1
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Kumar R, Kulshreshtha D, Aggarwal A, Asthana S, Dinda A, Mukhopadhyay CK. Glucose induced regulation of iron transporters implicates kidney iron accumulation. Biochim Biophys Acta Gen Subj 2024; 1868:130713. [PMID: 39278370 DOI: 10.1016/j.bbagen.2024.130713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Increased iron level is detected in rat kidney and human urine in diabetic condition and implicated in associated nephropathy. However, the biological cue and mechanism of the iron accumulation remain unclear. Here we reveal that glucose increases iron uptake by promoting transferrin receptor 1 (TFRC) in kidney cells by a translational mechanism but does not alter expression of endosomal iron transporter DMT1. Glucose decreases iron exporter ferroportin (FPN) by a protein degradation mechanism. Hepcidin is known to bind at Cys-326 residue in promoting degradation of human ferroportin. When Cys-326 was mutated to Ser in human-FPN-FLAG and expressed in kidney cells, glucose still could degrade FPN-FLAG implicating involvement of hepcidin independent mechanism in glucose induced ferroportin degradation. Chronic hyperglycemia was generated in rats by administering streptozotocin (STZ) with periodic insulin injection to determine the level of iron homeostasis components. Increased TFRC and decreased ferroportin levels were detected in hyperglycemic rat kidney by Western blot and immunohistochemistry analyses. Hepcidin mRNA was not significantly altered in kidney but was marginally decreased in liver. Perls' staining and non-heme iron estimation showed an elevated iron level in hyperglycemic rat kidney. These results suggest that high glucose dysregulates iron transport components resulting iron accumulation in diabetic kidney.
Collapse
Affiliation(s)
- Rajiv Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110034, India
| | - Diksha Kulshreshtha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayushi Aggarwal
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110034, India
| | - Somya Asthana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amit Dinda
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110034, India.
| | - Chinmay K Mukhopadhyay
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
4
|
Tian S, Wang B, Ding Y, Zhang Y, Yu P, Chang YZ, Gao G. The role of iron transporters and regulators in Alzheimer's disease and Parkinson's disease: Pathophysiological insights and therapeutic prospects. Biomed Pharmacother 2024; 179:117419. [PMID: 39245001 DOI: 10.1016/j.biopha.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yiqian Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
5
|
Elsakka EGE, Midan HM, Abulsoud AI, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Abdelghany TM, Elesawy AE, Shahin RK, El Tabaa MM, Mohammed OA, Abdel-Reheim MA, Elballal MS, Doghish AS. Emerging insights: miRNA modulation of ferroptosis pathways in lung cancer. Exp Cell Res 2024; 442:114272. [PMID: 39362302 DOI: 10.1016/j.yexcr.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The newly discovered programmed iron-dependent necrosis, ferroptosis, is a novel pathway that is controlled by iron-dependent lipid peroxidation and cellular redox changes. It can be triggered intrinsically by low antioxidant enzyme activity or extrinsically by blocking amino acid transporters or activating iron transporters. The induction of ferroptosis involves the activation of specific proteins, suppression of transporters, and increased endoplasmic reticulum (ER) stress (a condition in which the ER, a crucial organelle involved in protein folding and processing, becomes overwhelmed by an accumulation of misfolded or unfolded proteins. This situation disrupts the normal functioning of the ER, leading to a cellular stress response known as the unfolded protein response), leading to lipid peroxidation byproduct accumulation and toxic reactive oxygen species (ROS), which are highly reactive molecules derived from diatomic oxygen and include various forms such as superoxide (O₂⁻), hydroxyl radicals (•OH), and hydrogen peroxide (H₂O₂). Ferroptosis is closely associated with signaling molecules in lung cancer, including epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1-alpha (HIF-1α), and P53, and is regulated by epigenetic factors such as microRNAs (miRNAs). miRNAs are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Several miRNAs have been found to modulate ferroptosis by targeting key genes involved in iron metabolism, lipid peroxidation, and antioxidant defense pathways. The research on ferroptosis has expanded to target its role in lung cancer treatment and resistance prevention. This review encapsulates the significance of ferroptosis in lung cancer. Understanding the mechanisms and implications of ferroptosis in lung cancer cells may lead to targeted therapies exploiting cancer cell vulnerabilities to ferroptosis Also, improving treatment outcomes, and overcoming resistance.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020, El Salam, 11785, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
6
|
Saha S, Skeie JM, Schmidt GA, Eggleston T, Shevalye H, Sales CS, Phruttiwanichakun P, Dusane A, Field MG, Rinkoski TA, Fautsch MP, Baratz KH, Roy M, Jun AS, Pendleton C, Salem AK, Greiner MA. TCF4 trinucleotide repeat expansions and UV irradiation increase susceptibility to ferroptosis in Fuchs endothelial corneal dystrophy. Redox Biol 2024; 77:103348. [PMID: 39332053 PMCID: PMC11470242 DOI: 10.1016/j.redox.2024.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD), the leading indication for corneal transplantation in the U.S., causes loss of corneal endothelial cells (CECs) and corneal edema leading to vision loss. FECD pathogenesis is linked to impaired response to oxidative stress and environmental ultraviolet A (UVA) exposure. Although UVA is known to cause nonapoptotic oxidative cell death resulting from iron-mediated lipid peroxidation, ferroptosis has not been characterized in FECD. We investigated the roles of genetic background and UVA exposure in causing CEC degeneration in FECD. Using ungenotyped FECD patient surgical samples, we found increased levels of cytosolic ferrous iron (Fe2+) and lipid peroxidation in end-stage diseased tissues compared with healthy controls. Using primary and immortalized cell cultures modeling the TCF4 intronic trinucleotide repeat expansion genotype, we found altered gene and protein expression involved in ferroptosis compared to controls including elevated levels of Fe2+, basal lipid peroxidation, and the ferroptosis-specific marker transferrin receptor 1. Increased cytosolic Fe2+ levels were detected after physiologically relevant doses of UVA exposure, indicating a role for ferroptosis in FECD disease progression. Cultured cells were more prone to ferroptosis induced by RSL3 and UVA than controls, indicating ferroptosis susceptibility is increased by both FECD genetic background and UVA. Finally, cell death was preventable after RSL3 induced ferroptosis using solubilized ubiquinol, indicating a role for anti-ferroptosis therapies in FECD. This investigation demonstrates that genetic background and UVA exposure contribute to iron-mediated lipid peroxidation and cell death in FECD, and provides the basis for future investigations of ferroptosis-mediated disease progression in FECD.
Collapse
Affiliation(s)
- Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Jessica M Skeie
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Lions Eye Bank, Coralville, IA, 52241, USA
| | | | | | | | - Christopher S Sales
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Lions Eye Bank, Coralville, IA, 52241, USA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Apurva Dusane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew G Field
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Tommy A Rinkoski
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Madhuparna Roy
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Chandler Pendleton
- The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| | - Mark A Greiner
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Lions Eye Bank, Coralville, IA, 52241, USA.
| |
Collapse
|
7
|
Leandri R, Power K, Buonocore S, De Vico G. Preliminary Evidence of the Possible Roles of the Ferritinophagy-Iron Uptake Axis in Canine Testicular Cancer. Animals (Basel) 2024; 14:2619. [PMID: 39272404 PMCID: PMC11394645 DOI: 10.3390/ani14172619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Iron is a key element in spermatogenesis; its metabolic pathway in the testis is strictly regulated. Alterations in iron metabolism are linked to various diseases, including cancer, and changes in iron metabolism-related proteins have been observed in multiple human, mouse and canine tumors. There is limited knowledge about iron metabolism in canine non-neoplastic and neoplastic testes. This study aimed to explore the immunohistochemical expression of molecules involved in iron uptake and storage [Transferrin Receptor 1 (TfR1), ferritin (FTH1), nuclear receptor coactivator 4 (NCOA4)] and PCNA in canine non-neoplastic and neoplastic testicular samples. Non-neoplastic testes showed moderate TfR1 expression in developing germ cells and Sertoli cells, high NCOA4 cytoplasmic immunostaining in the Sertoli cells and occasional cytoplasmic immunopositivity for FTH1 in the spermatogonia and Sertoli cells. In contrast, Leydig cell tumors (LCTs) and Diffuse Type Seminoma (DSEM) exhibited increased expression of TfR1, along with higher PCNA expression, suggesting a higher iron need for proliferation. Intratubular Type Seminoma (ITSEM) showed a higher FTH1 expression, indicating greater iron storage, while the increased NCOA4 expression in the LCTs and DSEM suggested ferritinophagy to release iron for proliferation. Sertoli cell tumors (SCTs) showed only NCOA4 expression. These preliminary findings highlight potential molecular targets for developing new anti-neoplastic treatments in canine testicular tumors.
