1
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
2
|
Pinotsis N, Krüger A, Tomas N, Chatziefthymiou SD, Litz C, Mortensen SA, Daffé M, Marrakchi H, Antranikian G, Wilmanns M. Discovery of a non-canonical prototype long-chain monoacylglycerol lipase through a structure-based endogenous reaction intermediate complex. Nat Commun 2023; 14:7649. [PMID: 38012138 PMCID: PMC10682391 DOI: 10.1038/s41467-023-43354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
The identification and characterization of enzyme function is largely lacking behind the rapidly increasing availability of large numbers of sequences and associated high-resolution structures. This is often hampered by lack of knowledge on in vivo relevant substrates. Here, we present a case study of a high-resolution structure of an unusual orphan lipase in complex with an endogenous C18 monoacylglycerol ester reaction intermediate from the expression host, which is insoluble under aqueous conditions and thus not accessible for studies in solution. The data allowed its functional characterization as a prototypic long-chain monoacylglycerol lipase, which uses a minimal lid domain to position the substrate through a hydrophobic tunnel directly to the enzyme's active site. Knowledge about the molecular details of the substrate binding site allowed us to modulate the enzymatic activity by adjusting protein/substrate interactions, demonstrating the potential of our findings for future biotechnology applications.
Collapse
Affiliation(s)
- Nikos Pinotsis
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Anna Krüger
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Nicolas Tomas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Claudia Litz
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Simon Arnold Mortensen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Garabed Antranikian
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Hamburg Clinical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
3
|
Ancajas CF, Carr AJ, Lou J, Sagar R, Zhou Y, Reynolds TB, Best MD. Harnessing Clickable Acylated Glycerol Probes as Chemical Tools for Tracking Glycerolipid Metabolism. Chemistry 2023; 29:e202300417. [PMID: 37085958 PMCID: PMC10498425 DOI: 10.1002/chem.202300417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/23/2023]
Abstract
We report the use of clickable monoacylglycerol (MAG) analogs as probes for the labeling of glycerolipids during lipid metabolism. Incorporation of azide tags onto the glycerol region was pursued to develop probes that would label glycerolipids, in which the click tag would not be removed through processes including acyl chain and headgroup remodeling. Analysis of clickable MAG probes containing acyl chains of different length resulted in widely variable cell imaging and cytotoxicity profiles. Based on these results, we focused on a probe bearing a short acyl chain (C4 -MAG-N3 ) that was found to infiltrate natural lipid biosynthetic pathways to produce click-tagged versions of both neutral and phospholipid products. Alternatively, strategic blocking of the glycerol sn-3 position in probe C4 -MEG-N3 served to deactivate phospholipid tagging and focus labeling on neutral lipids. This work shows that lipid metabolic labeling profiles can be tuned based on probe structures and provides valuable tools for evaluating alterations to lipid metabolism in cells.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN, 37996, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
Brands M, Dörmann P. Two AMP-Binding Domain Proteins from Rhizophagus irregularis Involved in Import of Exogenous Fatty Acids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:464-476. [PMID: 35285673 DOI: 10.1094/mpmi-01-22-0026-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonize roots, where they provide nutrients in exchange for sugars and lipids. Because AMF lack genes for cytosolic fatty acid de novo synthase (FAS), they depend on host-derived fatty acids. AMF colonization is accompanied by expression of specific lipid genes and synthesis of sn-2 monoacylglycerols (MAGs). It is unknown how host-derived fatty acids are taken up by AMF. We describe the characterization of two AMP-binding domain protein genes from Rhizophagus irregularis, RiFAT1 and RiFAT2, with sequence similarity to Saccharomyces cerevisiae fatty acid transporter 1 (FAT1). Uptake of 13C-myristic acid (14:0) and, to a lesser extent, 13C-palmitic acid (16:0) was enhanced after expression of RiFAT1 or RiFAT2 in S. cerevisiae Δfat1 cells. The uptake of 2H-labeled fatty acids from 2H-myristoylglycerol or 2H-palmitoylglycerol was also increased after RiFAT1 and RiFAT2 expression in Δfat, but intact 2H-MAGs were not detected. RiFAT1 and RiFAT2 expression was induced in colonized roots compared with extraradical mycelium. 13C-label in the AMF-specific palmitvaccenic acid (16:1Δ11) and eicosatrienoic acid (20:3) were detected in colonized roots only when 13C2-acetate was supplemented but not 13C-fatty acids, demonstrating that de novo synthesized, host-derived fatty acids are rapidly taken up by R. irregularis from the roots. The results show that RiFAT1 and RiFAT2 are involved in the uptake of myristic acid (14:0) and palmitic acid (16:0), while fatty acids from MAGs are only taken up after hydrolysis. Therefore, the two proteins might be involved in fatty acid import into the fungal arbuscules in colonized roots.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mathias Brands
- University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
- University of Cologne, Botanical Institute, Cologne Biocenter, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Peter Dörmann
- University of Bonn, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| |
Collapse
|
5
|
Riegler-Berket L, Wechselberger L, Cerk IK, Padmanabha Das KM, Viertlmayr R, Kulminskaya N, Rodriguez Gamez CF, Schweiger M, Zechner R, Zimmermann R, Oberer M. Residues of the minimal sequence of G0S2 collectively contribute to ATGL inhibition while C-and N-terminal extensions promote binding to ATGL. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159105. [PMID: 35026402 DOI: 10.1016/j.bbalip.2021.159105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
The protein encoded by the G0/G1 switch gene 2 (G0S2) is a potent inhibitor of adipose triglyceride lipase (ATGL) and thus an important regulator of intracellular lipolysis. Since dysfunction of lipolysis is associated with metabolic diseases including diabetes and obesity, inhibition of ATGL is considered a therapeutic strategy. G0S2 interacts with ATGL's patatin-domain to mediate non-competitive inhibition, however atomic details of the inhibition mechanism are incompletely understood. Sequences of G0S2 from higher organisms show a highly conserved N-terminal part, including a hydrophobic region covering amino acids 27 to 42. We show that predicted G0S2 orthologs from platypus, chicken and Japanese rice-fish are able to inhibit human and mouse ATGL, emphasizing the contribution of conserved amino acid to ATGL inhibition. Our site directed mutagenesis and truncation studies give insights in the protein-protein interaction on a per-residue level. We determine that the minimal sequence required for ATGL inhibition ranges from amino acids 20 to 44. Residues Y27, V28, G30, A34 G37, V39 or L42 within this sequence play a substantial role in ATGL inhibition. Furthermore, we show that unspecific interactions of the N-terminal part (amino acids 20-27) of the minimal sequence facilitate the interaction to ATGL. Our studies also demonstrate that full-length G0S2 shows higher tolerance to specific single amino acid exchanges in the hydrophobic region due to the stronger contributions of unspecific interactions. However, exchanges of more than one amino-acid in the hydrophobic region also result in the loss of function as ATGL inhibitor even in the full-length protein.
