1
|
Delfosse V, Drin G. Determining the Relative Affinity of ORPs for Lipid Ligands Using Fluorescence and Thermal Shift Assays. Methods Mol Biol 2025; 2888:259-280. [PMID: 39699737 DOI: 10.1007/978-1-0716-4318-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Lipid transfer proteins (LTPs) are specialized proteins that convey specific lipids across the cytosol to regulate the lipid composition of organelles and the plasma membrane. Quantifying to which extent these LTPs recognize and transfer various lipid species and subspecies is of prime interest to define their cellular role(s). Here, we describe how to measure in vitro the relative affinity of Osh6p, a yeast phosphatidylserine (PS)/phosphatidylinositol 4-phosphate (PI(4)P) exchanger belonging to the oxysterol-binding protein(OSBP)-related protein (ORP) family, for PS and phosphoinositide subspecies. First, we detail how to produce and purify Osh6p with high purity. Secondly, we describe how to measure its ability to bind PS, PI(4)P, and PI(4,5)P2 by FRET-based and thermal shift assays using liposomes of defined composition. These protocols can allow further analysis of other ORPs or inspire the design of assays to characterize other LTPs. Notably, they can be helpful in defining how LTPs transfer phospholipids subspecies as a function of their acyl chains' length and unsaturation degree and, therefore, whether they can contribute to regulating the acyl chain composition of cell membranes.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| |
Collapse
|
2
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Chan V, Camardi C, Zhang K, Orofiamma LA, Anderson KE, Hoque J, Bone LN, Awadeh Y, Lee DKC, Fu NJ, Chow JTS, Salmena L, Stephens LR, Hawkins PT, Antonescu CN, Botelho RJ. The LCLAT1/LYCAT acyltransferase is required for EGF-mediated phosphatidylinositol-3,4,5-trisphosphate generation and Akt signaling. Mol Biol Cell 2024; 35:ar118. [PMID: 39024272 PMCID: PMC11449395 DOI: 10.1091/mbc.e23-09-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Receptor tyrosine kinases such as EGF receptor (EGFR) stimulate phosphoinositide 3 kinases to convert phosphatidylinositol-4,5-bisphosophate [PtdIns(4,5)P2] into phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3]. PtdIns(3,4,5)P3 then remodels actin and gene expression, and boosts cell survival and proliferation. PtdIns(3,4,5)P3 partly achieves these functions by triggering activation of the kinase Akt, which phosphorylates targets like Tsc2 and GSK3β. Consequently, unchecked upregulation of PtdIns(3,4,5)P3-Akt signaling promotes tumor progression. Interestingly, 50-70% of PtdIns and PtdInsPs have stearate and arachidonate at sn-1 and sn-2 positions of glycerol, respectively, forming a species known as 38:4-PtdIns/PtdInsPs. LCLAT1 and MBOAT7 acyltransferases partly enrich PtdIns in this acyl format. We previously showed that disruption of LCLAT1 lowered PtdIns(4,5)P2 levels and perturbed endocytosis and endocytic trafficking. However, the role of LCLAT1 in receptor tyrosine kinase and PtdIns(3,4,5)P3 signaling was not explored. Here, we show that LCLAT1 silencing in MDA-MB-231 and ARPE-19 cells abated the levels of PtdIns(3,4,5)P3 in response to EGF signaling. Importantly, LCLAT1-silenced cells were also impaired for EGF-driven and insulin-driven Akt activation and downstream signaling. Thus, our work provides first evidence that the LCLAT1 acyltransferase is required for receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Victoria Chan
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Cristina Camardi
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Laura A. Orofiamma
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Karen E. Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Jafarul Hoque
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Leslie N. Bone
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Yasmin Awadeh
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Daniel K. C. Lee
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Norman J. Fu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Jonathan T. S. Chow
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Len R. Stephens
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Phillip T. Hawkins
- Signalling Programme, Babraham Institute, Cambridge CB22 4AT, United Kingdom
| | - Costin N. Antonescu
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| | - Roberto J. Botelho
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B2K3, Canada
| |
Collapse
|
4
|
Gopalan AB, van Uden L, Sprenger RR, Fernandez-Novel Marx N, Bogetofte H, Neveu PA, Meyer M, Noh KM, Diz-Muñoz A, Ejsing CS. Lipotype acquisition during neural development is not recapitulated in stem cell-derived neurons. Life Sci Alliance 2024; 7:e202402622. [PMID: 38418090 PMCID: PMC10902711 DOI: 10.26508/lsa.202402622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.
Collapse
Affiliation(s)
- Anusha B Gopalan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Candidate for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lisa van Uden
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Helle Bogetofte
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pierre A Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kyung-Min Noh
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christer S Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Amos C, Kiessling V, Kreutzberger AJB, Schenk NA, Mohan R, Nyenhuis S, Doyle CA, Wang HY, Levental K, Levental I, Anantharam A, Tamm LK. Membrane lipids couple synaptotagmin to SNARE-mediated granule fusion in insulin-secreting cells. Mol Biol Cell 2024; 35:ar12. [PMID: 38117594 PMCID: PMC10916878 DOI: 10.1091/mbc.e23-06-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023] Open
Abstract
Insulin secretion depends on the Ca2+-regulated fusion of granules with the plasma membrane. A recent model of Ca2+-triggered exocytosis in secretory cells proposes that lipids in the plasma membrane couple the calcium sensor Syt1 to the membrane fusion machinery (Kiessling et al., 2018). Specifically, Ca2+-mediated binding of Syt1's C2 domains to the cell membrane shifts the membrane-anchored SNARE syntaxin-1a to a more fusogenic conformation, straightening its juxtamembrane linker. To test this model in live cells and extend it to insulin secretion, we enriched INS1 cells with a panel of lipids with different acyl chain compositions. Fluorescence lifetime measurements demonstrate that cells with more disordered membranes show an increase in fusion efficiency, and vice versa. Experiments with granules purified from INS1 cells and recombinant SNARE proteins reconstituted in supported membranes confirmed that lipid acyl chain composition determines SNARE conformation and that lipid disordering correlates with increased fusion. Addition of Syt1's C2AB domains significantly decreased lipid order in target membranes and increased SNARE-mediated fusion probability. Strikingly, Syt's action on both fusion and lipid order could be partially bypassed by artificially increasing unsaturated phosphatidylserines in the target membrane. Thus, plasma membrane lipids actively participate in coupling Ca2+/synaptotagmin-sensing to the SNARE fusion machinery in cells.