Collapse
Affiliation(s)
- Rebecca Leandri
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| | - Karen Power
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| | - Sara Buonocore
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| | - Gionata De Vico
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| |
Collapse
|
8
|
Zhang M, Li J, Hu W. The complex interplay between ferroptosis and atherosclerosis. Biomed Pharmacother 2024; 178:117183. [PMID: 39079265 DOI: 10.1016/j.biopha.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of plaque within the arterial walls, is an intricate cardiovascular disease that often results in severe health issues. Recent studies have emphasized the importance of ferroptosis, a controlled type of cell death dependent on iron, as a critical factor in this disease state. Ferroptosis, distinguished by its reliance on iron and the accumulation of lipid hydroperoxides, offers a unique insight into the pathology of atherosclerotic lesions. This summary encapsulates the current knowledge of the intricate role ferroptosis plays in the onset and progression of atherosclerosis. It explores the molecular processes through which lipid peroxidation and iron metabolism contribute to the development of atheromatous plaques and evaluates the possibility of utilizing ferroptosis as a novel treatment approach for atherosclerosis. By illuminating the intricate relationship between ferroptosis-related processes and atherosclerosis, this review paves the way for future clinical applications and personalized medicine approaches aimed at alleviating the effects of atherosclerosis.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangping Li
- Department of Oncological Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hu
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Li Y, Tang L, Wang F, Gao C, Yang Q, Luo L, Wei J, Tang Q, Qi M. Hub genes identification and validation of ferroptosis in SARS-CoV-2 induced ARDS: perspective from transcriptome analysis. Front Immunol 2024; 15:1407924. [PMID: 39170609 PMCID: PMC11335500 DOI: 10.3389/fimmu.2024.1407924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Acute Respiratory Distress Syndrome (ARDS) poses a significant health challenge due to its high incidence and mortality rates. The emergence of SARS-CoV-2 has added complexity, with evidence suggesting a correlation between COVID-19 induced ARDS and post-COVID symptoms. Understanding the underlying mechanisms of ARDS in COVID-19 patients is crucial for effective clinical treatment. Method To investigate the potential role of ferroptosis in SARS-CoV-2 induced ARDS, we conducted a comprehensive analysis using bioinformatics methods. Datasets from the Gene Expression Omnibus (GEO) were utilized, focusing on COVID-19 patients with varying ARDS severity. We employed weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and single-cell sequencing to identify key genes associated with ferroptosis in ARDS. Hub genes were validated using additional GEO datasets and cell experiment. Result The analysis discerned 916 differentially expressed genes in moderate/severe ARDS patients compared to non-critical individuals. Weighted Gene Co-expression Network Analysis (WGCNA) unveiled two modules that exhibited a positive correlation with ARDS, subsequently leading to the identification of 15 hub genes associated with ferroptosis. Among the noteworthy hub genes were MTF1, SAT1, and TXN. Protein-protein interaction analysis, and pathway analysis further elucidated their roles. Immune infiltrating analysis highlighted associations between hub genes and immune cells. Validation in additional datasets confirmed the upregulation of MTF1, SAT1, and TXN in SARS-CoV-2-induced ARDS. This was also demonstrated by qRT-PCR results in the BEAS-2B cells vitro model, suggesting their potential as diagnostic indicators. Discussion This study identifies MTF1, SAT1, and TXN as hub genes associated with ferroptosis in SARS-CoV-2-induced ARDS. These findings provide novel insights into the molecular mechanisms underlying ARDS in COVID-19 patients and offer potential targets for immune therapy and targeted treatment. Further experimental validation is warranted to solidify these findings and explore therapeutic interventions for ARDS in the context of COVID-19.
Collapse
Affiliation(s)
- Yutang Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Tang
- The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chencheng Gao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qi Yang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liyu Luo
- College of Sports Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Jiahang Wei
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qiuyun Tang
- Department of Oncology, Health Center of Chicheng Town, Suining, China
| | - Mingran Qi
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
Hou X, Wei L, Liu J, Li S, Zhang J. Essential tremor is associated with reduced serum ceruloplasmin levels. Neurol Sci 2024; 45:3817-3822. [PMID: 38480645 DOI: 10.1007/s10072-024-07441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/19/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Essential tremor (ET), a prevalent movement disorder, has an elusive pathogenesis. A reduction in ceruloplasmin (Cp) levels can be found in some patients with ET. In addition, some studies have suggested an association between ET and neurodegeneration. As a ferroxidase, Cp is critical for iron metabolism, protecting against oxidative stress and neurodegeneration. Iron metabolism dysregulation, linked to ferroptosis, has implications in neurodegenerative diseases. Yet, research on Cp and ET remains limited. OBJECTIVES This study aims to elucidate the relationship between ET and serum Cp levels. METHODS We collected demographic and clinical data from 62 patients with ET satisfying the diagnostic criteria and compared these to data from 100 healthy controls. RESULTS The median Cp levels in ET patients were 21.5 (18.8, 23.9) mg/dL, significantly lower than those in controls (23.1 [(20.7, 25.7) mg/dL; P = 0.006]). A reduction in Cp levels emerged as a risk factor for ET incidence (odds ratio (OR) = 0.873, 95% confidence interval (CI), 0.795, 0.959; P = 0.005). The area under the receiver operating characteristic (ROC) curve for serum Cp levels to predict the onset of ET was 0.629 (95% CI, 0.537-0.720; P = 0.006), and the optimal cut-off value for Cp levels was 19.5 mg/dL with a sensitivity of 91% and a specificity of 33.9%. CONCLUSION Our analysis suggests that reduced Cp levels are associated with ET. We speculate that reduced Cp levels may be involved in the pathogenesis of ET, which requires further studies.
Collapse
Affiliation(s)
- Xiaotong Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liting Wei
- Department of Neurology, Luoyang Central Hospital: Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Jinshun Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Central Ring Road, Zhengzhou, 450003, China.
| |
Collapse
|
11
|
Zhu X, Sha X, Zang Y, Ren Q, Zhang S, Ma D, Wang L, Yao J, Zhou X, Yu L, Li T. Current Progress of Ferroptosis Study in Hepatocellular Carcinoma. Int J Biol Sci 2024; 20:3621-3637. [PMID: 38993573 PMCID: PMC11234204 DOI: 10.7150/ijbs.96014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, an emerging type of programmed cell death, is initiated by iron-dependent and excessive ROS-mediated lipid peroxidation, which eventually leads to plasma membrane rupture and cell death. Many canonical signalling pathways and biological processes are involved in ferroptosis. Furthermore, cancer cells are more susceptible to ferroptosis due to the high load of ROS and unique metabolic characteristics, including iron requirements. Recent investigations have revealed that ferroptosis plays a crucial role in the progression of tumours, especially HCC. Specifically, the induction of ferroptosis can not only inhibit the growth of hepatoma cells, thereby reversing tumorigenesis, but also improves the efficacy of immunotherapy and enhances the antitumour immune response. Therefore, triggering ferroptosis has become a new therapeutic strategy for cancer therapy. In this review, we summarize the characteristics of ferroptosis based on its underlying mechanism and role in HCC and provide possible therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Zhu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Xudong Sha
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Qiaohui Ren
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shubing Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Dongyue Ma
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Lianzi Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Junxiao Yao
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Xinyi Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| | - Li Yu
- Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Tao Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Shushan District, No. 218 Jixi Road, Hefei, 230032, Anhui, China
| |
Collapse
|
12
|
Ahmadi Badi S, Malek A, Seyedi SA, Bereimipour A, Irian S, Shojaie S, Sohouli MH, Rohani P, Masotti A, Khatami S, Siadat SD. Direct and macrophage stimulation mediated effects of active, inactive, and cell-free supernatant forms of Akkermansia muciniphila and Faecalibacterium duncaniae on hepcidin gene expression in HepG2 cells. Arch Microbiol 2024; 206:287. [PMID: 38833010 DOI: 10.1007/s00203-024-04007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Amin Malek
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Saeed Irian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Lee NH. Iron deficiency in children with a focus on inflammatory conditions. Clin Exp Pediatr 2024; 67:283-293. [PMID: 38772411 DOI: 10.3345/cep.2023.00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/03/2023] [Indexed: 05/23/2024] Open
Abstract
Iron deficiency (ID) tends to be overlooked compared with anemia. However, its prevalence is estimated to be twice as high as that of ID anemia, and ID without anemia can be accompanied by clinical and functional impairments. The symptoms of ID are nonspecific, such as fatigue and lethargy, but can lead to neurodevelopmental disorders in children, restless legs syndrome, and recurrent infections due to immune system dysregulation. In particular, the risk of ID is high in the context of chronic inflammatory diseases (CIDs) due to the reaction of various cytokines and the resulting increase in hepcidin levels; ID further exacerbates these diseases and increases mortality. Therefore, the diagnosis of ID should not be overlooked through ID screening especially in high-risk groups. Ferritin and transferrin saturation levels are the primary laboratory parameters used to diagnose ID. However, as ferritin levels respond to inflammation, the diagnostic criteria differ among guidelines. Therefore, new tools and criteria for accurately diagnosing ID should be developed. Treatment can be initiated only with an accurate diagnosis. Oral iron is typically the first-line treatment for ID; however, the efficacy and safety of intravenous iron have recently been recognized. Symptoms improve quickly after treatment, and the prognosis of accompanying diseases can also be improved. This review highlights the need to improve global awareness of ID diagnosis and treatment, even in the absence of anemia, to improve the quality of life of affected children, especially those with CIDs.
