhrer
- Advanced Materials Characterisation Facility (AMCF), Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michael B Cortie
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Andrew M McDonagh
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
15
|
Li M, Yang J, Yao X, Li X, Xu Z, Tang S, Sun B, Lin S, Yang C, Liu J. Multifunctional Mesoporous Silica-Coated Gold Nanorods Mediate Mild Photothermal Heating-Enhanced Gene/Immunotherapy for Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15030854. [PMID: 36986715 PMCID: PMC10057058 DOI: 10.3390/pharmaceutics15030854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of PD-L1 has extensive potential in CRC treatment but is limited by the lack of efficient delivery vectors. In this work, the novel cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs)/siPD-L1 co-delivery vectors AuNRs@MS/CpG ODN@PEG-bPEI (ASCP) were successfully prepared by two-step surface modification of CpG ODNs-loading and polyethylene glycol-branched polyethyleneimine-coating around mesoporous silica-coated gold nanorods. ASCP promoted dendritic cells (DCs) maturation by delivering CpG ODNs, exhibiting excellent biosafety. Next, mild photothermal therapy (MPTT) mediated by ASCP killed tumor cells and released tumor-associated antigens, further promoting DC maturation. Furthermore, ASCP exhibited mild photothermal heating-enhanced performance as gene vectors, resulting in an increased PD-L1 gene silencing effect. Enhanced DCs maturity and enhanced PD-L1 gene silencing significantly promoted the anti-tumor immune response. Finally, the combination of MPTT and mild photothermal heating-enhanced gene/immunotherapy effectively killed MC38 cells, leading to strong inhibition of CRC. Overall, this work provided new insights into the design of mild photothermal/gene/immune synergies for tumor therapy and may contribute to translational nanomedicine for CRC treatment.
Collapse
Affiliation(s)
- Meirong Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Jingyu Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinhuang Yao
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Xiang Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shiqi Tang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Bangxu Sun
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| | - Suxia Lin
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518048, China
| | - Chengbin Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Correspondence: (C.Y.); (J.L.)
| | - Jia Liu
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
- Correspondence: (C.Y.); (J.L.)
| |
Collapse
|
16
|
Liu B, Li C, Han J, Chen Y, Zhao Z, Lu H. Biosynthesized gold nanoparticles using leaf extract of Citrus medica inhibit hepatocellular carcinoma through regulation of the Wnt/β-catenin signaling pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
17
|
Ruvalcaba-Ontiveros RI, Murillo-Ramírez JG, Medina-Vázquez JA, Carrasco-Hernández AR, Duarte-Möller JA, Esparza-Ponce HE. Synthesis of gold decorated silica nanoparticles and their photothermal properties. Micron 2023; 166:103415. [PMID: 36657307 DOI: 10.1016/j.micron.2023.103415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Silica-Gold Nanostructures (SGNs), composed of a silica core decorated by gold nanoparticles, have the photothermal capacity to transform near-infrared (NIR) wavelengths into heat. This work presents a simple, efficient, and replicable method of synthesis of SGNs and their characterization by: (1) transmission electron microscopy to obtain micrographs of the particles and their corresponding diameter distribution; (2) diffraction patterns showing the amorphous atomic arraignment of the silica and the crystalline atomic arrangement of the gold nanoparticles; (3) zeta potential confirming the stability of the SGNs in a colloidal solution; and (4) thermal images displaying the capacity of SGNs to convert NIR irradiation into heat and their respective increment in temperature. SGNs were synthesized over silica cores with diameters of 63, 83, and 132 nm and decorated with a partial gold shell. They were heated with a coherent light intensity of 340 mW/cm2 with a wavelength of 852 nm. This wavelength is within the range of the optical window of the human body; therefore, SGNs may be used for the photothermal ablation of tumors with no damage to the tissue. The heating of different dimensions of SGNs took 6-8 min of NIR radiation, and their cooling, once the laser was turned off, was in the order of 2-3 min. It was found that SGNs, with a core diameter of 132 nm, have a notable photothermal capacity. That enables them to increase the temperature of their surroundings by 4.4 ºC. This increment in temperature is sufficient to induce cellular necrosis, which makes SGNs a good option for photothermal treatments.
