1
|
Banasik M, Napolitano V, Blat A, Abdulkarim K, Plewka J, Czaplewski C, Gieldon A, Kozak M, Wladyka B, Popowicz G, Dubin G. Structural dynamics of the TPR domain of the peroxisomal cargo receptor Pex5 in Trypanosoma. Int J Biol Macromol 2024; 280:135510. [PMID: 39304044 DOI: 10.1016/j.ijbiomac.2024.135510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Peroxisomal protein import has been identified as a valid target in trypanosomiases, an important health threat in Central and South America. The importomer is built of multiple peroxins (Pex) and structural characterization of these proteins facilitates rational inhibitor development. We report crystal structures of the Trypanosoma brucei and T. cruzi tetratricopeptide repeat domain (TPR) of the cytoplasmic peroxisomal targeting signal 1 (PTS1) receptor Pex5. The structure of the TPR domain of TbPex5 represents an apo-form of the receptor which, together with the previously determined structure of the complex of TbPex5 TPR and PTS1 demonstrate significant receptor dynamics associated with signal peptide recognition. The structure of the complex of TPR domain of TcPex5 with PTS1 provided in this study details the molecular interactions that guide signal peptide recognition at the atomic level in the pathogenic species currently perceived as the most relevant among Trypanosoma. Small - angle X - ray scattering (SAXS) data obtained in solution supports the crystallographic findings on the compaction of the TPR domains of TbPex5 and TcPex5 upon interaction with the cargo.
Collapse
Affiliation(s)
- Michal Banasik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Valeria Napolitano
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Artur Blat
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Karim Abdulkarim
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Biology, College of Science, Salahaddin University-Erbil, Kirkuk Road, 44002 Erbil, Kurdistan Region, Iraq
| | - Jacek Plewka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Maciej Kozak
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland; National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392 Kraków, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Structure-based design, synthesis and evaluation of a novel family of PEX5-PEX14 interaction inhibitors against Trypanosoma. Eur J Med Chem 2022; 243:114778. [DOI: 10.1016/j.ejmech.2022.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
|
3
|
Stork BA, Dean A, Ortiz AR, Saha P, Putluri N, Planas-Silva MD, Mahmud I, Rajapakshe K, Coarfa C, Knapp S, Lorenzi PL, Kemp BE, Turk BE, Scott JW, Means AR, York B. Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism. Mol Metab 2022; 62:101513. [PMID: 35562082 PMCID: PMC9157561 DOI: 10.1016/j.molmet.2022.101513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.
Collapse
Affiliation(s)
- Brittany A Stork
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Adam Dean
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrea R Ortiz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pradip Saha
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimal Rajapakshe
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John W Scott
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, Victoria, 3065, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Stork BA, Dean A, York B. Methodology for measuring oxidative capacity of isolated peroxisomes in the Seahorse assay. J Biol Methods 2022; 9:e160. [PMID: 35733440 PMCID: PMC9208851 DOI: 10.14440/jbm.2022.374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
The regulation of cellular energetics is a complex process that requires the coordinated function of multiple organelles. Historically, studies focused on understanding cellular energy utilization and production have been overwhelmingly concentrated on the mitochondria. While mitochondria account for the majority of intracellular energy production, they alone are incapable of maintaining the variable energetic demands of the cell. The peroxisome has recently emerged as a secondary metabolic organelle that complements and improves mitochondrial performance. Although mitochondria and peroxisomes are structurally distinct organelles, they share key functional similarities that allows for the potential to repurpose readily available tools initially developed for mitochondrial assessment to interrogate peroxisomal metabolic function in a novel manner. To this end, we report here on procedures for the isolation, purification and real-time metabolic assessment of peroxisomal β-oxidation using the Agilent Seahorse® system. When used together, these protocols provide a straightforward, reproducible and highly quantifiable method for measuring the contributions of peroxisomes to cellular and organismal metabolism.
