1
|
Liao S, Börmel L, Müller AK, Gottschalk L, Pritsch N, Preisner LZ, Samokhina O, Schwarz M, Kipp AP, Schlörmann W, Glei M, Schubert M, Schmölz L, Wallert M, Lorkowski S. α-Tocopherol Long-Chain Metabolite α-T-13'-COOH Exhibits Biphasic Effects on Cell Viability, Induces ROS-Dependent DNA Damage, and Modulates Redox Status in Murine RAW264.7 Macrophages. Mol Nutr Food Res 2024; 68:e2400455. [PMID: 39548913 DOI: 10.1002/mnfr.202400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Indexed: 11/18/2024]
Abstract
SCOPE The α-tocopherol long-chain metabolite α-tocopherol-13'-hydroxy-chromanol (α-T-13'-COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α-T-13'-COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration-dependent effects of α-T-13'-COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.7 macrophages as a model system. METHODS AND RESULTS Murine RAW264.7 macrophages are exposed to various dosages of α-T-13'-COOH to determine its regulatory effects on reactive oxygen species (ROS) production, DNA damage, expression of stress-related markers, and the activity of ROS scavenging enzymes including superoxide dismutases, catalase, and glutathione-S-transferases. The impact on cell viability is assessed by analyzing cell proliferation, cell cycle arrest, and cell apoptosis. CONCLUSION α-T-13'-COOH influences ROS production and induces DNA damage in a dose-dependent manner. The metabolite modulates the activity of ROS-scavenging enzymes, with significant changes observed in the activities of antioxidant enzymes. A biphasic response affecting cell viability is noted: sub-micromolar doses of α-T-13'-COOH promote cell proliferation and enhance DNA synthesis, whereas supraphysiological doses lead to DNA damage and cytotoxicity. It hypothesizes an adaptive stress response, characterized by upregulation of ROS detoxification mechanisms, enhanced cell cycle arrest, and increased apoptosis, indicating a correlation with oxidative stress and subsequent cellular damage.
Collapse
Affiliation(s)
- Sijia Liao
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Lisa Börmel
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Anke Katharina Müller
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Luisa Gottschalk
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Nadine Pritsch
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Lara Zoé Preisner
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Oleksandra Samokhina
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Anna P Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Wiebke Schlörmann
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Applied Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Schubert
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Lisa Schmölz
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
- Member of Leibniz Research Alliance, Leibniz Health Technology and Leibniz Centre for Photonics in Infection Research, Leibniz Institute of Photonic Technology, Jena, Germany
| | - Maria Wallert
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Department of Nutritional Physiology and Biochemistry, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
2
|
Liao S, Gollowitzer A, Börmel L, Maier C, Gottschalk L, Werz O, Wallert M, Koeberle A, Lorkowski S. α-Tocopherol-13'-Carboxychromanol Induces Cell Cycle Arrest and Cell Death by Inhibiting the SREBP1-SCD1 Axis and Causing Imbalance in Lipid Desaturation. Int J Mol Sci 2023; 24:ijms24119229. [PMID: 37298183 DOI: 10.3390/ijms24119229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
α-Tocopherol-13'-carboxychromanol (α-T-13'-COOH) is an endogenously formed bioactive α-tocopherol metabolite that limits inflammation and has been proposed to exert lipid metabolism-regulatory, pro-apoptotic, and anti-tumoral properties at micromolar concentrations. The mechanisms underlying these cell stress-associated responses are, however, poorly understood. Here, we show that the induction of G0/G1 cell cycle arrest and apoptosis in macrophages triggered by α-T-13'-COOH is associated with the suppressed proteolytic activation of the lipid anabolic transcription factor sterol regulatory element-binding protein (SREBP)1 and with decreased cellular levels of stearoyl-CoA desaturase (SCD)1. In turn, the fatty acid composition of neutral lipids and phospholipids shifts from monounsaturated to saturated fatty acids, and the concentration of the stress-preventive, pro-survival lipokine 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] decreases. The selective inhibition of SCD1 mimics the pro-apoptotic and anti-proliferative activity of α-T-13'-COOH, and the provision of the SCD1 product oleic acid (C18:1) prevents α-T-13'-COOH-induced apoptosis. We conclude that micromolar concentrations of α-T-13'-COOH trigger cell death and likely also cell cycle arrest by suppressing the SREBP1-SCD1 axis and depleting cells of monounsaturated fatty acids and PI(18:1/18:1).