Collapse
Affiliation(s)
- Na Hee Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
14
|
De Zuani M, Xue H, Park JS, Dentro SC, Seferbekova Z, Tessier J, Curras-Alonso S, Hadjipanayis A, Athanasiadis EI, Gerstung M, Bayraktar O, Cvejic A. Single-cell and spatial transcriptomics analysis of non-small cell lung cancer. Nat Commun 2024; 15:4388. [PMID: 38782901 PMCID: PMC11116453 DOI: 10.1038/s41467-024-48700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer is the second most frequently diagnosed cancer and the leading cause of cancer-related mortality worldwide. Tumour ecosystems feature diverse immune cell types. Myeloid cells, in particular, are prevalent and have a well-established role in promoting the disease. In our study, we profile approximately 900,000 cells from 25 treatment-naive patients with adenocarcinoma and squamous-cell carcinoma by single-cell and spatial transcriptomics. We note an inverse relationship between anti-inflammatory macrophages and NK cells/T cells, and with reduced NK cell cytotoxicity within the tumour. While we observe a similar cell type composition in both adenocarcinoma and squamous-cell carcinoma, we detect significant differences in the co-expression of various immune checkpoint inhibitors. Moreover, we reveal evidence of a transcriptional "reprogramming" of macrophages in tumours, shifting them towards cholesterol export and adopting a foetal-like transcriptional signature which promotes iron efflux. Our multi-omic resource offers a high-resolution molecular map of tumour-associated macrophages, enhancing our understanding of their role within the tumour microenvironment.
Collapse
Affiliation(s)
- Marco De Zuani
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Haoliang Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Jun Sung Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Stefan C Dentro
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- Division of Artificial Intelligence in Oncology, DKFZ, Heidelberg, Germany
| | - Zaira Seferbekova
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Julien Tessier
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | | | | | - Emmanouil I Athanasiadis
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- Medical Image and Signal Processing Laboratory (MEDISP), Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | - Moritz Gerstung
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
- Division of Artificial Intelligence in Oncology, DKFZ, Heidelberg, Germany
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- OpenTargets, Wellcome Genome Campus, Hinxton, UK
| | - Ana Cvejic
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- OpenTargets, Wellcome Genome Campus, Hinxton, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Koka M, Li H, Akther R, Perlman S, Wong D, Fogel BL, Lynch DR, Chandran V. Long non-coding RNA TUG1 is downregulated in Friedreich's ataxia. Brain Commun 2024; 6:fcae170. [PMID: 38846537 PMCID: PMC11154142 DOI: 10.1093/braincomms/fcae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Friedreich's ataxia is a neurodegenerative disorder caused by reduced frataxin levels. It leads to motor and sensory impairments and has a median life expectancy of around 35 years. As the most common inherited form of ataxia, Friedreich's ataxia lacks reliable, non-invasive biomarkers, prolonging and inflating the cost of clinical trials. This study proposes TUG1, a long non-coding RNA, as a promising blood-based biomarker for Friedreich's ataxia, which is known to regulate various cellular processes. In a previous study using a frataxin knockdown mouse model, we observed several hallmark Friedreich's ataxia symptoms. Building on this, we hypothesized that a dual-source approach-comparing the data from peripheral blood samples from Friedreich's ataxia patients with tissue samples from affected areas in Friedreich's ataxia knockdown mice, tissues usually unattainable from patients-would effectively identify robust biomarkers. A comprehensive reanalysis was conducted on gene expression data from 183 age- and sex-matched peripheral blood samples of Friedreich's ataxia patients, carriers and controls and 192 tissue data sets from Friedreich's ataxia knockdown mice. Blood and tissue samples underwent RNA isolation and quantitative reverse transcription polymerase chain reaction, and frataxin knockdown was confirmed through enzyme-linked immunosorbent assays. Tug1 RNA interaction was explored via RNA pull-down assays. Validation was performed in serum samples on an independent set of 45 controls and 45 Friedreich's ataxia patients and in blood samples from 66 heterozygous carriers and 72 Friedreich's ataxia patients. Tug1 and Slc40a1 emerged as potential blood-based biomarkers, confirmed in the Friedreich's ataxia knockdown mouse model (one-way ANOVA, P ≤ 0.05). Tug1 was consistently downregulated after Fxn knockdown and correlated strongly with Fxn levels (R 2 = 0.71 during depletion, R 2 = 0.74 during rescue). Slc40a1 showed a similar but tissue-specific pattern. Further validation of Tug1's downstream targets strengthened its biomarker candidacy. In additional human samples, TUG1 levels were significantly downregulated in both whole blood and serum of Friedreich's ataxia patients compared with controls (Wilcoxon signed-rank test, P < 0.05). Regression analyses revealed a negative correlation between TUG1 fold-change and disease onset (P < 0.0037) and positive correlations with disease duration and functional disability stage score (P < 0.04). This suggests that elevated TUG1 levels correlate with earlier onset and more severe cases. This study identifies TUG1 as a potential blood-based biomarker for Friedreich's ataxia, showing consistent expression variance in human and mouse tissues related to disease severity and key Friedreich's ataxia pathways. It correlates with frataxin levels, indicating its promise as an early, non-invasive marker. TUG1 holds potential for Friedreich's ataxia monitoring and therapeutic development, meriting additional research.
Collapse
Affiliation(s)
- Mert Koka
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Hui Li
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rumana Akther
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Susan Perlman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Darice Wong
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Clinical Neurogenomics Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - David R Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vijayendran Chandran
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, and McKnight Brain Institute, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
17
|
Liao F, Yang W, Long L, Yu R, Qu H, Peng Y, Lu J, Ren C, Wang Y, Fu C. Elucidating Iron Metabolism through Molecular Imaging. Curr Issues Mol Biol 2024; 46:2798-2818. [PMID: 38666905 PMCID: PMC11049567 DOI: 10.3390/cimb46040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is essential for many physiological processes, and the dysregulation of its metabolism is implicated in the pathogenesis of various diseases. Recent advances in iron metabolism research have revealed multiple complex pathways critical for maintaining iron homeostasis. Molecular imaging, an interdisciplinary imaging technique, has shown considerable promise in advancing research on iron metabolism. Here, we comprehensively review the multifaceted roles of iron at the cellular and systemic levels (along with the complex regulatory mechanisms of iron metabolism), elucidate appropriate imaging methods, and summarize their utility and fundamental principles in diagnosing and treating diseases related to iron metabolism. Utilizing molecular imaging technology to deeply understand the complexities of iron metabolism and its critical role in physiological and pathological processes offers new possibilities for early disease diagnosis, treatment monitoring, and the development of novel therapies. Despite technological limitations and the need to ensure the biological relevance and clinical applicability of imaging results, molecular imaging technology's potential to reveal the iron metabolic process is unparalleled, providing new insights into the link between iron metabolism abnormalities and various diseases.
Collapse
Affiliation(s)
- Feifei Liao
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Linzi Long
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Ruotong Yu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Hua Qu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yuxuan Peng
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Jieming Lu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Chenghuan Ren
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Changgeng Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| |
Collapse
|
18
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
19
|
Himoto T, Masaki T. Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients 2024; 16:472. [PMID: 38398797 PMCID: PMC10892613 DOI: 10.3390/nu16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis. These essential trace elements can affect the microenvironment in HCC. The carrier proteins for zinc and copper and selenium-containing enzymes play important roles in the prevention or progression of HCC. These trace elements enhance or alleviate the chemosensitivity of anticancer agents in patients with HCC. The zinc, copper, or selenium may affect the homeostasis of other trace elements with each other. Novel types of cell death including ferropotosis and cupropotosis are also associated with hepatocarcinogenesis. Therapeutic strategies for HCC that target these carrier proteins for zinc and copper or selenium-containing enzymes have been developed in in vitro and in vivo studies. The use of zinc-, copper- or selenium-nanoparticles has been considered as novel therapeutic agents for HCC. These results indicate that zinc, copper, and selenium may become promising therapeutic targets in patients with HCC. The clinical application of these agents is an urgent unmet requirement. This review article highlights the correlation between the dysregulation of the homeostasis of these essential trace elements and the development of HCC and summarizes the current trends on the roles of these essential trace elements in the pathogenesis of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-cho, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan
| |
Collapse
|
20
|
Al-Gizawiy MM, Wujek RT, Alhajala HS, Cobb JM, Prah MA, Doan NB, Connelly JM, Chitambar CR, Schmainda KM. Potent in vivo efficacy of oral gallium maltolate in treatment-resistant glioblastoma. Front Oncol 2024; 13:1278157. [PMID: 38288102 PMCID: PMC10822938 DOI: 10.3389/fonc.2023.1278157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Background Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.
