1
|
Chini A, Guha P, Rishi A, Obaid M, Udden SN, Mandal SS. Discovery and functional characterization of LncRNAs associated with inflammation and macrophage activation. Methods 2024; 227:1-16. [PMID: 38703879 DOI: 10.1016/j.ymeth.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
Long noncoding RNAs (lncRNA) are emerging players in regulation of gene expression and cell signaling and their dysregulation has been implicated in a multitude of human diseases. Recent studies from our laboratory revealed that lncRNAs play critical roles in cytokine regulation, inflammation, and metabolism. We demonstrated that lncRNA HOTAIR, which is a well-known regulator of gene silencing, plays critical roles in modulation of cytokines and proinflammatory genes, and glucose metabolism in macrophages during inflammation. In addition, we recently discovered a series of novel lncRNAs that are closely associated with inflammation and macrophage activation. We termed these as long-noncoding inflammation associated RNAs (LinfRNAs). We are currently engaged in the functional characterization of these hLinfRNAs (human LinfRNAs) with a focus on their roles in inflammation, and we are investigating their potential implications in chronic inflammatory human diseases. Here, we have summarized experimental methods that have been utilized for the discovery and functional characterization of lncRNAs in inflammation and macrophage activation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Monira Obaid
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sm Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
2
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
3
|
Deb P, Chini A, Guha P, Rishi A, Bhan A, Brady B, Perrotti LI, Mandal SS. Dynamic regulation of BDNF gene expression by estradiol and lncRNA HOTAIR. Gene 2024; 897:148055. [PMID: 38043834 DOI: 10.1016/j.gene.2023.148055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Brain derived neurotrophic factor (BDNF) is a major neurotransmitter that controls growth and maintenance of neurons and its misregulation is linked to neurodegeneration and human diseases. Estradiol (E2) is well-known to regulate the process of differentiation and plasticity of hippocampal neurons. Here we examined the mechanisms of BDNF gene regulation under basal conditions and under stimuli such as E2. Our results demonstrated that BDNF expression is induced by E2 in vitro in HT22 cells (hippocampal neuronal cells) and in vivo (in ovariectomized mouse brain under E2-treatment). Using chromatin immunoprecipitation assay, we demonstrated that estrogen receptors (ERα, ERβ) were enriched at the BDNF promoter in presence of E2. Additionally, ER-coregulators (e.g., CBP/p300, MLL3), histone acetylation, H3K4-trimethylation, and RNA polymerase II levels were also elevated at the BDNF promoter in an E2-dependent manner. Additionally, under the basal conditions (in the absence of E2), the long noncoding RNA HOTAIR and its interacting partners PRC2 and LSD1 complexes binds to the promoter of BDNF and represses its expression. HOTAIR knockdown -relieves the repression resulting in elevation of BDNF expression. Further, levels of HOTAIR-interacting partners, EZH2 and LSD1 were reduced at the BDNF promoter upon HOTAIR-knockdown revealing that HOTAIR plays a regulatory role in BDNF gene expression by modulating promoter histone modifications. Additionally, we showed that E2 induced-BDNF expression is mediated by the displacement of silencing factors, EZH2 and LSD1 at BDNF promoter and subsequent recruitment of active transcription machinery. These results reveal the mechanisms of BDNF gene regulation under the basal condition and in presence of a positive regulator such as E2 in neuronal cells.
Collapse
Affiliation(s)
- Paromita Deb
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Arunoday Bhan
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Blake Brady
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Lab, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
4
|
Liu Y, Yang Y, Ni F, Tai G, Yu C, Jiang X, Wang D. Research on radiotherapy related genes and prognostic target identification of rectal cancer based on multi-omics. J Transl Med 2023; 21:856. [PMID: 38012642 PMCID: PMC10680259 DOI: 10.1186/s12967-023-04753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Radiosensitivity of rectal cancer is related to the radiotherapy efficacy and prognosis of patients with rectal cancer, and the genes and molecular mechanisms related to radiosensitivity of rectal cancer have not been clarified. We explored the radiosensitivity related genes of rectal cancer at a multi omics level. METHODS mRNA expression data and rectum adenocarcinoma (READ) data were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus Database (GEO) (GSE150082, GSE60331, GSE46862, GSE46862). Differentially expressed genes between radiotherapy sensitive group and radiotherapy insensitive group were screened. GO analysis and KEGG pathway analysis were performed for differentially expressed genes. Among the differentially expressed genes, five core genes associated with rectal cancer prognosis were selected using random survival forest analysis. For these five core genes, drug sensitivity analysis, immune cell infiltration analysis, TISIDB database immune gene correlation analysis, GSEA enrichment analysis, construction of Nomogram prediction model, transcriptional regulatory network analysis, and qRT-PCR validation was performed on human rectal adenocarcinoma tissue. RESULTS We found that 600 up-regulated genes and 553 down-regulated genes were significantly different between radiotherapy sensitive group and radiotherapy insensitive group in rectal cancer. Five key genes, TOP2A, MATR3, APOL6, JOSD1, and HOXC6, were finally screened by random survival forest analysis. These five key genes were associated with different immune cell infiltration, immune-related genes, and chemosensitivity. A comprehensive transcriptional regulatory network was constructed based on these five core genes. qRT-PCR revealed that MATR3 expression was different in rectal cancer tissues and adjacent non-cancerous tissues, while APOL6, HOXC6, JOSD1, and TOP2A expression was not different. CONCLUSION Five radiosensitivity-related genes related to the prognosis of rectal cancer: TOP2A, MATR3, APOL6, JOSD1, HOXC6, are involved in multiple processes such as immune cell infiltration, immune-related genes, chemosensitivity, signaling pathways and transcriptional regulatory networks and may be potential biomarkers for radiotherapy of rectal cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yanguang Yang
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Feng Ni
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guomei Tai
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Cenming Yu
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Ding Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
7
|
