1
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Min R, Zhang D, He M, Chen J, Yi X, Zhuang Y. Stress-induced premature senescence in high five cell cultures: a principal factor in cell-density effects. BIORESOUR BIOPROCESS 2024; 11:107. [PMID: 39585490 PMCID: PMC11589019 DOI: 10.1186/s40643-024-00824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The Baculovirus Expression Vector System (BEVS) is highly valued in vaccine development, protein engineering, and drug metabolism research due to its biosafety, operational convenience, rapid scalability, and capacity for self-assembling virus-like particles. However, increasing cell density at the time of inoculation severely compromises the production capacity of BEVS, resulting in the "cell density effect". This study aimed to explore the mechanisms of the cell density effect through time-series analysis of transcriptomes and proteomes, with the goal of overcoming or alleviating the decline in productivity caused by increased cell density. The dynamic analysis of the omics of High Five cells under different CCI (cell density at infection) conditions showed that the impact of the "cell density effect" increased over time, particularly affecting genetic information processing, error repair, protein expression regulation, and material energy metabolism. Omics analysis of the growth stage of High Five cells showed that after 36 h of culture (cell density of about 1 × 106 cells/mL), the expression of ribosome-related proteins decreased, resulting in a rapid decrease in protein synthesis capacity, which was a key indicator of cell aging. Senescence verification experiments showed that cells began to show obvious early aging characteristics after 36 h, resulting in a decrease in the host cell's ability to resist stress. Overexpression and siRNA inhibition studies showed that the ndufa12 gene was a potential regulatory target for restricting the "cell density effect". Our results suggested that stress-induced premature senescence in High Five cell cultures, resulting in reduced energy metabolism and protein synthesis capabilities, was a critical factor contributing to cell density effects, and ultimately affecting virus production. In conclusion, this study provided new insights into managing virus production limitations due to cell density effects and offered innovative strategies to mitigate the adverse effects of cellular aging in biomanufacturing technologies.
Collapse
Affiliation(s)
- Rui Min
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| | - Dahe Zhang
- Womei Biology Company, Limited, Suzhou, China
| | - Mingzhe He
- Womei Biology Company, Limited, Suzhou, China
| | - Jingyuan Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd, Shanghai, 200237, China
| |
Collapse
|
3
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
4
|
Mathez G, Cagno V. Small Molecules Targeting Viral RNA. Int J Mol Sci 2023; 24:13500. [PMID: 37686306 PMCID: PMC10487773 DOI: 10.3390/ijms241713500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The majority of antivirals available target viral proteins; however, RNA is emerging as a new and promising antiviral target due to the presence of highly structured RNA in viral genomes fundamental for their replication cycle. Here, we discuss methods for the identification of RNA-targeting compounds, starting from the determination of RNA structures either from purified RNA or in living cells, followed by in silico screening on RNA and phenotypic assays to evaluate viral inhibition. Moreover, we review the small molecules known to target the programmed ribosomal frameshifting element of SARS-CoV-2, the internal ribosomal entry site of different viruses, and RNA elements of HIV.
Collapse
Affiliation(s)
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Ahmed MR, Du Z. Molecular Interaction of Nonsense-Mediated mRNA Decay with Viruses. Viruses 2023; 15:v15040816. [PMID: 37112798 PMCID: PMC10141005 DOI: 10.3390/v15040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
The virus–host interaction is dynamic and evolutionary. Viruses have to fight with hosts to establish successful infection. Eukaryotic hosts are equipped with multiple defenses against incoming viruses. One of the host antiviral defenses is the nonsense-mediated mRNA decay (NMD), an evolutionarily conserved mechanism for RNA quality control in eukaryotic cells. NMD ensures the accuracy of mRNA translation by removing the abnormal mRNAs harboring pre-matured stop codons. Many RNA viruses have a genome that contains internal stop codon(s) (iTC). Akin to the premature termination codon in aberrant RNA transcripts, the presence of iTC would activate NMD to degrade iTC-containing viral genomes. A couple of viruses have been reported to be sensitive to the NMD-mediated antiviral defense, while some viruses have evolved with specific cis-acting RNA features or trans-acting viral proteins to overcome or escape from NMD. Recently, increasing light has been shed on the NMD–virus interaction. This review summarizes the current scenario of NMD-mediated viral RNA degradation and classifies various molecular means by which viruses compromise the NMD-mediated antiviral defense for better infection in their hosts.
Collapse
Affiliation(s)
| | - Zhiyou Du
- Correspondence: ; Tel.: +86-571-86843195
| |
Collapse
|
6
|
Xu Z, Yang D, Wang L, Demongeot J. Statistical analysis supports UTR (untranslated region) deletion theory in SARS-CoV-2. Virulence 2022; 13:1772-1789. [PMID: 36217240 PMCID: PMC9553139 DOI: 10.1080/21505594.2022.2132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022] Open
Abstract
It was noticed that the mortality rate of SARS-CoV-2 infection experienced a significant declination in the early stage of the epidemic. We suspect that the sharp deterioration of virus toxicity is related to the deletion of the untranslated region (UTR) of the virus genome. It was found that the genome length of SARS-CoV-2 engaged a significant truncation due to UTR deletion after a mega-sequence analysis. Sequence similarity analysis further indicated that short UTR strains originated from its long UTR ancestors after an irreversible deletion. A good correlation was discovered between genome length and mortality, which demonstrated that the deletion of the virus UTR significantly affected the toxicity of the virus. This correlation was further confirmed in a significance analysis of the genetic influence on the clinical outcomes. The viral genome length of hospitalized patients was significantly more extensive than that of asymptomatic patients. In contrast, the viral genome length of asymptomatic was considerably longer than that of ordinary patients with symptoms. A genome-level mutation scanning was performed to systematically evaluate the influence of mutations at each position on virulence. The results indicated that UTR deletion was the primary driving force in alternating virus virulence in the early evolution. In the end, we proposed a mathematical model to explain why this UTR deletion was not continuous.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, China
| | - Dongying Yang
- Department of Medicine, Dezhou University, Dezhou, China
| | - Liyan Wang
- Department of Life Science, Dezhou University, Dezhou, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), La Tronche, France
| |
Collapse
|
7
|
Exogenous Rubella Virus Capsid Proteins Enhance Virus Genome Replication. Pathogens 2022; 11:pathogens11060683. [PMID: 35745537 PMCID: PMC9228353 DOI: 10.3390/pathogens11060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Enhanced replication of rubella virus (RuV) and replicons by de novo synthesized viral structural proteins has been previously described. Such enhancement can occur by viral capsid proteins (CP) alone in trans. It is not clear whether the CP in the virus particles, i.e., the exogenous CP, modulate viral genome replication. In this study, we found that exogenous RuV CP also enhanced viral genome replication, either when used to package replicons or when mixed with RNA during transfection. We demonstrated that CP does not affect the translation efficiency from genomic (gRNA) or subgenomic RNA (sgRNA), the intracellular distribution of the non-structural proteins (NSP), or sgRNA synthesis. Significantly active RNA replication was observed in transfections supplemented with recombinant CP (rCP), which was supported by accumulated genomic negative-strand RNA. rCP was found to restore replication of a few mutants in NSP but failed to fully restore replicons known to have defects in the positive-strand RNA synthesis. By monitoring the amount of RuV RNA following transfection, we found that all RuV replicon RNAs were well-retained in the presence of rCP within 24 h of post-transfection, compared to non-RuV RNA. These results suggest that the exogenous RuV CP increases efficiency of early viral genome replication by modulating the stage(s) prior to and/or at the initiation of negative-strand RNA synthesis, possibly through a general mechanism such as protecting viral RNA.