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Charlotte Maier
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Luisa Gottschalk
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| |
Collapse
|
3
|
Bartolini D, Zatini L, Migni A, Frammartino T, Guerrini A, Garetto S, Lucci J, Moscardini IF, Marcantonini G, Stabile AM, Rende M, Galli F. TRANSCRIPTOMICS OF NATURAL AND SYNTHETIC VITAMIN D IN HUMAN HEPATOCYTE LIPOTOXICITY. J Nutr Biochem 2023; 117:109319. [PMID: 36963728 DOI: 10.1016/j.jnutbio.2023.109319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Vitamin D (VD) has been used to prevent non-alcoholic fatty liver disease (NAFLD), a condition of lipotoxicity associated with a defective metabolism and function of this vitamin. Different forms of VD are available and can be used for this scope, but their effects on liver cell lipotoxicity remain unexplored. In this study we compared a natural formulation rich in VD2 (Shiitake Mushroom extract or SM-VD2) with a synthetic formulation containing pure VD3 (SV-VD3) and the bioactive metabolite 1,25(OH)2-D3. These were investigated in chemoprevention mode in human HepaRG liver cells supplemented with oleic and palmitic acid to induce lipotoxicity. All the different forms of VD showed similar efficacy in reducing the levels of lipotoxicity and the changes that lipotoxicity induced on the cellular transcriptome. However, the three forms of VD generated different gene fingerprints suggesting diverse, even if functionally convergent, cytoprotective mechanisms. Main differences were 1) the number of differentially expressed genes (SV-VD3 > 1,25(OH)2-D3 > SM-VD2), 2) their identity that demonstrated significant gene homology between SM-VD2 and 1,25(OH)2-D3, and 3) the number and type of biological functions identified by Ingenuity Pathway Analysis as relevant to liver metabolism and cytoprotection annotations. Immunoblot confirmed a different response of VDR and other VDR-related proteins to natural and synthetic VD formulations, including FXR, PXR, PPARγ/PGC-1α, and CYP3A4 and CYP24A1. In conclusion, different responses of the cellular transcriptome drive the cytoprotective effect of natural and synthetic formulations of VD in the free fatty acid-induced lipotoxicity of human hepatocytes.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Linda Zatini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Tiziana Frammartino
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Angela Guerrini
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Stefano Garetto
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems For Health S.p.A., Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | | | - Giada Marcantonini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
4
|
Liao S, Omage SO, Börmel L, Kluge S, Schubert M, Wallert M, Lorkowski S. Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants (Basel) 2022; 11:antiox11091785. [PMID: 36139859 PMCID: PMC9495493 DOI: 10.3390/antiox11091785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
A hundred years have passed since vitamin E was identified as an essential micronutrient for mammals. Since then, many biological functions of vitamin E have been unraveled in both cell and animal models, including antioxidant and anti-inflammatory properties, as well as regulatory activities on cell signaling and gene expression. However, the bioavailability and physiological functions of vitamin E have been considerably shown to depend on lifestyle, genetic factors, and individual health conditions. Another important facet that has been considered less so far is the endogenous interaction with other nutrients. Accumulating evidence indicates that the interaction between vitamin E and other nutrients, especially those that are enriched by supplementation in humans, may explain at least some of the discrepancies observed in clinical trials. Meanwhile, increasing evidence suggests that the different forms of vitamin E metabolites and derivates also exhibit physiological activities, which are more potent and mediated via different pathways compared to the respective vitamin E precursors. In this review, possible molecular mechanisms between vitamin E and other nutritional factors are discussed and their potential impact on physiological and pathophysiological processes is evaluated using published co-supplementation studies.