Collapse
Affiliation(s)
- Chase Amos
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Noah A. Schenk
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Ramkumar Mohan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Sarah Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Kandice Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
6
|
Jurczak P, Zhukov I, Orlikowska M, Czaplewska P, Sikorska E. Monitoring the interactions between POPG phospholipid bilayer and amyloid-forming protein human cystatin C. Does the bilayer influence the oligomeric state and structure of the protein? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184285. [PMID: 38237885 DOI: 10.1016/j.bbamem.2024.184285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A biological membrane is a structure characteristic for various cells and organelles present in almost all living organisms. Even though, it is one of the most common structures in organisms, where it serves crucial functions, a phospholipid bilayer may also take part in pathological processes leading to severe diseases. Research indicates that biological membranes have a profound impact on the pathological processes of oligomerization of amyloid-forming proteins. These processes are a hallmark of amyloid diseases, a group of pathological states involving, e.g., Parkinson's or Alzheimer's disease. Even though amyloidogenic diseases reap the harvest in modern societies, especially in elderly patients, the mechanisms governing the amyloid deposition are not clearly described. Therefore, the presented study focuses on the description of interactions between a model biological membrane (POPG) and one of amyloid forming proteins - human cystatin C. For the purpose of the study molecular dynamics simulations were applied to confirm interactions between the protein and POPG membrane. Next the NMR techniques were used to verify how the data obtained in solution compared to MD simulations and determine fragments of the protein responsible for interactions with POPG. Finally, circular dichroism was used to monitor the changes in secondary structure of the protein and size exclusion chromatography was used to monitor its oligomerization process. Obtained data indicates that the protein interacts with POPG submerging itself into the bilayer with the AS region. However, the presence of POPG bilayer does not significantly affect the structure or oligomerization process of human cystatin C.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdansk, Poland; Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Igor Zhukov
- Biological NMR Facility, Institute of Biochemistry and Bioscience, Polish Academy of Science, Warsaw, Poland
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Gdansk, Poland.
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
7
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Zhang K, Chan V, Botelho RJ, Antonescu CN. A tail of their own: regulation of cardiolipin and phosphatidylinositol fatty acyl profile by the acyltransferase LCLAT1. Biochem Soc Trans 2023; 51:1765-1776. [PMID: 37737061 DOI: 10.1042/bst20220603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Cardiolipin and phosphatidylinositol along with the latter's phosphorylated derivative phosphoinositides, control a wide range of cellular functions from signal transduction, membrane traffic, mitochondrial function, cytoskeletal dynamics, and cell metabolism. An emerging dimension to these lipids is the specificity of their fatty acyl chains that is remarkably distinct from that of other glycerophospholipids. Cardiolipin and phosphatidylinositol undergo acyl remodeling involving the sequential actions of phospholipase A to hydrolyze acyl chains and key acyltransferases that re-acylate with specific acyl groups. LCLAT1 (also known as LYCAT, AGPAT8, LPLAT6, or ALCAT1) is an acyltransferase that contributes to specific acyl profiles for phosphatidylinositol, phosphoinositides, and cardiolipin. As such, perturbations of LCLAT1 lead to alterations in cardiolipin-dependent phenomena such as mitochondrial respiration and dynamics and phosphoinositide-dependent processes such as endocytic membrane traffic and receptor signaling. Here we examine the biochemical and cellular actions of LCLAT1, as well as the contribution of this acyltransferase to the development and specific diseases.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Victoria Chan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
- Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada M5B 2K3
| |
Collapse
|
9
|
Campuzano IDG. A Research Journey: Over a Decade of Denaturing and Native-MS Analyses of Hydrophobic and Membrane Proteins in Amgen Therapeutic Discovery. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2413-2431. [PMID: 37643331 DOI: 10.1021/jasms.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.
Collapse
Affiliation(s)
- Iain D G Campuzano
- Amgen Research, Center for Research Acceleration by Digital Innovation, Molecular Analytics, Thousand Oaks, California 91320, United States
| |
Collapse
|
10
|
McDonald RG, Poulos DA, Woodall B, Gutzwiller L, Sheth RA, Good BC, Crouch AC. A MALDI Mass Spectrometry Imaging Sample Preparation Method for Venous Thrombosis with Initial Lipid Characterization of Lab-Made and Murine Clots. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1879-1889. [PMID: 37439461 DOI: 10.1021/jasms.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Venous thromboembolism (VTE) and its complications affect over 900,000 people in the U.S. annually, with a third of cases resulting in fatality. Despite such a high incidence rate, venous thrombosis research has not led to significant changes in clinical treatments, with standard anti-coagulant therapy (heparin followed by a vitamin K antagonist) being used since the 1950s. Mechanical thrombectomy is an alternative strategy for treating venous thrombosis; however, clinical guidelines for patient selection have not been well-established or accepted. The effectiveness of both treatments is impacted by the heterogeneity of the thrombus, including the mechanical properties of its cellular components and its molecular makeup. A full understanding of the complex interplay between disease initiation and progression, biochemical molecular changes, tissue function, and mechanical properties calls for a multiplex and multiscale approach. In this work, we establish a protocol for using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to characterize spatial heterogeneity of biomolecules in lab-made blood clots and ex vivo murine thrombi. In this work, we compared (1) tissue preservation and cryosectioning methods, (2) various matrixes, 9-aminoacridine hydrochloride monohydrate (9AA), 2,5-dihydroxybenzoic acid (DHB), and alpha-cyano-4-hydroxycinnamic acid matrix (CHCA), (3) plasma-rich versus red-blood-cell rich lab-made blood clots, and (4) lab-made blood clots versus ex vivo murine thrombi. This project is the first step in our work to combine mass spectrometry imaging with biomechanical testing of blood clots to improve our understanding of VTE.
Collapse
Affiliation(s)
- Riley G McDonald
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Demitria A Poulos
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Brittni Woodall
- Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Leah Gutzwiller
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Rahul A Sheth
- Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Bryan C Good
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Anna Colleen Crouch
- Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Jensen JB, Falkenburger BH, Dickson EJ, de la Cruz L, Dai G, Myeong J, Jung SR, Kruse M, Vivas O, Suh BC, Hille B. Biophysical physiology of phosphoinositide rapid dynamics and regulation in living cells. J Gen Physiol 2022; 154:e202113074. [PMID: 35583815 PMCID: PMC9121023 DOI: 10.1085/jgp.202113074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphoinositide membrane lipids are ubiquitous low-abundance signaling molecules. They direct many physiological processes that involve ion channels, membrane identification, fusion of membrane vesicles, and vesicular endocytosis. Pools of these lipids are continually broken down and refilled in living cells, and the rates of some of these reactions are strongly accelerated by physiological stimuli. Recent biophysical experiments described here measure and model the kinetics and regulation of these lipid signals in intact cells. Rapid on-line monitoring of phosphoinositide metabolism is made possible by optical tools and electrophysiology. The experiments reviewed here reveal that as for other cellular second messengers, the dynamic turnover and lifetimes of membrane phosphoinositides are measured in seconds, controlling and timing rapid physiological responses, and the signaling is under strong metabolic regulation. The underlying mechanisms of this metabolic regulation remain questions for the future.
Collapse
Affiliation(s)
- Jill B. Jensen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | | | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Gucan Dai
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO
| | | | - Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res 2022; 63:100164. [PMID: 34953866 PMCID: PMC8953652 DOI: 10.1016/j.jlr.2021.100164] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, the importance of lipid metabolism in biology was recognized but difficult to mechanistically understand due to the lack of sensitive and robust technologies for identification and quantification of lipid molecular species. The enabling technological breakthroughs emerged in the 1980s with the development of soft ionization methods (Electrospray Ionization and Matrix Assisted Laser Desorption/Ionization) that could identify and quantify intact individual lipid molecular species. These soft ionization technologies laid the foundations for what was to be later named the field of lipidomics. Further innovative advances in multistage fragmentation, dramatic improvements in resolution and mass accuracy, and multiplexed sample analysis fueled the early growth of lipidomics through the early 1990s. The field exponentially grew through the use of a variety of strategic approaches, which included direct infusion, chromatographic separation, and charge-switch derivatization, which facilitated access to the low abundance species of the lipidome. In this Thematic Review, we provide a broad perspective of the foundations, enabling advances, and predicted future directions of growth of the lipidomics field.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
13
|
Simon C, Feng S, Riezman H. Chemical Biology Tools to Study Lipids and their Metabolism with Increased Spatial and Temporal Resolution. Chimia (Aarau) 2021; 75:1012-1016. [PMID: 34920769 DOI: 10.2533/chimia.2021.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipids are important cellular components providing many essential functions. To fulfill these various functions evolution has selected for a diverse set of lipids and this diversity is seen at the organismal, cellular and subcellular level. Understanding how cells maintain this complex lipid organization is a very challenging problem, which for lipids, is not easily addressed using biochemical and genetic techniques. Therefore, chemical tools have an important role to play in our quest to understand the complexities of lipid metabolism. Here we discuss new chemical tools to study lipids, their distribution and metabolism with increased spatial and temporal resolution.