Collapse
Affiliation(s)
| | - José G Murillo-Ramírez
- Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, 31136 Chihuahua, Mexico
| | - José A Medina-Vázquez
- Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, 31136 Chihuahua, Mexico
| | - Anel R Carrasco-Hernández
- Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, 31136 Chihuahua, Mexico
| | - José A Duarte-Möller
- División de Ciencias e Ingeniería. Universidad de Sonora, Unidad Regional Sur Lázaro Cárdenas del Río 100, Colonia Francisco Villa, 85880 Navojoa, Sonora, Mexico
| | - Hilda E Esparza-Ponce
- Centro de Investigación en Materiales Avanzados, Complejo Industrial Chihuahua, 31136 Chihuahua, Mexico.
| |
Collapse
|
18
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
19
|
Kurmendra. Nanomaterial Gas Sensors for Biosensing Applications: A Review. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:104-118. [PMID: 34844549 DOI: 10.2174/1872210515666211129115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nanomaterial is one of the most used materials for various gas sensing applications to detect toxic gases, human breath, and other specific gas sensing. One of the most important applications of nanomaterial based gas sensors is biosensing applications. In this review article, the gas sensors for biosensing are discussed on the basis of crystalline structure and different categories of nanomaterial. METHODS In this paper, firstly, rigorous efforts have been made to find out research questions by going through a structured and systematic survey of available peer reviewed high quality articles in this field. The papers related to nanomaterial based biosensors are then reviewed qualitatively to provide substantive findings from the recent developments in this field. RESULTS In this mini-review article, firstly, classifications of nanomaterial gas sensors have been presented on the basis of the crystalline structure of nanomaterial and different types of nanomaterial available for biosensing applications. Further, the gas sensors based on nanomaterial for biosensing applications are collected and reviewed in terms of their performance parameters such as sensing material used, target gas component, detection ranges (ppm-ppb), response time, operating temperature and method of detection, etc. The different nanomaterials possess slightly different sensing and morphological properties due to their structure; therefore, it can be said that a nanomaterial must be selected carefully for a particular application. The 1D nanomaterials show the best selectivity and sensitivity for gases available in low concentration ranges due to their miniaturised structure compared to 2D and 3D nanomaterials. However, these 2D and 3D nanomaterials also so good sensing properties compared to bulk semiconductor materials. The polymer and nanocomposites which are also discussed in this patent article have opened the door for future research and have great potential for new generation gas sensors for detecting biomolecules. CONCLUSION These nanomaterials extend great properties towards sensing the application of different gases for a lower concentration of particular gas particles. Nano polymer and nanocomposites have great potential to be used as gas sensors for the detection of biomolecules.
Collapse
Affiliation(s)
- Kurmendra
- Department of Electronics and Communication Engineering, Rajiv Gandhi University (A Central University),
Doimukh, Itanagar - 791112, Arunachal Pradesh, India
| |
Collapse
|
20
|
Talha M, Pathak N, Bhattacharyya S, Lin Y. Bio-nanomaterials and their applications. APPLICATIONS OF MULTIFUNCTIONAL NANOMATERIALS 2023:461-473. [DOI: 10.1016/b978-0-12-820557-0.00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
21
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
22
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
23
|
Ultra-efficient and Selective Recovery of Au(III) Using Magnetic Fe3S4/Fe7S8. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
|
25
|
Sharma A, Zhu Y, Spangler EJ, Laradji M. Modes of adhesion of spherocylindrical nanoparticles to tensionless lipid bilayers. J Chem Phys 2022; 156:234901. [PMID: 35732528 DOI: 10.1063/5.0094234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adhesion modes and endocytosis pathway of spherocylindrical nanoparticles (NPs) are investigated numerically using molecular dynamics simulations of a coarse-grained implicit-solvent model. The investigation is performed systematically with respect to the adhesion energy density ξ, NP's diameter D, and NP's aspect ratio α. At weak ξ, the NP adheres to the membrane through a parallel mode, i.e., its principal axis is parallel to the membrane. However, for relatively large ξ, the NP adheres through a perpendicular mode, i.e., the NP is invaginated, such as its principal axis is nearly perpendicular to the membrane. The value of ξ at the transition from the parallel to the perpendicular mode decreases with increasing the D or α, in agreement with theoretical arguments based on the Helfrich Hamiltonian. As ξ is further increased, the NP undergoes endocytosis, with the value of ξ at the endocytosis threshold that is independent of the aspect ratio but decreases with increasing D. The kinetics of endocytosis depends strongly on ξ and D. While for low values of D, the NP first rotates to a parallel orientation then to a perpendicular orientation. At high values of ξ or D, the NP is endocytosed while in the parallel orientation.
Collapse
Affiliation(s)
- Abash Sharma
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
26
|
Rogachev AV, Novikova NN, Kovalchuk MV, Malakhova YN, Konovalov OV, Stepina ND, Shlyapnikova EA, Kanev IL, Shlyapnikov YM, Yakunin SN. Permeation of Nanoparticles into Pulmonary Surfactant Monolayer: In Situ X-ray Standing Wave Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3630-3640. [PMID: 35302765 DOI: 10.1021/acs.langmuir.1c02179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-resolution X-ray techniques were applied to examine the effects of gold nanoparticles (size <5 nm) on natural pulmonary surfactant and pure DPPC monolayers preliminarily formed on water subphase in a Langmuir trough. Hydrophobic and hydrophilic nanoparticles were delivered from nanoaerosol using electrodeposition method. Grazing incidence diffraction, X-ray reflectivity, and X-ray standing wave measurements allow to monitor the changes in molecular organization of lipid monolayer and to locate the position of gold nanoparticles. X-ray experiments were performed over a period of 9-14 h. The obtained results evidenced that, on a long time scale, the deposition of nanoparticles, even at low doses, can induce pronounced alterations in lipid monolayer. The presented data can help to elucidate the mechanism of pulmonary translocation of inhaled nanoparticles that is of special interest for biomedical investigations of potential risk of nanoaerosols for human health.
