1
|
Henne WM, Ugrankar-Banerjee R, Tran S, Bowerman J, Paul B, Zacharias L, Mathews T, DeBerardinis R. Metabolic rewiring in fat-depleted Drosophila reveals triglyceride:glycogen crosstalk and identifies cDIP as a new regulator of energy metabolism. RESEARCH SQUARE 2024:rs.3.rs-4505077. [PMID: 39483909 PMCID: PMC11527204 DOI: 10.21203/rs.3.rs-4505077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tissues store excess nutrients as triglyceride or glycogen, but how these reserves are sensed and communicate remains poorly understood. Here we identify molecular players orchestrating this metabolic balance during fat depletion. We show fat body (FB)-specific depletion of fatty acyl-CoA synthase FASN1 in Drosophila causes near-complete fat loss and metabolic remodeling that dramatically elevates glycogen storage and carbohydrate metabolism. Proteomics and metabolomics identify key factors necessary for rewiring including glycolysis enzymes and target-of-brain-insulin (tobi). FASN1-deficient flies are viable but starvation sensitive, oxidatively stressed, and infertile. We also identify CG10824/cDIP as upregulated in FASN1-depleted Drosophila. cDIP is a leucine-rich-repeat protein with homology to secreted adipokines that fine-tune energy signaling, and is required for fly development in the absence of FASN1. Collectively, we show fat-depleted Drosophila rewire their metabolism to complete development, and identify cDIP as a putative new cytokine that signals fat insufficiency and may regulate energy homeostasis.
Collapse
|
2
|
Cui YL, Guo JS, Zhang CX, Yu XP, Li DT. Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper. INSECT MOLECULAR BIOLOGY 2024; 33:350-361. [PMID: 38430546 DOI: 10.1111/imb.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.
Collapse
Affiliation(s)
- Yi-Lin Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian-Shen Guo
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Wheeler MB, Rabel RAC, Rubessa M, Popescu G. Label-free, high-throughput holographic imaging to evaluate mammalian gametes and embryos†. Biol Reprod 2024; 110:1125-1134. [PMID: 38733568 PMCID: PMC11180620 DOI: 10.1093/biolre/ioae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Assisted reproduction is one of the significant tools to treat human infertility. Morphological assessment is the primary method to determine sperm and embryo viability during in vitro fertilization cycles. It has the advantage of being a quick, convenient, and inexpensive means of assessment. However, visual observation is of limited predictive value for early embryo morphology. It has led many to search for other imaging tools to assess the reproductive potential of a given embryo. The limitations of visual assessment apply to both humans and animals. One recent innovation in assisted reproduction technology imaging is interferometric phase microscopy, also known as holographic microscopy. Interferometric phase microscopy/quantitative phase imaging is the next likely progression of analytical microscopes for the assisted reproduction laboratory. The interferometric phase microscopy system analyzes waves produced by the light as it passes through the specimen observed. The microscope collects the light waves produced and uses the algorithm to create a hologram of the specimen. Recently, interferometric phase microscopy has been combined with quantitative phase imaging, which joins phase contrast microscopy with holographic microscopy. These microscopes collect light waves produced and use the algorithm to create a hologram of the specimen. Unlike other systems, interferometric phase microscopy can provide a quantitative digital image, and it can make 2D and 3D images of the samples. This review summarizes some newer and more promising quantitative phase imaging microscopy systems for evaluating gametes and embryos. Studies clearly show that quantitative phase imaging is superior to bright field microscopy-based evaluation methods when evaluating sperm and oocytes prior to IVF and embryos prior to transfer. However, further assessment of these systems for efficacy, reproducibility, cost-effectiveness, and embryo/gamete safety must take place before they are widely adopted.
Collapse
Affiliation(s)
- Matthew B Wheeler
- Department of Animal Sciences University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - R A Chanaka Rabel
- Department of Animal Sciences University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marcello Rubessa
- Department of Animal Sciences University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Gabriel Popescu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
4
|
Giedt MS, Thomalla JM, White RP, Johnson MR, Lai ZW, Tootle TL, Welte MA. Adipose triglyceride lipase promotes prostaglandin-dependent actin remodeling by regulating substrate release from lipid droplets. Development 2023; 150:dev201516. [PMID: 37306387 PMCID: PMC10281261 DOI: 10.1242/dev.201516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs), crucial regulators of lipid metabolism, accumulate during oocyte development. However, their roles in fertility remain largely unknown. During Drosophila oogenesis, LD accumulation coincides with the actin remodeling necessary for follicle development. Loss of the LD-associated Adipose Triglyceride Lipase (ATGL) disrupts both actin bundle formation and cortical actin integrity, an unusual phenotype also seen when the prostaglandin (PG) synthase Pxt is missing. Dominant genetic interactions and PG treatment of follicles indicate that ATGL acts upstream of Pxt to regulate actin remodeling. Our data suggest that ATGL releases arachidonic acid (AA) from LDs to serve as the substrate for PG synthesis. Lipidomic analysis detects AA-containing triglycerides in ovaries, and these are increased when ATGL is lost. High levels of exogenous AA block follicle development; this is enhanced by impairing LD formation and suppressed by reducing ATGL. Together, these data support the model that AA stored in LD triglycerides is released by ATGL to drive the production of PGs, which promote the actin remodeling necessary for follicle development. We speculate that this pathway is conserved across organisms to regulate oocyte development and promote fertility.