Collapse
Affiliation(s)
- Clémence Simon
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva
| | - Suihan Feng
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva; Current Address : Center for Microbes, Health and Development (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, China
| | - Howard Riezman
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva;,
| |
Collapse
|
14
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Borges-Araújo L, Domingues MM, Fedorov A, Santos NC, Melo MN, Fernandes F. Acyl-chain saturation regulates the order of phosphatidylinositol 4,5-bisphosphate nanodomains. Commun Chem 2021; 4:164. [PMID: 36697613 PMCID: PMC9814227 DOI: 10.1038/s42004-021-00603-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) plays a critical role in the regulation of various plasma membrane processes and signaling pathways in eukaryotes. A significant amount of cellular resources are spent on maintaining the dominant 1-stearoyl-2-arachidonyl PI(4,5)P2 acyl-chain composition, while less abundant and more saturated species become more prevalent in response to specific stimuli, stress or aging. Here, we report the impact of acyl-chain structure on the biophysical properties of cation-induced PI(4,5)P2 nanodomains. PI(4,5)P2 species with increasing levels of acyl-chain saturation cluster in progressively more ordered nanodomains, culminating in the formation of gel-like nanodomains for fully saturated species. The formation of these gel-like domains was largely abrogated in the presence of 1-stearoyl-2-arachidonyl PI(4,5)P2. This is, to the best of our knowledge, the first report of the impact of PI(4,5)P2 acyl-chain composition on cation-dependent nanodomain ordering, and provides important clues to the motives behind the enrichment of PI(4,5)P2 with polyunsaturated acyl-chains. We also show how Ca2+-induced PI(4,5)P2 nanodomains are able to generate local negative curvature, a phenomenon likely to play a role in membrane remodeling events.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Alexander Fedorov
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Fábio Fernandes
- Institute for Bioengineering and Biosciences (IBB) and Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
16
|
Ikhlef S, Lipp NF, Delfosse V, Fuggetta N, Bourguet W, Magdeleine M, Drin G. Functional analyses of phosphatidylserine/PI(4)P exchangers with diverse lipid species and membrane contexts reveal unanticipated rules on lipid transfer. BMC Biol 2021; 19:248. [PMID: 34801011 PMCID: PMC8606082 DOI: 10.1186/s12915-021-01183-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
Background Lipid species are accurately distributed in the eukaryotic cell so that organelle and plasma membranes have an adequate lipid composition to support numerous cellular functions. In the plasma membrane, a precise regulation of the level of lipids such as phosphatidylserine, PI(4)P, and PI(4,5)P2, is critical for maintaining the signaling competence of the cell. Several lipid transfer proteins of the ORP/Osh family contribute to this fine-tuning by delivering PS, synthesized in the endoplasmic reticulum, to the plasma membrane in exchange for PI(4)P. To get insights into the role of these PS/PI(4)P exchangers in regulating plasma membrane features, we question how they selectively recognize and transfer lipid ligands with different acyl chains, whether these proteins exchange PS exclusively for PI(4)P or additionally for PI(4,5)P2, and how sterol abundance in the plasma membrane impacts their activity. Results We measured in vitro how the yeast Osh6p and human ORP8 transported PS and PI(4)P subspecies of diverse length and unsaturation degree between membranes by fluorescence-based assays. We established that the exchange activity of Osh6p and ORP8 strongly depends on whether these ligands are saturated or not, and is high with representative cellular PS and PI(4)P subspecies. Unexpectedly, we found that the speed at which these proteins individually transfer lipid ligands between membranes is inversely related to their affinity for them and that high-affinity ligands must be exchanged to be transferred more rapidly. Next we determined that Osh6p and ORP8 cannot use PI(4,5)P2 for exchange processes, because it is a low-affinity ligand, and do not transfer more PS into sterol-rich membranes. Conclusions Our study provides new insights into PS/PI(4)P exchangers by indicating the degree to which they can regulate the acyl chain composition of the PM, and how they control PM phosphoinositide levels. Moreover, we establish general rules on how the activity of lipid transfer proteins relates to their affinity for ligands. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01183-1.
Collapse
Affiliation(s)
- Souade Ikhlef
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France
| | - Nicolas-Frédéric Lipp
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France.,Current position: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Vanessa Delfosse
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Nicolas Fuggetta
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France
| | - William Bourguet
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Maud Magdeleine
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France
| | - Guillaume Drin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France.
| |
Collapse
|
17
|
Kadri L, Bacle A, Khoury S, Vandebrouck C, Bescond J, Faivre JF, Ferreira T, Sebille S. Polyunsaturated Phospholipids Increase Cell Resilience to Mechanical Constraints. Cells 2021; 10:937. [PMID: 33920685 PMCID: PMC8073313 DOI: 10.3390/cells10040937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.
Collapse
|
18
|
Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry. Sci Rep 2020; 10:20053. [PMID: 33208898 PMCID: PMC7674471 DOI: 10.1038/s41598-020-77087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
In order to better understand retinal physiology, alterations to which underlie some ocular diseases, we set out to establish the lipid signature of two fundamental cell types in the retina, Müller Glia and Retinal Ganglion Cells (RGCs). Moreover, we compared the lipid signature of these cells in sections (in situ), as well as after culturing the cells and isolating their cell membranes (in vitro). The lipidome of Müller glia and RGCs was analyzed in porcine retinal sections using Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS). Isolated membranes, as well as whole cells from primary cell cultures of RGCs and Müller glia, were printed onto glass slides using a non-contact microarrayer (Nano Plotter), and a LTQ-Orbitrap XL analyzer was used to scan the samples in negative ion mode, thereafter identifying the RGCs and Müller cells immunohistochemically. The spectra acquired were aligned and normalized against the total ion current, and a statistical analysis was carried out to select the lipids specific to each cell type in the retinal sections and microarrays. The peaks of interest were identified by MS/MS analysis. A cluster analysis of the MS spectra obtained from the retinal sections identified regions containing RGCs and Müller glia, as confirmed by immunohistochemistry in the same sections. The relative density of certain lipids differed significantly (p-value ≤ 0.05) between the areas containing Müller glia and RGCs. Likewise, different densities of lipids were evident between the RGC and Müller glia cultures in vitro. Finally, a comparative analysis of the lipid profiles in the retinal sections and microarrays identified six peaks that corresponded to a collection of 10 lipids characteristic of retinal cells. These lipids were identified by MS/MS. The analyses performed on the RGC layer of the retina, on RGCs in culture and using cell membrane microarrays of RGCs indicate that the lipid composition of the retina detected in sections is preserved in primary cell cultures. Specific lipid species were found in RGCs and Müller glia, allowing both cell types to be identified by a lipid fingerprint. Further studies into these specific lipids and of their behavior in pathological conditions may well help identify novel therapeutic targets for ocular diseases.