Shuaib M, Prajapati KS, Singh AK, Kushwaha PP, Waseem M, Kumar S. Identification of miRNAs and related hub genes associated with the triple negative breast cancer using integrated bioinformatics analysis and in vitro approach. J Biomol Struct Dyn 2022; 40:11676-11690. [PMID: 34387138 DOI: 10.1080/07391102.2021.1961869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype generally associated with younger women. Due to the lack of suitable drugable targets in TNBC, the microRNAs are considered as a better hope as therapeutic agents for the management of the disease. In this study, we identified differentially expressed miRNAs (DEMs) and associated hub genes in TNBC microarray data (GSE38167, GSE60714, and GSE10833) using bioinformatics tools. The identified miRNAs and genes were validated in the TNBC cell line model (MDA-MB-231) compared with the normal breast cells (MCF-10A) using the qRT-PCR technique. False-positive DEMs were avoided by comparing the DEMs profile of TNBC and triple positive breast cancer (TPBC) cell line model (BT474) compared with the MCF-10A cells data. In addition, we studied the effect of anticancer phytochemicals on the differential expression of miRNAs and genes in MDA-MB-231 cells. Furthermore, target predictions, functional enrichment and KEGG pathway analysis, mutation and copy number alterations, and overall survival analysis of DEMs in TNBC sample was investigated using standard computational tools. The study identifies first time the association of hsa-miR-1250, has-miR-1273, and has-miR-635 with the TNBC. DEMs showed significant association with the Wnt, ErbB, PI3-Akt and cAMP signaling pathways having clinical implications in TNBC tumorigenesis. The DEMs and hub genes (HOXC6 and ACVR2B) showed survival disadvantages in TNBC patients. In summary, the identified miRNAs and hub genes show important implications in TNBC tumorigenesis and patient survival. We recommend further experimental studies on pathophysiological mechanism of the identified miRNAs and hub genes in TNBC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohd Shuaib
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Sunita Prajapati
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Prem Prakash Kushwaha
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Mohammad Waseem
- Department of Zoology, Jagdam College, Jai Prakash University, Chapra, Bihar, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
8
|
He H, Li X, Shen J, Bai S, Li C, Shi H. Bisphenol A exposure causes testicular toxicity by targeting DPY30-mediated post-translational modification of PI3K/AKT signaling in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113996. [PMID: 36030680 DOI: 10.1016/j.ecoenv.2022.113996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), one of the chemicals with the highest volume of production worldwide, has been demonstrated to cause testicular toxicity via different pathways. However, there is little evidence concerning the mechanism of BPA exposure induced histone modification alterations, especially regarding the effect on the histone H3 lysine 4 (H3K4) epigenetic modification. Our results demonstrated a new epigenetic regulation of BPA exposure on testicular damage using both cell culture and mouse models. With BPA treatment, disordered and shrunken seminiferous tubules and poor sperm quality were observed in vivo, and mouse spermatogonial germ cell proliferation was inhibited in vitro. BPA attenuated PI3K expression inducing phospho-AKT inhibition in vivo and in vitro. DPY30 was the only downregulated subunit in BPA and MEK2206 (AKT inhibitor) treated cells, which contributed to reducing H3K4me3 recruitment at the PIK3CA transcriptional start site (TSS) in BPA treated cells. The toxicity caused by BPA exposure was relieved after the transduction of adenoviruses expressing DPY30 transgenes, which resulted in the stimulation of PI3K/AKT with H3K4me3 enriched at the PI3KCA TSS. DPY30 promoted cell glycolysis via AMPK and proliferation through AKT/P21. DPY30 was mainly located in the round and elongated spermatids for energy accumulation in mature sperm in AD-DPY30-treated mice which showed higher sperm quality. Overall, our results indicated that BPA exposure causes testicular toxicity through a DPY30-mediated H3K4me3 epigenetic modification, which serves to regulate the PI3K/AKT/P21 pathway.
Collapse
Affiliation(s)
- Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuying Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
10
|
Expression Profiles of HOXC6 Predict the Survival of Glioblastoma Patients and Correlate with Cell Cycle. JOURNAL OF ONCOLOGY 2022; 2022:8656865. [PMID: 35432534 PMCID: PMC9007636 DOI: 10.1155/2022/8656865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022]
Abstract
The goal of this study was to investigate the homeobox (HOX) gene expression status and its prognostic value in glioblastoma multiforme (GBM) and to uncover the biological processes related to its expression. The prognostic value of HOX genes in GBM was systematically investigated by a genome-wide analysis of HOX gene expression profiles in GBM patient samples in The Cancer Genome Atlas (TCGA) project (microarray dataset) and validation datasets. Using the differentially expressed gene (DEG) analysis and a Cox regression model, we discovered that the HOXC6 could stratify patients into significantly different survival (p = 0.0012, log-rank test) groups in the training cohort. TCGA RNA-seq and GSE16011 datasets were used for validation. Multivariate Cox and stratification analysis indicated that HOXC6 was an independent prognostic factor after adjusting for other clinical covariates. Bioinformatic analysis suggested that the HOXC6 might be involved in the cell cycle-related biological processes and pathways that are well established in the context of glioblastoma tumorigenesis. We further explored the bioinformatic implications by gene set enrichment analysis (GSEA). Tumor cell biology experiments verified the role of HOXC6 in proliferation and cell cycle progression. In conclusion, HOXC6 might be a candidate biomarker gene for individual treatment optimization of glioblastoma. HOXC6 expression has a significant prognostic value and is related to the cell cycle process in glioblastoma.
Collapse
|
11
|
Estrogen suppresses HOXB2 expression via ERα in breast cancer cells. Gene 2021; 794:145746. [PMID: 34062258 DOI: 10.1016/j.gene.2021.145746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022]
Abstract
The expression of HOXB2, a homeobox transcription factor, is altered in a variety of solid tumors. Using an in vivo screen to identify regulators of breast tumor growth in murine mammary fat pads, Boimel and co-workers recently identified HOXB2 as a tumor suppressor. However, the mechanistic underpinnings of its role in breast cancer is not understood. Given the emerging interaction of estrogen-regulated gene expression and altered HOX gene expression network in the pathophysiology of breast cancer, this study addressed the relationship between estrogen signaling and HOXB2 expression. Using a mouse model and human breast cancer cell lines, we show that estrogen suppresses HOXB2 expression. Suppression of HOXB2 by PPT, a known ERα agonist, in MCF-7 and T47D cells indicated the involvement of ERα, which was confirmed by siRNA-mediated ERα knockdown experiments. In-silico analysis of the upstream promoter region revealed the presence of three putative EREs. Chromatin immunoprecipitation experiments showed that upon estrogen binding, ERα engaged with EREs in the 5' upstream region of HOXB2 in MCF-7 and T47D cells. Future investigations should address the implications of estrogen-mediated suppression on the proposed tumor suppressor function of HOXB2.