Collapse
Affiliation(s)
- L Riegler-Berket
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - L Wechselberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - I K Cerk
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - K M Padmanabha Das
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - R Viertlmayr
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - N Kulminskaya
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - M Schweiger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria
| | - R Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria
| | - M Oberer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; BioHealth Field of Excellence, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
6
|
Lan D, Li S, Tang W, Zhao Z, Luo M, Yuan S, Xu J, Wang Y. Glycerol is Released from a New Path in MGL Lipase Catalytic Process. J Chem Inf Model 2021; 62:2248-2256. [PMID: 34873908 DOI: 10.1021/acs.jcim.1c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, it is believed that the substrate and products of a monoacylglycerol lipase (MGL) share the same path to enter and exit the catalytic site. Glycerol (a product of MGL), however, was recently hypothesized to be released through a different path. In order to improve the catalytic efficacy and thermo-stability of MGL, it is important to articulate the pathways of a MGL products releasing. In this study, with structure biological approaches, biochemical experiments, and in silico methods, we prove that glycerol is released from a different path in the catalytic site indeed. The fatty acid (another product of MGL) does share the same binding path with the substrate. This discovery paves a new road to design MGL inhibitors or optimize MGL catalytic efficacy.
Collapse
Affiliation(s)
- Dongming Lan
- School of Food Science and Engineering, Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510641, P.R. China
| | - Shu Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Wei Tang
- School of Food Science and Engineering, Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510641, P.R. China
| | - Zexin Zhao
- School of Biology and Engineering, South China University of Technology, Guangzhou 510641, P.R. China
| | - Mupeng Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China
| | - Yonghua Wang
- School of Food Science and Engineering, Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510641, P.R. China
| |
Collapse
|
7
|
Marullo P, Trujillo M, Viannais R, Hercman L, Guillaumie S, Colonna-Ceccaldi B, Albertin W, Barbe JC. Metabolic, Organoleptic and Transcriptomic Impact of Saccharomyces cerevisiae Genes Involved in the Biosynthesis of Linear and Substituted Esters. Int J Mol Sci 2021; 22:ijms22084026. [PMID: 33919724 PMCID: PMC8070738 DOI: 10.3390/ijms22084026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023] Open
Abstract
Esters constitute a broad family of volatile compounds impacting the organoleptic properties of many beverages, including wine and beer. They can be classified according to their chemical structure. Higher alcohol acetates differ from fatty acid ethyl esters, whereas a third group, substituted ethyl esters, contributes to the fruitiness of red wines. Derived from yeast metabolism, the biosynthesis of higher alcohol acetates and fatty acid ethyl esters has been widely investigated at the enzymatic and genetic levels. As previously reported, two pairs of esterases, respectively encoded by the paralogue genes ATF1 and ATF2, and EEB1 and EHT1, are mostly involved in the biosynthesis of higher alcohol acetates and fatty acid ethyl esters. These esterases have a moderate effect on the biosynthesis of substituted ethyl esters, which depend on mono-acyl lipases encoded by MGL2 and YJU3. The functional characterization of such genes helps to improve our understanding of substituted ester metabolism in the context of wine alcohol fermentation. In order to evaluate the overall sensorial impact of esters, we attempted to produce young red wines without esters by generating a multiple esterase-free strain (Δatf1, Δatf2, Δeeb1, and Δeht1). Surprisingly, it was not possible to obtain the deletion of MGL2 in the Δatf1/Δatf2/Δeeb1/Δeht1 background, highlighting unsuspected genetic incompatibilities between ATF1 and MGL2. A preliminary RNA-seq analysis depicted the overall effect of the Δatf1/Δatf2/Δeeb1/Δeht1 genotype that triggers the expression shift of 1124 genes involved in nitrogen and lipid metabolism, but also chromatin organization and histone acetylation. These findings reveal unsuspected regulatory roles of ester metabolism in genome expression for the first time.
Collapse
Affiliation(s)
- Philippe Marullo
- University Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France; (M.T.); (R.V.); (L.H.); (W.A.)
- Biolaffort, 11 Rue Aristide Bergès, F-33270 Floirac, France
- Correspondence: (P.M.); (J.-C.B.)
| | - Marine Trujillo
- University Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France; (M.T.); (R.V.); (L.H.); (W.A.)
- Pernod Ricard, 51 Chemin des Mèches, F-94000 Créteil, France;
| | - Rémy Viannais
- University Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France; (M.T.); (R.V.); (L.H.); (W.A.)
| | - Lucas Hercman
- University Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France; (M.T.); (R.V.); (L.H.); (W.A.)
| | - Sabine Guillaumie
- University Bordeaux, ISVV, UMR 1287 Ecophysiologie et Génomique Fonctionnelle de la Vigne, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France;
| | | | - Warren Albertin
- University Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France; (M.T.); (R.V.); (L.H.); (W.A.)
| | - Jean-Christophe Barbe
- University Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, F-33140 Villenave d’Ornon, France; (M.T.); (R.V.); (L.H.); (W.A.)
- Correspondence: (P.M.); (J.-C.B.)
| |
Collapse
|
8
|
Latha M, Dolui AK, Vijayaraj P. Proteoform of Arabidopsis seed storage protein identified by functional proteomics approach exhibits acyl hydrolase activity during germination. Int J Biol Macromol 2021; 172:452-463. [PMID: 33454325 DOI: 10.1016/j.ijbiomac.2021.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/01/2023]
Abstract
Lipases play a crucial role in the life cycle of seed plants and the oil content of the seed is highly regulated by the lipase activity. Hence, understanding the role of lipases during germination and post-germination will provide insights into lipid mobilization. However, to date, no lipase gene has been identified in seeds except, Sugar-dependent-1 in Arabidopsis. Hence, in the present study, we employed a functional proteomic approach for the identification of seed-specific lipase. Activity-Based Proteome Profiling (ABPP) of Arabidopsis mature and germinating seeds revealed the expression of a functional serine hydrolase exclusively during germination. The mass-spectrometry analysis reveals the identity and amino acid sequence of the protein correspond to AT4G28520 gene, a canonical 12S Seed Storage Protein (SSP). Interestingly, the identified SSP was a proteoform of AT4G28520 (SL-AT4G28520) and exhibited >90% identity with the canonical AT4G28520 (FL-AT4G28520). Heterologous expression and enzyme assays indicated that SL-AT4G28520 protein indeed possesses monoacylglycerol lipase activity, while the FL-AT4G28520 protein didn't exhibit any detectable activity. Functional proteomics and lipidomics analysis demonstrated a catalytic function of this SSP. Collectively, this is the first report, which suggests that SL-AT4G28520 encodes a lipase, and the activity is depending on the physiological condition.