Collapse
Affiliation(s)
- Michelle S. Giedt
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Roger P. White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Matthew R. Johnson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Zon Weng Lai
- Harvard T.H. Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
5
|
Kilwein MD, Johnson MR, Thomalla JM, Mahowald AP, Welte MA. Drosophila embryos spatially sort their nutrient stores to facilitate their utilization. Development 2023; 150:dev201423. [PMID: 36805634 PMCID: PMC10108605 DOI: 10.1242/dev.201423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Animal embryos are provided by their mothers with a diverse nutrient supply that is crucial for development. In Drosophila, the three most abundant nutrients (triglycerides, proteins and glycogen) are sequestered in distinct storage structures: lipid droplets (LDs), yolk vesicles (YVs) and glycogen granules (GGs). Using transmission electron microscopy as well as live and fixed sample fluorescence imaging, we find that all three storage structures are dispersed throughout the egg but are then spatially allocated to distinct tissues by gastrulation: LDs largely to the peripheral epithelium, YVs and GGs to the central yolk cell. To confound the embryo's ability to sort its nutrients, we employ Jabba and mauve mutants to generate LD-GG and LD-YV compound structures. In these mutants, LDs are mis-sorted to the yolk cell and their turnover is delayed. Our observations demonstrate dramatic spatial nutrient sorting in early embryos and provide the first evidence for its functional importance.
Collapse
Affiliation(s)
- Marcus D. Kilwein
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| | - Matthew R. Johnson
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| | | | | | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
| |
Collapse
|
6
|
Zhao T, Wang M, Li Z, Li H, Yuan D, Zhang X, Guo M, Qian W, Cheng D. Wds-Mediated H3K4me3 Modification Regulates Lipid Synthesis and Transport in Drosophila. Int J Mol Sci 2023; 24:ijms24076125. [PMID: 37047100 PMCID: PMC10093852 DOI: 10.3390/ijms24076125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Lipid homeostasis is essential for insect growth and development. The complex of proteins associated with Set 1 (COMPASS)-catalyzed Histone 3 lysine 4 trimethylation (H3K4me3) epigenetically activates gene transcription and is involved in various biological processes, but the role and molecular mechanism of H3K4me3 modification in lipid homeostasis remains largely unknown. In the present study, we showed in Drosophila that fat body-specific knockdown of will die slowly (Wds) as one of the COMPASS complex components caused a decrease in lipid droplet (LD) size and triglyceride (TG) levels. Mechanistically, Wds-mediated H3K4me3 modification in the fat body targeted several lipogenic genes involved in lipid synthesis and the Lpp gene associated with lipid transport to promote their expressions; the transcription factor heat shock factor (Hsf) could interact with Wds to modulate H3K4me3 modification within the promoters of these targets; and fat body-specific knockdown of Hsf phenocopied the effects of Wds knockdown on lipid homeostasis in the fat body. Moreover, fat body-specific knockdown of Wds or Hsf reduced high-fat diet (HFD)-induced oversized LDs and high TG levels. Altogether, our study reveals that Wds-mediated H3K4me3 modification is required for lipid homeostasis during Drosophila development and provides novel insights into the epigenetic regulation of insect lipid metabolism.
Collapse
Affiliation(s)
- Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Min Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Hao Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Dongqin Yuan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Xing Zhang
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Mengge Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
8
|
White RP, Welte MA. Visualizing Lipid Droplets in Drosophila Oogenesis. Methods Mol Biol 2023; 2626:233-251. [PMID: 36715908 DOI: 10.1007/978-1-0716-2970-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipid droplets (LDs) are fat storage organelles highly abundant in oocytes and eggs of many vertebrates and invertebrates. They have roles both during oogenesis and in provisioning the developing embryo. In Drosophila, large numbers of LDs are generated in nurse cells during mid-oogenesis and then transferred to oocytes. Their number and spatial distribution changes developmentally and in response to various experimental manipulations. This chapter demonstrates how to visualize LDs in Drosophila follicles, both in fixed tissues and living samples. For fixed samples, the protocol explains how to prepare female flies, dissect ovaries, isolate follicles, fix, apply stains, mount the tissue, and perform imaging. For live samples, the protocol shows how to dissect ovaries, apply a fluorescent LD dye, and culture follicles such that they remain alive and healthy during imaging. Finally, a method is provided that employs in vivo centrifugation to assess colocalization of markers with LDs.
Collapse
Affiliation(s)
- Roger P White
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
9
|
Sokac AM, Biel N, De Renzis S. Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Semin Cell Dev Biol 2023; 133:107-122. [PMID: 35396167 PMCID: PMC9532467 DOI: 10.1016/j.semcdb.2022.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
During morphogenesis, changes in the shapes of individual cells are harnessed to mold an entire tissue. These changes in cell shapes require the coupled remodeling of the plasma membrane and underlying actin cytoskeleton. In this review, we highlight cellularization of the Drosophila embryo as a model system to uncover principles of how membrane and actin dynamics are co-regulated in space and time to drive morphogenesis.
Collapse
Affiliation(s)
- Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Natalie Biel
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano De Renzis
- European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
10
|
Singh J, Sanghavi P, Mallik R. Microtubule motor driven interactions of lipid droplets: Specificities and opportunities. Front Cell Dev Biol 2022; 10:893375. [PMID: 36200039 PMCID: PMC9527339 DOI: 10.3389/fcell.2022.893375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Lipid Droplets (LDs) are evolutionarily conserved cellular organelles that store neutral lipids such as triacylglycerol and cholesterol-esters. Neutral lipids are enclosed within the limiting membrane of the LD, which is a monolayer of phospholipids and is therefore fundamentally different from the bilayer membrane enclosing most other organelles. LDs have long been viewed as a storehouse of lipids needed on demand for generating energy and membranes inside cells. Outside this classical view, we are now realizing that LDs have significant roles in protein sequestration, supply of signalling lipids, viral replication, lipoprotein production and many other functions of important physiological consequence. To execute such functions, LDs must often exchange lipids and proteins with other organelles (e.g., the ER, lysosomes, mitochondria) via physical contacts. But before such exchanges can occur, how does a micron-sized LD with limited ability to diffuse around find its cognate organelle? There is growing evidence that motor protein driven motion of LDs along microtubules may facilitate such LD-organelle interactions. We will summarize some aspects of LD motion leading to LD-organelle contacts, how these change with metabolic state and pathogen infections, and also ask how these pathways could perhaps be targeted selectively in the context of disease and drug delivery. Such a possibility arises because the binding of motor proteins to the monolayer membrane on LDs could be different from motor binding to the membrane on other cellular organelles.