Collapse
Affiliation(s)
- Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert T. Wujek
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hisham S. Alhajala
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan M. Cobb
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ninh B. Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher R. Chitambar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
22
|
Feng R, Wang D, Li T, Liu X, Peng T, Liu M, Ren G, Xu H, Luo H, Lu D, Qi B, Zhang M, Li Y. Elevated SLC40A1 impairs cardiac function and exacerbates mitochondrial dysfunction, oxidative stress, and apoptosis in ischemic myocardia. Int J Biol Sci 2024; 20:414-432. [PMID: 38169607 PMCID: PMC10758104 DOI: 10.7150/ijbs.89368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
Iron homeostasis is crucial for optimal cardiac function. Iron deficiency and overload have been linked to the development of cardiomyopathy and heart failure (HF) via intricate mechanisms. Although the crucial role of SLC40A1 in iron metabolism by facilitating the efflux of cellular iron has been confirmed, its specific molecular functions in cardiovascular diseases remain poorly understood. In this study, we generated mice with inducible cardiomyocyte-specific overexpression of SLC40A1 for the first time. The overexpression of SLC40A1 in the cardiomyocytes of adult mice resulted in significant iron deficiency, leading to mitochondrial dysfunction, oxidative stress, and apoptosis, subsequently resulting in the development of fatal HF. Notably, SLC40A1 upregulation was observed in the ischemic region during the initial phase of myocardial infarction (MI), contributing to iron loss in the cardiomyocytes. Conversely, the cardiomyocyte-specific knockdown of SLC40A1 improved cardiac dysfunction after MI by enhancing mitochondrial function, suppressing oxidative stress, and reducing cardiomyocytes apoptosis. Mechanistically, Steap4 interacted with SLC40A1, facilitating SLC40A1-mediated iron efflux from cardiomyocytes. In short, our study presents evidence for the involvement of SLC40A1 in the regulation of myocardial iron levels and the therapeutic benefits of cardiomyocyte-specific knockdown of SLC40A1 in MI in mice.
Collapse
Affiliation(s)
- Renqian Feng
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Di Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tiantian Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xulin Liu
- Department of Orthodontics, Stomatology Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gaotong Ren
- Department of Cardiology, NO. 988 Hospital of Joint Logistic Sopport Force, Zhengzhou, 450007, China
| | - Haowei Xu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Haixia Luo
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| |
Collapse
|
23
|
Ray SK, Mukherjee S. Emerging Role of Ferroptosis in Breast Cancer: Characteristics, Therapy, and Translational Implications for the Present and Future. Curr Mol Med 2024; 24:1470-1482. [PMID: 37711099 DOI: 10.2174/1566524023666230913105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Ferroptosis is a nonapoptotic, iron-dependent form of cell death that can be actuated in disease cells by expected improvements and manufactured specialists. Different studies have recently resurrected the role of this newly discovered cell death pathway and demonstrated its efficacy in treating breast cancer. Breast cancer is the most well-known type of cancer among women worldwide. Despite many years of research focusing on cell death in breast cancer, counting apoptosis, clinical treatment leftovers are difficult due to the high likelihood of recurrence. Ferroptosis is defined by a lack of lipid peroxide repair capacity by phospholipid hydroperoxides GPX4, accessibility of redox-active iron, and followed oxidation of polyunsaturated fatty acids acid-containing phospholipids signalling, amino acid and iron metabolism, ferritinophagy, epithelial-tomesenchymal transition, cell adhesion, and mevalonate and phospholipid biosynthesis can all be factors that influence ferroptosis susceptibility. Ferroptosis, an iron-dependent controlled cell death caused by excessive lipid peroxidation, has been entwined in breast cancer development and therapeutic response for the past decade. Advances in enhancing clinical drugs targeting ferroptosis are developing silver linings to treat breast cancer. Ferroptosis is influenced by metabolism and the expression of certain genes, making it a prospective therapeutic target for monitoring malignant growth and an appealing target for precision cancer medication disclosure. In the coming years, research into biomarkers to follow ferroptosis in patients with breast cancer and the course of events and the subsequent use of novel ferroptosis-based treatments will be captious. We present a fundamental analysis of the actual understanding of molecular mechanisms along with regulatory networks associated with ferroptosis, expected physiological functions in growth concealment, ferroptosis-associated differentially expressed genes, treatment targeting potential, and recent advances in the development of therapeutic strategies in this review.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
24
|
Mousavi-Aghdas SA, Farashi E, Naderi N. Iron Dyshomeostasis and Mitochondrial Function in the Failing Heart: A Review of the Literature. Am J Cardiovasc Drugs 2024; 24:19-37. [PMID: 38157159 DOI: 10.1007/s40256-023-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Cardiac contraction and relaxation require a substantial amount of energy provided by the mitochondria. The failing heart is adenosine triphosphate (ATP)- and creatine-depleted. Studies have found iron is involved in almost every aspect of mitochondrial function, and previous studies have shown myocardial iron deficiency in heart failure (HF). Many clinicians advocated intravenous iron repletion for HF patients meeting the conventional criteria for systemic iron deficiency. While clinical trials showed improved quality of life, iron repletion failed to significantly impact survival or significant cardiovascular adverse events. There is evidence that in HF, labile iron is trapped inside the mitochondria causing oxidative stress and lipid peroxidation. There is also compelling preclinical evidence demonstrating the detrimental effects of both iron overload and depletion on cardiomyocyte function. We reviewed the mechanisms governing myocardial and mitochondrial iron content. Mitochondrial dynamics (i.e., fusion, fission, mitophagy) and the role of iron were also investigated. Ferroptosis, as an important regulated cell death mechanism involved in cardiomyocyte loss, was reviewed along with agents used to manipulate it. The membrane stability and iron content of mitochondria can be altered by many agents. Some studies are showing promising improvement in the cardiomyocyte function after iron chelation by deferiprone; however, whether the in vitro and in vivo findings will be reflected on on clinical grounds is still unclear. Finally, we briefly reviewed the clinical trials on intravenous iron repletion. There is a need for more well-simulated animal studies to shed light on the safety and efficacy of chelation agents and pave the road for clinical studies.