Collapse
Affiliation(s)
- Mahadev Latha
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
New friends for seipin — Implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol 2020; 108:24-32. [DOI: 10.1016/j.semcdb.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
10
|
Justinić I, Katić A, Uršičić D, Ćurko-Cofek B, Blagović B, Čanadi Jurešić G. Combining proteomics and lipid analysis to unravel Confidor stress response in Saccharomyces cerevisiae. ENVIRONMENTAL TOXICOLOGY 2020; 35:346-358. [PMID: 31696623 DOI: 10.1002/tox.22870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The yeast Saccharomyces cerevisiae is a useful model for studying the influence of different stress factors on eukaryotic cells. In this work we used the pesticide imidacloprid, in the Confidor formulation, as the stress factor and analyzed its influence on the metabolic activity, proteome and lipid content and composition of Saccharomyces cerevisiae yeast. During the cultivation of yeast, the lowest recommended application dose of Confidor (0.025%, v/v) was added to the growth media and its influence on the mitochondria, cytosol with microsomes, and the whole yeast cells was monitored. The results show that under the stress provoked by the toxic effects of Confidor, yeast cells density significantly decreased and the percentage of metabolically disturbed cells significantly increased comparing with untreated control. Also, there was a downregulation of majority of glycolytic, gluconeogenesis, and TCA cycle enzymes (Fba1, Adh1, Hxk2, Tal1, Tdh1,Tdh3, Eno1) thus providing enough acetyl-CoA for the lipid restructuring and accumulation mechanism since we have found the changes in the cell and mitochondrial lipid content and FA composition. This data suggest that lipids could be the molecules that orchestrate the answer of the cells in the stress response to the Confidor treatment.
Collapse
Affiliation(s)
- Iva Justinić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ana Katić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Deni Uršičić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Patophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Branka Blagović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
11
|
OsPLB gene expressed during seed germination encodes a phospholipase in rice. 3 Biotech 2020; 10:30. [PMID: 32015947 DOI: 10.1007/s13205-019-2016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022] Open
Abstract
Hydrolysis of phospholipid monolayer by phospholipases is an important event in the mobilization of stored lipids for seed germination. However, the identification and functional characterization of cereal phospholipases, especially during rice germination, are limited. In the present study, we have identified and characterized a phospholipase OsPLB gene expressed during germination. The full-length coding region of OsPLB was cloned into pRSETA as well as pYES2/NTC vector. The recombinant protein was successfully expressed in both E. coli and Saccharomyces cerevisiae. The recombinant protein was purified to homogeneity by affinity chromatography, and it was further confirmed by MS/MS analysis. In vitro lipase assay and lipidome analysis using high-resolution mass spectrometry showed phosphatidylcholine (PC) specific phospholipase B activity. The results revealed that protein encoded by OsPLB gene prefers to hydrolyze PCs with C28, C32, and C34 containing unsaturated fatty acids. Collectively, the present study describes the identification and characterization of a phospholipase B, which hydrolyze PC, a major component of phospholipid monolayer covering storage lipid, as an initial event during rice seed germination.
Collapse
|
12
|
Gao J, Li Q, Wang N, Tao B, Wen J, Yi B, Ma C, Tu J, Fu T, Li Q, Zou J, Shen J. Tapetal Expression of BnaC.MAGL8.a Causes Male Sterility in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:763. [PMID: 31249581 PMCID: PMC6582705 DOI: 10.3389/fpls.2019.00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/24/2019] [Indexed: 05/07/2023]
Abstract
Monoacylglycerol lipase (MAGL) hydrolyzes monoacylglycerol, producing free fatty acid and glycerol. Although this enzyme has been shown to play important roles in mammal, its potential function in plants remains poorly understood. In a survey of the MAGL genes in Brassica napus, we found tapetal expression of BnaC.MAGL8.a, a homolog of AtMAGL8, results in male sterility in Arabidopsis thaliana. Retarded tapetal PCD and defective pollen wall were observed in the transgenic plants. The tapetal cells became vacuolated at stage 9, and then degenerated at stage 11. Most microspores degenerated with the tapetal cells, and only few pollen grains with an irregular-shaped exine layer were produced in the transgenic plants. Transcriptome analysis identified 398 differentially expressed genes. Most of them are involved in pollen development and stress response. ABORTED MICROSPORES and its downstream pollen wall biosynthesis genes were down-regulated, but genes related with reactive oxygen species homeostasis and jasmonates signaling were up-regulated in the transgenic plants. These results suggest that expression of BnaC.MAGL8.a in tapetum invokes stress response and impairs pollen development. The apparent phenotypic similarity between atgpat1 mutant and BnA9::BnaC.MAGL8.a transgenic plants lead us to propose a role for monoacylglycerol (MAG) in pollen development in Arabidopsis. Our study provides insights on not only the biological function of plant MAGL genes but also the role of MAG in pollen development.