Collapse
Affiliation(s)
- A V Rogachev
- National Research Center Kurchatov Institute, National Research Center Kurchatov Institute, Moscow, 123182 Russia
| | - N N Novikova
- National Research Center Kurchatov Institute, National Research Center Kurchatov Institute, Moscow, 123182 Russia
| | - M V Kovalchuk
- National Research Center Kurchatov Institute, National Research Center Kurchatov Institute, Moscow, 123182 Russia
| | - Yu N Malakhova
- National Research Center Kurchatov Institute, National Research Center Kurchatov Institute, Moscow, 123182 Russia
| | - O V Konovalov
- ESRF─The European Synchron Radiation Facility, 38043 Grenoble, France
| | - N D Stepina
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre, "Crystallography and Photonics″, Russian Academy of Sciences, Moscow, 119333 Russia
| | - E A Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Russia
| | - I L Kanev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Russia
| | - Yu M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Russia
| | - S N Yakunin
- National Research Center Kurchatov Institute, National Research Center Kurchatov Institute, Moscow, 123182 Russia
| |
Collapse
|
27
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
28
|
Waller J, DeStefano K, Chiu B, Jang I, Cole Y, Agyemang C, Miao T, Shah J, Martin C, Umair M. An update on nanoparticle usage in breast cancer imaging. NANO SELECT 2022. [DOI: 10.1002/nano.202100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Joseph Waller
- Drexel University College of Medicine Philadelphia USA
| | | | | | | | - Yonesha Cole
- Drexel University College of Medicine Philadelphia USA
| | | | - Tyler Miao
- University of California Los Angeles USA
| | - Jaffer Shah
- Medical Research Center Kateb University Kabul Afghanistan
- New York State Department of Health New York USA
| | | | | |
Collapse
|
29
|
Li H, Sun Y, Gao LL, Tang YF, Zhao Z. The Treatment of Human Colon Xenografts Tumor in Mice with Platinum Nanosphere-5-Fluorouracil-Bovine Albumin. J Biomed Nanotechnol 2022; 18:778-787. [PMID: 35715920 DOI: 10.1166/jbn.2022.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Because 5-fluorouracil (FLU) has side effects in cancer treatment, the use of FLU in therapeutic activities is limited. To overcome this challenge, the use of nano-platforms for its targeting is f great interest in biomedical fields. For this purpose, to reduce the FLU toxicity and improve the its efficacy, platinum nanospheres (PtNS) with anti-cancer properties were used. After producing PtNS by hydrothermal method and loading FLU and bovine albumin (bAL) (PtNS-FLU-bAL), its physicochemical properties were investigated. After evaluating the drug release capability, the toxicity of PtNS-FLU-bAL on HCT-116 cells was assessed by MTT and flow-cytometry. Also, the effects of the nanospheres on tumor status, liver and kidney tissues were evaluated. The results indicate uniform size of the PtNS-FLU-bAL (79±2.04 nm) with spherical shape, loading of more than 50% of the FLU (in the ratio of 2:1 FLU to PtNS-bAL), optimal release of the FLU from the PtNS-FLU-bAL (83.1% in pH = 6), and the high toxicity of the PtNS-FLU-bAL on HCT-116 cells. Also, the toxicity mechanism indicated more apoptosis induction by increasing the expression of TNF-α, Bax, Fas, and Caspase-3 genes for PtNS-FLU-bAL compared to the free FLU. Moreover, the results showed a higher FLU concentration in cancerous tissue and a 1.5-fold reduction in tumor growth by the PtNS-FLU-bAL compared to the free FLU. Overall, the results show that the PtNS-FLU-bAL can enhance the success of colorectal cancer treatment effectively and safely.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yi Sun
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Li-Li Gao
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yong-Feng Tang
- Department of Pathology, Nanjing Medical University, Affiliated Nanjing Maternity and Child Health Care Hospital, Jiangsu, Nanjing 210004, China
| | - Zheng Zhao
- Department of Oncology, Shaanxi Cancer Hospital, Xian 710061, China
| |
Collapse
|
30
|
Torres-Ferrer LR, López-Romero JM, Mendez-Nonell J, Rivas-Arreola MJ, Moreno-Ríos M, Ávila-Dávila EO, Prokhorov E, Kovalenko Y, Zárate-Triviño DG, Revilla-Vazquez JR, Meraz-Rios MA, Luna-Barcenas G. Tuning HAuCl4/Sodium Citrate Stoichiometry to Fabricate Chitosan-Au Nanocomposites. Polymers (Basel) 2022; 14:polym14040788. [PMID: 35215700 PMCID: PMC8879739 DOI: 10.3390/polym14040788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Nanocomposite engineering of biosensors, biomaterials, and flexible electronics demand a highly tunable synthesis of precursor materials to achieve enhanced or desired properties. However, this process remains limited due to the need for proper synthesis-property strategies. Herein, we report on the ability to synthesize chitosan-gold nanocomposite thin films (CS/AuNP) with tunable properties by chemically reducing HAuCl4 in chitosan solutions and different HAuCl4/sodium citrate molar relationships. The structure, electrical, and relaxation properties of nanocomposites have been investigated as a function of HAuCl4/sodium citrate molar relation. It was shown that gold particle size, conductivity, Vogel temperature (glass transition), and water content strongly depend upon HAuCl4/sodium citrate relationships. Two relaxation processes have been observed in nanocomposites; the α-relaxation process, related to a glass transition in wet CS/AuNP films, and the σ-relaxation related to the local diffusion process of ions in a disordered system. The ability to fine-tune both α- and σ-relaxations may be exploited in the proper design of functional materials for biosensors, biomaterials, and flexible electronics applications.