Collapse
|
8
|
Aguilar G, Pagano N, Manuelidis L. Reduced Expression of Prion Protein With Increased Interferon-β Fail to Limit Creutzfeldt-Jakob Disease Agent Replication in Differentiating Neuronal Cells. Front Physiol 2022; 13:837662. [PMID: 35250638 PMCID: PMC8895124 DOI: 10.3389/fphys.2022.837662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Immortalized uninfected septal (SEP) neurons proliferate but after physiological mitotic arrest they express differentiated neuronal characteristics including enhanced cell-to-cell membrane contacts and ≥ 8 fold increases in host prion protein (PrP). We compared proliferating uninfected and Creutzfeldt-Jakob Disease (CJD) agent infected cells with their arrested counterparts over 33 days by quantitative mRNA and protein blot analyses. Surprisingly, uninfected arrested cells increased interferon-β (IFN-β) mRNA by 2.5–8 fold; IFN-β mRNA elevations were not previously associated with neuronal differentiation. SEP cells with high CJD infectivity titers produced a much larger 40–68-fold increase in IFN-β mRNA, a classic host anti-viral response that is virucidal for RNA but not DNA viruses. High titers of CJD agent also induced dramatic decreases in host PrP, a protein needed for productive agent replication. Uninfected arrested cells produced large sustained 20–30-fold increases in PrP mRNA and protein, whereas CJD arrested cells showed only transient small 5-fold increases in PrP. A > 10-fold increase in infectivity, but not PrP misfolding, induced host PrP reductions that can limit CJD agent replication. In contrast to neuronal lineage cells, functionally distinct migratory microglia with high titers of CJD agent do not induce an IFN-β mRNA response. Because they have 1/50th of PrP of an average brain cell, microglia would be unable to produce the many new infectious particles needed to induce a large IFN-β response by host cells. Instead, microglia and related cells can be persistent reservoirs of infection and spread. Phase separations of agent-associated molecules in neurons, microglia and other cell types can yield new insights into the molecular structure, persistent, and evasive behavior of CJD-type agents.
Collapse
|
9
|
Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. eLife 2021; 10:e58342. [PMID: 34085923 PMCID: PMC8192121 DOI: 10.7554/elife.58342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
RNA abundance is generally sensitive to perturbations in decay and synthesis rates, but crosstalk between RNA polymerase II transcription and cytoplasmic mRNA degradation often leads to compensatory changes in gene expression. Here, we reveal that widespread mRNA decay during early apoptosis represses RNAPII transcription, indicative of positive (rather than compensatory) feedback. This repression requires active cytoplasmic mRNA degradation, which leads to impaired recruitment of components of the transcription preinitiation complex to promoter DNA. Importin α/β-mediated nuclear import is critical for this feedback signaling, suggesting that proteins translocating between the cytoplasm and nucleus connect mRNA decay to transcription. We also show that an analogous pathway activated by viral nucleases similarly depends on nuclear protein import. Collectively, these data demonstrate that accelerated mRNA decay leads to the repression of mRNA transcription, thereby amplifying the shutdown of gene expression. This highlights a conserved gene regulatory mechanism by which cells respond to threats.
Collapse
Affiliation(s)
- Christopher Duncan-Lewis
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Ella Hartenian
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Valeria King
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology; University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, BerkeleyBerkeleyUnited States
| |
Collapse
|
10
|
Carmi G, Gorohovski A, Mukherjee S, Frenkel-Morgenstern M. Non-optimal codon usage preferences of coronaviruses determine their promiscuity for infecting multiple hosts. FEBS J 2021; 288:5201-5223. [PMID: 33756061 DOI: 10.1111/febs.15835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses. Based on a codon usage preference score, promiscuous viruses were shown to significantly employ nonoptimal codons, namely codons that involve 'wobble' binding to anticodons, as compared to single-host viruses. The codon adaptation index (CAI) and the effective number of codons (ENC) were calculated for all viruses and hosts. Promiscuous viruses were less adapted hosts vs single-host viruses (P-value = 4.392e-11). All coronaviruses exploit nonoptimal codons to infect multiple hosts. We found that nonoptimal codon preferences at the beginning of viral coding sequences enhance the translational efficiency of viral proteins within the host. Finally, coronaviruses lack endogenous RNA degradation motifs to a significant degree, thereby increasing viral mRNA burden and infection load. To conclude, we found that promiscuously infecting coronaviruses prefer nonoptimal codon usage to remove degradation motifs from their RNAs and to dramatically increase their viral RNA production rates.
Collapse
Affiliation(s)
- Gon Carmi
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,The Data Science Institute, Bar-Ilan University, Ramat Gan, Israel.,The Dangoor Center for Personalized Medicine, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection. Viruses 2021; 13:v13020275. [PMID: 33670092 PMCID: PMC7916891 DOI: 10.3390/v13020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. Mammalian orthoreoviruses are dsRNA-containing viruses whose mRNAs were used as models for early investigations into the mechanisms that underpin the recognition and engagement of eukaryotic mRNAs by host cell ribosomes. However, there remain many unanswered questions and paradoxes regarding translation of reoviral mRNAs in the context of infection. This review summarizes the current state of knowledge about reovirus translation, identifies key unanswered questions, and proposes possible pathways toward a better understanding of reovirus translation.