Collapse
Affiliation(s)
- Sijia Liao
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Sylvia Oghogho Omage
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
5
|
Bartolini D, Marinelli R, Stabile AM, Frammartino T, Guerrini A, Garetto S, Lucci J, Migni A, Zatini L, Marcantonini G, Rende M, Galli F. Wheat germ oil vitamin E cytoprotective effect and its nutrigenomics signature in human hepatocyte lipotoxicity. Heliyon 2022; 8:e10748. [PMID: 36193535 PMCID: PMC9525900 DOI: 10.1016/j.heliyon.2022.e10748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Wheat germ oil (WGO) is rich in α-tocopherol (vitamin E, VE), a vitamin that has long been suggested to exert hepatoprotective effects. In this study, this function of WGO-VE and its transcriptomics fingerprint were investigated in comparison with RRR-α-tocopherol and all-rac-α-tocopherol (nVE and sVE, respectively), in human liver cells treated with oleic acid (OA) to develop steatosis and lipotoxicity. Used in chemoprevention mode, all the VE formulations afforded significant reduction of the OA-induced steatosis and its consequent impact on lipotoxicity indicators, including ROS production and efflux (as H2O2), and apoptotic and necrotic cell death. A trend toward a better control of lipotoxicity was observed for WGO-VE and nVE compared to sVE. Gene microarray data demonstrated that these effects of VE formulations were associated with significantly different responses of the cellular transcriptome to compensate for the modifications of OA treatment, including the downregulation of cellular homeostasis genes and the induction of genes associated with defects of liver cell metabolism, fibrosis and inflammation, liver disease and cancer. Ingenuity Pathway Analysis data showed that WGO-VE modulated genes associated with liver carcinogenesis and steatosis, whereas nVE modulated genes involved in liver cell metabolism and viability biofunctions; sVE did not significantly modulate any gene dataset relevant to such biofunctions. In conclusion, WGO-VE prevents lipotoxicity in human liver cells modulating genes that differ from those affected by the natural or synthetic forms of pure VE. These differences can be captured by precision nutrition tools, reflecting the molecular complexity of this VE-rich extract and its potential in preventing specific cues of hepatocellular lipotoxicity.
Collapse
Affiliation(s)
- Desirée Bartolini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Lab. and Human Anatomy Lab., University of Perugia, 06126 Perugia, Italy
| | - Rita Marinelli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Lab. and Human Anatomy Lab., University of Perugia, 06126 Perugia, Italy
| | - Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Tiziana Frammartino
- Natural Bio-Medicine SpA, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy.,Innovation and Medical Science Division, Aboca SpA Societa Agricola, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Angela Guerrini
- Natural Bio-Medicine SpA, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy.,Innovation and Medical Science Division, Aboca SpA Societa Agricola, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Stefano Garetto
- Natural Bio-Medicine SpA, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy.,Innovation and Medical Science Division, Aboca SpA Societa Agricola, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Jacopo Lucci
- Natural Bio-Medicine SpA, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy.,Innovation and Medical Science Division, Aboca SpA Societa Agricola, Loc. Aboca 20, 52037 Sansepolcro, AR, Italy
| | - Anna Migni
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Lab. and Human Anatomy Lab., University of Perugia, 06126 Perugia, Italy
| | - Linda Zatini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Lab. and Human Anatomy Lab., University of Perugia, 06126 Perugia, Italy
| | - Giada Marcantonini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Lab. and Human Anatomy Lab., University of Perugia, 06126 Perugia, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Lab. and Human Anatomy Lab., University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
6
|
Zaaboul F, Liu Y. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr Rev Food Sci Food Saf 2022; 21:964-998. [PMID: 35181987 DOI: 10.1111/1541-4337.12924] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/21/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Vitamin E is a group of isoprenoid chromanols with different biological activities. It comprises eight oil-soluble compounds: four tocopherols, namely, α-, β-, γ-, and δ-tocopherols; and four tocotrienols, namely, α-, β-, γ, and δ-tocotrienols. Vitamin E isomers are well-known for their antioxidant activity, gene-regulation effects, and anti-inflammatory and nephroprotective properties. Considering that vitamin E is exclusively synthesized by photosynthetic organisms, animals can only acquire it through their diet. Plant-based food is the primary source of vitamin E; hence, oils, nuts, fruits, and vegetables with high contents of vitamin E are mostly consumed after processing, including industrial processes and home-cooking, which involve vitamin E profile and content alteration during their preparation. Accordingly, it is essential to identify the vitamin E content and profile in foodstuff to match daily intake requirements. This review summarizes recent advances in vitamin E chemistry, metabolism and metabolites, current knowledge on their contents and profiles in raw and processed plant foods, and finally, their modern developments in analytical methods.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| | - YuanFa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic China
| |
Collapse
|