Collapse
|
12
|
Winz C, Suh N. Understanding the Mechanistic Link between Bisphenol A and Cancer Stem Cells: A Cancer Prevention Perspective. J Cancer Prev 2021; 26:18-24. [PMID: 33842402 PMCID: PMC8020171 DOI: 10.15430/jcp.2021.26.1.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disruptors, such as bisphenol A (BPA), have become more frequently present in the environment as contaminants, especially in industrialized countries. Long-term effects of these environmental contaminants in humans are elusive. With their structural similarity to estrogen, many environmental contaminants including BPA, have been shown to mimic the biological functions of estrogen, potentially contributing to the development of breast cancer. It has been well established that BPA exerts estrogenic activity in animal models and in vitro systems. There is a concern for adverse effects from the exposure to BPA in regard to developmental and reproductive toxicities. However, the mechanisms by which BPA promotes breast cancer development remain unknown. Understanding the role of endocrine disruptors and their key mechanisms of action is important for public health, especially by providing a foundation for a better intervention approach in cancer prevention.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Toxicology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
13
|
Yaiche H, Tounsi-Kettiti H, Ben Jemii N, Jaballah Gabteni A, Mezghanni N, Ardhaoui M, Fehri E, Maaloul A, Abdelhak S, Boubaker S. New insights in the clinical implication of HOXA5 as prognostic biomarker in patients with colorectal cancer. Cancer Biomark 2021; 30:213-221. [PMID: 33136093 DOI: 10.3233/cbm-201758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Homeobox A5 (HOXA5) is a member of the HOX protein family which is involved in several carcinogenesis pathways, and is dysregulated in many cancer types. However, its expression and function in human colorectal cancer (CRC) is still largely unknown. OBJECTIVE This study aimed to evaluate HOXA5 expression in Tunisian patients with CRC in order to define new potential biomarker. METHODS An immunohistochemical labeling using an HOXA5 antibody was performed on 85 formalin fixed paraffin embedded specimens from patients with CRC. Six normal colon mucosa cases were used as controls. RESULTS HOXA5 expression showed a cytoplasmic staining in both tumor and stromal/endothelial cells. Loss or low HOXA5 expression was seen in tumor cells in 74/85 cases (87.06%) and in stromal/endothelial cells, in 77/85 (90.59%). In control group of normal colon mucosa HOXA5 was moderately expressed in all the cases. The abnormal expression, was significantly associated to lymph nodes metastasis in tumor cells (p= 0.043) and in stromal/endothelial cells (p= 0.024). CONCLUSION HOXA5 immunostaining results suggest the valuable role of this protein in colorectal carcinogenesis. Moreover, the association of lymph node metastasis to HOXA5 abnormal expression underlies its crucial role in colorectal cancer dissemination and prognosis.
Collapse
Affiliation(s)
- Hamza Yaiche
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Tounsi-Kettiti
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nadia Ben Jemii
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amira Jaballah Gabteni
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Najla Mezghanni
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Monia Ardhaoui
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Emna Fehri
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Afifa Maaloul
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathology, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
14
|
Qin T, Zhang X, Guo T, Yang T, Gao Y, Hao W, Xiao X. Epigenetic Alteration Shaped by the Environmental Chemical Bisphenol A. Front Genet 2021; 11:618966. [PMID: 33505438 PMCID: PMC7830874 DOI: 10.3389/fgene.2020.618966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is extensively used in plastic products and epoxy resins. The epigenetic response to the environmental chemical BPA was involved in multiple dysfunctional categories, such as cancer, the reproductive system, metabolism, pubertal development, peripheral arterial disease, infant and childhood growth, and neurodevelopment outcomes. In this mini-review, we described the recent progress of the epigenetic effects of the environmental chemical BPA, including DNA methylation, histone methylation, and toxic epigenomics. Notably, the histone modification changes under BPA exposure are summarized in this review. DNA methylation accompanied by transcriptional changes in key genes affected by BPA exposure is related to various processes, including neural development, cancer pathways, and generational transmission. In addition, BPA could also affect histone modifications in many species, such as humans, rats, and zebrafish. Finally, we reviewed recent studies of the toxico-epigenomics approach to reveal the epigenetic effect of BPA exposure genome-wide.
Collapse
Affiliation(s)
- Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Xiaoping Zhang
- School of Medical Science, Chifeng University, Chifeng, China
| | - Ting Guo
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Ting Yang
- Department of Nephrology, Affiliated Hospital of Beihua University, Jilin City, China
| | - Yahui Gao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China
| | - Wei Hao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - XiangFen Xiao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Hussain I, Deb P, Chini A, Obaid M, Bhan A, Ansari KI, Mishra BP, Bobzean SA, Udden SMN, Alluri PG, Das HK, Brothers RM, Perrotti LI, Mandal SS. HOXA5 Expression Is Elevated in Breast Cancer and Is Transcriptionally Regulated by Estradiol. Front Genet 2021; 11:592436. [PMID: 33384715 PMCID: PMC7770181 DOI: 10.3389/fgene.2020.592436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
HOXA5 is a homeobox-containing gene associated with the development of the lung, gastrointestinal tract, and vertebrae. Here, we investigate potential roles and the gene regulatory mechanism in HOXA5 in breast cancer cells. Our studies demonstrate that HOXA5 expression is elevated in breast cancer tissues and in estrogen receptor (ER)-positive breast cancer cells. HOXA5 expression is critical for breast cancer cell viability. Biochemical studies show that estradiol (E2) regulates HOXA5 gene expression in cultured breast cancer cells in vitro. HOXA5 expression is also upregulated in vivo in the mammary tissues of ovariectomized female rats. E2-induced HOXA5 expression is coordinated by ERs. Knockdown of either ERα or ERβ downregulated E2-induced HOXA5 expression. Additionally, ER co-regulators, including CBP/p300 (histone acetylases) and MLL-histone methylases (MLL2, MLL3), histone acetylation-, and H3K4 trimethylation levels are enriched at the HOXA5 promoter in present E2. In summary, our studies demonstrate that HOXA5 is overexpressed in breast cancer and is transcriptionally regulated via estradiol in breast cancer cells.