Collapse
Affiliation(s)
- Jagjeet Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Roop Mallik, ; Jagjeet Singh,
| | - Paulomi Sanghavi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- *Correspondence: Roop Mallik, ; Jagjeet Singh,
| |
Collapse
|
11
|
Cao Z, Fung CW, Mak HY. A Flexible Network of Lipid Droplet Associated Proteins Support Embryonic Integrity of C. elegans. Front Cell Dev Biol 2022; 10:856474. [PMID: 35445028 PMCID: PMC9015696 DOI: 10.3389/fcell.2022.856474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to coordinating the storage and mobilization of neutral fat, lipid droplets (LDs) are conserved organelles that can accommodate additional cargos in order to support animal development. However, it is unclear if each type of cargo is matched with a specific subset of LDs. Here, we report that SEIP-1/seipin defines a subset of oocyte LDs that are required for proper eggshell formation in C. elegans. Using a photoconvertible fluorescent protein-based imaging assay, we found that SEIP-1 positive LDs were selectively depleted after fertilization, coincident of the formation of a lipid-rich permeability barrier of the eggshell. Loss of SEIP-1 function caused impenetrant embryonic arrest, which could be worsened by FAT-3/fatty acyl-CoA desaturase deficiency or suppressed by PLIN-1/Perilipin deficiency. The embryonic development of seip-1; plin-1 mutant in turn depended on the recruitment of RAB-18/Rab18 to LDs, which was not observed in wild type embryos. We propose that SEIP-1 dependent and independent mechanisms act in parallel to ensure the packaging and export of lipid-rich permeability barrier constituents, which involve LDs. The identity of these LDs, as defined by their associated proteins, exhibits unexpected plasticity that ultimately ensures the survival of embryos ex utero.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chun Wing Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
12
|
Pikálek T, Stibůrek M, Simpson S, Čižmár T, Trägårdh J. Suppression of the non-linear background in a multimode fibre CARS endoscope. BIOMEDICAL OPTICS EXPRESS 2022; 13:862-874. [PMID: 35284193 PMCID: PMC8884213 DOI: 10.1364/boe.450375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Multimode fibres show great potential for use as miniature endoscopes for imaging deep in tissue with minimal damage. When used for coherent anti-Stokes Raman scattering (CARS) microscopy with femtosecond excitation sources, a high band-width probe is required to efficiently focus the broadband laser pulses at the sample plane. Although graded-index (GRIN) fibres have a large bandwidth, it is accompanied by a strong background signal from four-wave mixing and other non-linear processes occurring inside the fibre. We demonstrate that using a composite probe consisting of a GRIN fibre with a spliced on step-index fibre reduces the intensity of the non-linear background by more than one order of magnitude without significantly decreasing the focusing performance of the probe. Using this composite probe we acquire CARS images of biologically relevant tissue such as myelinated axons in the brain with good contrast.
Collapse
Affiliation(s)
- Tomáš Pikálek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Miroslav Stibůrek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Stephen Simpson
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Applied Optics, Friedrich Schiller University Jena, Fröbelstieg 1, 07743 Jena, Germany
| | - Johanna Trägårdh
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| |
Collapse
|
13
|
Ramosaj M, Madsen S, Maillard V, Scandella V, Sudria-Lopez D, Yuizumi N, Telley L, Knobloch M. Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation. Nat Commun 2021; 12:7362. [PMID: 34934077 PMCID: PMC8692608 DOI: 10.1038/s41467-021-27365-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2021] [Indexed: 01/11/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.
Collapse
Affiliation(s)
- Mergim Ramosaj
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sofia Madsen
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Vanille Maillard
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Valentina Scandella
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Daniel Sudria-Lopez
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Naoya Yuizumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ludovic Telley
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Marlen Knobloch
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
14
|
Kilwein MD, Welte MA. Visualizing Cytoskeleton-Dependent Trafficking of Lipid-Containing Organelles in Drosophila Embryos. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2021:10.3791/63291. [PMID: 34958089 PMCID: PMC8983024 DOI: 10.3791/63291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early Drosophila embryos are large cells containing a vast array of conventional and embryo-specific organelles. During the first three hours of embryogenesis, these organelles undergo dramatic movements powered by actin-based cytoplasmic streaming and motor-driven trafficking along microtubules. The development of a multitude of small, organelle-specific fluorescent probes (FPs) makes it possible to visualize a wide range of different lipid-containing structures in any genotype, allowing live imaging without requiring a genetically encoded fluorophore. This protocol shows how to inject vital dyes and molecular probes into Drosophila embryos to monitor the trafficking of specific organelles by live imaging. This approach is demonstrated by labeling lipid droplets (LDs) and following their bulk movement by particle image velocimetry (PIV). This protocol provides a strategy amenable to the study of other organelles, including lysosomes, mitochondria, yolk vesicles, and the ER, and for tracking the motion of individual LDs along microtubules. Using commercially available dyes brings the benefits of separation into the violet/blue and far-red regions of the spectrum. By multiplex co-labeling of organelles and/or cytoskeletal elements via microinjection, all the genetic resources in Drosophila are available for trafficking studies without the need to introduce fluorescently tagged proteins. Unlike genetically encoded fluorophores, which have low quantum yields and bleach easily, many of the available dyes allow for rapid and simultaneous capture of several channels with high photon yields.