7
|
Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med 2022; 179:375-387. [PMID: 34785321 PMCID: PMC9018116 DOI: 10.1016/j.freeradbiomed.2021.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Natural forms of vitamin E comprise four tocopherols and four tocotrienols. During the last twenty years, there have been breakthroughs in our understanding of vitamin E metabolism and biological activities of vitamin E metabolites. Research has established that tocopherols and tocotrienols are metabolized via ω-hydroxylase (CYP4F2)-initiated side chain oxidation to form 13'-hydroxychromanol and 13'-carobyxychromanol (13'-COOH). 13'-COOHs are further metabolized via β-oxidation and sulfation to intermediate carboxychromanols, terminal metabolite carboxyethyl-hydroxychroman (CEHC), and sulfated analogs. Animal and human studies show that γ-, δ-tocopherol and tocotrienols are more extensively metabolized than α-tocopherol (αT), as indicated by higher formation of CEHCs and 13'-COOHs from non-αT forms than those from αT. 13'-COOHs are shown to be inhibitors of cyclooxygenase-1/-2 and 5-lipoxygenase and much stronger than CEHCs for these activities. 13'-COOHs inhibit cancer cell growth, modulate cellular lipids and activate peroxisome proliferator-activated receptor-γ and pregnane X receptor. Consistent with mechanistic findings, αT-13'-COOH or δTE-13'-COOH, respective metabolites of αT or δ-tocotrienol, show anti-inflammatory and cancer-preventive effects, modulates the gut microbiota and prevents β-amyloid formation in mice. Therefore, 13'-COOHs are a new class of bioactive compounds with anti-inflammatory and anti-cancer activities and potentially capable of modulating lipid and drug metabolism. Based on the existing evidence, this author proposes that metabolites may contribute to disease-preventing effects of γ-, δ-tocopherol and tocotrienols. The role of metabolites in αT's actions may be somewhat limited considering controlled metabolism of αT because of its association with tocopherol-transport protein and less catabolism by CYP4F2 than other vitamin E forms.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, IN, 47907, West Lafayette, USA.
| |
Collapse
|
8
|
Kluge S, Schubert M, Börmel L, Lorkowski S. The vitamin E long-chain metabolite α-13'-COOH affects macrophage foam cell formation via modulation of the lipoprotein lipase system. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158875. [PMID: 33421592 DOI: 10.1016/j.bbalip.2021.158875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022]
Abstract
The α-tocopherol-derived long-chain metabolite (α-LCM) α-13'-carboxychromanol (α-13'-COOH) is formed via enzymatic degradation of α-tocopherol (α-TOH) in the liver. In the last decade, α-13'-COOH has emerged as a new regulatory metabolite revealing more potent or even different effects compared with its vitamin precursor α-TOH. The detection of α-13'-COOH in human serum has further strengthened the concept of its physiological relevance as a potential regulatory molecule. Here, we present a new facet on the interaction of α-13'-COOH with macrophage foam cell formation. We found that α-13'-COOH (5 μM) increases angiopoietin-like 4 (ANGPTL4) mRNA expression in human THP-1 macrophages in a time- and dose-dependent manner, while α-TOH (100 μM) showed no effects. Interestingly, the mRNA level of lipoprotein lipase (LPL) was not influenced by α-13'-COOH, but α-TOH treatment led to a reduction of LPL mRNA expression. Both compounds also revealed different effects on protein level: while α-13'-COOH reduced the secreted amount of LPL protein via induction of ANGPTL4 cleavage, i.e. activation, the secreted amount of LPL in the α-TOH-treated samples was diminished due to the inhibition of mRNA expression. In line with this, both compounds reduced the catalytic activity of LPL. However, α-13'-COOH but not α-TOH attenuated VLDL-induced lipid accumulation by 35%. In conclusion, only α-13'-COOH revealed possible antiatherogenic effects due to the reduction of VLDL-induced foam cell formation in THP-1 macrophages. Our results provide further evidence for the role of α-13'-COOH as a functional metabolite of its vitamin E precursor.
Collapse
Affiliation(s)
- Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
9
|
Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. NANOMATERIALS 2020; 10:nano10122508. [PMID: 33327519 PMCID: PMC7764978 DOI: 10.3390/nano10122508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Natural products suited for prophylaxis and therapy of inflammatory diseases have gained increasing importance. These compounds could be beneficially integrated into bacterial cellulose (BC), which is a natural hydropolymer applicable as a wound dressing and drug delivery system alike. This study presents experimental outcomes for a natural anti-inflammatory product concept of boswellic acids from frankincense formulated in BC. Using esterification respectively (resp.) oxidation and subsequent coupling with phenylalanine and tryptophan, post-modification of BC was tested to facilitate lipophilic active pharmaceutical ingredient (API) incorporation. Diclofenac sodium and indomethacin were used as anti-inflammatory model drugs before the findings were transferred to boswellic acids. By acetylation of BC fibers, the loading efficiency for the more lipophilic API indomethacin and the release was increased by up to 65.6% and 25%, respectively, while no significant differences in loading could be found for the API diclofenac sodium. Post-modifications could be made while preserving biocompatibility, essential wound dressing properties and anti-inflammatory efficacy. Eventually, in vitro wound closure experiments and evaluations of the effect of secondary dressings completed the study.