Collapse
Affiliation(s)
- Luis R. Torres-Ferrer
- Nanosciences & Nanotechnology Program, Cinvestav Zacatenco, Ciudad de Mexico 07360, Mexico;
| | | | | | - Maria J. Rivas-Arreola
- Department of Sciences & Engineering, Universidad Iberoamericana, San Andrés Cholula 72820, Mexico;
| | - Marisa Moreno-Ríos
- Department of Postgraduates Studies and Investigation, Tecnologico Nacional de Mexico, Instituto Tecnológico de Pachuca, Pachuca 42080, Mexico; (M.M.-R.); (E.O.Á.-D.)
| | - Erika O. Ávila-Dávila
- Department of Postgraduates Studies and Investigation, Tecnologico Nacional de Mexico, Instituto Tecnológico de Pachuca, Pachuca 42080, Mexico; (M.M.-R.); (E.O.Á.-D.)
| | - Evgeny Prokhorov
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
| | - Yuriy Kovalenko
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
| | - Diana G. Zárate-Triviño
- Immunology and virology Laboratory, Universidad Autónoma de Nuevo León, Monterrey 64450, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Javier R. Revilla-Vazquez
- Department of Engineering & Technology, Division of Chemical Sciences, FES-Cuautitlan, Universidad Nacional Autónoma de Mexico, Cuatitlan Izcalli 54740, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Marco A. Meraz-Rios
- Department of Molecular Biomedicine, Cinvestav Zacatenco, Ciudad de Mexico 07360, Mexico
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| | - Gabriel Luna-Barcenas
- Cinvestav Querétaro, Querétaro 76230, Mexico; (J.M.L.-R.); (E.P.); (Y.K.)
- Correspondence: (D.G.Z.-T.); (J.R.R.-V.); (M.A.M.-R.); (G.L.-B.)
| |
Collapse
|
31
|
Martín-Barreiro A, de Marcos S, Galbán J. Gold nanoparticle formation as an indicator of enzymatic methods: colorimetric l-phenylalanine determination. Anal Bioanal Chem 2022; 414:2641-2649. [PMID: 35064303 PMCID: PMC8888390 DOI: 10.1007/s00216-022-03900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
An enzymatic-colorimetric method has been developed based on the reaction between l-phenylalanine (l-Phe) and the l-amino acid oxidase (LAAO) in the presence of Au(III), which has led to the formation of gold nanoparticles. The intensity of the localized surface plasmon resonance (LSPR) band of the generated nanoparticles (550 nm) can be related to the concentration of l-Phe in the sample. The mechanism of the LAAO-l-Phe enzyme reaction in the presence of Au(III) has been studied through the evaluation and optimization of experimental conditions. These studies have reinforced the hypothesis that the catalytic center of the enzyme helps the Au(III) reduction and, thanks to the protein, the Au0 form is stabilized as gold nanoparticles (AuNPs). In the calibration study, a sigmoidal relationship between the concentration of the substrate and the LSPR of the nanoparticles was observed. The linearization of the signal has allowed the determination of l-Phe in the range from 17 to 500 µM with an RSD% (150 μM) of 4.8% (n = 3). The method is free of other amino acid interference normally found in blood plasma. These highly competitive results open the possibility of further development of a rapid method for l-Phe determination based on colorimetry.
