1
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
2
|
Hao LY, Zhang M, Tao Y, Xu H, Liu Q, Yang K, Wei R, Zhou H, Jin T, Liu XD, Xue Z, Shen W, Cao JL, Pan Z. miRNA-22 Upregulates Mtf1 in Dorsal Horn Neurons and Is Essential for Inflammatory Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8622388. [PMID: 35242280 PMCID: PMC8886789 DOI: 10.1155/2022/8622388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
Chronic inflammatory pain seriously affects patients' quality of life because of a paucity of effective clinical treatments caused, at least in part, by lack of full understanding of the underlying mechanisms. miRNAs are known to be involved in inflammatory pain via silencing or degrading of target mRNA in the cytoplasm. The present study provides a novel mechanism by which miRNA-22 positively regulates metal-regulatory transcription factor 1 (Mtf1) in the nuclei of neurons in the dorsal horn of the spinal cord. We found that miRNA-22 was significantly increased in the dorsal horn of mice with either inflammatory pain induced by plantar injection of complete Freund's adjuvant (CFA) or neuropathic pain induced by unilateral sciatic nerve chronic constrictive injury (CCI). Knocking down or blocking miRNA-22 alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas overexpressing miRNA-22 produced pain-like behaviors. Mechanistically, the increased miRNA-22 binds directly to the Mtf1 promoter to recruit RNA polymerase II and elevate Mtf1 expression. The increased Mtf1 subsequently enhances spinal central sensitization, as evidenced by increased expression of p-ERK1/2, GFAP, and c-Fos in the dorsal horn. Our findings suggest that the miRNA-22-Mtf1 signaling axis in the dorsal horn plays a critical role in the induction and maintenance of inflammatory pain. This signaling pathway may be a promising therapeutic target in inflammatory pain.
Collapse
Affiliation(s)
- Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Huimin Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiao-Dan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Zhouya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| | - Wen Shen
- Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou 221004, China
| |
Collapse
|
3
|
Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. TOXICS 2021; 9:269. [PMID: 34678965 PMCID: PMC8540122 DOI: 10.3390/toxics9100269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. S. Merritt
- Faculty of Science and Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada; (M.R.S.); (J.D.P.); (A.L.W.); (D.C.L.)
| |
Collapse
|
4
|
Otsuka F. [Transcription Factor MTF-1 Involved in the Cellular Response to Zinc]. YAKUGAKU ZASSHI 2021; 141:857-867. [PMID: 34078794 DOI: 10.1248/yakushi.20-00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heavy metals, both toxic and essential, have long been an important research focus in life science. To investigate the intracellular actions of heavy metals at the molecular level, I have been exploring protein factors involved in induction of metallothionein (MT) genes by heavy metals that specifically bind to a metal responsive element (MRE) in the region upstream of the human MT-IIA gene. Purification of a zinc-dependent MRE-binding factor, and cloning of its cDNA identified a sequence identical to that of metal-responsive transcription factor-1 (MTF-1). MTF-1, which is characterized by six tandem repeats of the C2H2 type zinc finger motif, is indispensable for induction of MT gene expression by multiple types of heavy metal, but zinc is the only metal that can directly activate MTF-1 binding to the MRE, indicating that other heavy metal signals act through zinc as a second messenger. Functional analysis of various MTF-1 point mutants revealed several cysteine (Cys) residues critical for DNA binding and/or transactivation activity. Interestingly, six finger motifs seem to mediate several MTF-1 functions other than DNA binding. Immunohistochemical analyses of various mouse tissues revealed selective expression of MTF-1 in spermatocytes among the testicular cells, suggesting roles relevant to spermatogenesis. The zinc regulon, under the control of MTF-1, will likely provide good clues to aid in unraveling novel functions of intracellular zinc ions.