Collapse
Affiliation(s)
- Brittany A Stork
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Dean
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian York
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Cheung A, Argyriou C, Yergeau C, D’Souza Y, Riou É, Lévesque S, Raymond G, Daba M, Rtskhiladze I, Tkemaladze T, Adang L, La Piana R, Bernard G, Braverman N. Clinical, neuroradiological, and molecular characterization of patients with atypical Zellweger spectrum disorder caused by PEX16 mutations: a case series. Neurogenetics 2022; 23:115-127. [DOI: 10.1007/s10048-022-00684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
6
|
Farelo MA, Korrou-Karava D, Brooks KF, Russell TA, Maringer K, Mayerhofer PU. Dengue and Zika Virus Capsid Proteins Contain a Common PEX19-Binding Motif. Viruses 2022; 14:v14020253. [PMID: 35215846 PMCID: PMC8874546 DOI: 10.3390/v14020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses such as dengue virus (DENV) and Zika virus (ZIKV) have evolved sophisticated mechanisms to suppress the host immune system. For instance, flavivirus infections were found to sabotage peroxisomes, organelles with an important role in innate immunity. The current model suggests that the capsid (C) proteins of DENV and ZIKV downregulate peroxisomes, ultimately resulting in reduced production of interferons by interacting with the host protein PEX19, a crucial chaperone in peroxisomal biogenesis. Here, we aimed to explore the importance of peroxisomes and the role of C interaction with PEX19 in the flavivirus life cycle. By infecting cells lacking peroxisomes we show that this organelle is required for optimal DENV replication. Moreover, we demonstrate that DENV and ZIKV C bind PEX19 through a conserved PEX19-binding motif, which is also commonly found in cellular peroxisomal membrane proteins (PMPs). However, in contrast to PMPs, this interaction does not result in the targeting of C to peroxisomes. Furthermore, we show that the presence of C results in peroxisome loss due to impaired peroxisomal biogenesis, which appears to occur by a PEX19-independent mechanism. Hence, these findings challenge the current model of how flavivirus C might downregulate peroxisomal abundance and suggest a yet unknown role of peroxisomes in flavivirus biology.
Collapse
Affiliation(s)
- Mafalda A. Farelo
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Despoina Korrou-Karava
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Katrina F. Brooks
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Tiffany A. Russell
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Kevin Maringer
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Correspondence: (K.M.); (P.U.M.)
| | - Peter U. Mayerhofer
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
- Correspondence: (K.M.); (P.U.M.)
| |
Collapse
|
7
|
Infant T, Deb R, Ghose S, Nagotu S. Post-translational modifications of proteins associated with yeast peroxisome membrane: An essential mode of regulatory mechanism. Genes Cells 2021; 26:843-860. [PMID: 34472666 PMCID: PMC9291962 DOI: 10.1111/gtc.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Peroxisomes are single membrane‐bound organelles important for the optimum functioning of eukaryotic cells. Seminal discoveries in the field of peroxisomes are made using yeast as a model. Several proteins required for the biogenesis and function of peroxisomes are identified to date. As with proteins involved in other major cellular pathways, peroxisomal proteins are also subjected to regulatory post‐translational modifications. Identification, characterization and mapping of these modifications to specific amino acid residues on proteins are critical toward understanding their functional significance. Several studies have tried to identify post‐translational modifications of peroxisomal proteins and determine their impact on peroxisome structure and function. In this manuscript, we provide an overview of the various post‐translational modifications that govern the peroxisome dynamics in yeast.