Collapse
Affiliation(s)
- Alba Martín-Barreiro
- Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain
| | - Susana de Marcos
- Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain.
| | - Javier Galbán
- Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
32
|
Zhou T, Li M, Li N, Dong Y, Liu D, Hu X, Xie Z, Qu D, Li X, Zhang C. Ultrasensitive electrochemical sensor for mercury ion detection based on molybdenum selenide and Au nanoparticles via thymine-Hg 2+-thymine coordination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:278-285. [PMID: 34985058 DOI: 10.1039/d1ay01750k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasensitive and specific-selection electrochemical sensor was constructed for Hg2+ detection based on Au nanoparticles and molybdenum selenide (Au NPs@MoSe2) as well as the thymine-Hg2+-thymine (T-Hg2+-T) coordination. Herein, Au NPs@MoSe2 not only could improve the sensitivity due to the large surface area and good electrical conductivity but also offered more sites to immobilize thiol-labeled T-rich hairpin DNA probes (P-1), which has a specific recognition for Hg2+ and methylene blue-labeled T-rich DNA probes (MB-P). When Hg2+ and MB-P exist, P-1 and MB-P can form a stable T-Hg2+-T complex. Then, methylene blue can be close to the electrode and detectable via differential pulse voltammetry (DPV). Benefiting from the specific recognition of T-Hg2+-T and the merits of Au NPs and MoSe2, the fabricated biosensor presented an ultrasensitive and highly selective performance. The DPV responses had a positive linear relationship with Hg2+ concentrations over ten orders of magnitude from 1.0 × 10-16 to 1.0 × 10-7 mol L-1. The detection limit was down to 1.1 × 10-17 mol L-1. Moreover, the developed sensor exhibited a promising application for trace Hg2+determination in water samples.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Meijuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Na Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yulin Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Dan Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Xiaosong Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Zhizhong Xie
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Deyu Qu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
33
|
Kojima C, Kanetsuki A, Nakajima Y, Kawano T, Takatsuka K, Tanaka S, Haraguchi Y, Matsuura K, Shimizu T. Cell detachment from monolayer- and bilayer-type gold nanoparticle-containing collagen coatings by visible laser irradiation for cell sorting applications. Polym J 2021. [DOI: 10.1038/s41428-021-00527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Laser-triggered combination therapy by iron sulfide-doxorubicin@functionalized nanozymes for breast cancer therapy. J Nanobiotechnology 2021; 19:344. [PMID: 34706736 PMCID: PMC8554880 DOI: 10.1186/s12951-021-01023-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Background The use of magnetic nanozymes (NZs) with the ability to synchronize gas therapy through photodynamic and chemotherapy in the treatment of breast cancer has received much attention. Results Hence, in this study, we designed a bovine lactoferrin-coated iron sulfide NZs containing doxorubicin (abbreviated as: FeS-Dox@bLf NZs) by wet-chemical synthesis method. Then, the physicochemical characteristics of synthesized NZs were explored by several methods. Also, the level of Fe2+, H2S and Dox releases from FeS-Dox@Lf NZs. Also, the cytotoxic effects of FeS-Dox@Lf NZs were investigated by cellular assays. After intravenous injections of NZs and laser irradiation, significant effects of FeS-Dox@Lf NZs on mice weight and tumor status were observed. Afterwards, not only the distribution of Dox in the body was examined by fluorescent, but also the time of Fe clearance and the amount of Dox and Fe retention in vital tissues were determined. The findings confirm that FeS-Dox@Lf NZs, in addition to targeted drug distribution in tumor tissue, resulted in superior therapeutic performance compared to free Dox due to reduced Dox side effects in vital tissues, and increased level of free radicals in 4T1 cells. Conclusion Overall, FeS-Dox@Lf NZs with the ability to synchronize chemotherapy and gas therapy raised hopes for more effective treatment of breast cancer. Graphic abstract ![]()
Collapse
|
35
|
Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control Release 2021; 338:341-357. [PMID: 34428480 DOI: 10.1016/j.jconrel.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.
Collapse
|
36
|
Kadowaki M, Yokota H, Imanaka H, Ishida N, Imamura K. Inhibiting Au nanoparticle aggregation in freeze-thawing by presence of various additives. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Relaxation Phenomena in Chitosan-Au Nanoparticle Thin Films. Polymers (Basel) 2021; 13:polym13193214. [PMID: 34641030 PMCID: PMC8512657 DOI: 10.3390/polym13193214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Chitosan–gold nanoparticle (CS/AuNP) thin films were synthesized through the chemical reduction of HAuCl4 in sodium citrate/chitosan solutions. The dielectric and dynamic mechanical behaviors of CS/AuNP films have been investigated as a function of moisture and HAuCl4 content. Two relaxation processes in the nanocomposites have been observed. The α-relaxation process is related to a glass transition in wet CS/AuNP films. However, in dry composites (with 0.2 wt% of moisture content), the glass transition vanished. A second relaxation process was observed from 70 °C to the onset of thermal degradation (160 °C) in wet films and from 33 °C to the onset of degradation in dry films. This relaxation is identified as the σ-relaxation and may be related to the local diffusion process of ions between high potential barriers in disordered systems. The α- and σ-relaxation processes are affected by the HAuCl4 content of the solutions from which films were obtained because of the interaction between CS, sodium succinate, and gold nanoparticles. With about 0.6 mM of HAuCl4, the conductivity of both wet and dry films sharply increased by six orders, corresponding to the percolation effect, which may be related to the appearance of a conductivity pathway between AuNPs, HAuCl4, and NaCl.