Collapse
Affiliation(s)
- Fuminori Otsuka
- Laboratory of Molecular Environmental Health, Faculty of Pharma-Sciences, Teikyo University
| |
Collapse
|
5
|
Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, Imbalzano AN, Navea JG, Fazzio TG, Padilla-Benavides T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. FASEB J 2019; 33:14556-14574. [PMID: 31690123 PMCID: PMC6894080 DOI: 10.1096/fj.201901606r] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
Abstract
Metal-regulatory transcription factor 1 (MTF1) is a conserved metal-binding transcription factor in eukaryotes that binds to conserved DNA sequence motifs, termed metal response elements. MTF1 responds to both metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is required for embryonic development in vertebrates. To examine the role for MTF1 in cell differentiation, we use multiple experimental strategies [including gene knockdown (KD) mediated by small hairpin RNA and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9), immunofluorescence, chromatin immunopreciptation sequencing, subcellular fractionation, and atomic absorbance spectroscopy] and report a previously unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of myogenesis from primary myoblasts, both MTF1 expression and nuclear localization increased. Mtf1 KD impaired differentiation, whereas addition of nontoxic concentrations of Cu+-enhanced MTF1 expression and promoted myogenesis. Furthermore, we observed that Cu+ binds stoichiometrically to a C terminus tetra-cysteine of MTF1. MTF1 bound to chromatin at the promoter regions of myogenic genes, and Cu addition stimulated this binding. Of note, MTF1 formed a complex with myogenic differentiation (MYOD)1, the master transcriptional regulator of the myogenic lineage, at myogenic promoters. These findings uncover unexpected mechanisms by which Cu and MTF1 regulate gene expression during myoblast differentiation.-Tavera-Montañez, C., Hainer, S. J., Cangussu, D., Gordon, S. J. V., Xiao, Y., Reyes-Gutierrez, P., Imbalzano, A. N., Navea, J. G., Fazzio, T. G., Padilla-Benavides, T. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper.
Collapse
Affiliation(s)
- Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sarah J. Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shellaina J. V. Gordon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Juan G. Navea
- Department of Chemistry, Skidmore College, Saratoga Springs, New York, USA
| | - Thomas G. Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, Jabot-Hanin F, Imahorn E, Arias AA, Vahidnezhad H, Youssefian L, Markle JG, Patin E, D'Amico A, Wang CQF, Full F, Ensser A, Leisner TM, Parise LV, Bouaziz M, Maya NP, Cadena XR, Saka B, Saeidian AH, Aghazadeh N, Zeinali S, Itin P, Krueger JG, Laimins L, Abel L, Fuchs E, Uitto J, Franco JL, Burger B, Orth G, Jouanguy E, Casanova JL. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 2018; 215:2289-2310. [PMID: 30068544 PMCID: PMC6122964 DOI: 10.1084/jem.20170308] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Amandine Créquer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elias Imahorn
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andres A Arias
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Etienne Patin
- Human Evolutionary Genetics, Pasteur Institute, Paris, France
- National Center for Scientific Research, URA 3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Aurelia D'Amico
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Claire Q F Wang
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Florian Full
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Ensser
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina M Leisner
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leslie V Parise
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | | | - Xavier Rueda Cadena
- Dermatology/Oncology - Skin Cancer Unit, National Cancer Institute, Bogota, Colombia
| | - Bayaki Saka
- Department of Dermatology, Sylvanus Olympio Hospital, University of Lomé, Togo
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| | - Peter Itin
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Dermatology, University Hospital Basel, Basel, Switzerland
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Lou Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Bettina Burger
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Gérard Orth
- Department of Virology, Pasteur Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
7
|
Francis M, Grider A. Bioinformatic analysis of the metal response element and zinc-dependent gene regulation via the metal response element-binding transcription factor 1 in Caco-2 cells. Biometals 2018; 31:639-646. [PMID: 29767398 DOI: 10.1007/s10534-018-0115-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
The purpose of this study was to determine the correlation between the position or number of metal regulatory elements (MREs) near gene transcriptional or translational start sites, and the strength of metal response element-binding transcription factor 1 (MTF-1) regulation. A secondary analysis was performed in silico on published results measuring the effects of Zn and MTF-1 on transcriptional regulation of genes (n = 120) in the Caco-2 cell line. MRE sequence variations throughout the human genome were sorted using a position weight matrix. Three null hypotheses (H0) were tested: (1) there is no correlation between the number of MREs and MTF-1 transcriptional strength, (2) there is no correlation between the distance of the MRE upstream from the transcriptional start site (TSS) and MTF-1 transcriptional strength, and (3) there is no correlation between the distance of the MRE downstream from the translational start site (TrSS) and MTF-1 transcriptional strength. Spearman correlation was used to test for significance (p < 0.05). From our results we rejected the first H0; we observed a significant correlation between the total number of MRE sequences - 7Kbp upstream from the TSS, within the 5' untranslated region, and + 1Kbp downstream from the TrSS, versus the strength of MTF-1 regulation (r = 0.202; p = 0.027). The second and third H0 were accepted. These results expand our understanding of the role of the MRE in Zn-dependent gene regulation. The data indicate that Zn influences the transcriptional control of gene expression beyond maintaining intracellular Zn homeostasis.