Collapse
|
15
|
Pyc M, Gidda SK, Seay D, Esnay N, Kretzschmar FK, Cai Y, Doner NM, Greer MS, Hull JJ, Coulon D, Bréhélin C, Yurchenko O, de Vries J, Valerius O, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. LDIP cooperates with SEIPIN and LDAP to facilitate lipid droplet biogenesis in Arabidopsis. THE PLANT CELL 2021; 33:3076-3103. [PMID: 34244767 PMCID: PMC8462815 DOI: 10.1093/plcell/koab179] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 05/19/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.
Collapse
Affiliation(s)
| | | | - Damien Seay
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Nicolas Esnay
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Franziska K. Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | | | - Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - J. Joe Hull
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138, USA
| | - Denis Coulon
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | - Claire Bréhélin
- Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR5200, F-33140 Villenave d’Ornon, France
| | | | - Jan de Vries
- Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences and Campus Institute Data Science, Department of Applied Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Department for Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | | | | |
Collapse
|
16
|
Zeng X, Lyu L, Zhao D, Zhong J, Feng Y, Wan H, Li C, Zhang Z, Wang Y. dLp/HDL-BGBP and MTP Cloning and Expression Profiles During Embryonic Development in the Mud Crab Scylla paramamosain. Front Physiol 2021; 12:717751. [PMID: 34489734 PMCID: PMC8416765 DOI: 10.3389/fphys.2021.717751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
Lipids are the main energy source for embryonic development in oviparous animals. Prior to the utilization and catabolism, lipids are primarily transported from the yolk sac to embryonic tissues. In the present study, cDNA encoding a circulatory large lipid transfer protein (LLTP) superfamily member, the precursor of large discoidal lipoprotein (dLp) and high-density lipoprotein/β-1,3-glucan-binding protein (HDL-BGBP), named dLp/HDL-BGBP of 14,787 bp in length, was cloned from the mud crab Scylla paramamosain. dLp/HDL-BGBP was predicted to encode a 4,831 amino acids (aa) protein that was the precursor of dLp and HDL-BGBP, which were both detected in hemolymph by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. For the intracellular LLTP, three microsomal triglyceride transfer protein (MTP) cDNAs of 2,905, 2,897, and 3,088 bp in length were cloned from the mud crab and were predicted to encode MTP-A of 881 aa, MTP-B of 889 aa, and MTP-C of 919 aa, respectively, which were different merely in the N-terminal region and shared an identical sequence of 866 aa. During embryonic development, the expression level of dLp/HDL-BGBP consecutively increased from the early appendage formation stage to the eye pigment-formation stage, which indicated that HDL-BGBP is probably the scaffolding protein for yolk lipid. For the MTP gene, MTP-C accounted for ~70% of MTP mRNA from the blastocyst stage to the nauplius stage, as well as the pre-hatching stage; MTP-C and MTP-A expression levels were comparable from the early appendage formation stage to the late eye pigment-formation stage; MTP-A was extremely low in blastocyst and gastrula stages; MTP-B was expressed at a relatively low-level throughout embryo development. The variations in the expression profiles among MTP transcripts suggested that MTP might play roles in the lipid droplet maturation and lipoprotein assembly during embryonic development.
Collapse
Affiliation(s)
- Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- School of Life Sciences, Ningde Normal University, Ningde, China
| | - Liang Lyu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Dousha Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Chunyang Li
- Department of Student Affairs, Ningde Normal University, Ningde, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
17
|
Stephenson RA, Thomalla JM, Chen L, Kolkhof P, White RP, Beller M, Welte MA. Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development 2021; 148:271212. [PMID: 34355743 DOI: 10.1242/dev.199381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Because both dearth and overabundance of histones result in cellular defects, histone synthesis and demand are typically tightly coupled. In Drosophila embryos, histones H2B, H2A and H2Av accumulate on lipid droplets (LDs), which are cytoplasmic fat storage organelles. Without LD binding, maternally provided H2B, H2A and H2Av are absent; however, how LDs ensure histone storage is unclear. Using quantitative imaging, we uncover when during oogenesis these histones accumulate, and which step of accumulation is LD dependent. LDs originate in nurse cells (NCs) and are transported to the oocyte. Although H2Av accumulates on LDs in NCs, the majority of the final H2Av pool is synthesized in oocytes. LDs promote intercellular transport of the histone anchor Jabba and thus its presence in the ooplasm. Ooplasmic Jabba then prevents H2Av degradation, safeguarding the H2Av stockpile. Our findings provide insight into the mechanism for establishing histone stores during Drosophila oogenesis and shed light on the function of LDs as protein-sequestration sites.