Collapse
|
12
|
Abstract
Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5′ end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5′ caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5′ cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of Leishmania. IMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5′ caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.
Collapse
|
13
|
Pasin F, Shan H, García B, Müller M, San León D, Ludman M, Fresno DH, Fátyol K, Munné-Bosch S, Rodrigo G, García JA. Abscisic Acid Connects Phytohormone Signaling with RNA Metabolic Pathways and Promotes an Antiviral Response that Is Evaded by a Self-Controlled RNA Virus. PLANT COMMUNICATIONS 2020; 1:100099. [PMID: 32984814 PMCID: PMC7518510 DOI: 10.1016/j.xplc.2020.100099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 05/13/2023]
Abstract
A complex network of cellular receptors, RNA targeting pathways, and small-molecule signaling provides robust plant immunity and tolerance to viruses. To maximize their fitness, viruses must evolve control mechanisms to balance host immune evasion and plant-damaging effects. The genus Potyvirus comprises plant viruses characterized by RNA genomes that encode large polyproteins led by the P1 protease. A P1 autoinhibitory domain controls polyprotein processing, the release of a downstream functional RNA-silencing suppressor, and viral replication. Here, we show that P1Pro, a plum pox virus clone that lacks the P1 autoinhibitory domain, triggers complex reprogramming of the host transcriptome and high levels of abscisic acid (ABA) accumulation. A meta-analysis highlighted ABA connections with host pathways known to control RNA stability, turnover, maturation, and translation. Transcriptomic changes triggered by P1Pro infection or ABA showed similarities in host RNA abundance and diversity. Genetic and hormone treatment assays showed that ABA promotes plant resistance to potyviral infection. Finally, quantitative mathematical modeling of viral replication in the presence of defense pathways supported self-control of polyprotein processing kinetics as a viral mechanism that attenuates the magnitude of the host antiviral response. Overall, our findings indicate that ABA is an active player in plant antiviral immunity, which is nonetheless evaded by a self-controlled RNA virus.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hongying Shan
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maren Müller
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - David San León
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - David H. Fresno
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, 2100 Gödöllő, Hungary
| | - Sergi Munné-Bosch
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Facultad de Biología, Universidad de Barcelona, 08028 Barcelona, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, 46980 Paterna, Spain
| | | |
Collapse
|
14
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Rodriguez W, Macveigh-Fierro D, Miles J, Muller M. Fated for decay: RNA elements targeted by viral endonucleases. Semin Cell Dev Biol 2020; 111:119-125. [PMID: 32522410 PMCID: PMC7276228 DOI: 10.1016/j.semcdb.2020.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
For over a decade, studies of messenger RNA regulation have revealed an unprecedented level of connectivity between the RNA pool and global gene expression. These connections are underpinned by a vast array of RNA elements that coordinate RNA-protein and RNA-RNA interactions, each directing mRNA fate from transcription to translation. Consequently, viruses have evolved an arsenal of strategies to target these RNA features and ultimately take control of the pathways they influence, and these strategies contribute to the global shutdown of the host gene expression machinery known as “Host Shutoff”. This takeover of the host cell is mechanistically orchestrated by a number of non-homologous virally encoded endoribonucleases. Recent large-scale screens estimate that over 70 % of the host transcriptome is decimated by the expression of these viral nucleases. While this takeover strategy seems extraordinarily well conserved, each viral endonuclease has evolved to target distinct mRNA elements. Herein, we will explore each of these RNA structures/sequence features that render messenger RNA susceptible or resistant to viral endonuclease cleavage. By further understanding these targeting and escape mechanisms we will continue to unravel untold depths of cellular RNA regulation that further underscores the integral relationship between RNA fate and the fate of the cell.
Collapse
Affiliation(s)
- William Rodriguez
- Microbiology Department, University of Massachusetts, Amherst, MA, United States
| | | | - Jacob Miles
- Microbiology Department, University of Massachusetts, Amherst, MA, United States
| | - Mandy Muller
- Microbiology Department, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
16
|
Lukhovitskaya N, Ryabova LA. Cauliflower mosaic virus transactivator protein (TAV) can suppress nonsense-mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex. Sci Rep 2019; 9:7042. [PMID: 31065034 PMCID: PMC6504953 DOI: 10.1038/s41598-019-43414-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
During pathogenesis, viruses hijack the host cellular machinery to access molecules and sub-cellular structures needed for infection. We have evidence that the multifunctional viral translation transactivator/viroplasmin (TAV) protein from Cauliflower mosaic virus (CaMV) can function as a suppressor of nonsense-mediated mRNA decay (NMD). TAV interacts specifically with a scaffold protein of the decapping complex VARICOSE (VCS) in the yeast two-hybrid system, and co-localizes with components of the decapping complex in planta. Notably, plants transgenic for TAV accumulate endogenous NMD-elicited mRNAs, while decay of AU-rich instability element (ARE)-signal containing mRNAs are not affected. Using an agroinfiltration-based transient assay we confirmed that TAV specifically stabilizes mRNA containing a premature termination codon (PTC) in a VCS-dependent manner. We have identified a TAV motif consisting of 12 of the 520 amino acids in the full-length sequence that is critical for both VCS binding and the NMD suppression effect. Our data suggest that TAV can intercept NMD by targeting the decapping machinery through the scaffold protein VARICOSE, indicating that 5'-3' mRNA decapping is a late step in NMD-related mRNA degradation in plants.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
17
|
Qi D, Guan J, Wu E. Virus infection-induced host mRNA degradation and potential application of live cell imaging. ACTA ACUST UNITED AC 2018; 5:143-147. [PMID: 32289070 PMCID: PMC7104030 DOI: 10.1016/j.jrid.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/01/2022]
Abstract
Viruses exist wherever there is life. They can cause allergy, immune response, inflammation, and even fatal diseases directly or indirectly. Accumulating evidence shows that host RNA undergoes rapid degradation during virus infection. Herein, we focus on several possible mechanisms of infection-induced host RNA turnover, which seems to be a common strategy for both prokaryotic and eukaryotic viruses during the very early stage of infection and a potential application of live cell imaging on its visualization.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Jitian Guan
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University College of Medicine, Temple, TX 76504, USA
- Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, TX 77843, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Du S, Liu X, Cai Q. Viral-Mediated mRNA Degradation for Pathogenesis. Biomedicines 2018; 6:biomedicines6040111. [PMID: 30501096 PMCID: PMC6315618 DOI: 10.3390/biomedicines6040111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022] Open
Abstract
Cellular RNA decay machinery plays a vital role in regulating gene expression by altering the stability of mRNAs in response to external stresses, including viral infection. In the primary infection, viruses often conquer the host cell’s antiviral immune response by controlling the inherently cellular mRNA degradation machinery to facilitate viral gene expression and establish a successful infection. This review summarizes the current knowledge about the diverse strategies of viral-mediated regulatory RNA shutoff for pathogenesis, and particularly sheds a light on the mechanisms that viruses evolve to elude immune surveillance during infection.