Collapse
Affiliation(s)
- Michael Francis
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Arthur Grider
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Park C, Jeong J. Synergistic cellular responses to heavy metal exposure: A minireview. Biochim Biophys Acta Gen Subj 2018; 1862:1584-1591. [PMID: 29631058 DOI: 10.1016/j.bbagen.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Metal-responsive transcription factor 1 (MTF-1) induces the expression of metallothioneins (MTs) which bind and sequester labile metal ions. While MTF-1 primarily responds to excess metal exposure, additional stress response mechanisms are activated by excess metals. Evidence suggests potential crosstalk between responses mediated by MTF-1 and stress signaling enhances cellular tolerance to metal exposure. SCOPE OF REVIEW This review aims to summarize the current understanding of interaction between the stress response mediated by MTF-1 and other cellular mechanisms, notably the nuclear factor κB (NF-κB) and heat shock response (HSR). MAJOR CONCLUSIONS Crosstalk between MTF-1 mediated metal response and NF-κB signaling or HSR can modulate expression of stress proteins in response to metal exposure via effects on precursor signals or direct interaction of transcriptional activators. The interaction between stress signaling pathways can enhance cell survival and tolerance through a unified response system. GENERAL SIGNIFICANCE Elucidating the interactions between MTF-1 and cell stress response mechanisms is critical to a comprehensive understanding of metal-based cellular effects. Co-activation of HSR and NF-κB signaling allows the cell to detect metal contamination in the environment and improve survival outcomes.
Collapse
Affiliation(s)
- Chanyoung Park
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States
| | - Jeeyon Jeong
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States; Department of Biology, Amherst College, Amherst, MA 01002, United States.
| |
Collapse
|
9
|
Mechanistic insights into the protective impact of zinc on sepsis. Cytokine Growth Factor Rev 2017; 39:92-101. [PMID: 29279185 DOI: 10.1016/j.cytogfr.2017.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Sepsis, a systemic inflammation as a response to a bacterial infection, is a huge unmet medical need. Data accumulated over the last decade suggest that the nutritional status of patients as well as composition of their gut microbiome, are strongly linked with the risk to develop sepsis, the severity of the disease and prognosis. In particular, the essential micronutrient zinc is essential in the resistance against sepsis and has shown to be protective in animal models as well as in human patients. The potential mechanisms by which zinc protects in sepsis are discussed in this review paper: we will focus on the inflammatory response, chemotaxis, phagocytosis, immune response, oxidative stress and modulation of the microbiome. A full understanding of the mechanism of action of zinc may open new preventive and therapeutic interventions in sepsis.
Collapse
|
10
|
Carpenter MC, Palmer AE. Native and engineered sensors for Ca 2+ and Zn 2+: lessons from calmodulin and MTF1. Essays Biochem 2017; 61:237-243. [PMID: 28487400 PMCID: PMC6016828 DOI: 10.1042/ebc20160069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/16/2023]
Abstract
Ca2+ and Zn2+ dynamics have been identified as important drivers of physiological processes. In order for these dynamics to encode function, the cell must have sensors that transduce changes in metal concentration to specific downstream actions. Here we compare and contrast the native metal sensors: calmodulin (CaM), the quintessential Ca2+ sensor and metal-responsive transcription factor 1 (MTF1), a candidate Zn2+ sensor. While CaM recognizes and modulates the activity of hundreds of proteins through allosteric interactions, MTF1 recognizes a single DNA motif that is distributed throughout the genome regulating the transcription of many target genes. We examine how the different inorganic chemistries of these two metal ions may shape these different mechanisms transducing metal ion concentration into changing physiologic activity. In addition to native metal sensors, scientists have engineered sensors to spy on the dynamic changes of metals in cells. The inorganic chemistry of the metals shapes the possibilities in the design strategies of engineered sensors. We examine how different strategies to tune the affinities of engineered sensors mirror the strategies nature developed to sense both Ca2+ and Zn2+ in cells.