Collapse
Affiliation(s)
- Roxan A Stephenson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Lili Chen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Roger P White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
18
|
Lu W, Lakonishok M, Gelfand VI. Gatekeeper function for Short stop at the ring canals of the Drosophila ovary. Curr Biol 2021; 31:3207-3220.e4. [PMID: 34089646 DOI: 10.1016/j.cub.2021.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Growth of the Drosophila oocyte requires transport of cytoplasmic materials from the interconnected sister cells (nurse cells) through ring canals, the cytoplasmic bridges that remained open after incomplete germ cell division. Given the open nature of the ring canals, it is unclear how the direction of transport through the ring canal is controlled. In this work, we show that a single Drosophila spectraplakin Short stop (Shot) controls the direction of flow from nurse cells to the oocyte. Knockdown of shot changes the direction of transport through the ring canals from unidirectional (toward the oocyte) to bidirectional. After shot knockdown, the oocyte stops growing, resulting in a characteristic small oocyte phenotype. In agreement with this transport-directing function of Shot, we find that it is localized at the asymmetric actin baskets on the nurse cell side of the ring canals. In wild-type egg chambers, microtubules localized in the ring canals have uniform polarity (minus ends toward the oocyte), while in the absence of Shot, these microtubules have mixed polarity. Together, we propose that Shot functions as a gatekeeper directing transport from nurse cells to the oocyte via the organization of microtubule tracks to facilitate the transport driven by the minus-end-directed microtubule motor cytoplasmic dynein. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Motility Plays an Important Role in the Lifetime of Mammalian Lipid Droplets. Int J Mol Sci 2021; 22:ijms22083802. [PMID: 33916886 PMCID: PMC8067576 DOI: 10.3390/ijms22083802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/31/2023] Open
Abstract
The lipid droplet is a kind of organelle that stores neutral lipids in cells. Recent studies have found that in addition to energy storage, lipid droplets also play an important role in biological processes such as resistance to stress, immunity, cell proliferation, apoptosis, and signal transduction. Lipid droplets are formed at the endoplasmic reticulum, and mature lipid droplets participate in various cellular processes. Lipid droplets are decomposed by lipase and lysosomes. In the life of a lipid droplet, the most important thing is to interact with other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and autophagic lysosomes. The interaction between lipid droplets and other organelles requires them to be close to each other, which inevitably involves the motility of lipid droplets. In fact, through many microscopic observation techniques, researchers have discovered that lipid droplets are highly dynamic organelles that move quickly. This paper reviews the process of lipid droplet motility, focusing on explaining the molecular basis of lipid droplet motility, the factors that regulate lipid droplet motility, and the influence of motility on the formation and decomposition of lipid droplets. In addition, this paper also proposes several unresolved problems for lipid droplet motility. Finally, this paper makes predictions about the future research of lipid droplet motility.
Collapse
|
20
|
Rubessa M, Wheeler MB. Label-free microscopy: A non-invasive new tool to assess gametes and embryo quality. Theriogenology 2020; 150:241-246. [PMID: 32088035 DOI: 10.1016/j.theriogenology.2020.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
In PubMed, it is possible to find more than 40,000 papers on embryo evaluation in various species. However, there is no consensus or gold standard method on how to assess their developmental potential. In assisted reproduction the evaluation "problem" is not only limited to embryos but involves the gametes as well. This manuscript provides an overview of some possible applications of label-free microscopy, in particular we describe the potential of the holographic microscopy in the IVF lab. We describe the positive aspects of several currently available microscopy label-free systems. In conclusion, we believe that a next generation of microscopy able to give objective markers for gamete and embryo quality is around the corner.
Collapse
Affiliation(s)
| | - Matthew B Wheeler
- Dept. Animal Sciences, USA; Beckman Institute for Advanced Science and Technology, USA; Dept. Bioengineering, The University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
21
|
Abstract
Lipid droplets (LDs) are fat storage organelles integral to energy homeostasis and a wide range of cellular processes. LDs physically and functionally interact with many partner organelles, including the ER, mitochondria, lysosomes, and peroxisomes. Recent findings suggest that the dynamics of LD inter-organelle contacts is in part controlled by LD intracellular motility. LDs can be transported directly by motor proteins along either actin filaments or microtubules, via Kinesin-1, Cytoplasmic Dynein, and type V Myosins. LDs can also be propelled indirectly, by hitchhiking on other organelles, cytoplasmic flows, and potentially actin polymerization. Although the anchors that attach motors to LDs remain elusive, other regulators of LD motility have been identified, ranging from modification of the tracks to motor co-factors to members of the perilipin family of LD proteins. Manipulating these regulatory pathways provides a tool to probe whether altered motility affects organelle contacts and has revealed that LD motility can promote interactions with numerous partners, with profound consequences for metabolism. LD motility can cause dramatic redistribution of LDs between a clustered and a dispersed state, resulting in altered organelle contacts and LD turnover. We propose that LD motility can thus promote switches in the metabolic state of a cell. Finally, LD motility is also important for LD allocation during cell division. In a number of animal embryos, uneven allocation results in a large difference in LD content in distinct daughter cells, suggesting cell-type specific LD needs.