Collapse
Affiliation(s)
- Shujuan Du
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaoqing Liu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog 2018; 14:e1007331. [PMID: 30475899 PMCID: PMC6283614 DOI: 10.1371/journal.ppat.1007331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/06/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.
Collapse
Affiliation(s)
- Kathleen Pheasant
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla Sofia Möller-Levet
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Depledge
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
20
|
Brunkard JO, Baker B. A Two-Headed Monster to Avert Disaster: HBS1/SKI7 Is Alternatively Spliced to Build Eukaryotic RNA Surveillance Complexes. FRONTIERS IN PLANT SCIENCE 2018; 9:1333. [PMID: 30258456 PMCID: PMC6143672 DOI: 10.3389/fpls.2018.01333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/24/2018] [Indexed: 05/19/2023]
Abstract
The cytosolic RNA exosome, a 3'→5' exoribonuclease complex, contributes to mRNA degradation in eukaryotes, limiting the accumulation of poorly-translated, improperly translated, or aberrant mRNA species. Disruption of cytosolic RNA exosome activity allows aberrant RNA species to accumulate, which can then be detected by host antiviral immune systems as a signature of pathogen infection, activating antiviral defenses. SKI7 is a critical component of the cytosolic RNA exosome in yeast, bridging the catalytic exoribonuclease core with the SKI2/SKI3/SKI8 adaptor complex that guides aberrant RNA substrates into the exosome. The ortholog of SKI7 was only recently identified in humans as an alternative splice form of the HBS1 gene, which encodes a decoding factor translational GTPase that rescues stalled ribosomes. Here, we identify the plant orthologs of HBS1/SKI7. We found that HBS1 and SKI7 are typically encoded by alternative splice forms of a single locus, although some plant lineages have evolved subfunctionalized genes that apparently encode only HBS1 or only SKI7. In all plant lineages examined, the SKI7 gene is subject to regulation by alternative splicing that can yield unproductive transcripts, either by removing deeply conserved SKI7 coding sequences, or by introducing premature stop codons that render SKI7 susceptible to nonsense-mediated decay. Taking a comparative, evolutionary approach, we define crucial features of the SKI7 protein shared by all eukaryotes, and use these deeply conserved features to identify SKI7 proteins in invertebrate lineages. We conclude that SKI7 is a conserved cytosolic RNA exosome subunit across eukaryotic lineages, and that SKI7 is consistently regulated by alternative splicing, suggesting broad coordination of nuclear and cytosolic RNA metabolism.
Collapse
Affiliation(s)
- Jacob O. Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
| |
Collapse
|
21
|
Slonchak A, Khromykh AA. Subgenomic flaviviral RNAs: What do we know after the first decade of research. Antiviral Res 2018; 159:13-25. [PMID: 30217649 DOI: 10.1016/j.antiviral.2018.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
The common feature of flaviviral infection is the accumulation of abundant virus-derived noncoding RNA, named flaviviral subgenomic RNA (sfRNA) in infected cells. This RNA represents a product of incomplete degradation of viral genomic RNA by the cellular 5'-3' exoribonuclease XRN1 that stalls at the conserved highly structured elements in the 3' untranslated region (UTR). This mechanism of sfRNA generation was discovered a decade ago and since then sfRNA has been a focus of intense research. The ability of flaviviruses to produce sfRNA was shown to be evolutionary conserved in all members of Flavivirus genus. Mutations in the 3'UTR that affect production of sfRNAs and their interactions with host factors showed that sfRNAs are responsible for viral pathogenicity, host adaptation, and emergence of new pathogenic strains. RNA structural elements required for XRN1 stalling have been elucidated and the role of sfRNAs in inhibiting host antiviral responses in arthropod and vertebrate hosts has been demonstrated. Some molecular mechanisms determining these properties of sfRNA have been recently characterized, while other aspects of sfRNA functions remain an open avenue for future research. In this review we summarise the current state of knowledge on the mechanisms of generation and functional roles of sfRNAs in the life cycle of flaviviruses and highlight the gaps in our knowledge to be addressed in the future.
Collapse
Affiliation(s)
- Andrii Slonchak
- The Australian Infectious Disease Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- The Australian Infectious Disease Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
22
|
Multiple Posttranscriptional Strategies To Regulate the Herpes Simplex Virus 1 vhs Endoribonuclease. J Virol 2018; 92:JVI.00818-18. [PMID: 29925667 PMCID: PMC6096803 DOI: 10.1128/jvi.00818-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in the shutoff of host protein synthesis. Hence, its unrestrained activity is considered lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with the aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from cotransfected plasmids were also retained in the same nuclei where vhs mRNA was located, while poly(A) binding protein (PABP) was relocalized to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Coexpression of VP16 and VP22 rescued the cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5' region of vhs that blocked its translation and, when transferred to a heterologous green fluorescent protein transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and autoinduced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex.IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV-1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs but that must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted posttranscriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and coexpressed mRNAs for nuclear retention, an activity that is relieved by coexpression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors coordinate gene expression at the time that they are needed. These findings are broadly relevant to both virus and cellular gene expression.