Collapse
Affiliation(s)
- Margaret C Carpenter
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80305, U.S.A
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80305, U.S.A.
| |
Collapse
|
11
|
Aikins AR, Hong SW, Kim HJ, Yoon CH, Chung JH, Kim M, Kim CW. Extremely low-frequency electromagnetic field induces neural differentiation of hBM-MSCs through regulation of (Zn)-metallothionein-3. Bioelectromagnetics 2017; 38:364-373. [PMID: 28370392 DOI: 10.1002/bem.22046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 02/14/2017] [Indexed: 11/11/2022]
Abstract
Extremely low-frequency electromagnetic field (ELFEMF) can stimulate neural differentiation in human bone marrow-derived mesenchymal cells (hBM-MSCs), and this provides an opportunity for research on neurodegenerative diseases such as Alzheimer's disease (AD). Metallothionein-3 (MT3), an isoform of the metal-binding proteins, metallothioneins, involved in maintaining intracellular zinc (Zn) homeostasis and the deregulation of zinc homeostasis, has separately been implicated in AD. Here, we investigated the effect of ELFEMF-induced neural differentiation of hBM-MSCs on Zn-MT3 homeostatic interaction. Exposure to ELFEMF induced neural differentiation of hBM-MSCs, which was characterized by decreased proliferation and enhanced neural-like morphology. We observed expression of neuronal markers such as β-tubulin3, pleiotrophin, and neurofilament-M at the mRNA level and MAP2 at the protein level. ELFEMF-induced neural differentiation correlated with decreased expression of metal-response element-transcription factor 1 and MT3, as well as decreased intracellular Zn concentration. In addition, upregulation of dihydropyrimidinase-related protein 2 was observed, but there was no change in γ-enolase expression. These data indicate a possible regulatory mechanism for MT3 during neural differentiation. Our findings provide considerable insight into molecular mechanisms involved in neural differentiation, which is useful for developing new treatments for neurodegenerative diseases. Bioelectromagnetics. 38:364-373, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anastasia Rosebud Aikins
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Sung-Won Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyun-Jung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Cheol-Ho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Joo-Hee Chung
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - MiJung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Chan-Wha Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
12
|
Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel) 2017; 6:antiox6020024. [PMID: 28353636 PMCID: PMC5488004 DOI: 10.3390/antiox6020024] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a metabolic dysfunction that favors the oxidation of biomolecules, contributing to the oxidative damage of cells and tissues. This consequently contributes to the development of several chronic diseases. In particular, zinc is one of the most relevant minerals to human health, because of its antioxidant properties. This review aims to provide updated information about the mechanisms involved in the protective role of zinc against oxidative stress. Zinc acts as a co-factor for important enzymes involved in the proper functioning of the antioxidant defense system. In addition, zinc protects cells against oxidative damage, acts in the stabilization of membranes and inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase). Zinc also induces the synthesis of metallothioneins, which are proteins effective in reducing hydroxyl radicals and sequestering reactive oxygen species (ROS) produced in stressful situations, such as in type 2 diabetes, obesity and cancer. Literature provides strong evidence for the role of zinc in the protection against oxidative stress in several diseases.
Collapse
|
13
|
Zhou C, Li J, Li J, Wan Y, Li T, Ma P, Wang Y, Sang H. Hsa-miR-137, hsa-miR-520e and hsa-miR-590-3p perform crucial roles in Lynch syndrome. Oncol Lett 2016; 12:2011-2017. [PMID: 27602130 DOI: 10.3892/ol.2016.4816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/17/2016] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to identify the differentially expressed microRNAs (DEMs) between Lynch syndrome (LS) and the normal colonic (N-C) control samples, predict the target genes (TGs) and analyze the potential functions of the DEMs and TGs. The miRNA expression dataset GSE30454, which included data of 13 LS and 20 N-C tissue samples, was downloaded from the Gene Expression Omnibus. The classical t-test in Linear Models for Microarray Data package was used for DEM identification. TG prediction was performed using 5 databases. The regulatory network of the DEMs and their TGs was constructed using Cytoscape. Functional and pathway enrichment analysis was performed. The transcription factors (TFs), tumor-associated genes (TAG) and tumor suppressor genes (TSGs) were then identified. Three key DEMs hsa-miR-137, hsa-miR-520e, and hsa-miR-590-3p were identified. Hsa-miR-520e and hsa-miR-137 had 4 common TGs, including SNF related kinase, metal-regulatory transcription factor 1 (MTF1), round spermatid basic protein 1 and YTH N6-methyladenosine RNA binding protein 3; hsa-miR-590-3p and hsa-miR-137 had 14 common TGs, including NCK adaptor protein 1 (NCK1), EPH receptor A7, and stress-associated endoplasmic reticulum protein 1; hsa-miR-590-3p and hsa-miR-520e had 12 common TGs, including Krüppel-like factor (KLF) 13, twinfilin actin binding protein 1, and nuclear factor I B. Through the functional and pathway enrichments analysis, MTF1 was involved in regulation of gene expression and metabolic processes, and sequence-specific DNA binding TF activity. KLF13 was involved in regulation of gene expression and regulation of cellular metabolic processes. NCK1 was enriched in the axon guidance pathway. In addition, the functional and pathway enrichment analysis showed certain TGs, such as hypoxia-inducible factor 1α, AKT serine/threonine kinase 2, and rapamycin-insensitive companion of mammalian target of rapamycin, participated in the mTOR signaling pathway. The 3 key DEMs hsa-miR-137, hsa-miR-520e, and hsa-miR-590-3p may have important roles in the process of LS.