Collapse
Affiliation(s)
- Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Paromita Deb
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Avisankar Chini
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Monira Obaid
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Bibhu P Mishra
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - S M Nashir Udden
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prasanna G Alluri
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hriday K Das
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Institute for Healthy Aging, Fort Worth, TX, United States
| | - Robert Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
16
|
Stillwater BJ, Bull AC, Romagnolo DF, Neumayer LA, Donovan MG, Selmin OI. Bisphenols and Risk of Breast Cancer: A Narrative Review of the Impact of Diet and Bioactive Food Components. Front Nutr 2020; 7:581388. [PMID: 33330580 PMCID: PMC7710764 DOI: 10.3389/fnut.2020.581388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Data from preclinical studies suggest a link between increased risk of breast cancer and exposure to bisphenols at doses below what the United States Food and Drug Administration (FDA) considers as safe for consumption. Bisphenols exert estrogenic effects and are found in canned and plastic wrapped foods, food packaging, and plasticware. Mechanistically, bisphenols bind to the estrogen receptor (ER) and activate the expression of genes associated with cell proliferation and breast cancer. In this paper, we present a narrative literature review addressing bisphenol A and chemical analogs including bisphenol AF, bisphenol F, and bisphenol S selected as prototype xenoestrogens; then, we discuss biological mechanisms of action of these bisphenols in breast cells and potential impact of exposure at different stages of development (i.e., perinatal, peripubertal, and adult). Finally, we summarize studies detailing interactions, both preventative and promoting, of bisphenols with food components on breast cancer risk. We conclude the review with a discussion of current controversies in interpretation of the above research and future areas for investigation, including the impact of bisphenols and food components on breast tumor risk.
Collapse
Affiliation(s)
- Barbara J Stillwater
- Department of Surgery, Breast Surgical Oncology, University of Arizona, Tucson, AZ, United States
| | - Ashleigh C Bull
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Donato F Romagnolo
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| | - Leigh A Neumayer
- Department of Surgery, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States
| | - Micah G Donovan
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| | - Ornella I Selmin
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,University of Arizona Cancer Center, Tucson, AZ, United States
| |
Collapse
|
17
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
18
|
Kim JH, Cho YH, Hong YC. MicroRNA expression in response to bisphenol A is associated with high blood pressure. ENVIRONMENT INTERNATIONAL 2020; 141:105791. [PMID: 32438192 DOI: 10.1016/j.envint.2020.105791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental contaminant that is known to be associated with the risk of arterial hypertension. However, the underlying mechanisms describing how BPA exposure leads to high blood pressure (BP) and the role of epigenetics are still unclear. Therefore, we evaluated associations among BPA exposure, microRNA (miRNA) expression, and BP in a randomized crossover trial with 45 non-smoking females over 60 years of age. The participants visited the study site 3 times and were dose-dependently exposed to BPA. Two hours after exposure to BPA, urine and whole blood were collected for BPA measurement and miRNA profiling, and BP was measured. Relationships among urinary BPA level, miRNA expression, and BP were estimated using the mixed effect model. Decreases in miR-30a-5p, miR-580-3p, miR-627-5p, and miR-671-3p and increases in miR-636 and miR-1224-3p attributable to BPA exposure were associated with high BP. The core functional network from BPA exposure to increased BP was found to be on the pathway through these six miRNAs and their predicted BP-related target genes. Our results suggest that epigenetic biomarkers for BPA exposure and hypertension provide mechanistic data to explain hypertension exacerbation as well as key information for predicting the health effects of BPA exposure.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Montana 59812-1552, USA.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| |
Collapse
|
19
|
Xiong Y, Wen X, Liu H, Zhang M, Zhang Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J Steroid Biochem Mol Biol 2020; 200:105640. [PMID: 32087250 DOI: 10.1016/j.jsbmb.2020.105640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023]
Abstract
Bisphenol A(BPA) is one of the most widespread endocrine disruptors in the environment and is associated with reproductive diseases. In this study, we focused on the correlation between environmentally relevant levels of BPA exposure and histone modification during endometrial stromal cells decidualization. BPA exposure changed the morphology of decidualized endometrial stromal cells, with inhibition of mixed-lineage leukemia 1(MLL1) and induction of enhancer of zeste homolog2 (EZH2) during in vitro decidualization. The expression of HOXA10, PRL and IGFBP-1 was down-regulated upon BPA treatment. Furthermore, chromatin immunoprecipitation quantitative PCR(ChIP-qPCR) was performed to evaluate the recruitment of histone-3, lysine-4 trimethylation (H3K4me3) and histone-3, lysine-27 trimethylation (H3K27me3) at the gene promoters. The decreased H3K4me3 and the increased H3K27me3 at HOXA10, PRL and IGFBP-1 promoter regions were consistent with the expression of MLL1 and EZH2 respectively. The effect of BPA on MLL1 and EZH2 could be abrogated by ICI 182,780. Our study provides the first indication that environmentally relevant levels of BPA exposure can regulate the expression of decidualization-related genes by affecting histone modification, impairing endometrial decidualization.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Xue Wen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Huimin Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Ming Zhang
- Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China; Reroductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| |
Collapse
|
20
|
Hafezi SA, Abdel-Rahman WM. The Endocrine Disruptor Bisphenol A (BPA) Exerts a Wide Range of Effects in Carcinogenesis and Response to Therapy. Curr Mol Pharmacol 2020; 12:230-238. [PMID: 30848227 DOI: 10.2174/1874467212666190306164507] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a synthetic plasticizer that is commonly used in the production of polycarbonate plastics and epoxy resins. Human exposure occurs when BPA migrates from food and beverage containers into the contents when heated or even under normal conditions of use. BPA exerts endocrine disruptor action due to its weak binding affinity for the estrogen receptors ERα and ERβ. BPA exerts other effects by activating the membrane receptor GPER (GPR30) and/or other receptors such as the estrogen-related receptors (ERRs). OBJECTIVE This review summarizes emerging data on BPA and cancer. These include data linking exposure to BPA with an increased risk of hormone-related cancers such as those of the ovary, breast, prostate, and even colon cancer. BPA can also induce resistance to various chemotherapeutics such as doxorubicin, cisplatin, and vinblastine in vitro. The development of chemoresistance to available therapeutics is an emerging significant aspect of BPA toxicity because it worsens the prognosis of many tumors. CONCLUSION Recent findings support a causal role of BPA at low levels in the development of cancers and in dictating their response to cytotoxic therapy. Accurate knowledge and consideration of these issues would be highly beneficial to cancer prevention and management.