Collapse
|
19
|
Si Chaib Z, Marchetto A, Dishnica K, Carloni P, Giorgetti A, Rossetti G. Impact of Cholesterol on the Stability of Monomeric and Dimeric Forms of the Translocator Protein TSPO: A Molecular Simulation Study. Molecules 2020; 25:molecules25184299. [PMID: 32961709 PMCID: PMC7570527 DOI: 10.3390/molecules25184299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
The translocator protein (TSPO) is a transmembrane protein present across the three domains of life. Its functional quaternary structure consists of one or more subunits. In mice, the dimer-to-monomer equilibrium is shifted in vitro towards the monomer by adding cholesterol, a natural component of mammalian membranes. Here, we present a coarse-grained molecular dynamics study on the mouse protein in the presence of a physiological content and of an excess of cholesterol. The latter turns out to weaken the interfaces of the dimer by clusterizing mostly at the inter-monomeric space and pushing the contact residues apart. It also increases the compactness and the rigidity of the monomer. These two factors might play a role for the experimentally observed incremented stability of the monomeric form with increased content of cholesterol. Comparison with simulations on bacterial proteins suggests that the effect of cholesterol is much less pronounced for the latter than for the mouse protein.
Collapse
Affiliation(s)
- Zeineb Si Chaib
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52062 Aachen, Germany
| | - Alessandro Marchetto
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Klevia Dishnica
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Paolo Carloni
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52062 Aachen, Germany
- Institute for Neuroscience and Medicine (INM-11) “Molecular Neuroscience and Neuroimaging”, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alejandro Giorgetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
- Correspondence: (A.G.); (G.R.)
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Correspondence: (A.G.); (G.R.)
| |
Collapse
|
20
|
Huang X, Li W, You B, Tang W, Gan T, Feng C, Li C, Yang R. Serum Metabonomic Study on the Antidepressant-like Effects of Ellagic Acid in a Chronic Unpredictable Mild Stress-Induced Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9546-9556. [PMID: 32786855 DOI: 10.1021/acs.jafc.0c02895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a polyphenol, ellagic acid (EA) has shown potential antidepressant activity. In this study, the effects and serum metabolomic analysis of EA against depression were investigated using a chronic unpredictable mild stress-induced (CUMS) model. EA (20 or 100 mg/kg body weight) significantly ameliorated the CUMS-induced depression-like behaviors, including reduced body weight, decreased sucrose preference, and increased immobility time in both the tail suspension test and the forced swimming test. Furthermore, EA attenuated the CUMS-induced hippocampal damage and significantly increased the brain-derived neurotrophic factor (BDNF) and the serotonin (5-HT) levels as well as suppressed the inflammatory response. The metabolomics analysis showed that the disturbance of glycerophospholipid (phosphatidylethanolamine and phosphatidylinositol), amino acid (l-arginine and N-stearoyl serine), and purine (uric acid) metabolism induced by CUMS was attenuated by the EA treatment. Furthermore, the correlation analysis indicated that the metabolite changes were strongly correlated with behavioral disorders, BDNF, 5-HT, and inflammatory cytokines levels. This study provided new insights for the antidepressant effects of EA and suggests that EA may be a potential nutraceutical for improving the management of depression.
Collapse
Affiliation(s)
- Xiaoxia Huang
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bangyan You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wanpei Tang
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tingsheng Gan
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chao Feng
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- Hainan Key Laboratory of Food Nutrition and Functional Food, College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
21
|
Bozelli JC, Epand RM. Membrane Shape and the Regulation of Biological Processes. J Mol Biol 2020; 432:5124-5136. [DOI: 10.1016/j.jmb.2020.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
|
22
|
Bozelli JC, Epand RM. Specificity of Acyl Chain Composition of Phosphatidylinositols. Proteomics 2020; 19:e1900138. [PMID: 31381272 DOI: 10.1002/pmic.201900138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/30/2019] [Indexed: 01/15/2023]
Abstract
Phosphatidylinositol (PI) lipids have a predominance of a single molecular species present through the organism. In healthy mammals this molecular species is 1-stearoyl-2-arachidonoyl (18:0/20:4) PI. Although the importance of PI lipids for cell physiology has long been appreciated, less is known about the biological role of enriching PI lipids with 18:0/20:4 acyl chains. In conditions with dysfunctional lipid metabolism, the predominance of 18:0/20:4 acyl chains is lost. Recently, molecular mechanisms underpinning the enrichment or alteration of these acyl chains in PI lipids have begun to emerge. In the majority of the cases a common feature is the presence of enzymes bearing substrate acyl chain specificity. However, in cancer cells, it has been shown that one (not the only) of the mechanisms responsible for the loss in this acyl chain enrichment is mutation on the transcription factor p53 gene, which is one of the most highly mutated genes in cancers. There is a compelling need for a global picture of the specificity of the acyl chain composition of PIs. This can be possible once high-resolution spatio-temporal information is gathered in a cellular context; which can ultimately lead to potential novel targets to combat conditions with altered PI acyl chain profiles.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
23
|
Bacle A, Kadri L, Khoury S, Ferru-Clément R, Faivre JF, Cognard C, Bescond J, Krzesiak A, Contzler H, Delpech N, Colas J, Vandebrouck C, Sébille S, Ferreira T. A comprehensive study of phospholipid fatty acid rearrangements in metabolic syndrome: correlations with organ dysfunction. Dis Model Mech 2020; 13:dmm043927. [PMID: 32303571 PMCID: PMC7328154 DOI: 10.1242/dmm.043927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
The balance within phospholipids (PLs) between saturated fatty acids and monounsaturated or polyunsaturated fatty acids is known to regulate the biophysical properties of cellular membranes. As a consequence, in many cell types, perturbing this balance alters crucial cellular processes, such as vesicular budding and the trafficking/function of membrane-anchored proteins. The worldwide spread of the Western diet, which is highly enriched in saturated fats, has been clearly correlated with the emergence of a complex syndrome known as metabolic syndrome (MetS). MetS is defined as a cluster of risk factors for cardiovascular diseases, type 2 diabetes and hepatic steatosis; however, no clear correlations have been established between diet-induced fatty acid redistribution within cellular PLs and the severity/chronology of the symptoms associated with MetS or the function of the targeted organs. To address this issue, in this study we analyzed PL remodeling in rats exposed to a high-fat/high-fructose diet (HFHF) over a 15-week period. PL remodeling was analyzed in several organs, including known MetS targets. We show that fatty acids from the diet can redistribute within PLs in a very selective manner, with phosphatidylcholine being the preferred sink for this redistribution. Moreover, in the HFHF rat model, most organs are protected from this redistribution, at least during the early onset of MetS, at the expense of the liver and skeletal muscles. Interestingly, such a redistribution correlates with clear-cut alterations in the function of these organs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amélie Bacle
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Linette Kadri
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Spiro Khoury
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Romain Ferru-Clément
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Jean-François Faivre
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Christian Cognard
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Jocelyn Bescond
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Amandine Krzesiak
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Hugo Contzler
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Nathalie Delpech
- Laboratoire "Mobilité Vieillissement et Exercice (MOVE; EA 6314)", Université de Poitiers, 8, Allée Jean Monnet, 86073 Poitiers, France
| | - Jenny Colas
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Stéphane Sébille
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM; EA 7349)", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| | - Thierry Ferreira
- Laboratoire "Lipotoxicity and Channelopathies (LitCh) - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, 86073 Poitiers, France
| |
Collapse
|
24
|
Chao MD, Donaldson EA, Wu W, Welter AA, O'Quinn TG, Hsu WW, Schulte MD, Lonergan SM. Characterizing membrane phospholipid hydrolysis of pork loins throughout three aging periods. Meat Sci 2020; 163:108065. [PMID: 31986363 DOI: 10.1016/j.meatsci.2020.108065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
Abstract
Three chops from 20 pork carcasses were aged for 1, 8, and 21 days. Electrospray ionization-tandem mass spectrometry was used to comprehensively analyze profiles of phospholipids from each sample (n = 60). Total phospholipid quantity decreased 4-folds (P < .01) from 1 to 21 days of aging in pork loins. Phosphatidylinositol (PI) and phosphatidylserine (PS) increased by 30% and 73%, respectively, from 1 to 21 days of aging in pork loins (P < .01). This increase was mainly due to relative percentage increase from PI 38:4 (18:0-20:4) and PS 36:2 (18:0-18:2; P < .01). The results also showed that the relative percentage of lysophosphatidylcholine increased by 35% after short term aging (8d), and phosphatidic acid increased by 10-folds after extended aging (21d; P < .01). These results documented that phospholipids undergo enzymatic hydrolysis during aging, but also indicated that lipid species containing 18:2 or 20:4 within PI and PS were slightly more resistant to enzymatic hydrolysis compared with the other phospholipids.