Collapse
Affiliation(s)
- Seyed Ali Mousavi-Aghdas
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Farashi
- Department of Cardiothoracic Surgery, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Department of Cardiothoracic Surgery, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, Calderaro A, Laganà G. Ferroptosis: Emerging Role in Diseases and Potential Implication of Bioactive Compounds. Int J Mol Sci 2023; 24:17279. [PMID: 38139106 PMCID: PMC10744228 DOI: 10.3390/ijms242417279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a form of cell death that is distinguished from other types of death for its peculiar characteristics of death regulated by iron accumulation, increase in ROS, and lipid peroxidation. In the past few years, experimental evidence has correlated ferroptosis with various pathological processes including neurodegenerative and cardiovascular diseases. Ferroptosis also is involved in several types of cancer because it has been shown to induce tumor cell death. In particular, the pharmacological induction of ferroptosis, contributing to the inhibition of the proliferative process, provides new ideas for the pharmacological treatment of cancer. Emerging evidence suggests that certain mechanisms including the Xc- system, GPx4, and iron chelators play a key role in the regulation of ferroptosis and can be used to block the progression of many diseases. This review summarizes current knowledge on the mechanism of ferroptosis and the latest advances in its multiple regulatory pathways, underlining ferroptosis' involvement in the diseases. Finally, we focused on several types of ferroptosis inducers and inhibitors, evaluating their impact on the cell death principal targets to provide new perspectives in the treatment of the diseases and a potential pharmacological development of new clinical therapies.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | | | | | | | | | | |
Collapse
|
26
|
Bagheri-Hosseinabadi Z, Pirsadeghi A, Ostadebrahimi H, Taghipour Khaje Sharifi G, Abbasifard M. Correlation of iron and related factors with disease severity and outcomes and mortality of patients with Coronavirus disease 2019. J Trace Elem Med Biol 2023; 80:127285. [PMID: 37660574 DOI: 10.1016/j.jtemb.2023.127285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Iron is a trace element that possesses immunomodulatory properties and modulates the proneness to the course and outcome of a diverse viral diseases. This study intended to investigate the correlation of different iron-related factors with disease severity and outcomes as well as the mortality of coronavirus disease 2019 (COVID-19) patients. METHODS Blood serum samples were obtained from 80 COVID-19 cases and 100 healthy controls. Concentrations of ferritin, transferrin, total iron binding capacity (TIBC) was measured by Enzyme-linked immunosorbent assay (ELISA) and iron level was measured by immunoturbidometric method. RESULTS Concentrations of iron, transferrin, and TIBC were low, while ferritin level was high in the COVID-19 cases in comparison to controls. In non-survivor (deceased) patients as well as severe subjects, the levels of iron, ferritin, transferrin, and TIBC were significantly different than survivors (discharged) and mild cases. Significant correlations were found between iron and related factors and the clinicopathological features of the patients. Based on ROC curve analysis, iron, ferritin, transferrin, and TIBC had potential to estimate disease severity in COVID-19 subjects. CONCLUSION Iron metabolism is involved in the pathogenesis of COVID-19. Iron and related factors correlate with disease outcomes and might serve as biomarker in diagnosis of the disease severity and estimation of mortality in the COVID-19 subjects.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Pirsadeghi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Ostadebrahimi
- Department of Pediatrics, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
27
|
Chen H, Han Z, Wang Y, Su J, Lin Y, Cheng X, Liu W, He J, Fan Y, Chen L, Zuo H. Targeting Ferroptosis in Bone-Related Diseases: Facts and Perspectives. J Inflamm Res 2023; 16:4661-4677. [PMID: 37872954 PMCID: PMC10590556 DOI: 10.2147/jir.s432111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Ferroptosis is a new cell fate decision discovered in recent years. Unlike apoptosis, autophagy or pyroptosis, ferroptosis is characterized by iron-dependent lipid peroxidation and mitochondrial morphological changes. Ferroptosis is involved in a variety of physiological and pathological processes. Since its discovery, ferroptosis has been increasingly studied concerning bone-related diseases. In this review, we focus on the latest research progress and prospects, summarize the regulatory mechanisms of ferroptosis, and discuss the role of ferroptosis in the pathogenesis of bone-related diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and osteosarcoma (OS), as well as its therapeutic potential.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Yi Wang
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Junyan Su
- Department of Orthopaedics, The First People’s Hospital of Longquanyi District, Chengdu, 610000, People’s Republic of China
| | - Yumeng Lin
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Xuhua Cheng
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Wen Liu
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| | - Jingyu He
- Sichuan Judicial and Police Officers Professional College, Deyang, 618000, People’s Republic of China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, People’s Republic of China
| | - Houdong Zuo
- Department of Orthopaedics, Chengdu Xinhua Hospital, Chengdu, 610000, People’s Republic of China
| |
Collapse
|
28
|
Cao Z, Xue Y, Wang J. Screening diagnostic markers of osteoporosis based on ferroptosis of osteoblast and osteoclast. Aging (Albany NY) 2023; 15:9391-9407. [PMID: 37770229 PMCID: PMC10564410 DOI: 10.18632/aging.204945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Osteoporosis is a negative balance of bone metabolism caused by the lower bone formation of osteoblasts than the bone absorption of osteoclasts. Ferroptosis plays an important role in osteoporosis, but its effects on osteoblasts and osteoclasts are still unclear. METHODS First, we compared the osteogenic differentiation potential of MSCs and osteoclast differentiation potential of monocytes between osteoporosis mice and control. Then, we obtained gene expression profiles of MSCs and monocytes, and screened differentially expressed genes for enrichment analysis. Next, we cluster the patients with osteoporosis according to genes related to osteogenesis inhibition and osteoclast promotion. Finally, according to the expression of different subtypes of ferroptosis genes, diagnostic markers were screened and verified. RESULTS The osteogenic differentiation ability of MSCs in osteoporosis mice was decreased, while the osteoclast differentiation ability of monocytes was enhanced. The DEGs of MSCs are enriched in iron ion, oxygen binding and cytokine activity, while the DEGs of monocytes are enriched in iron ion transmembrane transport and ferroptosis. Compared with the osteogenic inhibition subtype, the osteoclast promoting subtype has a higher correlation with ferroptosis, and its functions are enriched in fatty acids, reactive oxygen species metabolism and oxidoreductase activity of metal ions. SLC40A1 may be the hub gene of ferroptosis in osteoporosis by promoting osteoclast differentiation. CONCLUSION Ferroptosis may inhibit bone formation and promote bone absorption through oxidative stress, thus leading to osteoporosis. The study of ferroptosis on osteoblasts and osteoclasts provides a new idea for the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhihai Cao
- Department of Emergency, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Yuan Xue
- Department of Orthopaedic, Wuxi Ninth People’s Hospital of Soochow University, Wuxi 214000, China
| | - Jiaqian Wang
- Department of Orthopaedic, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Zheng X, Zhang C. The Regulation of Ferroptosis by Noncoding RNAs. Int J Mol Sci 2023; 24:13336. [PMID: 37686142 PMCID: PMC10488123 DOI: 10.3390/ijms241713336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
As a novel form of regulated cell death, ferroptosis is characterized by intracellular iron and lipid peroxide accumulation, which is different from other regulated cell death forms morphologically, biochemically, and immunologically. Ferroptosis is regulated by iron metabolism, lipid metabolism, and antioxidant defense systems as well as various transcription factors and related signal pathways. Emerging evidence has highlighted that ferroptosis is associated with many physiological and pathological processes, including cancer, neurodegeneration diseases, cardiovascular diseases, and ischemia/reperfusion injury. Noncoding RNAs are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that noncoding RNAs, especially miRNAs, lncRNAs, and circRNAs, can interfere with the progression of ferroptosis by modulating ferroptosis-related genes or proteins directly or indirectly. In this review, we summarize the basic mechanisms and regulations of ferroptosis and focus on the recent studies on the mechanism for different types of ncRNAs to regulate ferroptosis in different physiological and pathological conditions, which will deepen our understanding of ferroptosis regulation by noncoding RNAs and provide new insights into employing noncoding RNAs in ferroptosis-associated therapeutic strategies.
Collapse
Affiliation(s)
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| |
Collapse
|
30
|
Cheng CY, Hsu TH, Yang YL, Huang YH. Hemoglobin and Its Z Score Reference Intervals in Febrile Children: A Cohort Study of 98,572 Febrile Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1402. [PMID: 37628401 PMCID: PMC10453815 DOI: 10.3390/children10081402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVES Febrile disease and age of children were associated with a variation in hemoglobin (Hb) level. Both CRP and Hb serve as laboratory markers that offer valuable insights into a patient's health, particularly in relation to inflammation and specific medical conditions. Although a direct correlation between CRP and Hb levels is not established, the relationship between these markers has garnered academic attention and investigation. This study aimed to determine updated reference ranges for Hb levels for age and investigated its correlation with CRP in febrile children under the age of 18. METHODS This is a cohort study of in Chang Gung Memorial Hospitals conducted from January 2010 to December 2019. Blood samples were collected from 98,572 febrile children who were or had been admitted in the pediatric emergency department. The parameters of individuals were presented as the mean ± standard deviation or 2.5th and 97.5th percentiles. We also determined the variation of Hb and Z score of Hb between CRP levels in febrile children. RESULT We observed that the Hb levels were the highest immediately after birth and subsequently underwent a rapid decline, reaching their lowest point at around 1-2 months of age, and followed by a steady increment in Hb levels throughout childhood and adolescence. In addition, there was a significant and wide variation in Hb levels during the infant period. It revealed a significant association between higher CRP levels and lower Hb levels or a more negative Z score of Hb across all age subgroups. Moreover, in patients with bacteremia, CRP levels were higher, Hb concentrations were lower, and Z scores of Hb were also lower compared to the non-bacteremia group. Furthermore, the bacteremia group exhibited a more substantial negative correlation between CRP levels and a Z score of Hb (r = -0.41, p < 0.001) compared to the non-bacteremia group (r = -0.115, p < 0.049). CONCLUSION The study findings revealed that the Hb references varied depending on the age of the children and their CRP levels. In addition, we established new reference values for Hb and its Z scores and explore their relationship with CRP. It provides valuable insights into the Hb status and its potential association with inflammation in febrile pediatric patients.