Collapse
Affiliation(s)
- Shirin A Hafezi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
21
|
de Bessa Garcia SA, Araújo M, Pereira T, Mouta J, Freitas R. HOX genes function in Breast Cancer development. Biochim Biophys Acta Rev Cancer 2020; 1873:188358. [PMID: 32147544 DOI: 10.1016/j.bbcan.2020.188358] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer develops in the mammary glands during mammalian adulthood and is considered the second most common type of human carcinoma and the most incident and mortal in the female population. In contrast to other human structures, the female mammary glands continue to develop after birth, undergoing various modifications during pregnancy, lactation and involution under the regulation of hormones and transcription factors, including those encoded by the HOX clusters (A, B, C, and D). Interestingly, HOX gene deregulation is often associated to breast cancer development. Within the HOXB cluster, 8 out of the 10 genes present altered expression levels in breast cancer with an impact in its aggressiveness and resistance to hormone therapy, which highlights the importance of HOXB genes as potential therapeutic targets used to overcome the limitations of tamoxifen-resistant cancer treatments. Here, we review the current state of knowledge on the role of HOX genes in breast cancer, specially focus on HOXB, discussing the causes and consequences of HOXB gene deregulation and their relevance as prognostic factors and therapeutic targets.
Collapse
Affiliation(s)
- Simone Aparecida de Bessa Garcia
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Mafalda Araújo
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Tiago Pereira
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - João Mouta
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Renata Freitas
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal.; ICBAS- Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Portugal..
| |
Collapse
|
22
|
Gao P, Wang L, Yang N, Wen J, Zhao M, Su G, Zhang J, Weng D. Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models. ENVIRONMENT INTERNATIONAL 2020; 134:105328. [PMID: 31778932 DOI: 10.1016/j.envint.2019.105328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and its replacement analog, bisphenol S (BPS), have been proposed as environmental obesogen to disrupt the lipid metabolism through regulating peroxisome proliferator-activated receptor gamma (PPARγ) receptor. However, there is a dearth of information on whether this biological effect can occur in human macrophage, a cell type which closely interacts with adipocytes and hepatocytes to control lipid metabolism. Here, we for the first time investigate the activity of BPA and BPS on PPARγ pathway in human macrophages. The results demonstrated that BPA and BPS served as activators of PPARγ in human macrophage cell line, and significantly induced the expression of lipid metabolism-related genes, including fatty acid binding protein 4 (FABP4), cluster of differentiation 36 (CD36) and nuclear receptor subfamily 1 group H member 3 (NR1H3). In PPARγ knockout cells, expression of these genes was down-regulated, suggesting that these genes are dependent on PPARγ. The underlying mechanisms were further investigated using an in vivo mouse model, and the results confirmed the induction of PPARγ and its respective target genes in mice following exposure to BPA or BPS. Moreover, the observed alteration of PPARγ expression highly correlated with the disturbance of metabolism profiles in liver tissues as detected by 1H Nuclear Magnetic Resonance (NMR)-based metabonomics. Overall, this study provided the first evidence that BPA and BPS activated PPARγ and its target genes in human macrophages, and provided comprehensive information to confirm that BPA and BPS disturb the metabolism through targeting PPARγ via both in vitro assays and in vivo animal models.
Collapse
Affiliation(s)
- Pingshi Gao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Lei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Sciences, Nanjing University, Nanjing 210023, China
| | - Jingjing Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mengshu Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
23
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
24
|
Zhou J, Yang X, Song P, Wang H, Wang X. HOXC6 in the prognosis of prostate cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2715-2720. [PMID: 31271305 DOI: 10.1080/21691401.2019.1635136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: Our study aimed to investigate the expression and prognostic role of homeobox C6 (HOXC6) in prostate cancer (PCa). Methods: Relative expression of HOXC6 at mRNA and protein levels in tissues and cell lines of PCa were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, respectively. Association between HOXC6 expression and clinical factors was analyzed by Chi-square test. HOXC6 effects on the proliferation, invasion and metastasis of PCa cells were severally examined through CCK-8 and transwell assays. Results: Relative expressions of HOXC6 at mRNA and protein levels were obviously higher in both PCa tissues and cells than in adjacent non-cancerous tissues and normal human prostate epithelial cells (p < .05). Chi-square test demonstrated that high expression of HOXC6 was significantly associated with PSA concentration, Gleason score and TNM stage (p < .05). The down-regulation of HOCX6 remarkably inhibited the proliferation, migration and invasion of PCa cells. Kaplan-Meier analysis showed that patients with high HOXC6 expression had shorter overall survival than those with low HOXC6 expression (log rank test, p < .001). Conclusion: Up-regulated HOXC6, in PCa patients, could not only participate in the progression of PCa but also function as an independent prognostic marker for the cancer.