Collapse
Affiliation(s)
- Changyu Zhou
- Digest Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jiayu Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jiarui Li
- Pharmacy Department, Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Yingchun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Piyong Ma
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yingjian Wang
- Department of Gynaecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Haiyan Sang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
14
|
Wu K, Tan XY, Wei CC, You WJ, Zhuo MQ, Song YF. Isolation and Expression Analysis of STAT Members from Synechogobius hasta and Their Roles in Leptin Affecting Lipid Metabolism. Int J Mol Sci 2016; 17:406. [PMID: 27011172 PMCID: PMC4813261 DOI: 10.3390/ijms17030406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022] Open
Abstract
Signal transducers and activators of transcription proteins (STATs) act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD) events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen), but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG) content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490), a specific inhibitor of the Janus Kinase 2(JAK2)-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wen-Jing You
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei-Qin Zhuo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Dong G, Chen H, Qi M, Dou Y, Wang Q. Balance between metallothionein and metal response element binding transcription factor 1 is mediated by zinc ions (review). Mol Med Rep 2015; 11:1582-6. [PMID: 25405524 DOI: 10.3892/mmr.2014.2969] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
Metal ion homeostasis and heavy metal detoxification systems are regulated by certain genes associated with metal ion transport. Metallothionein (MT) and metal response element binding transcription factor 1 (MTF‑1) are important regulatory proteins involved in the mediation of intracellular metal ion balance. Differences in the zinc‑binding affinities of the zinc fingers of MTF‑1 and the α‑ and β‑domains of MT facilitate their regulation of Zn2+ concentration. Alterations in the intracellular concentration of Zn2+ influence the MTF‑1 zinc finger number, and MTF‑1 containing certain zinc finger numbers regulates the expression of corresponding target genes. The present review evaluates the association between zinc finger number in MTF‑1 protein, MTF‑1 target genes and the mechanism underlying MT regulation of the zinc finger number in MTF‑1.
Collapse
Affiliation(s)
- Gang Dong
- Department of Oral Medicine, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Hong Chen
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Meiyu Qi
- Cattle Research Department, Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, P.R. China
| | - Ye Dou
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| |
Collapse
|
16
|
Suzuki K, Otsuka F, Yamada H, Koizumi S. Analysis of cysteine and histidine residues required for zinc response of the transcription factor human MTF-1. Biol Pharm Bull 2015; 38:611-7. [PMID: 25832641 DOI: 10.1248/bpb.b14-00830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal responsive element (MRE)-binding transcription factor-1 (MTF-1) is a zinc finger (ZF) transcription factor that plays a key role in heavy metal homeostasis by regulating relevant genes in response to metals. MTF-1 is known to be activated by heavy metals such as Zn and Cd, but the mechanism of activation remains unclear. In the present study, Cys and His residues of human MTF-1 (hMTF-1), some of which may be involved in interaction with metals or with each other, were screened for their contribution to Zn-dependent transcription. To avoid poor induction ratios of previous transfection assays, we re-examined experimental conditions to establish an assay able to correctly detect Zn-responsive transcription. Using this assay, a series of Cys and/or His substitution mutants were analyzed over the entire hMTF-1 molecule. In five out of the six ZFs (ZF1 to ZF5), Cys mutations that disrupt the ZF structure abolished response to Zn. Of these, ZF5 was shown for the first time to be essential for Zn-responsive transcription, despite it being unnecessary for Zn-induced DNA binding. These results indicate that Zn activation of hMTF-1 involves an additional process besides induction of DNA binding activity. Our assay also confirmed the importance of Cys in the acidic activation domain, as well as those in the C-terminal Cys cluster, implicated in transcription in other studies. The identified Cys residues might contribute to metal response of hMTF-1 through direct metal binding and/or intramolecular interactions, analysis of which will be helpful in understanding the mechanism of metal response.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Mechanism of Health Effect Research Group, National Institute of Occupational Safety and Health
| | | | | | | |
Collapse
|
17
|
O'Shields B, McArthur AG, Holowiecki A, Kamper M, Tapley J, Jenny MJ. Inhibition of endogenous MTF-1 signaling in zebrafish embryos identifies novel roles for MTF-1 in development. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1818-33. [PMID: 24751692 PMCID: PMC4096078 DOI: 10.1016/j.bbamcr.2014.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologs. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1-2 cell stage) followed by transcriptomic profiling using an Agilent 4x44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28hpf and 36hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development.