Collapse
Affiliation(s)
- Terence Infant
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suchetana Ghose
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
8
|
Semenova NA, Kurkina MV, Marakhonov AV, Dadali EL, Taran NN, Strokova TV. A novel mutation in the PEX26 gene in a family from Dagestan with members affected by Zellweger spectrum disorder. Mol Genet Metab Rep 2021; 27:100754. [PMID: 33912394 PMCID: PMC8065337 DOI: 10.1016/j.ymgmr.2021.100754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders that affect multiple organ systems. Approximately 80% of PBD patients are classifiedin the Zellweger syndrome spectrum, which is generally caused by mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes. Methods We present the clinical characteristics of three male members with cholestatic hepatopathy and developmental delay. Next-Generation Sequencing (NGS) was used to analyze 52 genes responsible for hereditary diseases with cholestasis. The variant was confirmed by Sanger sequencing. Dried blood spot (DBS) samples of 537 newborns from Dagestan were tested for the presence of that mutation. The frequency of the mutant allele in the population of Dagestan wasestimated using the Hardy–Weinberg equilibrium. Results Symptoms of disease manifested from the first months of life as severe hepatic dysfunction and developmental delay. Physical examination showed jaundice, hepatosplenomegaly, coagulopathy, and normal or slightly elevated level of gamma-glutamyltransferase (GGT), similar to progressive familial intrahepatic cholestasis. The level of C26 and ratio of C26/C22 in plasma were increased. A nucleotide variant in the PEX26 gene was identified: NM_017929.6:c.347 T>A, p.(Leu116Gln) in a homozygous state. Parents and healthy siblings were heterozygous for the mutant allele. This variant was not described in the Database of Single Nucleotide Polymorphism (dbSNP), it is not registered in the Human Gene Mutation Database (HGMD) v. 2020.1. The frequency of the mutant allele in the population of Dagestan is estimated to be less than 0.000931 (99% CI, 0.000929–0.000934). Conclusions Our clinical cases from Dagestan describe the phenotype associated with the c.347 T>A,p.(Leu116Gln), variant in the PEX26 gene. We show that the onset of the clinical picture in patients with Zellweger syndrome spectrum could start with severe hepatic dysfunction and cholestasis. We suggest that biochemical screening of PBD in infants with cholestasis is necessary.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CI, confidence interval
- Cholestasis
- DBS, dried blood spot
- GGT, gamma-glutamyltranspeptidase
- Hepatic dysfunction
- LDG, lactate dehydrogenase
- OMIM, Online Mendelian Inheritance in Man
- PBD, peroxisome biogenesis disorders
- PEX26 gene
- VLCFA, very-long-chain fatty acids
- ZSD, Zellweger spectrum disorders
- Zellweger syndrome spectrum
Collapse
Affiliation(s)
- Natalia A Semenova
- Research Centre for Medical Genetics, 1 Moskvorechye Street, Moscow 115522, Russian Federation
| | - Marina V Kurkina
- Research Centre for Medical Genetics, 1 Moskvorechye Street, Moscow 115522, Russian Federation
| | - Andrey V Marakhonov
- Research Centre for Medical Genetics, 1 Moskvorechye Street, Moscow 115522, Russian Federation
| | - Elena L Dadali
- Research Centre for Medical Genetics, 1 Moskvorechye Street, Moscow 115522, Russian Federation
| | - Natalia N Taran
- Federal Research Centre of Nutrition and Biotechnology, Kashirskoe shosse, d. 21, Moscow 115446, Russian Federation
| | - Tatyana V Strokova
- Federal Research Centre of Nutrition and Biotechnology, Kashirskoe shosse, d. 21, Moscow 115446, Russian Federation
| |
Collapse
|
9
|
Coppa A, Guha S, Fourcade S, Parameswaran J, Ruiz M, Moser AB, Schlüter A, Murphy MP, Lizcano JM, Miranda-Vizuete A, Dalfó E, Pujol A. The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Free Radic Biol Med 2020; 152:797-809. [PMID: 32017990 PMCID: PMC7611262 DOI: 10.1016/j.freeradbiomed.2020.01.177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Adrenoleukodystrophy is a neurometabolic disorder caused by a defective peroxisomal ABCD1 transporter of very long-chain fatty acids (VLCFAs). Its pathogenesis is incompletely understood. Here we characterize a nematode model of X-ALD with loss of the pmp-4 gene, the worm orthologue of ABCD1. These mutants recapitulate the hallmarks of X-ALD: i) VLCFAs accumulation and impaired mitochondrial redox homeostasis and ii) axonal damage coupled to locomotor dysfunction. Furthermore, we identify a novel role for PMP-4 in modulating lipid droplet dynamics. Importantly, we show that the mitochondria targeted antioxidant MitoQ normalizes lipid droplets size, and prevents axonal degeneration and locomotor disability, highlighting its therapeutic potential. Moreover, PMP-4 acting solely in the hypodermis rescues axonal and locomotion abnormalities, suggesting a myelin-like role for the hypodermis in providing essential peroxisomal functions for the nematode nervous system.