Collapse
Affiliation(s)
- Junyu Zhou
- a Lihuili Hospital , Ningbo , Zhejiang , China
| | - Xiaogang Yang
- b Precision Medicine Center, The First Hospital of Handan City , Handan , Hebei , China
| | - Peng Song
- c Department of Oncology, The Second Medical Center, Chinese PLA General Hospital , Beijing , China
| | - Hongwei Wang
- d School of Safety Engineering, China University of Labor Relations , Beijing , China
| | - Xiumei Wang
- e Affiliated People's Hospital of Inner Mongolia Medical University , Hohhot , Inner Mongolia , China
| |
Collapse
|
25
|
Jung N, Maguer-Satta V, Guyot B. Early Steps of Mammary Stem Cell Transformation by Exogenous Signals; Effects of Bisphenol Endocrine Disrupting Chemicals and Bone Morphogenetic Proteins. Cancers (Basel) 2019; 11:cancers11091351. [PMID: 31547326 PMCID: PMC6770465 DOI: 10.3390/cancers11091351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Estrogens are major regulators of the mammary gland development, notably during puberty, via estrogen receptor (ER) activation, leading to the proliferation and differentiation of mammary cells. In addition to estrogens, the bone morphogenetic proteins (BMPs) family is involved in breast stem cell/progenitor commitment. However, these two pathways that synergistically contribute to the biology of the normal mammary gland have also been described to initiate and/or promote breast cancer development. In addition to intrinsic events, lifestyle habits and exposure to environmental cues are key risk factors for cancer in general, and especially for breast cancer. In the latter case, bisphenol A (BPA), an estrogen-mimetic compound, is a critical pollutant both in terms of the quantities released in our environment and of its known and speculated effects on mammary gland biology. In this review, we summarize the current knowledge on the actions of BMPs and estrogens in both normal mammary gland development and breast cancer initiation, dissemination, and resistance to treatment, focusing on the dysregulations of these processes by BPA but also by other bisphenols, including BPS and BPF, initially considered as safer alternatives to BPA.
Collapse
Affiliation(s)
- Nora Jung
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Veronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Université de Lyon, F-69000 Lyon, France.
- Department of Tumor Escape Signaling, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- Institut des Sciences Pharmaceutiques et Biologiques, Université Lyon 1, F-69000 Lyon, France.
| |
Collapse
|
26
|
Gao Y, Wang Y, Chen X, Peng Y, Chen F, He Y, Pang W, Yang G, Yu T. MiR‐127 attenuates adipogenesis by targeting MAPK4 and HOXC6 in porcine adipocytes. J Cell Physiol 2019; 234:21838-21850. [DOI: 10.1002/jcp.28660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Yun Gao
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
- Department of Molecular Biosciences, The Wenner‐Gren Institute Stockholm University Stockholm Sweden
| | - Yingqian Wang
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaochang Chen
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| | - Ying Peng
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| | - Fenfen Chen
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
- Faculty of Life Sciences Southwest Forestry University Kunming China
| | - Yulin He
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| | - Weijun Pang
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| | - Gongshe Yang
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| | - Taiyong Yu
- Laboratory of Animal Gennetics, Breeding and Reproducation of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology Northwest A&F University Yangling Shaanxi 712100 China
| |
Collapse
|
27
|
Tang L, Cao Y, Song X, Wang X, Li Y, Yu M, Li M, Liu X, Huang F, Chen F, Wan H. HOXC6 promotes migration, invasion and proliferation of esophageal squamous cell carcinoma cells via modulating expression of genes involved in malignant phenotypes. PeerJ 2019; 7:e6607. [PMID: 30886783 PMCID: PMC6421064 DOI: 10.7717/peerj.6607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background HOXC6 is a member of the HOX gene family. The elevated expression of this gene occurs in prostate and breast cancers. However, the role of HOXC6 in esophageal squamous cell carcinoma (ESCC) remains largely uninvestigated. Methods The expression of HOXC6 was examined by immunohistochemistry, quantitative real-time PCR and immunoblotting assays. The lentivirus-mediated expression of HOXC6 was verified at mRNA and protein levels. Wound healing and Matrigel assays were performed to assess the effect of HOXC6 on the migration and invasion of cancer cells. The growth curving, CCK8, and colony formation assays were utilized to access the proliferation capacities. RNA-seq was performed to evaluate the downstream targets of HOXC6. Bioinformatic tool was used to analyze the gene expression. Results HOXC6 was highly expressed in ESCC tissues. HOXC6 overexpression promoted the migration, invasion, and proliferation of both Eca109 and TE10 cells. There were 2,155 up-regulated and 759 down-regulated genes in Eca109-HOXC6 cells and 95 up-regulated and 47 down-regulated genes in TE10-HOXC6 cells compared with the results of control. Interestingly, there were only 20 common genes, including 17 up-regulated and three down-regulated genes with similar changes upon HOXC6 transfection in both cell lines. HOXC6 activated several crucial genes implicated in the malignant phenotype of cancer cells. Discussion HOXC6 is highly expressed in ESCC and promotes malignant phenotype of ESCC cells. HOXC6 can be used as a new therapeutic target of ESCC.
Collapse
Affiliation(s)
- Li Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Cao
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Minglan Yu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mingying Li
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xu Liu
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Zhang F, Ren CC, Liu L, Chen YN, Yang L, Zhang XA. HOXC6 gene silencing inhibits epithelial-mesenchymal transition and cell viability through the TGF-β/smad signaling pathway in cervical carcinoma cells. Cancer Cell Int 2018; 18:204. [PMID: 30559605 PMCID: PMC6290547 DOI: 10.1186/s12935-018-0680-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
Background Homeobox C6 (HOXC6) plays a part in malignant progression of some tumors. However, the expression of HOXC6 and its clinical significance remains unclear in cervical carcinoma (CC). The purpose of this study is to verify the effects of HOXC6 gene silencing on CC through the TGF-β/smad signaling pathway. Methods CC tissues and corresponding paracancerous tissues were collected from CC patients with involvement of a series of HOXC6-siRNA, HA-HOXC6 and the TGF-β/smad pathway antagonist. HOXC6 expression was analyzed in six CC cell lines (C-33A, HeLa, CaSki, SiHa, ME-180, and HCC-94) by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The mRNA and protein expression of HOXC6, TGF-β1, TGF-β RII, smad4, smad7, E-cadherin, N-cadherin, Vimentin, ki-67, proliferating cell nuclear antigen (PCNA), p27, and Cyclin D1 were determined by RT-qPCR and western blot analysis. Cell proliferation, apoptosis and cell cycle were detected by MTT assay and flow cytometry, respectively. Results Higher positive expression rate of HOXC6 protein was observed in CC tissues and HOXC6 was related to TNM stage, lymphatic metastasis, cancer types, primary lesion diameter, and histological grade of CC. Silencing HOXC6 inhibited epithelial-mesenchymal transition (EMT) (shown as decreased N-cadherin and Vimentin, and increased E-cadherin) through the inactivation of the TGF-β/smad signaling pathway. HOXC6 gene silencing hindered cell proliferation and accelerated cell apoptosis of CC cells. Furthermore, the effect of HOXC6 silencing was enhanced when the TGF-β/smad signaling pathway was suppressed. Conclusion The results reveal that HOXC6 gene silencing may inhibit EMT event and cell viability in CC through the inhibition of the activation of TGF-β/smad signaling pathway.