Collapse
Affiliation(s)
- Britton O'Shields
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | | | - Andrew Holowiecki
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Martin Kamper
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jeffrey Tapley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Matthew J Jenny
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
18
|
Georgiev O, Günther V, Steiner K, Schönrath K, Schaffner W. The legless lizard Anguis fragilis (slow worm) has a potent metal-responsive transcription factor 1 (MTF-1). Biol Chem 2014; 395:425-31. [PMID: 24413216 DOI: 10.1515/hsz-2013-0293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 12/16/2023]
Abstract
The metal-responsive transcription factor-1 (MTF-1) is a key regulator of heavy metal homeostasis and detoxification. Here we characterize the first MTF-1 from a reptile, the slow worm Anguis fragilis. The slow worm, or blind worm, is a legless lizard also known for its long lifespan of up to several decades. Anguis MTF-1 performs well and matches the strong zinc and cadmium response of its human ortholog, clearly surpassing the activity of rodent MTF-1s. Some amino acid positions critical for metal response are the same in humans and slow worm but not in rodent MTF-1. This points to a divergent evolution of rodent MTF-1, and we speculate that rodents can afford a less sophisticated metal handling than humans and (some) reptiles.
Collapse
|
19
|
Wink S, Hiemstra S, Huppelschoten S, Danen E, Niemeijer M, Hendriks G, Vrieling H, Herpers B, van de Water B. Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment. Chem Res Toxicol 2014; 27:338-55. [PMID: 24450961 DOI: 10.1021/tx4004038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past decade, major leaps forward have been made on the mechanistic understanding and identification of adaptive stress response landscapes underlying toxic insult using transcriptomics approaches. However, for predictive purposes of adverse outcome several major limitations in these approaches exist. First, the limited number of samples that can be analyzed reduces the in depth analysis of concentration-time course relationships for toxic stress responses. Second these transcriptomics analysis have been based on the whole cell population, thereby inevitably preventing single cell analysis. Third, transcriptomics is based on the transcript level, totally ignoring (post)translational regulation. We believe these limitations are circumvented with the application of high content analysis of relevant toxicant-induced adaptive stress signaling pathways using bacterial artificial chromosome (BAC) green fluorescent protein (GFP) reporter cell-based assays. The goal is to establish a platform that incorporates all adaptive stress pathways that are relevant for toxicity, with a focus on drug-induced liver injury. In addition, cellular stress responses typically follow cell perturbations at the subcellular organelle level. Therefore, we complement our reporter line panel with reporters for specific organelle morphometry and function. Here, we review the approaches of high content imaging of cellular adaptive stress responses to chemicals and the application in the mechanistic understanding and prediction of chemical toxicity at a systems toxicology level.
Collapse
Affiliation(s)
- Steven Wink
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang N, Wang XL, Yang CG, Chen SL. Molecular cloning, subcelluar location and expression profile of signal transducer and activator of transcription 2 (STAT2) from turbot, Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1200-1208. [PMID: 23933433 DOI: 10.1016/j.fsi.2013.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
Signal transducer and activator of transcription 2 (STAT2) is an important molecule involved in the type I interferon signalling pathway. To date, little STAT2 homologue is available in fish except Atlantic salmon and goldfish. In this paper, STAT2 was firstly cloned and characterized from turbot, a marine flatfish with high economic value. Briefly, turbot STAT2 cDNA is 3206 bp in length encoding a predicted protein of 793 amino acids. The phylogenetic tree shows that turbot STAT2 protein shared the closest relationship with Atlantic salmon. Analysis of subcellular distribution indicates that STAT2 is mainly present in the cytoplasm of TK cells. Stat2 mRNA is constitutively expressed in widespread tissues and induced by several folds in turbot tissues and TK cells after stimulation with Vibrio anguillarum and lymphocystis disease virus (LCDV). Unlike the higher vertebrate STAT2, turbot STAT2 nuclear export signal (NES) exists not in the C-terminal 79 amino acids but in N-terminal 137-312 amino acids (STAT_alpha domain). The nuclear translocation of turbot STAT2 after Poly(I:C) treatment proved its transcription activity in TK cells. All these results suggested that STAT2 may be involved in the immune response in turbot as a transcription factor.