Collapse
Affiliation(s)
- Marcus D Kilwein
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| | - M A Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| |
Collapse
|
22
|
Nardi F, Fitchev P, Brooks KM, Franco OE, Cheng K, Hayward SW, Welte MA, Crawford SE. Lipid droplet velocity is a microenvironmental sensor of aggressive tumors regulated by V-ATPase and PEDF. J Transl Med 2019; 99:1822-1834. [PMID: 31409893 PMCID: PMC7289525 DOI: 10.1038/s41374-019-0296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) utilize microtubules (MTs) to participate in intracellular trafficking of cargo proteins. Cancer cells accumulate LDs and acidify their tumor microenvironment (TME) by increasing the proton pump V-ATPase. However, it is not known whether these two metabolic changes are mechanistically related or influence LD movement. We postulated that LD density and velocity are progressively increased with tumor aggressiveness and are dependent on V-ATPase and the lipolysis regulator pigment epithelium-derived factor (PEDF). LD density was assessed in human prostate cancer (PCa) specimens across Gleason scores (GS) 6-8. LD distribution and velocity were analyzed in low and highly aggressive tumors using live-cell imaging and in cells exposed to low pH and/or treated with V-ATPase inhibitors. The MT network was disrupted and analyzed by α-tubulin staining. LD density positively correlated with advancing GS in human tumors. Acidification promoted peripheral localization and clustering of LDs. Highly aggressive prostate, breast, and pancreatic cell lines had significantly higher maximum LD velocity (LDVmax) than less aggressive and benign cells. LDVmax was MT-dependent and suppressed by blocking V-ATPase directly or indirectly with PEDF. Upon lowering pH, LDs moved to the cell periphery and carried metalloproteinases. These results suggest that acidification of the TME can alter intracellular LD movement and augment velocity in cancer. Restoration of PEDF or blockade of V-ATPase can normalize LD distribution and decrease velocity. This study identifies V-ATPase and PEDF as new modulators of LD trafficking in the cancer microenvironment.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kyrsten M. Brooks
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Omar E. Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Kevin Cheng
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| | - Simon W. Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201
| | - Michael A. Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627
| | - Susan E. Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201,Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., Saint Louis, MO 63104
| |
Collapse
|
23
|
Trägårdh J, Pikálek T, Šerý M, Meyer T, Popp J, Čižmár T. Label-free CARS microscopy through a multimode fiber endoscope. OPTICS EXPRESS 2019; 27:30055-30066. [PMID: 31684259 DOI: 10.1364/oe.27.030055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multimode fibres have recently been employed as high-resolution ultra-thin endoscopes, capable of imaging biological structures deep inside tissue in vivo. Here, we extend this technique to label-free non-linear microscopy with chemical contrast using coherent anti-Stokes Raman scattering (CARS) through a multimode fibre endoscope, which opens up new avenues for instant and in-situ diagnosis of potentially malignant tissue. We use a commercial 125 µm diameter, 0.29 NA GRIN fibre, and wavefront shaping on an SLM is used to create foci that are scanned behind the fibre facet across the sample. The chemical selectivity is demonstrated by imaging 2 µm polystyrene and 2.5 µm PMMA beads with per pixel integration time as low as 1 ms for epi-detection.
Collapse
|
24
|
Seller CA, Cho CY, O'Farrell PH. Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila. Genes Dev 2019; 33:403-417. [PMID: 30808658 PMCID: PMC6446540 DOI: 10.1101/gad.321646.118] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
Acquisition of chromatin modifications during embryogenesis distinguishes different regions of an initially naïve genome. In many organisms, repetitive DNA is packaged into constitutive heterochromatin that is marked by di/trimethylation of histone H3K9 and the associated protein HP1a. These modifications enforce the unique epigenetic properties of heterochromatin. However, in the early Drosophila melanogaster embryo, the heterochromatin lacks these modifications, which appear only later, when rapid embryonic cell cycles slow down at the midblastula transition (MBT). Here we focus on the initial steps restoring heterochromatic modifications in the embryo. We describe the JabbaTrap, a technique for inactivating maternally provided proteins in embryos. Using the JabbaTrap, we reveal a major requirement for the methyltransferase Eggless/SetDB1 in the establishment of heterochromatin. In contrast, other methyltransferases contribute minimally. Live imaging reveals that endogenous Eggless gradually accumulates on chromatin in interphase but then dissociates in mitosis, and its accumulation must restart in the next cell cycle. Cell cycle slowing as the embryo approaches the MBT permits increasing accumulation and action of Eggless at its targets. Experimental manipulation of interphase duration shows that cell cycle speed regulates Eggless. We propose that developmental slowing of the cell cycle times embryonic heterochromatin formation.
Collapse
Affiliation(s)
- Charles A Seller
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
25
|
Zhao N, Li Y, Yang W, Zhuang J, Li Y, Li N. Multifunctional pyrazoline based AIEgens: real-time tracking and specific protein “fishing” of lipid droplets. Chem Sci 2019. [DOI: 10.1039/c9sc03111a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A series of multifunctional pyrazoline based AIEgens were developed for real-time tracking of lipid metabolism, reversibly monitoring intracellular pH in dual-color mode and specific labeling of lipid droplet related protein.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
| | - Yan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
| | - Weiyao Yang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
| | - Jiabao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
| | - Yue Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- 710119 Xi'an
| |
Collapse
|
26
|
Suter B. RNA localization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:938-951. [PMID: 30496039 DOI: 10.1016/j.bbagrm.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.
Collapse
Affiliation(s)
- Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
27
|
Johnson MR, Stephenson RA, Ghaemmaghami S, Welte MA. Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. eLife 2018; 7:36021. [PMID: 30044219 PMCID: PMC6089599 DOI: 10.7554/elife.36021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022] Open
Abstract
Regulating nuclear histone balance is essential for survival, yet in early Drosophila melanogaster embryos many regulatory strategies employed in somatic cells are unavailable. Previous work had suggested that lipid droplets (LDs) buffer nuclear accumulation of the histone variant H2Av. Here, we elucidate the buffering mechanism and demonstrate that it is developmentally controlled. Using live imaging, we find that H2Av continuously exchanges between LDs. Our data suggest that the major driving force for H2Av accumulation in nuclei is H2Av abundance in the cytoplasm and that LD binding slows nuclear import kinetically, by limiting this cytoplasmic pool. Nuclear H2Av accumulation is indeed inversely regulated by overall buffering capacity. Histone exchange between LDs abruptly ceases during the midblastula transition, presumably to allow canonical regulatory mechanisms to take over. These findings provide a mechanistic basis for the emerging role of LDs as regulators of protein homeostasis and demonstrate that LDs can control developmental progression.