Collapse
|
23
|
Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1498. [PMID: 30091184 PMCID: PMC7169762 DOI: 10.1002/wrna.1498] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
The crucial participation of cellular RNA‐binding proteins (RBPs) in virtually all steps of virus infection has been known for decades. However, most of the studies characterizing this phenomenon have focused on well‐established RBPs harboring classical RNA‐binding domains (RBDs). Recent proteome‐wide approaches have greatly expanded the census of RBPs, discovering hundreds of proteins that interact with RNA through unconventional RBDs. These domains include protein–protein interaction platforms, enzymatic cores, and intrinsically disordered regions. Here, we compared the experimentally determined census of RBPs to gene ontology terms and literature, finding that 472 proteins have previous links with viruses. We discuss what these proteins are and what their roles in infection might be. We also review some of the pioneering examples of unorthodox RBPs whose RNA‐binding activity has been shown to be critical for virus infection. Finally, we highlight the potential of these proteins for host‐based therapies against viruses. This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
Collapse
Affiliation(s)
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
24
|
Cytoplasmic Relocalization and Colocalization with Viroplasms of Host Cell Proteins, and Their Role in Rotavirus Infection. J Virol 2018; 92:JVI.00612-18. [PMID: 29769336 DOI: 10.1128/jvi.00612-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Rotavirus replicates in the cytoplasm of infected cells in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), which are nucleated by two essential viral nonstructural proteins, NSP2 and NSP5. However, the precise composition of the VM, the intracellular localization of host proteins during virus infection, and their association with VMs or role in rotavirus growth remained largely unexplored. Mass spectrometry analyses revealed the presence of several host heterogeneous nuclear ribonucleoproteins (hnRNPs), AU-rich element-binding proteins (ARE-BPs), and cytoplasmic proteins from uninfected MA104 cell extracts in the pulldown (PD) complexes of the purified viroplasmic proteins NSP2 and NSP5. Immunoblot analyses of PD complexes from RNase-treated and untreated cell extracts, analyses of coimmunoprecipitation complexes using RNase-treated infected cell lysates, and direct binding assays using purified recombinant proteins further demonstrated that the interactions of the majority of the hnRNPs and ARE-BPs with viroplasmic proteins are RNA independent. Time course immunoblot analysis of the nuclear and cytoplasmic fractions from rotavirus-infected and mock-infected cells and immunofluorescence confocal microscopy analyses of virus-infected cells revealed a surprising sequestration of the majority of the relocalized host proteins in viroplasms. Analyses of ectopic overexpression and small interfering RNA (siRNA)-mediated downregulation of expression revealed that host proteins either promote or inhibit viral protein expression and progeny virus production in virus-infected cells. This study demonstrates that rotavirus induces the cytoplasmic relocalization and sequestration of a large number of nuclear and cytoplasmic proteins in viroplasms, subverting essential cellular processes in both compartments to promote rapid virus growth, and reveals that the composition of rotavirus viroplasms is much more complex than is currently understood.IMPORTANCE Rotavirus replicates exclusively in the cytoplasm. Knowledge on the relocalization of nuclear proteins to the cytoplasm or the role(s) of host proteins in rotavirus infection is very limited. In this study, it is demonstrated that rotavirus infection induces the cytoplasmic relocalization of a large number of nuclear RNA-binding proteins (hnRNPs and AU-rich element-binding proteins). Except for a few, most nuclear hnRNPs and ARE-BPs, nuclear transport proteins, and some cytoplasmic proteins directly interact with the viroplasmic proteins NSP2 and NSP5 in an RNA-independent manner and become sequestered in the viroplasms of infected cells. The host proteins differentially affected viral gene expression and virus growth. This study demonstrates that rotavirus induces the relocalization and sequestration of a large number of host proteins in viroplasms, affecting host processes in both compartments and generating conditions conducive for virus growth in the cytoplasm of infected cells.
Collapse
|
25
|
Abstract
Viruses alter host-cell gene expression at many biochemical levels, such as transcription, translation, mRNA splicing and mRNA decay in order to create a cellular environment suitable for viral replication. In this review, we discuss mechanisms by which viruses manipulate host-gene expression at the level of mRNA decay in order to enable the virus to evade host antiviral responses to allow viral survival and replication. We discuss different cellular RNA decay pathways, including the deadenylation-dependent mRNA decay pathway, and various strategies that viruses exploit to manipulate these pathways in order to create a virus-friendly cellular environment.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Quintas A, Pérez-Núñez D, Sánchez EG, Nogal ML, Hentze MW, Castelló A, Revilla Y. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. J Virol 2017; 91:e00990-17. [PMID: 29021398 PMCID: PMC5709586 DOI: 10.1128/jvi.00990-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/03/2017] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts.IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development.
Collapse
Affiliation(s)
- Ana Quintas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Núñez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena G Sánchez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria L Nogal
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Alfredo Castelló
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Chatrin C, Talapatra SK, Canard B, Kozielski F. The structure of the binary methyltransferase-SAH complex from Zika virus reveals a novel conformation for the mechanism of mRNA capping. Oncotarget 2017; 9:3160-3171. [PMID: 29423037 PMCID: PMC5790454 DOI: 10.18632/oncotarget.23223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Zika virus, a flavivirus like Dengue and West Nile viruses, poses a significant risk as a pathogen in the category of emerging infectious diseases. Zika infections typically cause nonspecific, mild symptoms, but can also manifest as a neurological disorder like Guillain-Barré syndrome. Infection in pregnant women is linked to microcephaly in newborn infants. The methyltransferase domain of the non-structural protein 5 is responsible for two sequential methylations of the 5′-RNA cap. This is crucial for genome stability, efficient translation, and escape from the host immune response. Here we present the crystal structures of the Zika methyltransferase domain in complex with the methyl-donor SAM and its by-product SAH. The methyltransferase-SAH binary complex presents a new conformation of a “closed” or “obstructed” state that would restrict the binding of new RNA for capping. The combination and comparison of our new structures with recently published Zika methyltransferase structures provide a first glimpse into the structural mechanism of Zika virus mRNA capping.
Collapse
Affiliation(s)
- Chatrin Chatrin
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX, London, United Kingdom
| | - Sandeep K Talapatra
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX, London, United Kingdom
| | - Bruno Canard
- CNRS, Aix Marseille University, AFMB UMR7257, Marseille, France
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, WC1N 1AX, London, United Kingdom
| |
Collapse
|
28
|
Venturelli OS, Tei M, Bauer S, Chan LJG, Petzold CJ, Arkin AP. Programming mRNA decay to modulate synthetic circuit resource allocation. Nat Commun 2017; 8:15128. [PMID: 28443619 PMCID: PMC5414051 DOI: 10.1038/ncomms15128] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstrates that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design. Synthetic circuits in host cells compete with endogenous processes for limited resources. Here the authors use MazF to funnel cellular resources to a synthetic circuit to increase product production and demonstrate how resource allocation can be manipulated.