Collapse
Affiliation(s)
- Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Wang
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jitao Zou
- National Research Council Canada, Saskatoon, SK, Canada
- *Correspondence: Jitao Zou,
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Jinxiong Shen,
| |
Collapse
|
13
|
Riegler-Berket L, Leitmeier A, Aschauer P, Dreveny I, Oberer M. Identification of lipases with activity towards monoacylglycerol by criterion of conserved cap architectures. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:679-687. [PMID: 29627382 DOI: 10.1016/j.bbalip.2018.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 11/26/2022]
Abstract
Monoacylglycerol lipases (MGL) are a subclass of lipases that predominantly hydrolyze monoacylglycerol (MG) into glycerol and fatty acid. MGLs are ubiquitous enzymes across species and play a role in lipid metabolism, affecting energy homeostasis and signaling processes. Structurally, MGLs belong to the α/β hydrolase fold family with a cap covering the substrate binding pocket. Analysis of the known 3D structures of human, yeast and bacterial MGLs revealed striking similarity of the cap architecture. Since MGLs from different organisms share very low sequence similarity, it is difficult to identify MGLs based on the amino acid sequence alone. Here, we investigated whether the cap architecture could be a characteristic feature of this subclass of lipases with activity towards MG and whether it is possible to identify MGLs based on the cap shape. Through database searches, we identified the structures of five different candidate α/β hydrolase fold proteins with unknown or reported esterase activity. These proteins exhibit cap architecture similarities to known human, yeast and bacterial MGL structures. Out of these candidates we confirmed MGL activity for the protein LipS, which displayed the highest structural similarity to known MGLs. Two further enzymes, Avi_0199 and VC1974, displayed low level MGL activities. These findings corroborate our hypothesis that this conserved cap architecture can be used as criterion to identify lipases with activity towards MGs.
Collapse
Affiliation(s)
- Lina Riegler-Berket
- Institute of Molecular Biosciences, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Andrea Leitmeier
- Institute of Molecular Biosciences, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Austria; BioTechMed-Graz, Austria
| | - Ingrid Dreveny
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
14
|
Graef M. Lipid droplet-mediated lipid and protein homeostasis in budding yeast. FEBS Lett 2018; 592:1291-1303. [PMID: 29397034 PMCID: PMC5947121 DOI: 10.1002/1873-3468.12996] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
Lipid droplets are conserved specialized organelles that store neutral lipids. Our view on this unique organelle has evolved from a simple fat deposit to a highly dynamic and functionally diverse hub—one that mediates the buffering of fatty acid stress and the adaptive reshaping of lipid metabolism to promote membrane and organelle homeostasis and the integrity of central proteostasis pathways, including autophagy, which ensure stress resistance and cell survival. This Review will summarize the recent developments in the budding yeast Saccharomyces cerevisiae, as this model organism has been instrumental in deciphering the fundamental mechanisms and principles of lipid droplet biology and interconnecting lipid droplets with many unanticipated cellular functions applicable to many other cell systems.
Collapse
Affiliation(s)
- Martin Graef
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Gao Q, Lu Y, Yao H, Xu YJ, Huang W, Wang C. Phospholipid homeostasis maintains cell polarity, development and virulence inmetarhizium robertsii. Environ Microbiol 2016; 18:3976-3990. [DOI: 10.1111/1462-2920.13408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/05/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Gao
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Yuzhen Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Hongyan Yao
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Yong-Jiang Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Wei Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
16
|
Heier C, Taschler U, Radulovic M, Aschauer P, Eichmann TO, Grond S, Wolinski H, Oberer M, Zechner R, Kohlwein SD, Zimmermann R. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism. J Biol Chem 2016; 291:11865-75. [PMID: 27036938 PMCID: PMC4882453 DOI: 10.1074/jbc.m115.705541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/24/2016] [Indexed: 12/27/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz and
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz and
| | - Maja Radulovic
- From the Institute of Molecular Biosciences, University of Graz and
| | - Philip Aschauer
- From the Institute of Molecular Biosciences, University of Graz and
| | | | - Susanne Grond
- From the Institute of Molecular Biosciences, University of Graz and
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz and
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz and
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, University of Graz and BioTechMed-Graz, 8010 Graz, Austria
| | | |
Collapse
|
17
|
Selvaraju K, Gowsalya R, Vijayakumar R, Nachiappan V. MGL2/YMR210w encodes a monoacylglycerol lipase in Saccharomyces cerevisiae. FEBS Lett 2016; 590:1174-86. [PMID: 26991558 DOI: 10.1002/1873-3468.12136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/27/2016] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
In silico analysis of the uncharacterized open reading frame YMR210w in Saccharomyces cerevisiae revealed that it possesses both an α/β hydrolase domain (ABHD) and a typical lipase (GXSXG) motif. The purified protein displayed monoacylglycerol (MAG) lipase activity and preferred palmitoyl-MAG. Overexpression of YMR210w in the known MAG lipase mutant yju3Δ clearly revealed that the protein had MAG lipase activity, hence we named the ORF MGL2. Overexpression of YMR210w decreased the cellular triacylglycerol levels. Analysis of the overexpressed strains showed reduction in the lipid droplets number and size. Phenotype studies revealed that the double deletion yju3Δmgl2Δ displayed a growth defect that was partially restored by MGL2 overexpression.
Collapse
Affiliation(s)
- Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajendran Vijayakumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
18
|
Kim RJ, Kim HJ, Shim D, Suh MC. Molecular and biochemical characterizations of the monoacylglycerol lipase gene family of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:758-71. [PMID: 26932457 DOI: 10.1111/tpj.13146] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 05/23/2023]
Abstract
Monoacylglycerol lipase (MAGL) catalyzes the last step of triacylglycerol breakdown, which is the hydrolysis of monoacylglycerol (MAG) to fatty acid and glycerol. Arabidopsis harbors over 270 genes annotated as 'lipase', the largest class of acyl lipid metabolism genes that have not been characterized experimentally. In this study, computational modeling suggested that 16 Arabidopsis putative MAGLs (AtMAGLs) have a three-dimensional structure that is similar to a human MAGL. Heterologous expression and enzyme assays indicated that 11 of the 16 encoded proteins indeed possess MAG lipase activity. Additionally, AtMAGL4 displayed hydrolase activity with lysophosphatidylcholine and lysophosphatidylethanolamine (LPE) substrates and AtMAGL1 and 2 utilized LPE as a substrate. All recombinant AtMAGLs preferred MAG substrates with unsaturated fatty acids over saturated fatty acids and AtMAGL8 exhibited the highest hydrolase activities with MAG containing 20:1 fatty acids. Except for AtMAGL4, -14 and -16, all AtMAGLs showed similar activity with both sn-1 and sn-2 MAG isomers. Spatial, temporal and stress-induced expression of the 16 AtMAGL genes was analyzed by transcriptome analyses. AtMAGL:eYFP fusion proteins provided initial evidence that AtMAGL1, -3, -6, -7, -8, -11, -13, -14 and -16 are targeted to the endoplasmic reticulum and/or Golgi network, AtMAGL10, -12 and -15 to the cytosol and AtMAGL2, -4 and -5 to the chloroplasts. Furthermore, AtMAGL8 was associated with the surface of oil bodies in germinating seeds and leaves accumulating oil bodies. This study provides the broad characterization of one of the least well-understood groups of Arabidopsis lipid-related enzymes and will be useful for better understanding their roles in planta.