Collapse
Affiliation(s)
- M D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA.
| | - E A Donaldson
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - W Wu
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - A A Welter
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - T G O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - W-W Hsu
- Kansas State University, Department of Statistics, Manhattan, Kansas 66506, USA
| | - M D Schulte
- Iowa State University, Department of Animal Science, Ames, Iowa 50011, USA
| | - S M Lonergan
- Iowa State University, Department of Animal Science, Ames, Iowa 50011, USA
| |
Collapse
|
25
|
Jennings W, Epand RM. CDP-diacylglycerol, a critical intermediate in lipid metabolism. Chem Phys Lipids 2020; 230:104914. [PMID: 32360136 DOI: 10.1016/j.chemphyslip.2020.104914] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The roles of lipids expand beyond the basic building blocks of biological membranes. In addition to forming complex and dynamic barriers, the thousands of different lipid species in the cell contribute to essentially all the processes of life. Specific lipids are increasingly identified in cellular processes, including signal transduction, membrane trafficking, metabolic control and protein regulation. Tight control of their synthesis and degradation is essential for homeostasis. Most of the lipid molecules in the cell originate from a small number of critical intermediates. Thus, regulating the synthesis of intermediates is essential for lipid homeostasis and optimal biological functions. Cytidine diphosphate diacylglycerol (CDP-DAG) is an intermediate which occupies a branch point in lipid metabolism. CDP-DAG is incorporated into different synthetic pathways to form distinct phospholipid end-products depending on its location of synthesis. Identification and characterization of CDP-DAG synthases which catalyze the synthesis of CDP-DAG has been hampered by difficulties extracting these membrane-bound enzymes for purification. Recent developments have clarified the cellular localization of the CDP-DAG synthases and identified a new unrelated CDP-DAG synthase enzyme. These findings have contributed to a deeper understanding of the extensive synthetic and signaling networks stemming from this key lipid intermediate.
Collapse
Affiliation(s)
- William Jennings
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
26
|
Reinhardt R, Truebestein L, Schmidt HA, Leonard TA. It Takes Two to Tango: Activation of Protein Kinase D by Dimerization. Bioessays 2020; 42:e1900222. [PMID: 31997382 DOI: 10.1002/bies.201900222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/10/2020] [Indexed: 12/23/2022]
Abstract
The recent discovery and structure determination of a novel ubiquitin-like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans-Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing this field, the focus is primarily on the mechanisms that control the activation of PKD at precise locations in the cell. In light of the new structural findings, the understanding of the mechanisms underlying PKD activation is critically evaluated, with particular emphasis on the role of dimerization in PKD autophosphorylation, and the provenance and recognition of the DAG that activates PKD.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
27
|
Ruhanen H, Haridas PAN, Minicocci I, Taskinen JH, Palmas F, di Costanzo A, D'Erasmo L, Metso J, Partanen J, Dalli J, Zhou Y, Arca M, Jauhiainen M, Käkelä R, Olkkonen VM. ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158679. [PMID: 32151767 DOI: 10.1016/j.bbalip.2020.158679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a drastic reduction of serum lipoproteins and protect against the development of atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. We characterized the impacts of ANGPTL3 depletion on the immortalized human hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several pathways related to lipid metabolism. Accordingly, ANGPTL3 depleted IHH displayed changes in cellular overall fatty acid (FA) composition and in the lipid species composition of several lipid classes, characterized by abundant n-6 and n-3 polyunsaturated FAs (PUFAs). This PUFA increase coincided with an elevation of lipid mediators, among which there were species relevant for resolution of inflammation, protection from lipotoxic and hypoxia-induced ER stress, hepatic steatosis and insulin resistance or for the recovery from cardiovascular events. Cholesterol esters were markedly reduced in ANGPTL3 KD IHH, coinciding with suppression of the SOAT1 mRNA and protein. ANGPTL3 LOF caused alterations in plasma lipoprotein FA and lipid species composition. All lipoprotein fractions of the ANGPTL3 LOF subjects displayed a marked drop of 18:2n-6, while several highly unsaturated triacylglycerol (TAG) species were enriched. The present work reveals distinct impacts of ANGPTL3 depletion on the hepatocellular lipidome, transcriptome and lipid mediators, as well as on the lipidome of lipoproteins isolated from plasma of ANGPTL3-deficient human subjects. It is important to consider these lipidomics and transcriptomics findings when targeting ANGPTL3 for therapy and translating it to the human context.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | | | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Francesco Palmas
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alessia di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, University of Helsinki, Finland.
| |
Collapse
|
28
|
How is the acyl chain composition of phosphoinositides created and does it matter? Biochem Soc Trans 2020; 47:1291-1305. [PMID: 31657437 PMCID: PMC6824679 DOI: 10.1042/bst20190205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The phosphoinositide (PIPn) family of signalling phospholipids are central regulators in membrane cell biology. Their varied functions are based on the phosphorylation pattern of their inositol ring, which can be recognized by selective binding domains in their effector proteins and be modified by a series of specific PIPn kinases and phosphatases, which control their interconversion in a spatial and temporal manner. Yet, a unique feature of PIPns remains largely unexplored: their unusually uniform acyl chain composition. Indeed, while most phospholipids present a range of molecular species comprising acyl chains of diverse length and saturation, PIPns in several organisms and tissues show the predominance of a single hydrophobic backbone, which in mammals is composed of arachidonoyl and stearoyl chains. Despite evolution having favoured this specific PIPn configuration, little is known regarding the mechanisms and functions behind it. In this review, we explore the metabolic pathways that could control the acyl chain composition of PIPns as well as the potential roles of this selective enrichment. While our understanding of this phenomenon has been constrained largely by the technical limitations in the methods traditionally employed in the PIPn field, we believe that the latest developments in PIPn analysis should shed light onto this old question.