Collapse
|
38
|
Pohanka M. Current Biomedical and Diagnostic Applications of Gold Micro and Nanoparticles. Mini Rev Med Chem 2021; 21:1085-1095. [PMID: 32744971 DOI: 10.2174/1389557520666200730155616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Production of particles and their adaptation in the pharmacology became an object of interest, and they are the currently introduced therapies based on the use of micro and nanoparticles. The use of gold particles is not an exception. This review has focused on the application of gold micro and nanoparticles in pharmacology and biomedicine. The particles can be used for diagnosis respective theranostic of cancer, rheumatoid arthritis and as antimicrobial means. Besides these applications, specifications of gold, gold particles, and colloidal gold manufacturing and their comparison with the solid gold, are described as well. This review is based on a survey of actual scientific literature.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
39
|
Mi X, Zhang T, Zhang B, Ji M, Kang B, Kang C, Fu Z, Zhang Z, Zheng H. Binary Surfactant-Mediated Tunable Nanotip Growth on Gold Nanoparticles and Applications in Photothermal Catalysis. Front Chem 2021; 9:699548. [PMID: 34307300 PMCID: PMC8294035 DOI: 10.3389/fchem.2021.699548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmonic nanostructures with sharp tips are widely used for optical signal enhancement because of their strong light-confining abilities. These structures have a wide range of potential applications, for example, in sensing, bioimaging, and surface-enhanced Raman scattering. Au nanoparticles, which are important plasmonic materials with high photothermal conversion efficiencies in the visible to near-infrared region, have contributed greatly to the development of photothermal catalysis. However, the existing methods for synthesizing nanostructures with tips need the assistance of poly(vinylpyrrolidone), thiols, or biomolecules. This greatly hinders signal detection because of stubborn residues. Here, we propose an efficient binary surfactant-mediated method for controlling nanotip growth on Au nanoparticle surfaces. This avoids the effects of surfactants and can be used with other Au nanostructures. The Au architecture tip growth process can be controlled well by adjusting the ratio of hexadecyltrimethylammonium bromide to hexadecyltrimethylammonium chloride. This is due to the different levels of attraction between Br-/Cl- and Au3+ ions. The surface-enhanced Raman scattering and catalytic abilities of the synthesized nanoparticles with tips were evaluated by electromagnetic simulation and photothermal catalysis experiments (with 4-nitrothiophenol). The results show good potential for use in surface-enhanced Raman scattering applications. This method provides a new strategy for designing plasmonic photothermal nanostructures for chemical and biological applications.
Collapse
Affiliation(s)
- Xiaohu Mi
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Tingting Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Baobao Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Min Ji
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Bowen Kang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Chao Kang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zhengkun Fu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Hairong Zheng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
40
|
He JS, Liu SJ, Zhang YR, Chu XD, Lin ZB, Zhao Z, Qiu SH, Guo YG, Ding H, Pan YL, Pan JH. The Application of and Strategy for Gold Nanoparticles in Cancer Immunotherapy. Front Pharmacol 2021; 12:687399. [PMID: 34163367 PMCID: PMC8215714 DOI: 10.3389/fphar.2021.687399] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy of malignant tumor is a verified and crucial anti-tumor strategy to help patients with cancer for prolonging prognostic survival. It is a novel anticancer tactics that activates the immune system to discern and damage cancer cells, thereby prevent them from proliferating. However, immunotherapy still faces many challenges in view of clinical efficacy and safety issues. Various nanomaterials, especially gold nanoparticles (AuNPs), have been developed not only for anticancer treatment but also for delivering antitumor drugs or combining other treatment strategies. Recently, some studies have focused on AuNPs for enhancing cancer immunotherapy. In this review, we summarized how AuNPs applicated as immune agents, drug carriers or combinations with other immunotherapies for anticancer treatment. AuNPs can not only act as immune regulators but also deliver immune drugs for cancer. Therefore, AuNPs are candidates for enhancing the efficiency and safety of cancer immunotherapy.