Collapse
Affiliation(s)
- Chu-Yin Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ting-Hsuan Hsu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 333, Taiwan
| |
Collapse
|
31
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
32
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
33
|
Angelova S, Kircheva N, Nikolova V, Dobrev S, Dudev T. Electrostatic interactions - key determinants of the metal selectivity in La 3+ and Ca 2+ binding proteins. Phys Chem Chem Phys 2023. [PMID: 37386862 DOI: 10.1039/d3cp01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Nearly half of all known proteins contain metal co-factors. In the course of evolution two dozen metal cations (mostly monovalent and divalent species) have been selected to participate in processes of vital importance for living organisms. Trivalent metal cations have also been selected, although to a lesser extent as compared with their mono- and divalent counterparts. Notably, factors governing the metal selectivity in trivalent metal centers in proteins are less well understood than those in the respective divalent metal centers. Thus, the source of high La3+/Ca2+ selectivity in lanthanum-binding proteins, as compared with that of calcium-binding proteins (i.e., calmodulin), is still shrouded in mystery. The well-calibrated thermochemical calculations, performed here, reveal the dominating role of electrostatic interactions in shaping the metal selectivity in La3+-binding centers. The calculations also disclose other (second-order) determinants of metal selectivity in these systems, such as the rigidity and extent of solvent exposure of the binding site. All these factors are also implicated in shaping the metal selectivity in Ca2+-binding proteins.
Collapse
Affiliation(s)
- Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
| |
Collapse
|
34
|
Ganz T, Locatelli F, Arici M, Akizawa T, Reusch M. Iron Parameters in Patients Treated with Roxadustat for Anemia of Chronic Kidney Disease. J Clin Med 2023; 12:4217. [PMID: 37445252 DOI: 10.3390/jcm12134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Roxadustat is a novel agent with a distinct mechanism of action compared to erythropoiesis-stimulating agents (ESAs) and a potentially different combination of effects on iron parameters. This narrative review describes the effects of roxadustat on iron parameters and on hemoglobin levels in the context of iron supplementation in patients with anemia of non-dialysis-dependent (NDD) or dialysis-dependent (DD) chronic kidney disease (CKD). Roxadustat use was associated with a greater reduction in serum ferritin levels than seen with ESAs and an increase in serum iron levels compared to a decrease with ESAs. Decreases in transferrin saturation in patients treated with roxadustat were relatively small and, in the case of patients with NDD CKD, not observed by Week 52. These changes reflect the concomitant increases in both serum iron and total iron-binding capacity. Compared to placebo and an ESA, roxadustat improved iron availability and increased erythropoiesis while requiring less intravenous iron use. Hepcidin levels generally decreased in patients who received roxadustat compared to baseline values in all CKD populations; these decreases appear to be more robust with roxadustat than with an ESA or placebo. The mechanisms behind the effects of roxadustat and ESAs on iron availability and stores and erythropoiesis appear to differ and should be considered holistically when treating anemia of CKD.
Collapse
Affiliation(s)
- Tomas Ganz
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Francesco Locatelli
- Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, 23900 Lecco, Italy
| | - Mustafa Arici
- Department of Nephrology, Hacettepe University, 06560 Ankara, Turkey
| | - Tadao Akizawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Michael Reusch
- Guard Therapeutics International AB, 114 39 Stockholm, Sweden
| |
Collapse
|
35
|
Pandur E, Pap R, Jánosa G, Horváth A, Sipos K. The Role of Fractalkine in the Regulation of Endometrial Iron Metabolism in Iron Deficiency. Int J Mol Sci 2023; 24:9917. [PMID: 37373063 PMCID: PMC10298019 DOI: 10.3390/ijms24129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Iron is a crucial element in the human body. Endometrial iron metabolism is implicated in endometrium receptivity and embryo implantation. Disturbances of the maternal as well as the endometrial iron homeostasis, such as iron deficiency, can contribute to the reduced development of the fetus and could cause an increased risk of adverse pregnancy outcomes. Fractalkine is a unique chemokine that plays a role in the communication between the mother and the fetus. It has been demonstrated that FKN is involved in the development of endometrial receptivity and embryo implantation, and it functions as a regulator of iron metabolism. In the present study, we examined the effect of FKN on the iron metabolism of HEC-1A endometrial cells in a state of iron deficiency mediated by desferrioxamine treatment. Based on the findings, FKN enhances the expression of iron metabolism-related genes in iron deficiency and modifies the iron uptake via transferrin receptor 1 and divalent metal transporter-1, and iron release via ferroportin. FKN can activate the release of iron from heme-containing proteins by elevating the level of heme oxygenase-1, contributing to the redistribution of intracellular iron content. It was revealed that the endometrium cells express both mitoferrin-1 and 2 and that their levels are not dependent on the iron availability of the cells. FKN may also contribute to maintaining mitochondrial iron homeostasis. FKN can improve the deteriorating effect of iron deficiency in HEC-1A endometrium cells, which may contribute to the development of receptivity and/or provide iron delivery towards the embryo.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (R.P.); (G.J.); (A.H.); (K.S.)
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (R.P.); (G.J.); (A.H.); (K.S.)
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (R.P.); (G.J.); (A.H.); (K.S.)
| | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (R.P.); (G.J.); (A.H.); (K.S.)
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (R.P.); (G.J.); (A.H.); (K.S.)
- National Laboratory on Human Reproduction, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
36
|
Bao J, Yan Y, Zuo D, Zhuo Z, Sun T, Lin H, Han Z, Zhao Z, Yu H. Iron metabolism and ferroptosis in diabetic bone loss: from mechanism to therapy. Front Nutr 2023; 10:1178573. [PMID: 37215218 PMCID: PMC10196368 DOI: 10.3389/fnut.2023.1178573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis, one of the most serious and common complications of diabetes, has affected the quality of life of a large number of people in recent years. Although there are many studies on the mechanism of diabetic osteoporosis, the information is still limited and there is no consensus. Recently, researchers have proven that osteoporosis induced by diabetes mellitus may be connected to an abnormal iron metabolism and ferroptosis inside cells under high glucose situations. However, there are no comprehensive reviews reported. Understanding these mechanisms has important implications for the development and treatment of diabetic osteoporosis. Therefore, this review elaborates on the changes in bones under high glucose conditions, the consequences of an elevated glucose microenvironment on the associated cells, the impact of high glucose conditions on the iron metabolism of the associated cells, and the signaling pathways of the cells that may contribute to diabetic bone loss in the presence of an abnormal iron metabolism. Lastly, we also elucidate and discuss the therapeutic targets of diabetic bone loss with relevant medications which provides some inspiration for its cure.
Collapse
Affiliation(s)
- Jiahao Bao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yixuan Yan
- Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Daihui Zuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyong Zhuo
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tianhao Sun
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hongli Lin
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zheshen Han
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhiyang Zhao
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongbo Yu
- Department of Oral & Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
37
|
Zheng X, Liang Y, Zhang C. Ferroptosis Regulated by Hypoxia in Cells. Cells 2023; 12:cells12071050. [PMID: 37048123 PMCID: PMC10093394 DOI: 10.3390/cells12071050] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Ferroptosis is an oxidative damage-related, iron-dependent regulated cell death with intracellular lipid peroxide accumulation, which is associated with many physiological and pathological processes. It exhibits unique features that are morphologically, biochemically, and immunologically distinct from other regulated cell death forms. Ferroptosis is regulated by iron metabolism, lipid metabolism, anti-oxidant defense systems, as well as various signal pathways. Hypoxia, which is found in a group of physiological and pathological conditions, can affect multiple cellular functions by activation of the hypoxia-inducible factor (HIF) signaling and other mechanisms. Emerging evidence demonstrated that hypoxia regulates ferroptosis in certain cell types and conditions. In this review, we summarize the basic mechanisms and regulations of ferroptosis and hypoxia, as well as the regulation of ferroptosis by hypoxia in physiological and pathological conditions, which may contribute to the numerous diseases therapies.
Collapse
Affiliation(s)
- Xiangnan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuqiong Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cen Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
38
|
Zheng H, Yang F, Deng K, Wei J, Liu Z, Zheng YC, Xu H. Relationship between iron overload caused by abnormal hepcidin expression and liver disease: A review. Medicine (Baltimore) 2023; 102:e33225. [PMID: 36930080 PMCID: PMC10019217 DOI: 10.1097/md.0000000000033225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Iron is essential to organisms, the liver plays a vital role in its storage. Under pathological conditions, iron uptake by the intestine or hepatocytes increases, allowing excess iron to accumulate in liver cells. When the expression of hepcidin is abnormal, iron homeostasis in humans cannot be regulated, and resulting in iron overload. Hepcidin also regulates the release of iron from siderophores, thereby regulating the concentration of iron in plasma. Important factors related to hepcidin and systemic iron homeostasis include plasma iron concentration, body iron storage, infection, inflammation, and erythropoietin. This review summarizes the mechanism and regulation of iron overload caused by hepcidin, as well as related liver diseases caused by iron overload and treatment.