Collapse
Affiliation(s)
- Ryeo Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Hae Jin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Donghwan Shim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
19
|
Aschauer P, Rengachari S, Lichtenegger J, Schittmayer M, Das KMP, Mayer N, Breinbauer R, Birner-Gruenberger R, Gruber CC, Zimmermann R, Gruber K, Oberer M. Crystal structure of the Saccharomyces cerevisiae monoglyceride lipase Yju3p. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:462-70. [PMID: 26869448 DOI: 10.1016/j.bbalip.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/25/2016] [Accepted: 02/06/2016] [Indexed: 10/22/2022]
Abstract
Monoglyceride lipases (MGLs) are a group of α/β-hydrolases that catalyze the hydrolysis of monoglycerides (MGs) into free fatty acids and glycerol. This reaction serves different physiological functions, namely in the last step of phospholipid and triglyceride degradation, in mammalian endocannabinoid and arachidonic acid metabolism, and in detoxification processes in microbes. Previous crystal structures of MGLs from humans and bacteria revealed conformational plasticity in the cap region of this protein and gave insight into substrate binding. In this study, we present the structure of a MGL from Saccharomyces cerevisiae called Yju3p in its free form and in complex with a covalently bound substrate analog mimicking the tetrahedral intermediate of MG hydrolysis. These structures reveal a high conservation of the overall shape of the MGL cap region and also provide evidence for conformational changes in the cap of Yju3p. The complex structure reveals that, despite the high structural similarity, Yju3p seems to have an additional opening to the substrate binding pocket at a different position compared to human and bacterial MGL. Substrate specificities towards MGs with saturated and unsaturated alkyl chains of different lengths were tested and revealed highest activity towards MG containing a C18:1 fatty acid.
Collapse
Affiliation(s)
- Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Srinivasan Rengachari
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Joerg Lichtenegger
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | | | - Nicole Mayer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Christian C Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria; ACIB - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria.
| |
Collapse
|
20
|
Wang CW. Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 2015; 72:2677-95. [PMID: 25894691 PMCID: PMC11113813 DOI: 10.1007/s00018-015-1903-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
Eukaryotic cells store excess fatty acids as neutral lipids, predominantly triacylglycerols and sterol esters, in organelles termed lipid droplets (LDs) that bulge out from the endoplasmic reticulum. LDs are highly dynamic and contribute to diverse cellular functions. The catabolism of the storage lipids within LDs is channeled to multiple metabolic pathways, providing molecules for energy production, membrane building blocks, and lipid signaling. LDs have been implicated in a number of protein degradation and pathogen infection processes. LDs may be linked to prevalent human metabolic diseases and have marked potential for biofuel production. The knowledge accumulated on LDs in recent years provides a foundation for diverse, and even unexpected, future research. This review focuses on recent advances in LD research, emphasizing the diverse physiological roles of LDs in the model system of budding yeast.
Collapse
Affiliation(s)
- Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan,
| |
Collapse
|
21
|
Eaton CJ, Dupont PY, Solomon P, Clayton W, Scott B, Cox MP. A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:218-31. [PMID: 25496592 DOI: 10.1094/mpmi-09-14-0293-fi] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.
Collapse
|
22
|
Rengachari S, Aschauer P, Sturm C, Oberer M. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2015; 71:243-6. [PMID: 25664804 PMCID: PMC4321484 DOI: 10.1107/s2053230x15001557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P212121), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- Institute of Molecular Biology, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Philipp Aschauer
- Institute of Molecular Biology, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Christian Sturm
- Institute of Molecular Biology, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biology, University of Graz, Humboldtstrasse 50/3, 8010 Graz, Austria
| |
Collapse
|
23
|
Vishnu Varthini L, Selvaraju K, Srinivasan M, Nachiappan V. ROG1 encodes a monoacylglycerol lipase in Saccharomyces cerevisiae. FEBS Lett 2014; 589:23-30. [PMID: 25433290 DOI: 10.1016/j.febslet.2014.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
Lipid metabolism is extensively studied in Saccharomyces cerevisiae. Here, we report that revertant of glycogen synthase kinase mutation-1 (Rog1p) possesses monoacylglycerol (MAG) lipase activity in S. cerevisiae. The lipase activity of Rog1p was confirmed in two ways: through analysis of a strain with a double deletion of ROG1 and monoglyceride lipase YJU3 (yju3Δrog1Δ) and by site-directed mutagenesis of the ROG1 lipase motif (GXSXG). Rog1p is localized in both the cytosol and the nucleus. Overexpression of ROG1 in a ROG1-deficient strain resulted in an accumulation of reactive oxygen species. These results suggest that Rog1p is a MAG lipase that regulates lipid homeostasis.
Collapse
Affiliation(s)
| | - Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Malathi Srinivasan
- CSIR-Central Food Technological Research Institute, Lipidomics Center, Allalasandra, GKVK Post, Bellary Road, Bangalore 560 065, Karnataka, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
24
|
Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity. Food Chem 2014; 160:61-6. [DOI: 10.1016/j.foodchem.2014.03.092] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/03/2014] [Accepted: 03/18/2014] [Indexed: 11/24/2022]
|
25
|
Cerk IK, Salzburger B, Boeszoermenyi A, Heier C, Pillip C, Romauch M, Schweiger M, Cornaciu I, Lass A, Zimmermann R, Zechner R, Oberer M. A peptide derived from G0/G1 switch gene 2 acts as noncompetitive inhibitor of adipose triglyceride lipase. J Biol Chem 2014; 289:32559-70. [PMID: 25258314 PMCID: PMC4239610 DOI: 10.1074/jbc.m114.602599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The protein G0/G1 switch gene 2 (G0S2) is a small basic protein that functions as an endogenous inhibitor of adipose triglyceride lipase (ATGL), a key enzyme in intracellular lipolysis. In this study, we identified a short sequence covering residues Lys-20 to Ala-52 in G0S2 that is still fully capable of inhibiting mouse and human ATGL. We found that a synthetic peptide corresponding to this region inhibits ATGL in a noncompetitive manner in the nanomolar range. This peptide is highly selective for ATGL and does not inhibit other lipases, including hormone-sensitive lipase, monoacylglycerol lipase, lipoprotein lipase, and patatin domain-containing phospholipases 6 and 7. Because increased lipolysis is linked to the development of metabolic disorders, the inhibition of ATGL by G0S2-derived peptides may represent a novel therapeutic tool to modulate lipolysis.