Collapse
Affiliation(s)
- Jia-Shuai He
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shi-Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi-Ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Dong Chu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng-Bin Lin
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sheng-Hui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan-Guan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing-Hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Nagababu U, Shanmukha Kumar J, Rafi Shaik M, Sharaf MA. Facile synthesis, physiochemical characterization and bio evaluation of sulfadimidine capped cobalt nanoparticles. Saudi J Biol Sci 2021; 28:2168-2174. [PMID: 33935564 PMCID: PMC8071960 DOI: 10.1016/j.sjbs.2021.02.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Due to their less expensive, environment friendly nature, and their natural abundance of cobalt have attained more significant attention for the synthesis of cobalt nanoparticles. In the present study, we report the facile synthesis of cobalt nanoparticles using a straight forward chemical reduction approach of cobalt chloride with sodium borohydride and capping of sulfadimidine. sulfadimidine has strong capping eligibility on the surface of nanoparticles due to its chemical stability and is an applicable as stabilizer due to the existence of an amine bond. The as-synthesized sulfadimidine stabilized cobalt nanoparticles (Co-SD NPs) were characterized by using various spectroscopic and microscopic analysis like UV-Visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), High-Resolution Transmission electron microscopy (HR-TEM), and Fourier-transform infrared spectroscopy (FT-IR). The XRD analysis exhibited the triclinic crystal structure of the as-synthesized cobalt nanoparticles and FT-IR analysis confirmed the capping of sulfadimidine via monodentate interaction. The HR-TEM analysis displayed the size of the cobalt nanoparticles approximately 3-5 nm. The antibacterial properties of the sulfadimidine stabilized cobalt nanoparticles (Co-SD NPs) were tested against various bacterial strains such as Klebsiella pneumonia (KP), Escherichia coli (EC) and Pseudomonas syringae (PS) by using agar disc diffusion approach. The results of sulfadimidine capped cobalt nanoparticles displayed the enhanced biological properties against the tested gram-negative bacteria.
Collapse
Affiliation(s)
- U. Nagababu
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
| | - J.V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A.F. Sharaf
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
42
|
Nie S, Lu J, Huang Y, Li QA. Zonisamide-loaded triblock copolymer nanomicelle as a controlled drug release platform for the treatment of oxidative stress -induced spinal cord neuronal damage. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Saccorhiza polyschides used to synthesize gold and silver nanoparticles with enhanced antiproliferative and immunostimulant activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111960. [PMID: 33812588 DOI: 10.1016/j.msec.2021.111960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Over the last years, there has been an increasing trend towards the use of environmentally friendly processes to synthesize nanomaterials. In the case of nanomedicine, the use of bionanofactories with associated biological properties, such as seaweed, has emerged as a promising field of work due to the possibility they open for both the preservation of those properties in the nanomaterials synthesized and/or the reduction of their toxicity. In the present study, gold (Au@SP) and silver (Ag@SP) nanoparticles were synthesized using an aqueous extract of Saccorhiza polyschides (SP). Several techniques showed that the nanoparticles formed were spherical and stable, with mean diameters of 14 ± 2 nm for Au@SP and 15 ± 3 nm for Ag@SP. The composition of the biomolecules in the extract and the nanoparticles were also analyzed. The analyses performed indicate that the extract acts as a protective medium, with the particles embedded in it preventing aggregation and coalescence. Au@SP and Ag@SP showed superior immunostimulant and antiproliferative activity on immune and tumor cells, respectively, to that of the SP extract. Moreover, the nanoparticles were able to modulate the release of reactive oxygen species depending on the concentration. Hence, both nanoparticles have a significant therapeutic potential for the treatment of cancer or in immunostimulant therapy.
Collapse
|
44
|
Mohajer F, Mohammadi Ziarani G, Badiei A. New advances on Au-magnetic organic hybrid core-shells in MRI, CT imaging, and drug delivery. RSC Adv 2021; 11:6517-6525. [PMID: 35423209 PMCID: PMC8694923 DOI: 10.1039/d1ra00415h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Magnetic nanoparticles have been widely studied for various scientific and technological applications such as magnetic storage media, contrast agents for magnetic resonance imaging (MRI), biolabelling, separation of biomolecules, and magnetic-targeted drug delivery. A new strategy on Au-magnetic nano-hybrid core-shells was applied in MRI, CT imaging, and drug delivery, which has been received much attention nowadays. Herein, the designing of different magnetic core-shells with Au in MRI and cancer treatment is studied.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Department of Physics and Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575
| | - Ghodsi Mohammadi Ziarani
- Department of Physics and Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| |
Collapse
|
45
|
Sharifi M, Hasan A, Haghighat S, Taghizadeh A, Attar F, Bloukh SH, Edis Z, Xue M, Khan S, Falahati M. Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: Challenges and opportunities. Talanta 2021; 223:121704. [PMID: 33303154 PMCID: PMC7521920 DOI: 10.1016/j.talanta.2020.121704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