Collapse
|
29
|
Nagata S, Sakuragi T, Segawa K. Flippase and scramblase for phosphatidylserine exposure. Curr Opin Immunol 2020; 62:31-38. [DOI: 10.1016/j.coi.2019.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/30/2023]
|
30
|
Abstract
Polyphosphoinositides (PPIn) are essential signaling phospholipids that make remarkable contributions to the identity of all cellular membranes and signaling cascades in mammalian cells. They exert regulatory control over membrane homeostasis via selective interactions with cellular proteins at the membrane–cytoplasm interface. This review article briefly summarizes our current understanding of the key roles that PPIn play in orchestrating and regulating crucial electrical and chemical signaling events in mammalian neurons and the significant neuro-pathophysiological conditions that arise following alterations in their metabolism.
Collapse
Affiliation(s)
- Eamonn James Dickson
- Department Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
31
|
Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci 2019; 537:163-185. [DOI: 10.1016/j.jcis.2018.10.103] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023]
|
32
|
Construction and testing of an atmospheric-pressure transmission-mode matrix assisted laser desorption ionisation mass spectrometry imaging ion source with plasma ionisation enhancement. Anal Chim Acta 2019; 1051:110-119. [DOI: 10.1016/j.aca.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
|
33
|
Angerer TB, Chakravarty N, Taylor MJ, Nicora CD, Graham DJ, Anderton CR, Chudler EH, Gamble LJ. Insights into the histology of planarian flatworm Phagocata gracilis based on location specific, intact lipid information provided by GCIB-ToF-SIMS imaging. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:733-743. [PMID: 30731132 DOI: 10.1016/j.bbalip.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/13/2018] [Accepted: 01/25/2019] [Indexed: 11/17/2022]
Abstract
Planarian flatworms are known as the masters of regeneration, re-growing an entire organism from as little as 1/279th part of their body. While the proteomics of these processes has been studied extensively, the planarian lipodome remains relatively unknown. In this study we investigate the lipid profile of planarian tissue sections with imaging Time-of-Flight - Secondary-Ion-Mass-Spectrometry (ToF-SIMS). ToF-SIMS is a label-free technique capable of gathering intact, location specific lipid information on a cellular scale. Lipid identities are confirmed using LC-MS/MS. Our data shows that different organ structures within planarians have unique lipid profiles. The 22-carbon atom poly unsaturated fatty acids (PUFAs) which occur in unusually high amounts in planarians are found to be mainly located in the testes. Additionally, we observe that planarians contain various odd numbered fatty acid species, that are usually found in bacteria, localized in the reproductive and ectodermal structures of the planarian. An abundance of poorly understood ether fatty acids and ether lipids were found in unique areas in planarians as well as a new, yet unidentified class of potential lipids in planarian intestines. Identifying the location of these lipids in the planarian body provides insights into their bodily functions and, in combination with knowledge about their diet and their genome, enables drawing conclusions about planarian fatty acid processing.
Collapse
Affiliation(s)
- Tina B Angerer
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Neil Chakravarty
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Michael J Taylor
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Carrie D Nicora
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Daniel J Graham
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America
| | - Christopher R Anderton
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Eric H Chudler
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| | - Lara J Gamble
- NESACBIO, University of Washington, Seattle, WA, United States of America; Department of Bioengineering, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
34
|
A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov 2018; 4:108. [PMID: 30479841 PMCID: PMC6249268 DOI: 10.1038/s41420-018-0122-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 01/29/2023] Open
Abstract
Prior studies suggest a possibility that the anticancer property of garlic is more effective only when exposed directly to cancer cells than absorbed first by the normal epithelial cells of the gastrointestinal tract wall. We tested this possibility in two mouse models of highly aggressive malignancies that cannot yet be cured by conventional therapies: sarcoma 180- and EL4-induced lethal ascites. Daily oral gavages of raw garlic extract (RGE; equivalent to 100 mg wet weight) for 21 days failed to offer any meaningful effect in the mice with malignancies. However, the daily injection of the same amounts of the same materials for 21 days completely cured all the mice of cancer. This novel anticancer activity of RGE was present entirely in the size fraction of the molecules smaller than 3000 Dalton rather than the larger molecules and was completely partitioned into the organic phase rather than into the aqueous phase. One half of the anticancer activity was inactivated by heating at 100 °C for 10 min, suggesting that multiple components were concertedly involved. In a direct comparison, the RGE was significantly more effective in killing the cultured cancer cells in vitro than the extracts from other 21 raw vegetables and fruits. In cell culture, RGE killed a wide variety of different cancer cells regardless of species of origin and cell types. Cancer cells generally are well known to be defective in many common metabolic pathways present in their normal cell counterpart for processing normal nutrients. The metabolism of these otherwise normal nutrients could be stalled in the cancer cells and become cytotoxic. The most-effective way of treating cancer by RGE may be the direct injection instead of eating the cooked garlic.
Collapse
|
35
|
Wang C, Wang C, Liu F, Rainosek S, Patterson TA, Slikker W, Han X. Lipidomics Reveals Changes in Metabolism, Indicative of Anesthetic-Induced Neurotoxicity in Developing Brains. Chem Res Toxicol 2018; 31:825-835. [PMID: 30132657 DOI: 10.1021/acs.chemrestox.8b00186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies have demonstrated that treatment with high dose anesthetics for a prolonged duration induces brain injury in infants. However, whether anesthetic treatment leading to neurotoxicity is associated with alterations in lipid metabolism and homeostasis is still unclear. This review first outlines the lipidomics tools for analysis of lipid molecular species that can inform alterations in lipid species after anesthetic exposure. Then the available data indicating anesthetics cause changes in lipid profiles in the brain and serum of infant monkeys in preclinical studies are summarized, and the potential mechanisms leading to the altered lipid metabolism and their association with anesthetic-induced brain injury are also discussed. Finally, whether lipid changes identified in serum of infant monkeys can serve as indicators for the early detection of anesthetic-induced brain injury is described. We believe extensive studies on alterations in lipids after exposure to anesthetics will allow us to better understand anesthetic-induced neurotoxicity, unravel its underlying biochemical mechanisms, and develop powerful biomarkers for early detection/monitoring of the toxicity.
Collapse
Affiliation(s)
| | | | | | - Shuo Rainosek
- Department of Anesthesiology , Central Arkansas Veterans Health System , 4300 West Seventh Street, VA 704-110 , Little Rock , Arkansas 72205 , United States
| | | | | | | |
Collapse
|
36
|
González de San Román E, Bidmon HJ, Malisic M, Susnea I, Küppers A, Hübbers R, Wree A, Nischwitz V, Amunts K, Huesgen PF. Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging. Brain Struct Funct 2018; 223:2767-2783. [PMID: 29633039 PMCID: PMC5995978 DOI: 10.1007/s00429-018-1660-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086-1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494-506, 2004). In humans, V1 is defined by heavily myelinated fibers arriving from the radiatio optica that form the Gennari stripe in cortical layer IV, which is further subdivided into laminae IVa, IVb, IVcα and IVcβ. Due to this unique laminar pattern, V1 represents an excellent region to test whether multimodal mass spectrometric imaging could reveal novel biomolecular markers for a functionally relevant parcellation of the human cerebral cortex. Here we analyzed histological sections of three post-mortem brains with matrix-assisted laser desorption/ionization mass spectrometry imaging and laser ablation inductively coupled plasma mass spectrometry imaging to investigate the distribution of lipids, proteins and metals in human V1. We identified 71 peptides of 13 different proteins by in situ tandem mass spectrometry, of which 5 proteins show a differential laminar distribution pattern revealing the border between V1 and V2. High-accuracy mass measurements identified 123 lipid species, including glycerolipids, glycerophospholipids and sphingolipids, of which at least 20 showed differential distribution within V1 and V2. Specific lipids labeled not only myelinated layer IVb, but also IVa and especially IVc in a layer-specific manner, but also and clearly separated V1 from V2. Elemental imaging further showed a specific accumulation of copper in layer IV. In conclusion, multimodal mass spectrometry imaging identified novel biomolecular and elemental markers with specific laminar and inter-areal differences. We conclude that mass spectrometry imaging provides a promising new approach toward multimodal, molecule-based cortical parcellation.