Collapse
Affiliation(s)
- Ines K Cerk
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Barbara Salzburger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Andras Boeszoermenyi
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Pillip
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Matthias Romauch
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Martina Schweiger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Irina Cornaciu
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
26
|
Selvaraju K, Rajakumar S, Nachiappan V. Identification of a phospholipase B encoded by the LPL1 gene in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1383-92. [PMID: 25014274 DOI: 10.1016/j.bbalip.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Phospholipids also play a major role in maintaining the lipid droplet (LD) morphology. In our current study, deletion of LPL1 resulted in altered morphology of LDs and was confirmed by microscopic analysis. LPL1/YOR059c contains lipase specific motif GXSXG and acetate labeling in the LPL1 overexpressed strains depicted a decrease in glycerophospholipids and an increase in free fatty acids. The purified Lpl1p showed phospholipase activity with broader substrate specificity, acting on all glycerophospholipids primarily at sn-2 position and later at sn-1 position. Localization studies precisely revealed that Lpl1 is exclusively localized in the LD at the stationary phase. Site directed mutagenesis experiments clearly demonstrated that the lipase motif is vital for the phospholipase activity. In summary, our results demonstrate that yeast Lpl1 exerts phospholipase activity, plays a vital role in LD morphology, and its absence results in altered LD size. Based on the localization and enzyme activity we renamed YOR059c as LPL1 (LD phospholipase 1).
Collapse
Affiliation(s)
- Kandasamy Selvaraju
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Selvaraj Rajakumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| |
Collapse
|
27
|
Currie E, Guo X, Christiano R, Chitraju C, Kory N, Harrison K, Haas J, Walther TC, Farese RV. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J Lipid Res 2014; 55:1465-77. [PMID: 24868093 PMCID: PMC4076087 DOI: 10.1194/jlr.m050229] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 01/29/2023] Open
Abstract
Accurate protein inventories are essential for understanding an organelle’s functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae. Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism.
Collapse
Affiliation(s)
- Erin Currie
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Xiuling Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | | | | | - Nora Kory
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Kenneth Harrison
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Joel Haas
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158
| | - Tobias C Walther
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Robert V Farese
- Department of Biochemistry and Biophysics University of California, San Francisco, CA 94158 Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 Department of Medicine, University of California, San Francisco, CA 94158
| |
Collapse
|
28
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
29
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
30
|
Ploier B, Scharwey M, Koch B, Schmidt C, Schatte J, Rechberger G, Kollroser M, Hermetter A, Daum G. Screening for hydrolytic enzymes reveals Ayr1p as a novel triacylglycerol lipase in Saccharomyces cerevisiae. J Biol Chem 2013; 288:36061-72. [PMID: 24187129 DOI: 10.1074/jbc.m113.509927] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317-23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301-37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.
Collapse
Affiliation(s)
- Birgit Ploier
- From the Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rengachari S, Aschauer P, Schittmayer M, Mayer N, Gruber K, Breinbauer R, Birner-Gruenberger R, Dreveny I, Oberer M. Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. J Biol Chem 2013; 288:31093-104. [PMID: 24014019 PMCID: PMC3829422 DOI: 10.1074/jbc.m113.491415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Monoacylglycerol lipases (MGLs) play an important role in lipid catabolism across all kingdoms of life by catalyzing the release of free fatty acids from monoacylglycerols. The three-dimensional structures of human and a bacterial MGL were determined only recently as the first members of this lipase family. In addition to the α/β-hydrolase core, they showed unexpected structural similarities even in the cap region. Nevertheless, the structural basis for substrate binding and conformational changes of MGLs is poorly understood. Here, we present a comprehensive study of five crystal structures of MGL from Bacillus sp. H257 in its free form and in complex with different substrate analogs and the natural substrate 1-lauroylglycerol. The occurrence of different conformations reveals a high degree of conformational plasticity of the cap region. We identify a specific residue, Ile-145, that might act as a gatekeeper restricting access to the binding site. Site-directed mutagenesis of Ile-145 leads to significantly reduced hydrolase activity. Bacterial MGLs in complex with 1-lauroylglycerol, myristoyl, palmitoyl, and stearoyl substrate analogs enable identification of the binding sites for the alkyl chain and the glycerol moiety of the natural ligand. They also provide snapshots of the hydrolytic reaction of a bacterial MGL at different stages. The alkyl chains are buried in a hydrophobic tunnel in an extended conformation. Binding of the glycerol moiety is mediated via Glu-156 and water molecules. Analysis of the structural features responsible for cap plasticity and the binding modes of the ligands suggests conservation of these features also in human MGL.
Collapse
Affiliation(s)
- Srinivasan Rengachari
- From the Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Aung HW, Henry SA, Walker LP. Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Ind Biotechnol (New Rochelle N Y) 2013; 9:215-228. [PMID: 24678285 DOI: 10.1089/ind.2013.0013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genome-scale metabolic models are built using information from an organism's annotated genome and, correspondingly, information on reactions catalyzed by the set of metabolic enzymes encoded by the genome. These models have been successfully applied to guide metabolic engineering to increase production of metabolites of industrial interest. Congruity between simulated and experimental metabolic behavior is influenced by the accuracy of the representation of the metabolic network in the model. In the interest of applying the consensus model of Saccharomyces cerevisiae metabolism for increased productivity of triglycerides, we manually evaluated the representation of fatty acid, glycerophospholipid, and glycerolipid metabolism in the consensus model (Yeast v6.0). These areas of metabolism were chosen due to their tightly interconnected nature to triglyceride synthesis. Manual curation was facilitated by custom MATLAB functions that return information contained in the model for reactions associated with genes and metabolites within the stated areas of metabolism. Through manual curation, we have identified inconsistencies between information contained in the model and literature knowledge. These inconsistencies include incorrect gene-reaction associations, improper definition of substrates/products in reactions, inappropriate assignments of reaction directionality, nonfunctional β-oxidation pathways, and missing reactions relevant to the synthesis and degradation of triglycerides. Suggestions to amend these inconsistencies in the Yeast v6.0 model can be implemented through a MATLAB script provided in theSupplementary Materials, Supplementary Data S1(Supplementary Data are available online at www.liebertpub.com/ind).