The rapid outbreak of coronavirus disease 2019 (COVID-19) around the world is a tragic and shocking event that demonstrates the unpreparedness of humans to develop quick diagnostic platforms for novel infectious diseases. In fact, statistical reports of diagnostic tools show that their accuracy, specificity and sensitivity in the detection of COVID hampered by some challenges that can be eliminated by using nanoparticles (NPs). In this study, we aimed to present an overview on the most important ways to diagnose different kinds of viruses followed by the introduction of nanobiosensors. Afterward, some methods of COVID-19 detection such as imaging, laboratory and kit-based diagnostic tests are surveyed. Furthermore, nucleic acids/protein- and immunoglobulin (Ig)-based nanobiosensors for the COVID-19 detection infection are reviewed. Finally, current challenges and future perspective for the development of diagnostic or monitoring technologies in the control of COVID-19 are discussed to persuade the scientists in advancing their technologies beyond imagination. In conclusion, it can be deduced that as rapid COVID-19 detection infection can play a vital role in disease control and treatment, this review may be of great help for controlling the COVID-19 outbreak by providing some necessary information for the development of portable, accurate, selectable and simple nanobiosensors.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Akbar Taghizadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
46
|
Cheng MHY, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia. Adv Healthc Mater 2021; 10:e2001549. [PMID: 33241672 DOI: 10.1002/adhm.202001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection. Therefore, these approaches can provide a valuable tool for personalized treatment planning against this hallmark of aggressive cancers. Many small optical molecular probes can enable analyte triggered response and their photophysical properties can also be fine-tuned through structural modification. On the other hand, optical nanoprobes can acquire unique intrinsic optical properties through nanoconfinement as well as enable simultaneous multimodal imaging and drug delivery. Furthermore, nanoprobes provide biological advantages such as improving bioavailability and systemic delivery of the sensor to enhance bioavailability. This review provides a comprehensive overview of the physical, chemical, and biological analytes for cancer hypoxia detection and focuses on discussing the latest nano- and molecular developments in various optical imaging approaches (fluorescence, phosphorescence, and photoacoustic) in vivo. Finally, this review concludes with a perspective toward the potentials of these optical imaging approaches in hypoxia detection and the challenges with molecular and nanotechnology design strategies.
Collapse
Affiliation(s)
- Miffy Hok Yan Cheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network 101 College Street, PMCRT 5–354 Toronto Ontario M5G 1L7 Canada
- Institute of Medical Science University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
47
|
Preparation of a visible light-responsive gold nanoparticle-containing collagen gel microarray for in situ cell separation. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Uptake and Recovery of Gold from Simulated Hydrometallurgical Liquors by Adsorption on Pine Bark Tannin Resin. WATER 2020. [DOI: 10.3390/w12123456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recovery of critical and precious metals from waste electrical and electronic equipment (WEEE) is an environmental and economic imperative. Biosorption has been considered a key technology for the selective extraction of gold from hydrometallurgical liquors obtained in the chemical leaching of e-waste. In this work, the potential of tannin resins prepared from Pinus pinaster bark to sequester and recover gold(III) from hydrochloric acid and aqua regia solutions was assessed. Equilibrium isotherms were experimentally determined and maximum adsorption capacities of 343 ± 38 and 270 ± 19 mg g−1 were found for Au uptake from HCl and HCl/HNO3 (3:1 v/v) solutions containing 1.0 mol L−1 H+. Higher levels of acidity (and chloride ligands) significantly impaired the adsorption of gold from both kinds of leaching solutions, especially in the aqua regia system, in which the adsorbent underperformed. Pseudo-first and pseudo-second order models successfully described the kinetic data. The adsorbent presented high selectivity towards gold. Actually, in simulated aqua regia WEEE liquors, Au(III) was extensively adsorbed, compared to Cu(II), Fe(III), Ni(II), Pd(II), and Zn(II). In three adsorption–desorption cycles, the adsorption capacity of the regenerated adsorbent moderately decreased (19%), although the gold elution in acidic thiourea solution had been quite limited. Future research is needed to examine more closely the elution of gold from the exhausted adsorbents. The results obtained in this work show good perspectives as regards the application of pine bark tannin resins for the selective extraction of Au from electronic waste leach liquors.
Collapse
|
49
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, Falahati M. Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:6460-6477. [PMID: 33320615 DOI: 10.1021/acsbiomaterials.0c00955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, an increasing rate of mortality due to myocardial infarction (MI) has led to the development of nanobased platforms, especially gold nanoparticles (AuNPs), as promising nanomaterials for diagnosis and treatment of MI. These promising NPs have been used to develop different nanobiosensors, mainly optical sensors for early detection of biomarkers as well as biomimetic/bioinspired platforms for cardiac tissue engineering (CTE). Therefore, in this Review, we presented an overview on the potential application of AuNPs as optical (surface plasmon resonance, colorimetric, fluorescence, and chemiluminescence) nanobiosensors for early diagnosis and prognosis of MI. On the other hand, we discussed the potential application of AuNPs either alone or with other NPs/polymers as promising three-dimensional (3D) scaffolds to regulate the microenvironment and mimic the morphological and electrical features of cardiac cells for potential application in CTE. Furthermore, we presented the challenges and ongoing efforts associated with the application of AuNPs in the diagnosis and treatment of MI. In conclusion, this Review may provide outstanding information regarding the development of AuNP-based technology as a promising platform for current MI treatment approaches.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Centre (BRC), Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj 14155-6139, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|