Collapse
Affiliation(s)
- Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 106 Nanjing Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
21
|
Abstract
Maintenance of the cellular redox balance is crucial for cell survival. An increase in reactive oxygen, nitrogen, or chlorine species can lead to oxidative stress conditions, potentially damaging DNA, lipids, and proteins. Proteins are very sensitive to oxidative modifications, particularly methionine and cysteine residues. The reversibility of some of these oxidative protein modifications makes them ideally suited to take on regulatory roles in protein function. This is especially true for disulfide bond formation, which has the potential to mediate extensive yet fully reversible structural and functional changes, rapidly adjusting the protein's activity to the prevailing oxidant levels.
Collapse
Affiliation(s)
- Claudia M Cremers
- From the Departments of Molecular, Cellular, and Developmental Biology and
| | | |
Collapse
|
22
|
Lin CY, Liu YC, Lin MC, Thi Nguyen T, Tam MF, Chein CY, Lin MT, Lin LY. Expression and characterization of SUMO-conjugated metal-responsive transcription factor 1: SIM-dependent cross-interaction and distinct DNA binding activity. J Biochem 2013; 153:361-9. [PMID: 23347955 DOI: 10.1093/jb/mvt002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal-responsive transcription factor 1 (MTF-1) regulates a variety of genes involving in metal homeostasis and oxidative stress. We have shown that MTF-1 can be conjugated by small ubiquitin-like modifier (SUMO) and forms complexes with cellular factor(s) in a SUMO-interacting motif (SIM)-dependent manner. To investigate whether the interaction of MTF-1 and its SUMO conjugate occurs, we expressed and isolated MTF-1 and sumoylated MTF-1 (S-MTF-1) for functional studies. Various conditions were examined to optimize the expressions of MTF-1 and S-MTF-1. Results from affinity column chromatography demonstrated that the unmodified MTF-1 consistently co-eluted with the S-MTF-1. Mutations at the SIM did not reduce the level of MTF-1 sumoylation but the sumoylated product can then be purified to homogeneity. The presence of MTF-1 cross-interaction was further supported by in vitro pull-down assays. The ability of the purified proteins in binding metal-responsive element (MRE) was assessed with electrophoretic mobility shift assay. Noticeably, MTF-1 required the presence of cell extracts to render the binding activity. However, S-MTF-1 binds MRE in void of other cellular factors. The same characteristic was found for MTF-1 with SUMO fusion at the carboxyl terminus. These results indicate that the presence of SUMO moiety allows the protein to interact directly with MRE.