Collapse
Affiliation(s)
- Estibaliz González de San Román
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Milena Malisic
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Iuliana Susnea
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Küppers
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rene Hübbers
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Volker Nischwitz
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, INM-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Pitter F Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
37
|
Bradley RM, Bloemberg D, Aristizabal Henao JJ, Hashemi A, Mitchell AS, Fajardo VA, Bellissimo C, Mardian EB, Bombardier E, Paré MF, Moes KA, Stark KD, Tupling AR, Quadrilatero J, Duncan RE. Lpaatδ/Agpat4 deficiency impairs maximal force contractility in soleus and alters fibre type in extensor digitorum longus muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:700-711. [PMID: 29627383 DOI: 10.1016/j.bbalip.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Abstract
Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates. There was, however, a significant reduction in the proportion of type I and type IIA fibres in EDL but, surprisingly, not soleus, where these fibre-types predominate. Also unexpectedly, there was no impairment in force generation by EDL, but a significant reduction by soleus. Oxidative phosphorylation and activity of complexes I, I + II, III, and IV in soleus mitochondria was unchanged and therefore could not explain this effect. However, pyruvate dehydrogenase activity was significantly reduced in Lpaatδ-/- soleus and EDL. Analysis of cellular lipids indicated no difference in soleus triacylglycerol, but specific elevations in soleus PA and phosphatidylethanolamine levels, likely due to a compensatory upregulation of Lpaatβ and Lpaatε in Lpaatδ-/- mice. An anabolic effect for PA as an activator of skeletal muscle mTOR has been reported, but we found no change in serine 2448 phosphorylation, indicating reduced soleus force generation is unlikely due to the loss of mTOR activation by a specific pool of LPAATδ-derived PA. Our results identify an important role for LPAATδ in soleus and EDL.
Collapse
Affiliation(s)
- Ryan M Bradley
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Darin Bloemberg
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Juan J Aristizabal Henao
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Ashkan Hashemi
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew S Mitchell
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Val A Fajardo
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Bellissimo
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Emily B Mardian
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Bombardier
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Marie-France Paré
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Katherine A Moes
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Ken D Stark
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - A Russell Tupling
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Joe Quadrilatero
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Robin E Duncan
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
38
|
Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, Masson E, Acar N, Bretillon L, Grosmaitre X, Berdeaux O. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids 2018; 131:32-43. [PMID: 29628048 DOI: 10.1016/j.plefa.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/20/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
Abstract
The peripheral olfactory tissue (OT) plays a primordial role in the detection and transduction of olfactory information. Recent proteomic and transcriptomic studies have provided valuable insight into proteins and RNAs expressed in this tissue. Paradoxically, there is little information regarding the lipid composition of mammalian OT. To delve further into this issue, using a set of complementary state-of-the-art techniques, we carried out a comprehensive analysis of OT lipid composition in rats and mice fed with standard diets. The results showed that phospholipids are largely predominant, the major classes being phosphatidylcholine and phosphatidylethanolamine. Two types of plasmalogens, plasmenyl-choline and plasmenyl-ethanolamine, as well as gangliosides were also detected. With the exception of sphingomyelin, substantial levels of n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (22:6n-3; DHA), were found in the different phospholipid classes. These findings demonstrate that the rodent OT shares several features in common with other neural tissues, such as the brain and retina.
Collapse
Affiliation(s)
- Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
| | - Nicolas Deprêtre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France
| |
Collapse
|
39
|
Abstract
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Cagakan Özbalci
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom;
| | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom; .,Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| |
Collapse
|
40
|
|
41
|
Ikedo T, Minami M, Kataoka H, Hayashi K, Nagata M, Fujikawa R, Yamazaki F, Setou M, Yokode M, Miyamoto S. Imaging mass spectroscopy delineates the thinned and thickened walls of intracranial aneurysms. Biochem Biophys Res Commun 2018; 495:332-338. [DOI: 10.1016/j.bbrc.2017.10.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
|
42
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
43
|
Turner KM, Keogh JB, Meikle PJ, Clifton PM. Changes in Lipids and Inflammatory Markers after Consuming Diets High in Red Meat or Dairy for Four Weeks. Nutrients 2017; 9:nu9080886. [PMID: 28817063 PMCID: PMC5579679 DOI: 10.3390/nu9080886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022] Open
Abstract
There is a body of evidence linking inflammation, altered lipid metabolism, and insulin resistance. Our previous research found that insulin sensitivity decreased after a four-week diet high in dairy compared to a control diet and to one high in red meat. Our aim was to determine whether a relationship exists between changes in insulin sensitivity and inflammatory biomarkers, or with lipid species. Fasting Tumor Necrosis Factor alpha (TNF-α), Tumor Necrosis Factor Receptor II (sTNF-RII), C-reactive protein (CRP), and lipids were measured at the end of each diet. TNF-α and the ratio TNF-α/sTNF-RII were not different between diets and TNF-α, sTNF-RII, or the ratio TNF-α/sTNF-RII showed no association with homeostasis model assessment-estimated insulin resistance (HOMA-IR). A number of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) species differed between dairy and red meat and dairy and control diets, as did many phosphatidylcholine (PC) species and cholesteryl ester (CE) 14:0, CE15:0, lysophosphatidylcholine (LPC) 14:0, and LPC15:0. None had a significant relationship (p = 0.001 or better) with log homeostasis model assessment-estimated insulin resistance (HOMA-IR), although LPC14:0 had the strongest relationship (p = 0.004) and may be the main mediator of the effect of dairy on insulin sensitivity. LPC14:0 and the whole LPC class were correlated with CRP. The correlations between dietary change and the minor plasma phospholipids PI32:1 and PE32:1 are novel and may reflect significant changes in membrane composition. Inflammatory markers were not altered by changes in protein source while the correlation of LPC with CRP confirms a relationship between changes in lipid profile and inflammation.