Collapse
Affiliation(s)
- Hnin W Aung
- Department of Biological & Environmental Engineering, Cornell University , Ithaca, NY
| | - Susan A Henry
- Department of Molecular Biology & Genetics, Cornell University , Ithaca, NY
| | - Larry P Walker
- Department of Biological & Environmental Engineering, Cornell University , Ithaca, NY
| |
Collapse
|
33
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
34
|
Jackson CA, Yadav N, Min S, Li J, Milliman EJ, Qu J, Chen YC, Yu MC. Proteomic analysis of interactors for yeast protein arginine methyltransferase Hmt1 reveals novel substrate and insights into additional biological roles. Proteomics 2013; 12:3304-14. [PMID: 22997150 DOI: 10.1002/pmic.201200132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 01/07/2023]
Abstract
Protein arginine methylation is a PTM catalyzed by an evolutionarily conserved family of enzymes called protein arginine methyltransferases (PRMTs), with PRMT1 being the most conserved member of this enzyme family. This modification has emerged to be an important regulator of protein functions. To better understand the role of PRMTs in cellular pathways and functions, we have carried out a proteomic profiling experiment to comprehensively identify the physical interactors of Hmt1, the budding yeast homolog for human PRMT1. Using a dual-enzymatic digestion linear trap quadrupole/Orbitrap proteomic strategy, we identified a total of 108 proteins that specifically copurify with Hmt1 by tandem affinity purification. A reverse coimmunoprecipitation experiment was used to confirm Hmt1's physical association with Bre5, Mtr4, Snf2, Sum1, and Ssd1, five proteins that were identified as Hmt1-specific interactors in multiple biological replicates. To determine whether the identified Hmt1-interactors had the potential to act as an Hmt1 substrate, we used published bioinformatics algorithms that predict the presence and location of potential methylarginines for each identified interactor. One of the top hits from this analysis, Snf2, was experimentally confirmed as a robust substrate of Hmt1 in vitro. Overall, our data provide a feasible proteomic approach that aid in the better understanding of PRMT1's roles within a cell.
Collapse
Affiliation(s)
- Christopher A Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Thiel K, Heier C, Haberl V, Thul PJ, Oberer M, Lass A, Jäckle H, Beller M. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J Cell Sci 2013; 126:2198-212. [PMID: 23525007 DOI: 10.1242/jcs.120493] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid droplets (LDs) are specialized cell organelles for the storage of energy-rich lipids. Although lipid storage is a conserved feature of all cells and organisms, little is known about fundamental aspects of the cell biology of LDs, including their biogenesis, structural assembly and subcellular positioning, and the regulation of organismic energy homeostasis. We identified a novel LD-associated protein family, represented by the Drosophila protein CG9186 and its murine homolog MGI:1916082. In the absence of LDs, both proteins localize at the endoplasmic reticulum (ER). Upon lipid storage induction, they translocate to LDs using an evolutionarily conserved targeting mechanism that acts through a 60-amino-acid targeting motif in the center of the CG9186 protein. Overexpression of CG9186, and MGI:1916082, causes clustering of LDs in both tissue culture and salivary gland cells, whereas RNAi knockdown of CG9186 results in a reduction of LDs. Organismal RNAi knockdown of CG9186 results in a reduction in lipid storage levels of the fly. The results indicate that we identified the first members of a novel and evolutionarily conserved family of lipid storage regulators, which are also required to properly position LDs within cells.
Collapse
Affiliation(s)
- Katharina Thiel
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The hydrolysis of ceramides in yeast is catalysed by the alkaline ceramidases Ypc1p and Ydc1p, two highly homologous membrane proteins localized to the ER (endoplasmic reticulum). As observed with many enzymes, Ypc1p can also catalyse the reverse reaction, i.e. condense a non-esterified fatty acid with PHS (phytosphingosine) or DHS (dihydrosphingosine) and thus synthesize ceramides. When incubating microsomes with [(3)H]palmitate and PHS, we not only obtained the ceramide PHS-[(3)H]C(16:0), but also a more hydrophobic compound, which was transformed into PHS-[(3)H]C(16:0) upon mild base treatment. The biosynthesis of a lipid with similar characteristics could also be observed in living cells labelled with [(14)C]serine. Its biosynthesis was dependent on the diacylglycerol acyltransfereases Lro1p and Dga1p, suggesting that it consists of an acylceramide. The synthesis of acylceramide could also be monitored using fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazole)-ceramides as an acceptor substrate for microsomal assays. The Lro1p-dependent transfer of oleic acid on to NBD-ceramide was confirmed by high-resolution Fourier transform and tandem MS. Immunopurified Lro1p was equally able to acylate NBD-ceramide. Lro1p acylates NBD-ceramide by attaching a fatty acid to the hydroxy group on the first carbon atom of the long-chain base. Acylceramides are mobilized when cells are diluted into fresh medium in the presence of cerulenin, an inhibitor of fatty acid biosynthesis.
Collapse
|
37
|
Mora G, Scharnewski M, Fulda M. Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS One 2012; 7:e49269. [PMID: 23139841 PMCID: PMC3489728 DOI: 10.1371/journal.pone.0049269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of equilibrium in the fatty acid (FA) composition of phospholipids (PL) requires both regulation of the substrate available for PL synthesis (the acyl-CoA pool) and extensive PL turnover and acyl editing. In the present study, we utilize acyl-CoA synthetase (ACS) deficient cells, unable to recycle FA derived from lipid deacylation, to evaluate the role of several enzymatic activities in FA trafficking and PL homeostasis in Saccharomyces cerevisiae. The data presented show that phospholipases B are not contributing to constitutive PL deacylation and are therefore unlikely to be involved in PL remodeling. In contrast, the enzymes of neutral lipid (NL) synthesis and mobilization are central mediators of FA trafficking. The phospholipid:DAG acyltransferase (PDAT) Lro1p has a substantial effect on FA release and on PL equilibrium, emerging as an important mediator in PL remodeling. The acyl-CoA dependent biosynthetic activities of NL metabolism are also involved in PL homeostasis through active modulation of the substrate available for PL synthesis. In addition TAG mobilization makes an important contribution, especially in cells from stationary phase, to FA availability. Beyond its well-established role in the formation of a storage pool, NL metabolism could play a crucial role as a mechanism to uncouple the pools of PL and acyl-CoAs from each other and thereby to allow independent regulation of each one.