Collapse
Affiliation(s)
- Chang-Yi Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Meitzler JL, Hinde S, Bánfi B, Nauseef WM, Ortiz de Montellano PR. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J Biol Chem 2013; 288:7147-57. [PMID: 23362256 DOI: 10.1074/jbc.m112.414797] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular disulfide bond formation is promoted in oxidizing extracellular and endoplasmic reticulum compartments and often contributes to protein stability and function. DUOX1 and DUOX2 are distinguished from other members of the NOX protein family by the presence of a unique extracellular N-terminal region. These peroxidase-like domains lack the conserved cysteines that confer structural stability to mammalian peroxidases. Sequence-based structure predictions suggest that the thiol groups present are solvent-exposed on a single protein surface and are too distant to support intramolecular disulfide bond formation. To investigate the role of these thiol residues, we introduced four individual cysteine to glycine mutations in the peroxidase-like domains of both human DUOXs and purified the recombinant proteins. The mutations caused little change in the stabilities of the monomeric proteins, supporting the hypothesis that the thiol residues are solvent-exposed and not involved in disulfide bonds that are critical for structural integrity. However, the ability of the isolated hDUOX1 peroxidase-like domain to dimerize was altered, suggesting a role for these cysteines in protein-protein interactions that could facilitate homodimerization of the peroxidase-like domain or, in the full-length protein, heterodimeric interactions with a maturation protein. When full-length hDUOX1 was expressed in HEK293 cells, the mutations resulted in decreased H2O2 production that correlated with a decreased amount of the enzyme localized to the membrane surface rather than with a loss of activity or with a failure to synthesize the mutant proteins. These results support a role for the cysteine residues in intermolecular disulfide bond formation with the DUOX maturation factor DUOXA1.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Laboratory of Molecular Pharmacology of the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Sims HI, Chirn GW, Marr MT. Single nucleotide in the MTF-1 binding site can determine metal-specific transcription activation. Proc Natl Acad Sci U S A 2012; 109:16516-21. [PMID: 23012419 PMCID: PMC3478646 DOI: 10.1073/pnas.1207737109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells respond to changes in environment by shifting their gene expression profile to deal with the new conditions. The cellular response to changes in metal homeostasis is an important example of this. Transition metals such as iron, zinc, and copper are essential micronutrients but other metals such as cadmium are simply toxic. The cell must maintain metal concentrations in a window that supports efficient metabolic function but must also protect against the damaging effects of high concentrations of these metals. One way a cell regulates metal homeostasis is to control genes involved in metal mobilization and storage. Much of this regulation occurs at the level of transcription and the protein most responsible for this is the conserved metal responsive transcription factor 1 (MTF-1). Interestingly, the nature of the changes in the gene expression profile depends on the type of exposure. The cell somehow senses the kind of the metal challenge and responds appropriately. We have been using the Drosophila system to try to understand the mechanism of this metal discrimination. Using genome-wide mapping of MTF-1 binding under different metal stresses we find that, surprisingly, MTF-1 chooses different DNA binding sites depending on the specific nature of the metal insult. We also find that the type of binding site chosen is an important component of the capability to induce the metal-specific transcription activation.
Collapse
Affiliation(s)
- Hillel I. Sims
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Gung-Wei Chirn
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Michael T. Marr
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
25
|
Günther V, Lindert U, Schaffner W. The taste of heavy metals: gene regulation by MTF-1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1416-25. [PMID: 22289350 DOI: 10.1016/j.bbamcr.2012.01.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
The metal-responsive transcription factor-1 (MTF-1, also termed MRE-binding transcription factor-1 or metal regulatory transcription factor-1) is a pluripotent transcriptional regulator involved in cellular adaptation to various stress conditions, primarily exposure to heavy metals but also to hypoxia or oxidative stress. MTF-1 is evolutionarily conserved from insects to humans and is the main activator of metallothionein genes, which encode small cysteine-rich proteins that can scavenge toxic heavy metals and free radicals. MTF-1 has been suggested to act as an intracellular metal sensor but evidence for direct metal sensing was scarce. Here we review recent advances in our understanding of MTF-1 regulation with a focus on the mechanism underlying heavy metal responsiveness and transcriptional activation mediated by mammalian or Drosophila MTF-1. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Viola Günther
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
26
|
Marr SK, Pennington KL, Marr MT. Efficient metal-specific transcription activation by Drosophila MTF-1 requires conserved cysteine residues in the carboxy-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:902-12. [PMID: 22484022 PMCID: PMC3378919 DOI: 10.1016/j.bbagrm.2012.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 11/21/2022]
Abstract
MTF-1 is a sequence-specific DNA binding protein that activates the transcription of metal responsive genes. The extent of activation is dependent on the nature of the metal challenge. Here we identify separate regions within the Drosophila MTF-1 (dMTF-1) protein that are required for efficient copper- versus cadmium-induced transcription. dMTF-1 contains a number of potential metal binding regions that might allow metal discrimination including a DNA binding domain containing six zinc fingers and a highly conserved cysteine-rich C-terminus. We find that four of the zinc fingers in the DNA binding domain are essential for function but the DNA binding domain does not contribute to the metal discrimination by dMTF-1. We find that the conserved C-terminus of the cysteine-rich domain provides cadmium specificity while copper specificity maps to the previously described copper-binding region (Chen et al.). In addition, both metal specific domains are autorepressive in the absence of metal and contribute to the low level of basal transcription from metal inducible promoters.
Collapse
Affiliation(s)
- Sharon K. Marr
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Katie L. Pennington
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Michael T. Marr
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|