Collapse
Affiliation(s)
- Andrea Coppa
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Ann B Moser
- Peroxisomal Diseases Laboratory, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | | | - Jose Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío /CSIC/ Universidad de Sevilla, E-41013, Sevilla, Spain
| | - Esther Dalfó
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain; ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain.
| |
Collapse
|
10
|
Gross LE, Spies N, Simm S, Schleiff E. Toc75-V/OEP80 is processed during translocation into chloroplasts, and the membrane-embedded form exposes its POTRA domain to the intermembrane space. FEBS Open Bio 2020; 10:444-454. [PMID: 31953987 PMCID: PMC7050246 DOI: 10.1002/2211-5463.12791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
The insertion of membrane proteins requires proteinaceous complexes in the cytoplasm, the membrane, and the lumen of organelles. Most of the required complexes have been described, while the components for insertion of β-barrel-type proteins into the outer membrane of chloroplasts remain unknown. The same holds true for the signals required for the insertion of β-barrel-type proteins. At present, only the processing of Toc75-III, the β-barrel-type protein of the central chloroplast translocon with an atypical signal, has been explored in detail. However, it has been debated whether Toc75-V/ outer envelope protein 80 (OEP80), a second protein of the same family, contains a signal and undergoes processing. To substantiate the hypothesis that Toc75-V/OEP80 is processed as well, we reinvestigated the processing in a protoplast-based assay as well as in native membranes. Our results confirm the existence of a cleavable segment. By protease protection and pegylation, we observed intermembrane space localization of the soluble N-terminal domain. Thus, Toc75-V contains a cleavable N-terminal signal and exposes its polypeptide transport-associated domains to the intermembrane space of plastids, where it likely interacts with its substrates.
Collapse
Affiliation(s)
- Lucia E. Gross
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
| | - Nicole Spies
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
| | - Stefan Simm
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
- Frankfurt Institute for Advanced StudiesGermany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of PlantsGoethe UniversityFrankfurtGermany
- Frankfurt Institute for Advanced StudiesGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurtGermany
| |
Collapse
|
11
|
Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med 2019; 11:63. [PMID: 31640748 PMCID: PMC6805675 DOI: 10.1186/s13073-019-0673-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
A major advance in antimalarial drug discovery has been the shift towards cell-based phenotypic screening, with notable progress in the screening of compounds against the asexual blood stage, liver stage, and gametocytes. A primary method for drug target deconvolution in Plasmodium falciparum is in vitro evolution of compound-resistant parasites followed by whole-genome scans. Several of the most promising antimalarial drug targets, such as translation elongation factor 2 (eEF2) and phenylalanine tRNA synthetase (PheRS), have been identified or confirmed using this method. One drawback of this method is that if a mutated gene is uncharacterized, a substantial effort may be required to determine whether it is a drug target, a drug resistance gene, or if the mutation is merely a background mutation. Thus, the availability of high-throughput, functional genomic datasets can greatly assist with target deconvolution. Studies mapping genome-wide essentiality in P. falciparum or performing transcriptional profiling of the host and parasite during liver-stage infection with P. berghei have identified potentially druggable pathways. Advances in mapping the epigenomic regulation of the malaria parasite genome have also enabled the identification of key processes involved in parasite development. In addition, the examination of the host genome during infection has identified novel gene candidates associated with susceptibility to severe malaria. Here, we review recent studies that have used omics-based methods to identify novel targets for interventions against protozoan parasites, focusing on malaria, and we highlight the advantages and limitations of the approaches used. These approaches have also been extended to other protozoan pathogens, including Toxoplasma, Trypanosoma, and Leishmania spp., and these studies highlight how drug discovery efforts against these pathogens benefit from the utilization of diverse omics-based methods to identify promising drug targets.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Exner T, Romero-Brey I, Yifrach E, Rivera-Monroy J, Schrul B, Zouboulis CC, Stremmel W, Honsho M, Bartenschlager R, Zalckvar E, Poppelreuther M, Füllekrug J. An alternative membrane topology permits lipid droplet localization of peroxisomal fatty acyl-CoA reductase 1. J Cell Sci 2019; 132:jcs.223016. [PMID: 30745342 DOI: 10.1242/jcs.223016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
Fatty acyl-CoA reductase 1 (Far1) is a ubiquitously expressed peroxisomal membrane protein that generates the fatty alcohols required for the biosynthesis of ether lipids. Lipid droplet localization of exogenously expressed and endogenous human Far1 was observed by fluorescence microscopy under conditions of increased triglyceride synthesis in tissue culture cells. This unexpected finding was supported further by correlative light electron microscopy and subcellular fractionation. Selective permeabilization, protease sensitivity and N-glycosylation tagging suggested that Far1 is able to assume two different membrane topologies, differing in the orientation of the short hydrophilic C-terminus towards the lumen or the cytosol, respectively. Two closely spaced hydrophobic domains are contained within the C-terminal region. When analyzed separately, the second domain was sufficient for the localization of a fluorescent reporter to lipid droplets. Targeting of Far1 to lipid droplets was not impaired in either Pex19 or ASNA1 (also known as TRC40) CRISPR/Cas9 knockout cells. In conclusion, our data suggest that Far1 is a novel member of the rather exclusive group of dual topology membrane proteins. At the same time, Far1 shows lipid metabolism-dependent differential subcellular localizations to peroxisomes and lipid droplets.