Collapse
Affiliation(s)
| | | | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, United States
| | | |
Collapse
|
28
|
Nardi F, Fitchev P, Franco OE, Ivanisevic J, Scheibler A, Hayward SW, Brendler CB, Welte MA, Crawford SE. PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer-associated fibroblasts. J Cell Sci 2018; 131:jcs.213579. [PMID: 29792311 DOI: 10.1242/jcs.213579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Prostate tumors make metabolic adaptations to ensure adequate energy and amplify cell cycle regulators, such as centrosomes, to sustain their proliferative capacity. It is not known whether cancer-associated fibroblasts (CAFs) undergo metabolic re-programming. We postulated that CAFs augment lipid storage and amplify centrosomal or non-centrosomal microtubule-organizing centers (MTOCs) through a pigment epithelium-derived factor (PEDF)-dependent lipid-MTOC signaling axis. Primary human normal prostate fibroblasts (NFs) and CAFs were evaluated for lipid content, triacylglycerol-regulating proteins, MTOC number and distribution. CAFs were found to store more neutral lipids than NFs. Adipose triglyceride lipase (ATGL) and PEDF were strongly expressed in NFs, whereas CAFs had minimal to undetectable levels of PEDF or ATGL protein. At baseline, CAFs demonstrated MTOC amplification when compared to 1-2 perinuclear MTOCs consistently observed in NFs. Treatment with PEDF or blockade of lipogenesis suppressed lipid content and MTOC number. In summary, our data support that CAFs have acquired a tumor-like phenotype by re-programming lipid metabolism and amplifying MTOCs. Normalization of MTOCs by restoring PEDF or by blocking lipogenesis highlights a previously unrecognized plasticity in centrosomes, which is regulated through a new lipid-MTOC axis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Omar E Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Jelena Ivanisevic
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Adrian Scheibler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Simon W Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Charles B Brendler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| |
Collapse
|
29
|
Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J 2018; 37:embj.201898947. [PMID: 29789390 DOI: 10.15252/embj.201898947] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic lipid droplets are important organelles in nearly every eukaryotic and some prokaryotic cells. Storing and providing energy is their main function, but they do not work in isolation. They respond to stimuli initiated either on the cell surface or in the cytoplasm as conditions change. Cellular stresses such as starvation and invasion are internal insults that evoke changes in droplet metabolism and dynamics. This review will first outline lipid droplet assembly and then discuss how droplets respond to stress and in particular nutrient starvation. Finally, the role of droplets in viral and microbial invasion will be presented, where an unresolved issue is whether changes in droplet abundance promote the invader, defend the host, to try to do both. The challenges of stress and infection are often accompanied by changes in physical contacts between droplets and other organelles. How these changes may result in improving cellular physiology, an ongoing focus in the field, is discussed.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Michael L Reese
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX, USA
| |
Collapse
|
30
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
31
|
Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1260-1272. [PMID: 28735096 PMCID: PMC5595650 DOI: 10.1016/j.bbalip.2017.07.006] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, United States.
| | | |
Collapse
|
32
|
Fruttero LL, Leyria J, Canavoso LE. Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions. Results Probl Cell Differ 2017; 63:403-434. [PMID: 28779328 DOI: 10.1007/978-3-319-60855-6_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In insect physiology, the mechanisms involved in the buildup and regulation of yolk proteins in developing oocytes have been thoroughly researched during the last three decades. Comparatively, the study of lipid metabolism in oocytes had received less attention. The importance of this issue lies in the fact that lipids make up to 40% of the dry weight of an insect egg, being the most important supply of energy for the developing embryo. Since the oocyte has a very limited capacity to synthesize lipids de novo, most of the lipids in the mature eggs arise from the circulation. The main lipid carriers in the insect circulatory system are the lipoproteins lipophorin and vitellogenin. In some species, the endocytosis of lipophorin and vitellogenin may account for about 10% of the lipids present in mature eggs. Thus, most of the lipids are transferred by a lipophorin-mediated pathway, in which the lipoprotein unloads its lipid cargo at the surface of oocytes without internalization. This chapter recapitulates the current status on lipid storage and its utilization in insect oocytes and discusses the participation of key factors including lipoproteins, transfer proteins, lipolytic enzymes, and dynamic organelles such as lipid droplets. The new findings in the field of lipophorin receptors are presented in the context of lipid accumulation during egg maturation, and the roles of lipids beyond energy source are summarized from the perspective of oogenesis and embryogenesis. Finally, prospective and fruitful areas of future research are suggested.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Instituto do Cerebro (InsCer). Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
33
|
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Bréhélin C. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:894. [PMID: 28611809 PMCID: PMC5447075 DOI: 10.3389/fpls.2017.00894] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Lipid droplets (LDs) are cell compartments specialized for oil storage. Although their role and biogenesis are relatively well documented in seeds, little is known about their composition, structure and function in senescing leaves where they also accumulate. Here, we used a label free quantitative mass spectrometry approach to define the LD proteome of aging Arabidopsis leaves. We found that its composition is highly different from that of seed/cotyledon and identified 28 proteins including 9 enzymes of the secondary metabolism pathways involved in plant defense response. With the exception of the TRIGALACTOSYLDIACYLGLYCEROL2 protein, we did not identify enzymes implicated in lipid metabolism, suggesting that growth of leaf LDs does not occur by local lipid synthesis but rather through contact sites with the endoplasmic reticulum (ER) or other membranes. The two most abundant proteins of the leaf LDs are the CALEOSIN3 and the SMALL RUBBER PARTICLE1 (AtSRP1); both proteins have structural functions and participate in plant response to stress. CALEOSIN3 and AtSRP1 are part of larger protein families, yet no other members were enriched in the LD proteome suggesting a specific role of both proteins in aging leaves. We thus examined the function of AtSRP1 at this developmental stage and found that AtSRP1 modulates the expression of CALEOSIN3 in aging leaves. Furthermore, AtSRP1 overexpression induces the accumulation of triacylglycerol with an unusual composition compared to wild-type. We demonstrate that, although AtSRP1 expression is naturally increased in wild type senescing leaves, its overexpression in senescent transgenic lines induces an over-accumulation of LDs organized in clusters at restricted sites of the ER. Conversely, atsrp1 knock-down mutants displayed fewer but larger LDs. Together our results reveal that the abundancy of AtSRP1 regulates the neo-formation of LDs during senescence. Using electron tomography, we further provide evidence that LDs in leaves share tenuous physical continuity as well as numerous contact sites with the ER membrane. Thus, our data suggest that leaf LDs are functionally distinct from seed LDs and that their biogenesis is strictly controlled by AtSRP1 at restricted sites of the ER.