Collapse
|
10
|
Ziegler M, Wallert M, Lorkowski S, Peter K. Cardiovascular and Metabolic Protection by Vitamin E: A Matter of Treatment Strategy? Antioxidants (Basel) 2020; 9:E935. [PMID: 33003543 PMCID: PMC7600583 DOI: 10.3390/antiox9100935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) cause about 1/3 of global deaths. Therefore, new strategies for the prevention and treatment of cardiovascular events are highly sought-after. Vitamin E is known for significant antioxidative and anti-inflammatory properties, and has been studied in the prevention of CVD, supported by findings that vitamin E deficiency is associated with increased risk of cardiovascular events. However, randomized controlled trials in humans reveal conflicting and ultimately disappointing results regarding the reduction of cardiovascular events with vitamin E supplementation. As we discuss in detail, this outcome is strongly affected by study design, cohort selection, co-morbidities, genetic variations, age, and gender. For effective chronic primary and secondary prevention by vitamin E, oxidative and inflammatory status might not have been sufficiently antagonized. In contrast, acute administration of vitamin E may be more translatable into positive clinical outcomes. In patients with myocardial infarction (MI), which is associated with severe oxidative and inflammatory reactions, decreased plasma levels of vitamin E have been found. The offsetting of this acute vitamin E deficiency via short-term treatment in MI has shown promising results, and, thus, acute medication, rather than chronic supplementation, with vitamin E might revitalize vitamin E therapy and even provide positive clinical outcomes.
Collapse
Affiliation(s)
- Melanie Ziegler
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic of Tübingen, 72076 Tübingen, Germany;
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Medicine and Immunology, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3800, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC 3800, Australia
| |
Collapse
|
11
|
Beekmann U, Schmölz L, Lorkowski S, Werz O, Thamm J, Fischer D, Kralisch D. Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydr Polym 2020; 236:116062. [PMID: 32172877 DOI: 10.1016/j.carbpol.2020.116062] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
Bacterial cellulose (BC) has proven its high potential as active wound dressing and drug delivery system in many scientific studies, but the transferability of the methods to efficient manufacturing still needs to be demonstrated. This study presents a technically feasible, straightforward and efficient approach to modify BC according to specific medical requirements, to scale-up the cultivation and to load the active pharmaceutical ingredient of interest. By means of in situ-modification of the network structure using water-soluble poly(ethylene glycol) 400 and 4000 on pilot-scale, up to 41.5 ± 3.0 % higher transparency of the dressing, 40.6 ± 3.8 % increased loading capacity and 9% increased total release of the anti-inflammatory model drug diclofenac sodium could be obtained. Spray loading was investigated as material efficient alternative to absorption loading allowing a significant reduction in loading time.
Collapse
Affiliation(s)
- Uwe Beekmann
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University, Lessingstraße 8, Jena, 07743, Germany; JeNaCell GmbH, Göschwitzer Str. 22, 07745, Jena, Germany.
| | - Lisa Schmölz
- Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University, Dornburger Straße 25, 07743, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Friedrich Schiller University, Dornburger Straße 25, 07743, Jena, Germany.
| | - Stefan Lorkowski
- Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University, Dornburger Straße 25, 07743, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Friedrich Schiller University, Dornburger Straße 25, 07743, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany.
| | - Oliver Werz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany.
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University, Lessingstraße 8, Jena, 07743, Germany.
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University, Lessingstraße 8, Jena, 07743, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany.