Collapse
Affiliation(s)
- Haoran Zheng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Yang
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Kaige Deng
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaxin Wei
- Department of Emergency, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhenting Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-Chang Zheng
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
40
|
Sarkar VK, De UK, Kala A, Chauhan A, Verma AK, Paul BR, Soni S, Chaudhuri P, Patra MK, Gaur GK. Effects of oral probiotic and lactoferrin interventions on iron-zinc homeostasis, oxidant/antioxidant equilibrium and diarrhoea incidence of neonatal piglets. Benef Microbes 2023; 14:197-208. [PMID: 37026367 DOI: 10.3920/bm2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/20/2022] [Indexed: 04/08/2023]
Abstract
The objective of this study was to examine the effects of early-life host specific probiotic and lactoferrin (LF) supplementations on diarrhoea incidence, iron (Fe)-zinc (Zn) balance and antioxidant capabilities in serum of neonatal piglets. A total of eight sow litters obtained from parity matched sows were randomly divided into four groups and assigned to one of the four interventions: control (2.0 ml normal saline), bovine lactoferrin (bLF) (100 mg bLF in normal saline), probiotic (Pb) (1×109 cfu of swine origin Pediococcus acidilactici FT28 strain) and bLF+Pb (both 100 mg bLF and 1×109 cfu of P. acidilactici FT28). All the piglets received supplementations once daily orally for first 7 days of life. The incidence of diarrhoea markedly decreased in bLF group compared to control group. Notably, no incidences of diarrhoea were recorded in Pb and bLF+Pb groups. The Zn and Fe concentrations were significantly increased from day 7 to 21 in bLF and on day 21 in bLF+Pb group. No such changes were noted in Pb group. Total antioxidant capacity (TAC) in serum was significantly increased on days 7 and 15 in bLF group and on days 7 and 21 in bLF+Pb group. Malonaldehyde concentration was markedly reduced from day 7 to 21 in bLF and bLF+Pb groups. The concentrations of nitrate on days 15 and 21 and malonaldehyde on day 7 were significantly higher in Pb group, but mean TAC was unaltered from day 0 to 21. Although no correlation between the incidence of diarrhoea and Zn/Fe and oxidant/antioxidant homeostasis was noted in the Pb group, the supplementation of P. acidilactici FT28 alone was sufficient to prevent the incidence of diarrhoea in neonatal piglets. Taken together, it is concluded that strategic supplementation of P. acidilactici FT28 in early life could help in preventing diarrhoea until weaning of piglets.
Collapse
Affiliation(s)
- V K Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - U K De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - A K Verma
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - B R Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - S Soni
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - P Chaudhuri
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - M K Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122 (UP), India
| |
Collapse
|
41
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Berry TM, Moustafa AA. A novel treatment strategy to prevent Parkinson's disease: focus on iron regulatory protein 1 (IRP1). Int J Neurosci 2023; 133:67-76. [PMID: 33535005 DOI: 10.1080/00207454.2021.1885403] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We propose that neural damage in Parkinson's disease (PD) is due to dysregulation of iron utilization rather than to high iron levels per se. Iron deposits are associated with neuronal cell death in substantia nigra (SN) resulting in PD where high levels of iron in SNs are due to dysregulation of iron utilization. Cytosolic aconitase (ACO1) upon losing an iron-sulfur cluster becomes iron regulatory protein 1 (IRP1). Rotenone increases levels of IRP1 and induces PD in rats. An increase in iron leads to inactivation of IRP1. We propose a novel treatment strategy to prevent PD. Specifically in rats given rotenone by subcutaneous injections, iron, from iron carbonyl from which iron is slowly absorbed, given three times a day by gavage will keep iron levels constant in the gut whereby iron levels and iron utilization systematically can be tightly regulated. Rotenone adversely affects complex 1 iron-sulfur proteins. Iron supplementation will increase iron-sulfur cluster formation switching IRP1 to ACO1. With IRP1 levels kept constantly low, iron utilization will systematically be tightly regulated stopping dysregulation of complex 1 and the neural damage done by rotenone preventing PD.
Collapse
Affiliation(s)
- Thomas M Berry
- School of Psychology, Western Sydney University, Sydney, New South Wales, Australia
| | - Ahmed A Moustafa
- School of Psychology, Western Sydney University, Sydney, New South Wales, Australia.,Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, Australia.,Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
43
|
Ćwiertnia A, Kozłowski M, Cymbaluk-Płoska A. The Role of Iron and Cobalt in Gynecological Diseases. Cells 2022; 12:117. [PMID: 36611913 PMCID: PMC9818544 DOI: 10.3390/cells12010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Iron and cobalt are micronutrients that play an important role in the regulation of cellular processes, being part of the centre of catalases, peroxidases, cytochromes and metalloproteins such as hemoglobin and myoglobin (Fe). Cobalt primarily functions as a component of hydroxycobalamin, which is essential for regulating red blood cell production. Maintaining normal levels of cobalt and iron in the human body is important, as a deficiency can lead to anaemia. These elements are also involved in reactions during which oxidative stress occurs and are therefore considered to be a cause of tumor formation. This paper will discuss aspects of the influence of cobalt and iron on mechanisms that may contribute to the growth of gynecological tumors, as well as other obstetric-gynecological disease entities, by altering the conditions of the microenvironment. In addition, the following review also highlights the role of cobalt and iron in the treatment of gynecological tumors.
Collapse
Affiliation(s)
- Adrianna Ćwiertnia
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | | | | |
Collapse
|
44
|
Baicalein Attenuates Brain Iron Accumulation through Protecting Aconitase 1 from Oxidative Stress in Rotenone-Induced Parkinson's Disease in Rats. Antioxidants (Basel) 2022; 12:antiox12010012. [PMID: 36670874 PMCID: PMC9854573 DOI: 10.3390/antiox12010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Aconitase 1 (ACO1) links oxidative stress and iron accumulation in Parkinson's disease (PD). ACO1 loses its aconitase activity and turns into iron regulatory protein 1 (IRP1) upon oxidative stress. IRP1 plays an important role in the accumulation of intracellular iron. Baicalein is a flavonoid isolated from the roots of Scutellaria baicalensis. The present results show that baicalein could bind to ACO1 and protect its isoform from the oxidative stress induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Furthermore, baicalein promoted aconitase activity and inhibited IRP1 activation in rotenone-induced PD models. Additionally, baicalein decreased the hydroxyl radicals generated by iron. In conclusion, baicalein attenuated iron accumulation and iron-induced oxidative stress in the brain of PD rats by protecting ACO1.