Collapse
Affiliation(s)
- Kirsty M Turner
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Jennifer B Keogh
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | - Peter M Clifton
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
44
|
Traynor-Kaplan A, Kruse M, Dickson EJ, Dai G, Vivas O, Yu H, Whittington D, Hille B. Fatty-acyl chain profiles of cellular phosphoinositides. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:513-522. [PMID: 28189644 PMCID: PMC5392126 DOI: 10.1016/j.bbalip.2017.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022]
Abstract
Phosphoinositides are rapidly turning-over phospholipids that play key roles in intracellular signaling and modulation of membrane effectors. Through technical refinements we have improved sensitivity in the analysis of the phosphoinositide PI, PIP, and PIP2 pools from living cells using mass spectrometry. This has permitted further resolution in phosphoinositide lipidomics from cell cultures and small samples of tissue. The technique includes butanol extraction, derivatization of the lipids, post-column infusion of sodium to stabilize formation of sodiated adducts, and electrospray ionization mass spectrometry in multiple reaction monitoring mode, achieving a detection limit of 20pg. We describe the spectrum of fatty-acyl chains in the cellular phosphoinositides. Consistent with previous work in other mammalian primary cells, the 38:4 fatty-acyl chains dominate in the phosphoinositides of the pineal gland and of superior cervical ganglia, and many additional fatty acid combinations are found at low abundance. However, Chinese hamster ovary cells and human embryonic kidney cells (tsA201) in culture have different fatty-acyl chain profiles that change with growth state. Their 38:4 lipids lose their dominance as cultures approach confluence. The method has good time resolution and follows well the depletion in <20s of both PIP2 and PIP that results from strong activation of Gq-coupled receptors. The receptor-activated phospholipase C exhibits no substrate selectivity among the various fatty-acyl chain combinations.
Collapse
Affiliation(s)
- Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA; Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Haijie Yu
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
45
|
Li LH, Hsieh HY, Hsu CC. Clinical Application of Ambient Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017; 6:S0060. [PMID: 28337399 PMCID: PMC5359754 DOI: 10.5702/massspectrometry.s0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022] Open
Abstract
Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | - Hua-Yi Hsieh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | | |
Collapse
|
46
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2017; 4:155. [PMID: 28119914 PMCID: PMC5222840 DOI: 10.3389/fcell.2016.00155] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
47
|
Bone LN, Dayam RM, Lee M, Kono N, Fairn GD, Arai H, Botelho RJ, Antonescu CN. The acyltransferase LYCAT controls specific phosphoinositides and related membrane traffic. Mol Biol Cell 2016; 28:161-172. [PMID: 28035047 PMCID: PMC5221620 DOI: 10.1091/mbc.e16-09-0668] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositides (PIPs) control membrane traffic. PIPs have an acyl profile unique among phospholipids. The acyltransferase LYCAT localizes to phosphatidylinositol synthase vesicles, selectively regulates levels and locale of PIPs, and controls related membrane traffic, indicating that dynamic acyl remodeling selectively controls certain PIPs. Phosphoinositides (PIPs) are key regulators of membrane traffic and signaling. The interconversion of PIPs by lipid kinases and phosphatases regulates their functionality. Phosphatidylinositol (PI) and PIPs have a unique enrichment of 1-stearoyl-2-arachidonyl acyl species; however, the regulation and function of this specific acyl profile remains poorly understood. We examined the role of the PI acyltransferase LYCAT in control of PIPs and PIP-dependent membrane traffic. LYCAT silencing selectively perturbed the levels and localization of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol-3-phosphate and the membrane traffic dependent on these specific PIPs but was without effect on phosphatidylinositol-4-phosphate or biosynthetic membrane traffic. The acyl profile of PI(4,5)P2 was selectively altered in LYCAT-deficient cells, whereas LYCAT localized with phosphatidylinositol synthase. We propose that LYCAT remodels the acyl chains of PI, which is then channeled into PI(4,5)P2. Our observations suggest that the PIP acyl chain profile may exert broad control of cell physiology.
Collapse
Affiliation(s)
- Leslie N Bone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Roya M Dayam
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada.,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Minhyoung Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Science and Technology, Tokyo 113-0033, Japan
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada .,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada .,Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
48
|
Mendis LHS, Grey AC, Faull RLM, Curtis MA. Hippocampal lipid differences in Alzheimer's disease: a human brain study using matrix-assisted laser desorption/ionization-imaging mass spectrometry. Brain Behav 2016; 6:e00517. [PMID: 27781133 PMCID: PMC5064331 DOI: 10.1002/brb3.517] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the leading cause of dementia, is pathologically characterized by β-amyloid plaques and tau tangles. However, there is also evidence of lipid dyshomeostasis-mediated AD pathology. Given the structural diversity of lipids, mass spectrometry is a useful tool for studying lipid changes in AD. Although there have been a few studies investigating lipid changes in the human hippocampus in particular, there are few reports on how lipids change in each hippocampal subfield (e.g., Cornu Ammonis [CA] 1-4, dentate gyrus [DG] etc.). Since each subfield has its own function, we postulated that there could be lipid changes that are unique to each. METHODS We used matrix-assisted laser desorption/ionization-imaging mass spectrometry to investigate specific lipid changes in each subfield in AD. Data from the hippocampus region of six age- and gender-matched normal and AD pairs were analyzed with SCiLS lab 2015b software (SCiLS GmbH, Germany; RRID:SCR_014426), using an analysis workflow developed in-house. Hematoxylin, eosin, and luxol fast blue staining were used to precisely delineate each anatomical hippocampal subfield. Putative lipid identities, which were consistent with published data, were assigned using MS/MS. RESULTS Both positively and negatively charged lipid ion species were abundantly detected in normal and AD tissue. While the distribution pattern of lipids did not change in AD, the abundance of some lipids changed, consistent with trends that have been previously reported. However, our results indicated that the majority of these lipid changes specifically occur in the CA1 region. Additionally, there were many lipid changes that were specific to the DG. CONCLUSIONS Matrix-assisted laser desorption/ionization-imaging mass spectrometry and our analysis workflow provide a novel method to investigate specific lipid changes in hippocampal subfields. Future work will focus on elucidating the role that specific lipid differences in each subfield play in AD pathogenesis.
Collapse
Affiliation(s)
- Lakshini H. S. Mendis
- Centre for Brain ResearchFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical Imaging Faculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
| | - Angus C. Grey
- Centre for Brain ResearchFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
- Department of PhysiologyFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
| | - Richard L. M. Faull
- Centre for Brain ResearchFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical Imaging Faculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
| | - Maurice A. Curtis
- Centre for Brain ResearchFaculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical Imaging Faculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
49
|
Hiraide T, Ikegami K, Sakaguchi T, Morita Y, Hayasaka T, Masaki N, Waki M, Sugiyama E, Shinriki S, Takeda M, Shibasaki Y, Miyazaki S, Kikuchi H, Okuyama H, Inoue M, Setou M, Konno H. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer. Sci Rep 2016; 6:29935. [PMID: 27435310 PMCID: PMC4951683 DOI: 10.1038/srep29935] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Takanori Hiraide
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Takanori Sakaguchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Takahiro Hayasaka
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Noritaka Masaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Michihiko Waki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Eiji Sugiyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Satoru Shinriki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Yasushi Shibasaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Shinichiro Miyazaki
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Hiroaki Okuyama
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan
| | - Masahiro Inoue
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,Preeminent Medical Photonics Education &Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan.,Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR.,Division of Neural Systematics, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan.,Riken Center for Molecular Imaging Science, Chuo-ku, Kobe, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
50
|
Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016; 8:216. [PMID: 27077882 PMCID: PMC4848685 DOI: 10.3390/nu8040216] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023] Open
Abstract
Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence.
Collapse
Affiliation(s)
- Kevin B Hadley
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Alan S Ryan
- Clinical Research Consulting, 9809 Halston Manor, Boynton Beach, FL 33473, USA.
| | - Stewart Forsyth
- School of Medicine, Dentistry & Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Sheila Gautier
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| | - Norman Salem
- DSM Nutritional Products, 6480 Dobbin Road, Columbia, MD 21045, USA.
| |
Collapse
|