| | - Dana Kralisch
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University, Lessingstraße 8, Jena, 07743, Germany; JeNaCell GmbH, Göschwitzer Str. 22, 07745, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
12
|
Sozen E, Demirel T, Ozer NK. Vitamin E: Regulatory role in the cardiovascular system. IUBMB Life 2019; 71:507-515. [PMID: 30779288 DOI: 10.1002/iub.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) is one of the major causes of morbidity and mortality, all around the world. Vitamin E is an important nutrient influencing key cellular and molecular mechanisms as well as gene expression regulation centrally involved in the prevention of CVD. Cell culture and animal studies have focused on the identification of vitamin E regulated signaling pathways and involvement on inflammation, lipid homeostasis, and atherosclerotic plaque stability. While some of these vitamin E functions were verified in clinical trials, some of the positive effects were not translated into beneficial outcomes in epidemiological studies. In recent years, the physiological metabolites of vitamin E, including the liver derived (long- and short-chain) metabolites and phosphorylated (α-, γ-tocopheryl phosphate) forms, have also provided novel mechanistic insight into CVD regulation that expands beyond the vitamin E precursor. It is certain that this emerging insight into the molecular and cellular action of vitamin E will help to design further studies, either in animal models or clinical trials, on the reduction of risk for CVDs. This review focuses on vitamin E-mediated preventive cardiovascular effects and discusses novel insights into the biology and mechanism of action of vitamin E metabolites in CVD. © 2019 IUBMB Life, 71(4):507-515, 2019.
Collapse
Affiliation(s)
- Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - Tugce Demirel
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
13
|
Birringer M, Lorkowski S. Vitamin E: Regulatory role of metabolites. IUBMB Life 2018; 71:479-486. [PMID: 30578664 DOI: 10.1002/iub.1988] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
Vitamin E plays an important role as a lipophilic antioxidant in cellular redox homeostasis. Besides this function, numerous non-antioxidant properties of this vitamin have been discovered in the past. DNA microarray technology revealed a complex regulatory network influenced by the different vitamin E forms (Rimbach et al., Molecules, 15, 1746 (2010); Galli et al., Free Radic. Biol. Med., 102, 16 (2017)); however, little is known about the biological activity of vitamin E metabolites. A new chapter of vitamin E research was been opened when endogenous long-chain tocopherol metabolites were identified and their high biological activity in vitro and in vivo was recognized (Schmölz et al., World J. Biol. Chem., 7, 14 (2016); Torquato et al., J. Pharm. Biomed. Anal., 124, 399 (2016)). Just recently, it was shown that an endogenous metabolite of vitamin E inhibits 5-lipoxygenase at nanomolar concentrations, thereby limiting inflammation (Pein et al., Nat. Commun., 9, 3834 (2018)). Furthermore, long-chain vitamin E metabolites (LCM) exhibit hormone-like activities similar to the lipid soluble vitamins A and D (Galli et al., Free Radic. Biol. Med., 102, 16 (2017); Schubert et al., Antioxidants, 7 (2018)). This review aims at summarizing recent findings on the regulatory activities of vitamin E metabolites, especially of LCMs. © 2018 IUBMB Life, 71(4):479-486, 2019.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, Fulda, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
14
|
Hoang NA, Richter F, Schubert M, Lorkowski S, Klotz LO, Steinbrenner H. Differential capability of metabolic substrates to promote hepatocellular lipid accumulation. Eur J Nutr 2018; 58:3023-3034. [PMID: 30368556 DOI: 10.1007/s00394-018-1847-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Excessive storage of triacylglycerides (TAGs) in lipid droplets within hepatocytes is a hallmark of non-alcoholic fatty liver disease (NAFLD), one of the most widespread metabolic disorders in Western societies. For the purpose of exploring molecular pathways in NAFLD development and testing potential drug candidates, well-characterised experimental models of ectopic TAG storage in hepatocytes are needed. METHODS Using an optimised Oil Red O assay, immunoblotting and real-time qRT-PCR, we compared the capability of dietary monosaccharides and fatty acids to promote lipid accumulation in HepG2 human hepatoma cells. RESULTS Both high glucose and high fructose resulted in intracellular lipid accumulation after 48 h, and this was further augmented (up to twofold, as compared to basal levels) by co-treatment with the lipogenesis-stimulating hormone insulin and the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α), respectively. The fatty acids palmitic and oleic acid were even more effective than these carbohydrates, inducing significantly elevated TAG storage already after 24 h of treatment. Highest (about threefold) increases in lipid accumulation were observed upon treatment with oleic acid, alone as well as in combinations with palmitic acid or with high glucose and insulin. Increases in protein levels of a major lipid droplet coat protein, perilipin-2 (PLIN2), mirrored intracellular lipid accumulation following different treatment regimens. CONCLUSIONS Several treatment regimens of excessive fat and sugar supply promoted lipid accumulation in HepG2 cells, albeit with differences in the extent and rapidity of steatogenesis. PLIN2 is a candidate molecular marker of sustained lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Ngoc Anh Hoang
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Friederike Richter
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Martin Schubert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|