Collapse
|
45
|
Dufrusine B, Valentinuzzi S, Bibbò S, Damiani V, Lanuti P, Pieragostino D, Del Boccio P, D’Alessandro E, Rabottini A, Berghella A, Allocati N, Falasca K, Ucciferri C, Mucedola F, Di Perna M, Martino L, Vecchiet J, De Laurenzi V, Dainese E. Iron Dyshomeostasis in COVID-19: Biomarkers Reveal a Functional Link to 5-Lipoxygenase Activation. Int J Mol Sci 2022; 24:15. [PMID: 36613462 PMCID: PMC9819889 DOI: 10.3390/ijms24010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical symptoms. After acute infection, some subjects develop a post-COVID-19 syndrome known as long-COVID. This study aims to recognize the molecular and functional mechanisms that occur in COVID-19 and long-COVID patients and identify useful biomarkers for the management of patients with COVID-19 and long-COVID. Here, we profiled the response to COVID-19 by performing a proteomic analysis of lymphocytes isolated from patients. We identified significant changes in proteins involved in iron metabolism using different biochemical analyses, considering ceruloplasmin (Cp), transferrin (Tf), hemopexin (HPX), lipocalin 2 (LCN2), and superoxide dismutase 1 (SOD1). Moreover, our results show an activation of 5-lipoxygenase (5-LOX) in COVID-19 and in long-COVID possibly through an iron-dependent post-translational mechanism. Furthermore, this work defines leukotriene B4 (LTB4) and lipocalin 2 (LCN2) as possible markers of COVID-19 and long-COVID and suggests novel opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Beatrice Dufrusine
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ersilia D’Alessandro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Rabottini
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Berghella
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Katia Falasca
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Claudio Ucciferri
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Francesco Mucedola
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Marco Di Perna
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Laura Martino
- Pneumology Department, “SS Annunziata” Hospital, 66100 Chieti, Italy
| | - Jacopo Vecchiet
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Clinic of Infectious Diseases, S.S. Annunziata Hospital, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
46
|
Yadav D, Pvsn KK, Tomo S, Sankanagoudar S, Charan J, Purohit A, Nag V, Bhatia P, Singh K, Dutt N, Garg MK, Sharma P, Misra S, Purohit P. Association of iron-related biomarkers with severity and mortality in COVID-19 patients. J Trace Elem Med Biol 2022; 74:127075. [PMID: 36174458 PMCID: PMC9472468 DOI: 10.1016/j.jtemb.2022.127075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nutritional deficiency is associated with weaken immune system and increased susceptibility to infection. Among other nutrients, several trace elements have been shown to regulate immune responses. Iron is one of the most abundant trace elements present in our body, which is required in various biological processes. Iron has an immunomodulatory function and thus influence the susceptibility to the course and outcome of a variety of viral infections. So, this present study was aimed to study relations of different iron-related biomarkers in association to severity and mortality in SARS-CoV-2 patients. MATERIALS AND METHODS A total of 150 individuals infected with COVID-19 and 50 healthy individuals were recruited. Cases were divided based on severity (mild, moderate, and severe) and outcome (discharged or deceased). Serum iron, TIBC, ferritin, transferrin, transferrin saturation levels were analyzed by the direct colourimetric method. RESULTS In cases the median levels of serum iron, TIBC, transferrin, transferrin saturation and ferritin are 29 µg/dL, 132.53 µg/dL, 106.3 mg/dL, 17.74 % and 702.9 ng/dL respectively. Similarly, in controls the median levels of serum iron, TIBC, transferrin, transferrin saturation and ferritin are 53 µg/dL, 391.88 µg/dL, 313.51 mg/dL, 12.81 % and 13.52 ng/dL respectively. On comparing the cases with the controls, a significant lower level of iron, TIBC, and transferrin were found in the cases along with the significant higher levels of ferritin and transferrin saturation. On comparing the Receiver operating characteristic (ROC) curves of Iron, Ferritin, Transferrin, Transferrin sat % and TIBC in relation to survival in COVID-19 patients it was found that iron, followed by transferrin and ferritin has the highest area under the curve (AUC) with 74 %, 63 % and 61 % respectively. Further, in pairwise analysis of ROC curve, a significant difference was found between the Iron-transferrin (p < 0.01), iron-TIBC (p < 0.001) and transferrin-ferritin (P < 0.01). The multiple regression model based on Iron and transferrin outperformed any other combination of variables via stepwise AIC selection with an AUC of 98.2 %. The cutoff point according to Youden's J index is characterized with a sensitivity of 98 % and a specificity of 96.8 %, indicating that iron along with transferrin can be a useful marker that may contribute to a better assessment of survival chances in COVID-19. CONCLUSION Our study demonstrated a significantly decreased levels of iron, TIBC, & transferrin and a significantly increased levels of ferritin and transferrin saturation in COVID-19 patients when compared with controls. Further, Iron and transferrin were observed to be a good predictor of mortality in patients with COVID-19. From the above analysis we confirm that iron-related biomarkers play an important role in the development of oxidative stress and further lead to activation of the cytokine storm. So, continuous monitoring of these parameters could be helpful in the early detection of individuals developing the severe disease and can be used to decrease mortality in upcoming new waves of COVID-19.
Collapse
Affiliation(s)
- Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Kiran Kumar Pvsn
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Jayakaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Purohit
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Vijaylakshami Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradeep Bhatia
- Department of Anaesthesia, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Surgical Oncology, Director and CEO, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
47
|
Cho SS, Yang JH, Lee JH, Baek JS, Ku SK, Cho IJ, Kim KM, Ki SH. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis. Free Radic Biol Med 2022; 193:620-637. [PMID: 36370962 DOI: 10.1016/j.freeradbiomed.2022.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Ferroptosis is a widely known regulator of cell death in connection with the redox state as a consequence of the depletion of glutathione or accumulation of lipid peroxidation. Hepatic stellate cells (HSCs) play a pivotal role in the progression of hepatic fibrosis by increasing the production and secretion of the extracellular matrix. However, the role of ferroptosis in HSC activation and liver fibrogenesis has not been clearly elucidated. The ferroptosis inducer RAS-selective lethal 3 (RSL3) or erastin treatment in HSCs caused cell death. This effect was suppressed only after exposure to ferroptosis inhibitors. We observed induction of ferroptosis by RSL3 treatment in HSCs supported by decreased glutathione peroxidase 4, glutathione deficiency, reactive oxygen species generation, or lipid peroxidation. Interestingly, RSL3 treatment upregulated the expression of plasminogen activator inhibitor-1, a representative fibrogenic marker of HSCs. In addition, treatment with ferroptosis-inducing compounds increased c-JUN phosphorylation and activator protein 1 luciferase activity but did not alter Smad phosphorylation and Smad-binding element luciferase activity. Chronic administration of iron dextran to mice causes ferroptosis of liver in vivo. The expression of fibrosis markers, such as alpha-smooth muscle actin and plasminogen activator inhibitor-1, was increased in the livers of mice with iron accumulation. Hepatic injury accompanying liver fibrosis was observed based on the levels of alanine aminotransferase, aspartate aminotransferase, and hematoxylin and eosin staining. Furthermore, we found that both isolated primary hepatocyte and HSCs undergo ferroptosis. Consistently, cirrhotic liver tissue of patients indicated glutathione peroxidase 4 downregulation in fibrotic region. In conclusion, our results suggest that ferroptosis contribute to HSC activation and the progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji Hyun Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jin Sol Baek
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea; Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
48
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
49
|
Badr EAE, El Sayed IE, Gabber MKR, Ghobashy EAE, Al-Sehemi AG, Algarni H, Elghobashy YAS. Are Antisense Long Non-Coding RNA Related to COVID-19? Biomedicines 2022; 10:2770. [PMID: 36359290 PMCID: PMC9687826 DOI: 10.3390/biomedicines10112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Fighting external pathogens relies on the tight regulation of the gene expression of the immune system. Ferroptosis, which is a distinct form of programmed cell death driven by iron, is involved in the enhancement of follicular helper T cell function during infection. The regulation of RNA is a key step in final gene expression. The present study aimed to identify the expression level of antisense lncRNAs (A2M-AS1, DBH-AS1, FLVCR1-DT, and NCBP2AS2-1) and FLVCR1 in COVID-19 patients and its relation to the severity of the disease. COVID-19 patients as well as age and gender-matched healthy controls were enrolled in this study. The expression level of the antisense lncRNAs was measured by RT-PCR. Results revealed the decreased expression of A2M-AS1 and FLVCR1 in COVID-19 patients. Additionally, they showed the increased expression of DBH-AS1, FLVCR1-DT, and NCBP2AS2. Both FLVCR1-DT and NCBP2AS2 showed a positive correlation with interleukin-6 (IL-6). DBH-AS1 and FLVCR1-DT had a significant association with mortality, complications, and mechanical ventilation. A significant negative correlation was found between A2M-AS1 and NCBP2AS2-1 and between FLVCR1 and FLVCR1-DT. The study confirmed that the expression level of the antisense lncRNAs was deregulated in COVID-19 patients and correlated with the severity of COVID-19, and that it may have possible roles in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Eman A E Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom 32511, Egypt
| | | | | | | | - Abdullah G. Al-Sehemi
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Yasser AS Elghobashy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom 32511, Egypt
| |
Collapse
|
50
|
Guérin N, Ciccarella M, Flamant E, Frémont P, Mangenot S, Istace B, Noel B, Belser C, Bertrand L, Labadie K, Cruaud C, Romac S, Bachy C, Gachenot M, Pelletier E, Alberti A, Jaillon O, Wincker P, Aury JM, Carradec Q. Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence. Commun Biol 2022; 5:983. [PMID: 36114260 PMCID: PMC9481584 DOI: 10.1038/s42003-022-03939-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The smallest phytoplankton species are key actors in oceans biogeochemical cycling and their abundance and distribution are affected with global environmental changes. Among them, algae of the Pelagophyceae class encompass coastal species causative of harmful algal blooms while others are cosmopolitan and abundant. The lack of genomic reference in this lineage is a main limitation to study its ecological importance. Here, we analysed Pelagomonas calceolata relative abundance, ecological niche and potential for the adaptation in all oceans using a complete chromosome-scale assembled genome sequence. Our results show that P. calceolata is one of the most abundant eukaryotic species in the oceans with a relative abundance favoured by high temperature, low-light and iron-poor conditions. Climate change projections based on its relative abundance suggest an extension of the P. calceolata habitat toward the poles at the end of this century. Finally, we observed a specific gene repertoire and expression level variations potentially explaining its ecological success in low-iron and low-nitrate environments. Collectively, these findings reveal the ecological importance of P. calceolata and lay the foundation for a global scale analysis of the adaptation and acclimation strategies of this small phytoplankton in a changing environment.
Collapse
Affiliation(s)
- Nina Guérin
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Marta Ciccarella
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Elisa Flamant
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Paul Frémont
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Sophie Mangenot
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Laurie Bertrand
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, 29680, Roscoff, France
| | - Charles Bachy
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR7144, Place Georges Teissier, 29680, Roscoff, France
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Martin Gachenot
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|