Collapse
Affiliation(s)
- Ophelia S Venturelli
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Mika Tei
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Stefan Bauer
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94704, USA
| | - Leanne Jade G Chan
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Adam P Arkin
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA.,Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA.,Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94704, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
29
|
Kariithi HM, Yao X, Yu F, Teal PE, Verhoeven CP, Boucias DG. Responses of the Housefly, Musca domestica, to the Hytrosavirus Replication: Impacts on Host's Vitellogenesis and Immunity. Front Microbiol 2017; 8:583. [PMID: 28424677 PMCID: PMC5380684 DOI: 10.3389/fmicb.2017.00583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Hytrosaviridae family members replicate in the salivary glands (SGs) of their adult dipteran hosts and are transmitted to uninfected hosts via saliva during feeding. Despite inducing similar gross symptoms (SG hypertrophy; SGH), hytrosaviruses (SGHVs) have distinct pathobiologies, including sex-ratio distortions in tsetse flies and refusal of infected housefly females to copulate. Via unknown mechanism(s), SGHV replication in other tissues results in reduced fecundity in tsetse flies and total shutdown of vitellogenesis and sterility in housefly females. We hypothesized that vitellogenesis shutdown was caused by virus-induced modulation of hormonal titers. Here, we used RNA-Seq to investigate virus-induced modulation of host genes/pathways in healthy and virus-infected houseflies, and we validated expression of modulated genes (n = 23) by RT-qPCR. We also evaluated the levels and activities of hemolymph AMPs, levels of endogenous sesquiterpenoids, and impacts of exogenous hormones on ovarian development in viremic females. Of the 973 housefly unigenes that were significantly modulated (padj ≤ 0.01, log2FC ≤ -2.0 or ≥ 2.0), 446 and 527 genes were downregulated and upregulated, respectively. While the most downregulated genes were related to reproduction (embryogenesis/oogenesis), the repertoire of upregulated genes was overrepresented by genes related to non-self recognition, ubiquitin-protease system, cytoskeletal traffic, cellular proliferation, development and movement, and snRNA processing. Overall, the virus, Musca domestica salivary gland hytrosavirus (MdSGHV), induced the upregulation of various components of the siRNA, innate antimicrobial immune, and autophagy pathways. We show that MdSGHV undergo limited morphogenesis in the corpora allata/corpora cardiaca (CA/CC) complex of M. domestica. MdSGHV replication in CA/CC potentially explains the significant reduction of hemolymph sesquiterpenoids levels, the refusal to mate, and the complete shutdown of egg development in viremic females. Notably, hormonal rescue of vitellogenesis did not result in egg production. The mechanism underlying MdSGHV-induced sterility has yet to be resolved.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research OrganizationNairobi, Kenya.,Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna, Austria
| | - Xu Yao
- Entomology and Nematology Department, University of FloridaGainesville, FL, USA
| | - Fahong Yu
- Interdisciplinary Centre for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Peter E Teal
- Center for Medical, Agricultural and Veterinary Entomology, USDA, ARSGainesville, FL, USA
| | - Chelsea P Verhoeven
- Entomology and Nematology Department, University of FloridaGainesville, FL, USA
| | - Drion G Boucias
- Entomology and Nematology Department, University of FloridaGainesville, FL, USA
| |
Collapse
|
30
|
Conti G, Zavallo D, Venturuzzi AL, Rodriguez MC, Crespi M, Asurmendi S. TMV induces RNA decay pathways to modulate gene silencing and disease symptoms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:73-84. [PMID: 27599263 DOI: 10.1111/tpj.13323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
RNA decay pathways comprise a combination of RNA degradation mechanisms that are implicated in gene expression, development and defense responses in eukaryotes. These mechanisms are known as the RNA Quality Control or RQC pathways. In plants, another important RNA degradation mechanism is the post-transcriptional gene silencing (PTGS) mediated by small RNAs (siRNAs). Notably, the RQC pathway antagonizes PTGS by preventing the entry of dysfunctional mRNAs into the silencing pathway to avoid global degradation of mRNA by siRNAs. Viral transcripts must evade RNA degrading mechanisms, thus viruses encode PTGS suppressor proteins to counteract viral RNA silencing. Here, we demonstrate that tobacco plants infected with TMV and transgenic lines expressing TMV MP and CP (coat protein) proteins (which are not linked to the suppression of silencing) display increased transcriptional levels of RNA decay genes. These plants also showed accumulation of cytoplasmic RNA granules with altered structure, increased rates of RNA decay for transgenes and defective transgene PTGS amplification. Furthermore, knockdown of RRP41 or RRP43 RNA exosome components led to lower levels of TMV accumulation with milder symptoms after infection, several developmental defects and miRNA deregulation. Thus, we propose that TMV proteins induce RNA decay pathways (in particular exosome components) to impair antiviral PTGS and this defensive mechanism would constitute an additional counter-defense strategy that lead to disease symptoms.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
| | - Andrea L Venturuzzi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| | | | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, CNRS, INRA, University Paris-Sud, Orsay, France
| | - Sebastian Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Hurlingham, Argentina
| |
Collapse
|
31
|