Collapse
Affiliation(s)
- Feng Zhang
- 1Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Chen-Chen Ren
- 1Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Ling Liu
- 1Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Yan-Nan Chen
- 1Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Li Yang
- 1Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052 Henan Province People's Republic of China
| | - Xiao-An Zhang
- 2Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, No. 7, Kangfu Front Street, Erqi District, Zhengzhou, 450052 Henan Province People's Republic of China
| |
Collapse
|
29
|
Perrot-Applanat M, Kolf-Clauw M, Michel C, Beausoleil C. Alteration of mammary gland development by bisphenol a and evidence of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol 2018; 475:29-53. [PMID: 30048677 DOI: 10.1016/j.mce.2018.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
The development and function of the mammary gland are endocrine-dependent processes, depending on the stage of development. Foetal and/or postnatal exposure to low doses of BPA alters tissue organisation through epithelial proliferation and stroma-epithelial interactions. BPA also alters the expression of E2-dependent epithelial and stroma transcriptomes. Several signalling pathways are consistent with the observed phenotype: proliferation and apoptosis, a focal adhesion pathway indicating changes in biomechanical properties of the extracellular matrix, and immune function. Some of BPA's effects are reversed by oestrogen and/or GPER inhibitors. BPA also alters the expression of epigenetic marks (EZH2, HOTAIR), which would explain the delayed effect of foetal BPA exposure. In conclusion, experimental evidence shows that pre- or postnatal BPA exposure consistently causes endocrine modifications in the mammary tissue of different animal species, disrupting stromal-epithelial interactions and ultimately increasing its susceptibility to carcinogens. An interspecies comparison highlights why and how these effects apply to humans.
Collapse
Affiliation(s)
| | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 chemin des Capelles, BP 87614, F 310176, Toulouse Cedex 3, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France.
| | | |
Collapse
|
30
|
LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Sci Rep 2018; 8:15670. [PMID: 30353135 PMCID: PMC6199307 DOI: 10.1038/s41598-018-33722-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as major regulators of a variety of cell signaling processes. Many lncRNAs are expressed in immune cells and appear to play critical roles in the regulation of immune response. Here, we have investigated the potential role of a well-known lncRNA, HOTAIR, in inflammatory and immune response. Our studies demonstrate that HOTAIR expression is induced in immune cells (macrophages) upon treatment with lipopolysaccharide (LPS). Knockdown of HOTAIR reduces NF-κB-mediated inflammatory gene and cytokine expression in macrophages. Inhibition of NF-κB resulted in down-regulation of LPS-induced expression of HOTAIR as well as IL-6 and iNOS expression. We further demonstrated that HOTAIR regulates activation of NF-κB and its target genes (IL-6 and iNOS) expression via facilitating the degradation of IκBα. HOTAIR knockdown reduces the expression of NF-κB target gene expression via inhibiting the recruitment of NF-κB and associated cofactors at the target gene promoters. Taken together, our findings suggest that HOTAIR is a critical player in NF-κB activation in macrophages suggesting its potential functions in inflammatory and immune response.
Collapse
|
31
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
32
|
Di Donato M, Cernera G, Giovannelli P, Galasso G, Bilancio A, Migliaccio A, Castoria G. Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol 2017; 457:35-42. [PMID: 28257827 DOI: 10.1016/j.mce.2017.02.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are man-made substances widespread in the environment that include, among many others, bisphenol A (BPA), organochlorinated pesticides and hormone derivatives detectable in meat from animals raised in concentrated animal feeding operations. Increasing evidence indicates that EDCs have a negative impact on human health as well as on male and female fertility. They may also be associated with some endocrine diseases and increased incidence of breast and prostate cancer. This review aims to summarize available data on the (potential) impact of some common EDCs, focusing particularly on BPA, prostate cancer and their mechanisms of action. These compounds interfere with normal hormone signal pathway transduction, resulting in prolonged exposure of receptors to stimuli or interference with cellular hormone signaling in target cells. Understanding the effects of BPA and other EDCs as well as their molecular mechanism(s) may be useful in sensitizing the scientific community and the manufacturing industry to the importance of finding alternatives to their indiscriminate use.
Collapse
Affiliation(s)
- Marzia Di Donato
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gustavo Cernera
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Pia Giovannelli
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Antonio Bilancio
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Antimo Migliaccio
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy.