Collapse
Affiliation(s)
- Gabriel Mora
- Department of Plant Biochemistry, Albrecht-von-Haller Institute, Georg-August University Goettingen, Goettingen, Germany
| | | | | |
Collapse
|
38
|
Vijayaraj P, Jashal CB, Vijayakumar A, Rani SH, Venkata Rao D, Rajasekharan R. A bifunctional enzyme that has both monoacylglycerol acyltransferase and acyl hydrolase activities. PLANT PHYSIOLOGY 2012; 160:667-83. [PMID: 22915575 PMCID: PMC3461547 DOI: 10.1104/pp.112.202135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/16/2012] [Indexed: 05/23/2023]
Abstract
Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX(4)D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions.
Collapse
|
39
|
Rengachari S, Bezerra GA, Riegler-Berket L, Gruber CC, Sturm C, Taschler U, Boeszoermenyi A, Dreveny I, Zimmermann R, Gruber K, Oberer M. The structure of monoacylglycerol lipase from Bacillus sp. H257 reveals unexpected conservation of the cap architecture between bacterial and human enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:1012-21. [PMID: 22561231 PMCID: PMC3790968 DOI: 10.1016/j.bbalip.2012.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/20/2022]
Abstract
Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2Å and in complex with phenylmethylsulfonyl fluoride at 1.8Å resolution. In both structures, bMGL adopts an α/β hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.
Collapse
Affiliation(s)
| | - Gustavo A. Bezerra
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| | - Lina Riegler-Berket
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| | | | - Christian Sturm
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| | | | - Ingrid Dreveny
- School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, A‐8010 Graz, Austria
| |
Collapse
|
40
|
Abstract
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
Collapse
|
41
|
Theodoulou FL, Eastmond PJ. Seed storage oil catabolism: a story of give and take. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:322-8. [PMID: 22516438 DOI: 10.1016/j.pbi.2012.03.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 05/21/2023]
Abstract
The transition from seed to seedling is an important step in the life cycle of plants, which is fuelled primarily by the breakdown of triacylglycerol (TAG) in 'oilseed' species. TAG is stored within cytosolic oil bodies, while the pathway for fatty acid β-oxidation resides in the peroxisome. Although the enzymology of fatty acid β-oxidation has been relatively well characterised, the processes by which fatty acids are liberated from oil bodies and enter the peroxisome are less well understood and, together with metabolite, cofactor and co-substrate transporters, represent key targets for future research in order to understand co-ordination of peroxisomal metabolism with that of other subcellular compartments.
Collapse
Affiliation(s)
- Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
42
|
Petrie JR, Vanhercke T, Shrestha P, El Tahchy A, White A, Zhou XR, Liu Q, Mansour MP, Nichols PD, Singh SP. Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One 2012; 7:e35214. [PMID: 22523576 PMCID: PMC3327653 DOI: 10.1371/journal.pone.0035214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 03/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. CONCLUSIONS/SIGNIFICANCE This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.
Collapse
Affiliation(s)
- James R. Petrie
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
| | | | - Pushkar Shrestha
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
| | - Anna El Tahchy
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
| | - Adam White
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
| | | | - Qing Liu
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
| | - Maged P. Mansour
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
- CSIRO Marine and Atmospheric Research, Hobart, TAS, Australia
| | - Peter D. Nichols
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
- CSIRO Marine and Atmospheric Research, Hobart, TAS, Australia
| | - Surinder P. Singh
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia
| |
Collapse
|
43
|
Viertler M, Schittmayer M, Birner-Gruenberger R. Activity based subcellular resolution imaging of lipases. Bioorg Med Chem 2012; 20:628-32. [DOI: 10.1016/j.bmc.2011.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/04/2011] [Accepted: 04/09/2011] [Indexed: 11/30/2022]
|
44
|
|
45
|
Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 2011; 93:1523-37. [PMID: 21808970 PMCID: PMC3275733 DOI: 10.1007/s00253-011-3506-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 01/22/2023]
Abstract
Triacylglycerols (TAG) and steryl esters (SE) are the principal storage lipids in all eukaryotic cells. In yeasts, these storage lipids accumulate within special organelles known as lipid bodies (LB). In the lipid accumulation-oriented metabolism of the oleaginous yeast Yarrowia lipolytica, storage lipids are mostly found in the form of TAG, and only small amounts of SE accumulate. We report here the identification of a new DAG acyltransferase gene, DGA2, homologous to the ARE genes of Saccharomyces cerevisiae. This gene encodes a member of the type 1 acyl-CoA:diacylglycerol acyltransferase family (DGAT1), which has not previously been identified in yeasts, but is commonly found in mammals and plants. Unlike the Are proteins in S. cerevisiae, Dga2p makes a major contribution to TAG synthesis via an acyl-CoA-dependent mechanism and is not involved in SE synthesis. This enzyme appears to affect the size and morphology of LB, suggesting a direct role of storage lipid proteins in LB formation. We report that the Are1p of Y. lipolytica was essential for sterol esterification, as deletion of the encoding gene (ARE1) completely abolished SE synthesis. Unlike its homologs in yeasts, YlARE1 has no DAG acyltransferase activity. We also reconsider the role and function of all four acyltransferase enzymes involved in the final step of neutral lipid synthesis in this oleaginous yeast.
Collapse
|
46
|
|
47
|
Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 2011; 90:1193-206. [PMID: 21452033 DOI: 10.1007/s00253-011-3212-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications. It covers the basic biochemical mechanisms of lipid synthesis and accumulation in these organisms, along with the latest insights on the metabolic processes involved. The key elements of lipid accumulation, the mechanisms suspected to confer the oleaginous character of the cell, and the potential metabolic routes enhancing lipid production are also extensively discussed.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- AgroParisTech, UMR1319, Micalis, Centre de Biotechnologie Agro-Industrielle, Thiverval-Grignon, France
| | | | | |
Collapse
|
48
|
Taschler U, Radner FPW, Heier C, Schreiber R, Schweiger M, Schoiswohl G, Preiss-Landl K, Jaeger D, Reiter B, Koefeler HC, Wojciechowski J, Theussl C, Penninger JM, Lass A, Haemmerle G, Zechner R, Zimmermann R. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem 2011; 286:17467-77. [PMID: 21454566 DOI: 10.1074/jbc.m110.215434] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.
Collapse
Affiliation(s)
- Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|