Hayashi T, Chaimayo C, McGuinness J, Takimoto T. Critical Role of the PA-X C-Terminal Domain of Influenza A Virus in Its Subcellular Localization and Shutoff Activity. J Virol 2016; 90:7131-7141. [PMID: 27226377 PMCID: PMC4984632 DOI: 10.1128/jvi.00954-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED PA-X is a recently identified influenza virus protein that is composed of the PA N-terminal 191 amino acids and unique C-terminal 41 or 61 residues. We and others showed that PA-X has a strong ability to suppress host protein synthesis via host mRNA decay, which is mediated by endonuclease activity in its N-terminal domain (B. W. Jagger, H. M. Wise, J. C. Kash, K. A. Walters, N. M. Wills, Y. L. Xiao, R. L. Dunfee, L. M. Schwartzman, A. Ozinsky, G. L. Bell, R. M. Dalton, A. Lo, S. Efstathiou, J. F. Atkins, A. E. Firth, J. K. Taubenberger, and P. Digard, 2012, Science 337:199-204, http://dx.doi.org/10.1126/science.1222213, and E. A. Desmet, K. A. Bussey, R. Stone, and T. Takimoto, 2013, J Virol 87:3108-3118, http://dx.doi.org/10.1128/JVI.02826-12). However, the mechanism of host mRNA degradation, especially where and how PA-X targets mRNAs, has not been analyzed. In this study, we determined the localization of PA-X and the role of the C-terminal unique region in shutoff activity. Quantitative subcellular localization analysis revealed that PA-X was located equally in both cytoplasm and nucleus. By characterizing a series of PA-X C-terminal deletion mutants, we found that the first 9 amino acids were sufficient for nuclear localization, but an additional 6 residues were required to induce the maximum shutoff activity observed with intact PA-X. Importantly, forced nuclear localization of the PA-X C-terminal deletion mutant enhanced shutoff activity, highlighting the ability of nuclear PA-X to degrade host mRNAs more efficiently. However, PA-X also inhibited luciferase expression from transfected mRNAs synthesized in vitro, suggesting that PA-X also degrades mRNAs in the cytoplasm. Among the basic amino acids in the PA-X C-terminal region, 3 residues, 195K, 198K, and 199R, were identified as key residues for inducing host shutoff and nuclear localization. Overall, our data indicate a critical role for the 15 residues in the PA-X C-terminal domain in degrading mRNAs in both the cytoplasm and nucleus. IMPORTANCE Influenza A viruses express PA-X proteins to suppress global host gene expression, including host antiviral genes, to allow efficient viral replication in infected cells. However, little is known about how PA-X induces host shutoff. In this study, we showed that PA-X localized equally in both the cytoplasm and nucleus of the cells, but the nuclear localization of PA-X mediated by its C-terminal region has a significant impact on shutoff activity. Three basic residues at the C-terminal region play a critical role in nuclear localization, but additional basic residues were required for maximum shutoff activity. Our findings indicate that PA-X targets and degrades mRNAs in both the nucleus and cytoplasm, and that the first 15 residues of the PA-X unique C-terminal region play a critical role in shutoff activity.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chutikarn Chaimayo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - James McGuinness
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
32
|
Feng KH, Sun M, Iketani S, Holmes EC, Parrish CR. Comparing the functions of equine and canine influenza H3N8 virus PA-X proteins: Suppression of reporter gene expression and modulation of global host gene expression. Virology 2016; 496:138-146. [PMID: 27314620 DOI: 10.1016/j.virol.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/30/2022]
Abstract
The influenza PA-X protein is translated from the PA open reading frame from frameshifting and suppresses cellular gene expression due to its ribonuclease activity. We further defined the functional roles of PA-X by comparing PA-X proteins from two related viruses - equine influenza (EIV) and canine influenza (CIV) H3N8 - that differ in a C-terminal truncation and internal mutations. In vitro reporter gene assays revealed that both proteins were able to suppress gene expression. Interestingly, EIV PA-X demonstrated ~50% greater activity compared to CIV PA-X, and we identified the mutations that caused this difference. We used RNA-seq to evaluate the effects of PA-X on host gene expression after transfection into cultured cells. There were no significant differences in this property between EIV and CIV PA-X proteins, but expression of either resulted in the up-regulation of genes when compared to controls, most notably immunity-related proteins, trafficking proteins, and transcription factors.
Collapse
Affiliation(s)
- Kurtis H Feng
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Miao Sun
- Computational and Systems Biology 5, Genome Institute of Singapore, Republic of Singapore
| | - Sho Iketani
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Colin R Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
33
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
34
|
Ottens F, Gehring NH. Physiological and pathophysiological role of nonsense-mediated mRNA decay. Pflugers Arch 2016; 468:1013-28. [PMID: 27138169 DOI: 10.1007/s00424-016-1826-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 12/27/2022]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a quality control mechanism that degrades irregular or faulty mRNAs. NMD mainly degrades mRNAs, which contain a premature termination codon (PTC) and therefore encode a truncated protein. Furthermore, NMD alters the expression of different types of cellular mRNAs, the so-called endogenous NMD substrates. In this review, we focus on the impact of NMD on cellular and molecular physiology. We specify key classes of NMD substrates and provide a detailed overview of the physiological function of gene regulation by NMD. We also describe different mechanisms of NMD substrate degradation and how the regulation of the NMD machinery affects cellular physiology. Finally, we outline the physiological functions of central NMD factors.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Zuelpicher Str. 47a, 50674, Cologne, Germany.
| |
Collapse
|
35
|
Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Sci Rep 2016; 6:21845. [PMID: 26912401 PMCID: PMC4766433 DOI: 10.1038/srep21845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/28/2016] [Indexed: 01/20/2023] Open
Abstract
The PA-X protein is a fusion protein incorporating the N-terminal 191 amino acids of the PA protein with a short C-terminal sequence encoded by an overlapping ORF (X-ORF) in segment 3 that is accessed by + 1 ribosomal frameshifting, and this X-ORF exists in either full length or a truncated form (either 61-or 41-condons). Genetic evolution analysis indicates that all swine influenza viruses (SIVs) possessed full-length PA-X prior to 1985, but since then SIVs with truncated PA-X have gradually increased and become dominant, implying that truncation of this protein may contribute to the adaptation of influenza virus in pigs. To verify this hypothesis, we constructed PA-X extended viruses in the background of a "triple-reassortment" H1N2 SIV with truncated PA-X, and evaluated their biological characteristics in vitro and in vivo. Compared with full-length PA-X, SIV with truncated PA-X had increased viral replication in porcine cells and swine respiratory tissues, along with enhanced pathogenicity, replication and transmissibility in pigs. Furthermore, we found that truncation of PA-X improved the inhibition of IFN-I mRNA expression. Hereby, our results imply that truncation of PA-X may contribute to the adaptation of SIV in pigs.