| | - Gabriella Castoria
- Università degli Studi della Campania "Luigi Vanvitelli" (formerly, Seconda Università di Napoli), Department of Biophysics, Biochemistry and General Pathology, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
33
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
34
|
Zhang Y, Han L, Yang H, Pang J, Li P, Zhang G, Li F, Wang F. Bisphenol A affects cell viability involved in autophagy and apoptosis in goat testis sertoli cell. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:137-147. [PMID: 28846990 DOI: 10.1016/j.etap.2017.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) is shown to be the endocrine disruptor that induces reproductive dysfunction in male animals. In this study, we aim to probe the effects of BPA exposure on induction of autophagy in goat Sertoli Cells (gSCs), as well as the relationship between autophagy and apoptosis. Results indicated that exposure to BPA (100, 200, 300, 400, 500 and 600μM) decreased the cell viability in a concentration-dependent manner. Exposure of gSCs to 500μM BPA for 12h resulted in in vitro triggered loss of mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species (ROS) production. Apoptosis with an increase in Bax:Bcl-2 ratio and higher rates of autophagy, such as autophagosome formation and increased expression of autophagy-related markers were also induced in gSCs exposed to 500μM BPA. Furthermore, treatment with 350nM Rapamycin (Rap, autophagy activator) alleviated a decrease in cell viability, intracellular ROS production, and reduction of ΔΨm, as well as decreasing apoptosis. Collectively, our results indicated that gSCs viability was disrupted after BPA treatment through affecting ROS production, mitochondrial membrane potential and inducing autophagy/apoptosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peizhen Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengzhe Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
36
|
Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 2017; 629:16-28. [DOI: 10.1016/j.gene.2017.07.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
|
37
|
Lee S, Lee H, Jeong D, Ham J, Park S, Choi EH, Kim SJ. Cold atmospheric plasma restores tamoxifen sensitivity in resistant MCF-7 breast cancer cell. Free Radic Biol Med 2017; 110:280-290. [PMID: 28666851 DOI: 10.1016/j.freeradbiomed.2017.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
Cancer recurrence, which is frequently accompanied by chemotherapy, has been a challenge in cancer treatment. This study was carried out to examine the potential applications of the reactive oxygen species (ROS)-producing cold atmospheric plasma (CAP) to overcome the cancer cells' drug resistance, which has been emerging as an alternative therapeutic tool for cancer. For this, we developed a tamoxifen (Tam)-resistant MCF-7 (MCF-7/TamR) breast cancer cell model and examined the effect of CAP on the recovery of Tam sensitivity at the cellular and molecular level. The ROS level was increased 1.9-fold in CAP-treated MCF-7/TamR cells compared to the non-treated cell. CAP was proven to restore sensitivity by up to 50% for MCF-7/TamR cells against Tam after CAP treatment. The comparison of genome-wide expression between the acquisition of Tam resistance and CAP treatment identified 20 genes that commonly showed significant expression changes. Notably, all the genes except two have been oppositely dysregulated in the two cellular statuses, and the majority of them are known to contribute to the acquisition of Tam resistance. The protein expression of selected genes, MX1 and HOXC6, was recovered to that of their parental cell by CAP. Furthermore, the dysregulation of MX1 and HOXC6 in MCF-7/TamR alleviated the drug sensitivity recovery effect of CAP. Taken together, CAP inhibited the growth of Tam-resistant MCF-7 cancer cells and reset it to the Tam-sensitive status by restoring the expression of drug resistance-related genes. These findings may lend credence to CAP as an alternative or complementary tool in the treatment or prevention of Tam-resistant cancer.
Collapse
Affiliation(s)
- Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
38
|
Huang C, Hu YW, Zhao JJ, Ma X, Zhang Y, Guo FX, Kang CM, Lu JB, Xiu JC, Sha YH, Gao JJ, Wang YC, Li P, Xu BM, Zheng L, Wang Q. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages. DNA Cell Biol 2016; 35:722-729. [PMID: 27574949 DOI: 10.1089/dna.2016.3422] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Chuan Huang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Jing Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Ma
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-cheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Hua Sha
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ji-Juan Gao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Chao Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pan Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bang-Ming Xu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Bhan A, Mandal SS. Estradiol-Induced Transcriptional Regulation of Long Non-Coding RNA, HOTAIR. Methods Mol Biol 2016; 1366:395-412. [PMID: 26585152 DOI: 10.1007/978-1-4939-3127-9_31] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
HOTAIR (HOX antisense intergenic RNA) is a 2.2 kb long non-coding RNA (lncRNA), transcribed from the antisense strand of homeobox C (HOXC) gene locus in chromosome 12. HOTAIR acts as a scaffolding lncRNA. It interacts and guides various chromatin-modifying complexes such as PRC2 (polycomb-repressive complex 2) and LSD1 (lysine-specific demethylase 1) to the target gene promoters leading to their gene silencing. Various studies have demonstrated that HOTAIR overexpression is associated with breast cancer. Recent studies from our laboratory demonstrate that HOTAIR is required for viability of breast cancer cells and is transcriptionally regulated by estradiol (E2) in vitro and in vivo. This chapter describes protocols for analysis of the HOTAIR promoter, cloning, transfection and dual luciferase assays, knockdown of protein synthesis by antisense oligonucleotides, and chromatin immunoprecipitation (ChIP) assay. These protocols are useful for studying the estrogen-mediated transcriptional regulation of lncRNA HOTAIR, as well as other protein coding genes and non-coding RNAs.
Collapse
Affiliation(s)
- Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
40
|
Deb P, Bhan A, Hussain I, Ansari KI, Bobzean SA, Pandita TK, Perrotti LI, Mandal SS. Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene 2016; 590:234-43. [PMID: 27182052 DOI: 10.1016/j.gene.2016.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/16/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
HOXB9 is a homeobox-containing gene that plays a key role in mammary gland development and is associated with breast and other types of cancer. Here, we demonstrate that HOXB9 expression is transcriptionally regulated by estradiol (E2), in vitro and in vivo. We also demonstrate that the endocrine disrupting chemical bisphenol-A (BPA) induces HOXB9 expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of ovariectomized (OVX) rats. Luciferase assay showed that estrogen-response-elements (EREs) in the HOXB9 promoter are required for BPA-induced expression. Estrogen-receptors (ERs) and ER-co-regulators such as MLL-histone methylase (MLL3), histone acetylases, CBP/P300, bind to the HOXB9 promoter EREs in the presence of BPA, modify chromatin (histone methylation and acetylation) and lead to gene activation. In summary, our results demonstrate that BPA exposure, like estradiol, increases HOXB9 expression in breast cells both in vitro and in vivo through a mechanism that involves increased recruitment of transcription and chromatin modification factors.
Collapse
Affiliation(s)
- Paromita Deb
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Imran Hussain
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Khairul I Ansari
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Samara A Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX 77030, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
41
|
Abstract
Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, and development. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases.
Collapse
|