Collapse
Affiliation(s)
- Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420 Centre National de la Recherche Scientifique, US4 Institut National de la Santé et de la Recherche Médicale, University of BordeauxBordeaux, France
| | - Françoise Immel
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Denis Coulon
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- Bordeaux INPTalence, France
| | - Nicolas Esnay
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Karine Tuphile
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphanie Pascal
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Stéphane Claverol
- Proteome Platform, Functional Genomic Center of Bordeaux, University of BordeauxBordeaux, France
| | - Laëtitia Fouillen
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Jean-Jacques Bessoule
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
| | - Claire Bréhélin
- Laboratory of Membrane Biogenesis, Centre National de la Recherche Scientifique, UMR 5200Villenave d'Ornon, France
- Laboratory of Membrane Biogenesis, University of Bordeaux, UMR 5200Villenave d'Ornon, France
- *Correspondence: Claire Bréhélin
| |
Collapse
|
34
|
Yuan K, Seller CA, Shermoen AW, O'Farrell PH. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View. Trends Genet 2016; 32:496-507. [PMID: 27339317 DOI: 10.1016/j.tig.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/18/2022]
Abstract
At the mid-blastula transition (MBT), externally developing embryos refocus from increasing cell number to elaboration of the body plan. Studies in Drosophila reveal a sequence of changes in regulators of Cyclin:Cdk1 that increasingly restricts the activity of this cell cycle kinase to slow cell cycles during early embryogenesis. By reviewing these events, we provide an outline of the mechanisms slowing the cell cycle at and around the time of MBT. The perspectives developed should provide a guiding paradigm for the study of other MBT changes as the embryo transits from maternal control to a regulatory program centered on the expression of zygotic genes.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Charles A Seller
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Antony W Shermoen
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Patrick H O'Farrell
- Department of Biophysics and Biochemistry, University of California San Francisco (UCSF), San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Deshpande G, Manry D, Jourjine N, Mogila V, Mozes H, Bialistoky T, Gerlitz O, Schedl P. Role of the ABC transporter Mdr49 in Hedgehog signaling and germ cell migration. Development 2016; 143:2111-20. [PMID: 27122170 DOI: 10.1242/dev.133587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 01/20/2023]
Abstract
Coalescence of the embryonic gonad in Drosophila melanogaster requires directed migration of primordial germ cells (PGCs) towards somatic gonadal precursor cells (SGPs). It was recently proposed that the ATP-binding cassette (ABC) transporter Mdr49 functions in the embryonic mesoderm to facilitate the transmission of the PGC attractant from the SGPs; however, the precise molecular identity of the Mdr49-dependent guidance signal remained elusive. Employing the loss- and gain-of-function strategies, we show that Mdr49 is a component of the Hedgehog (hh) pathway and it potentiates the signaling activity. This function is direct because in Mdr49 mutant embryos the Hh ligand is inappropriately sequestered in the hh-expressing cells. Our data also suggest that the role of Mdr49 is to provide cholesterol for the correct processing of the Hh precursor protein. Supporting this conclusion, PGC migration defects in Mdr49 embryos are substantially ameliorated by a cholesterol-rich diet.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Diane Manry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Nicholas Jourjine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Henny Mozes
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, IMRIC, The Hebrew University, Jerusalem 91120, Israel
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
36
|
Arora GK, Tran SL, Rizzo N, Jain A, Welte MA. Temporal control of bidirectional lipid-droplet motion in Drosophila depends on the ratio of kinesin-1 and its co-factor Halo. J Cell Sci 2016; 129:1416-28. [PMID: 26906417 DOI: 10.1242/jcs.183426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/15/2016] [Indexed: 12/27/2022] Open
Abstract
During bidirectional transport, individual cargoes move continuously back and forth along microtubule tracks, yet the cargo population overall displays directed net transport. How such transport is controlled temporally is not well understood. We analyzed this issue for bidirectionally moving lipid droplets in Drosophila embryos, a system in which net transport direction is developmentally controlled. By quantifying how the droplet distribution changes as embryos develop, we characterize temporal transitions in net droplet transport and identify the crucial contribution of the previously identified, but poorly characterized, transacting regulator Halo. In particular, we find that Halo is transiently expressed; rising and falling Halo levels control the switches in global distribution. Rising Halo levels have to pass a threshold before net plus-end transport is initiated. This threshold level depends on the amount of the motor kinesin-1: the more kinesin-1 is present, the more Halo is needed before net plus-end transport commences. Because Halo and kinesin-1 are present in common protein complexes, we propose that Halo acts as a rate-limiting co-factor of kinesin-1.
Collapse
Affiliation(s)
- Gurpreet K Arora
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Susan L Tran
- Department of Biology, University of Rochester, Rochester, NY, USA Department of Biology, Brandeis University, Waltham, MA, USA
| | - Nicholas Rizzo
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Ankit Jain
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, USA Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|