Collapse
|
36
|
Jungfleisch J, Chowdhury A, Alves-Rodrigues I, Tharun S, Díez J. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms. RNA (NEW YORK, N.Y.) 2015; 21:1469-79. [PMID: 26092942 PMCID: PMC4509936 DOI: 10.1261/rna.052209.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
The Lsm1-7-Pat1 complex binds to the 3' end of cellular mRNAs and promotes 3' end protection and 5'-3' decay. Interestingly, this complex also specifically binds to cis-acting regulatory sequences of viral positive-strand RNA genomes promoting their translation and subsequent recruitment from translation to replication. Yet, how the Lsm1-7-Pat1 complex regulates these two processes remains elusive. Here, we show that Lsm1-7-Pat1 complex acts differentially in these processes. By using a collection of well-characterized lsm1 mutant alleles and a system that allows the replication of Brome mosaic virus (BMV) in yeast we show that the Lsm1-7-Pat1 complex integrity is essential for both, translation and recruitment. However, the intrinsic RNA-binding ability of the complex is only required for translation. Consistent with an RNA-binding-independent function of the Lsm1-7-Pat1 complex on BMV RNA recruitment, we show that the BMV 1a protein, the sole viral protein required for recruitment, interacts with this complex in an RNA-independent manner. Together, these results support a model wherein Lsm1-7-Pat1 complex binds consecutively to BMV RNA regulatory sequences and the 1a protein to promote viral RNA translation and later recruitment out of the host translation machinery to the viral replication complexes.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Isabel Alves-Rodrigues
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Juana Díez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
37
|
Muller M, Hutin S, Marigold O, Li KH, Burlingame A, Glaunsinger BA. A ribonucleoprotein complex protects the interleukin-6 mRNA from degradation by distinct herpesviral endonucleases. PLoS Pathog 2015; 11:e1004899. [PMID: 25965334 PMCID: PMC4428876 DOI: 10.1371/journal.ppat.1004899] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022] Open
Abstract
During lytic Kaposi's sarcoma-associated herpesvirus (KSHV) infection, the viral endonuclease SOX promotes widespread degradation of cytoplasmic messenger RNA (mRNA). However, select mRNAs escape SOX-induced cleavage and remain robustly expressed. Prominent among these is interleukin-6 (IL-6), a growth factor important for survival of KSHV infected B cells. IL-6 escape is notable because it contains a sequence within its 3' untranslated region (UTR) that can confer protection when transferred to a SOX-targeted mRNA, and thus overrides the endonuclease targeting mechanism. Here, we pursued how this protective RNA element functions to maintain mRNA stability. Using affinity purification and mass spectrometry, we identified a set of proteins that associate specifically with the protective element. Although multiple proteins contributed to the escape mechanism, depletion of nucleolin (NCL) most severely impacted protection. NCL was re-localized out of the nucleolus during lytic KSHV infection, and its presence in the cytoplasm was required for protection. After loading onto the IL-6 3' UTR, NCL differentially bound to the translation initiation factor eIF4H. Disrupting this interaction, or depleting eIF4H, reinstated SOX targeting of the RNA, suggesting that interactions between proteins bound to distant regions of the mRNA are important for escape. Finally, we found that the IL-6 3' UTR was also protected against mRNA degradation by the vhs endonuclease encoded by herpes simplex virus, despite the fact that its mechanism of mRNA targeting is distinct from SOX. These findings highlight how a multitude of RNA-protein interactions can impact endonuclease targeting, and identify new features underlying the regulation of the IL-6 mRNA.
Collapse
Affiliation(s)
- Mandy Muller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Stephanie Hutin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Oliver Marigold
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
38
|
Influenza A Virus Protein PA-X Contributes to Viral Growth and Suppression of the Host Antiviral and Immune Responses. J Virol 2015; 89:6442-52. [PMID: 25855745 DOI: 10.1128/jvi.00319-15] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/03/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Influenza virus infection causes global inhibition of host protein synthesis in infected cells. This host shutoff is thought to allow viruses to escape from the host antiviral response, which restricts virus replication and spread. Although the mechanism of host shutoff is unclear, a novel viral protein expressed by ribosomal frameshifting, PA-X, was found to play a major role in influenza virus-induced host shutoff. However, little is known about the impact of PA-X expression on currently circulating influenza A virus pathogenicity and the host antiviral response. In this study, we rescued a recombinant influenza A virus, A/California/04/09 (H1N1, Cal), containing mutations at the frameshift motif in the polymerase PA gene (Cal PA-XFS). Cal PA-XFS expressed significantly less PA-X than Cal wild type (WT). Cal WT, but not Cal PA-XFS, induced degradation of host β-actin mRNA and suppressed host protein synthesis, supporting the idea that PA-X induces host shutoff via mRNA decay. Moreover, Cal WT inhibited beta interferon (IFN-β) expression and replicated more rapidly than Cal PA-XFS in human respiratory cells. Mice infected with Cal PA-XFS had significantly lower levels of viral growth and greater expression of IFN-β mRNA in their lungs than mice infected with Cal WT. Importantly, more antihemagglutinin and neutralizing antibodies were produced in Cal PA-XFS-infected mice than in Cal WT-infected mice, despite the lower level of virus replication in the lungs. Our data indicate that PA-X of the pandemic H1N1 virus has a strong impact on viral growth and the host innate and acquired immune responses to influenza virus. IMPORTANCE Virus-induced host protein shutoff is considered to be a major factor allowing viruses to evade innate and acquired immune recognition. We provide evidence that the 2009 H1N1 influenza A virus protein PA-X plays a role in virus replication and inhibition of host antiviral response by means of its host protein synthesis shutoff activity both in vitro and in vivo. We also demonstrated that, while the growth of Cal PA-XFS was attenuated in the lungs of infected animals, this mutant induced a stronger humoral response than Cal WT. Our findings clearly highlight the importance of PA-X in counteracting the host innate and acquired immune responses to influenza virus, an important global pathogen. This work demonstrates that inhibition of PA-X expression in influenza virus vaccine strains may provide a novel way of safely attenuating viral growth while inducing a more robust immune response.
Collapse
|
39
|
Emerging roles for RNA degradation in viral replication and antiviral defense. Virology 2015; 479-480:600-8. [PMID: 25721579 PMCID: PMC4424162 DOI: 10.1016/j.virol.2015.02.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/23/2022]
Abstract
Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.
Collapse
|
40
|
Castaño J, Menendez P, Bruzos-Cidon C, Straccia M, Sousa A, Zabaleta L, Vazquez N, Zubiarrain A, Sonntag KC, Ugedo L, Carvajal-Vergara X, Canals JM, Torrecilla M, Sanchez-Pernaute R, Giorgetti A. Fast and efficient neural conversion of human hematopoietic cells. Stem Cell Reports 2014; 3:1118-31. [PMID: 25458894 PMCID: PMC4264063 DOI: 10.1016/j.stemcr.2014.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/15/2023] Open
Abstract
Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.
Collapse
Affiliation(s)
- Julio Castaño
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Barcelona 08036, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Cristina Bruzos-Cidon
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Marco Straccia
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain; Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona 08036, Spain
| | - Amaia Sousa
- Laboratory of Stem Cells and Neural Repair, Inbiomed, San Sebastian 20009, Spain
| | - Lorea Zabaleta
- Cell Reprogramming and Differentiation Platform, Inbiomed, San Sebastian 20009, Spain
| | - Nerea Vazquez
- Laboratory of Stem Cells and Neural Repair, Inbiomed, San Sebastian 20009, Spain
| | - Amaia Zubiarrain
- Laboratory of Stem Cells and Neural Repair, Inbiomed, San Sebastian 20009, Spain; Cell Reprogramming and Differentiation Platform, Inbiomed, San Sebastian 20009, Spain
| | - Kai-Christian Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Josep Maria Canals
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain; Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona 08036, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|