Collapse
Affiliation(s)
- Tarik Exner
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | - Inés Romero-Brey
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jhon Rivera-Monroy
- Department of Molecular Biology, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg/Saar, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, 06847 Dessau, Germany
| | - Wolfgang Stremmel
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | - Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, 812-8582 Fukuoka, Japan
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
Microbial synthesis represents an alternative approach for the sustainable production of chemicals, fuels, and medicines. However, construction of biosynthetic pathways always suffers from side reactions, toxicity of intermediates, or low efficiency of substrate channeling. Subcellular compartmentalization may contribute to a more efficient production of target products by reducing side reactions and toxic effects within a compact insular space. The peroxisome, a type of organelle that is involved in catabolism of fatty acids and reactive oxygen species, has attracted a great deal of attention in the construction of eukaryotic cell factories with little impact on essential cellular function. In this chapter, we will systematically review recent advances in peroxisomal compartmentalization for microbial production of valuable biomolecules. Additionally, detailed experimental designs and protocols are also described. We hope a comprehensive understanding of peroxisomes will promote their application in metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
14
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
15
|
Lutfullahoğlu-Bal G, Seferoğlu AB, Keskin A, Akdoğan E, Dunn CD. A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells. Sci Rep 2018; 8:16374. [PMID: 30401812 PMCID: PMC6219538 DOI: 10.1038/s41598-018-34646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.
Collapse
Affiliation(s)
- Güleycan Lutfullahoğlu-Bal
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
| | - Ayşe Bengisu Seferoğlu
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Abdurrahman Keskin
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Biological Sciences, Columbia University, New York, NY, 10027, United States of America
| | - Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, United States of America
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
- Department of Molecular Biology and Genetics, Koç University, 34450, Sarıyer, İstanbul, Turkey.
| |
Collapse
|
16
|
Abstract
Peroxisomes are key metabolic organelles, which contribute to cellular lipid metabolism, e.g. the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as cellular redox balance. Peroxisomal dysfunction has been linked to severe metabolic disorders in man, but peroxisomes are now also recognized as protective organelles with a wider significance in human health and potential impact on a large number of globally important human diseases such as neurodegeneration, obesity, cancer, and age-related disorders. Therefore, the interest in peroxisomes and their physiological functions has significantly increased in recent years. In this review, we intend to highlight recent discoveries, advancements and trends in peroxisome research, and present an update as well as a continuation of two former review articles addressing the unsolved mysteries of this astonishing organelle. We summarize novel findings on the biological functions of peroxisomes, their biogenesis, formation, membrane dynamics and division, as well as on peroxisome-organelle contacts and cooperation. Furthermore, novel peroxisomal proteins and machineries at the peroxisomal membrane are discussed. Finally, we address recent findings on the role of peroxisomes in the brain, in neurological disorders, and in the development of cancer.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Alfred Voelkl
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | | |
Collapse
|
17
|
Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Büttner L, Muntau AC, Gersting SW. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:518-531. [PMID: 30366024 DOI: 10.1016/j.bbamcr.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.
Collapse
Affiliation(s)
- Philipp Guder
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dunja D Reiß
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marta K Danecka
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrich A Schatz
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Marc Becker
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Labor Becker Olgemöller und Kollegen, 81671 Munich, Germany
| | - Regina Ensenauer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität, 85350 Freising, Germany; numares GmbH, Josef-Engert-Str. 9, 93053 Regensburg, Germany
| | - Lars Büttner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
18
|
Mix AK, Cenci U, Heimerl T, Marter P, Wirkner ML, Moog D. Identification and Localization of Peroxisomal Biogenesis Proteins Indicates the Presence of Peroxisomes in the Cryptophyte Guillardia theta and Other "Chromalveolates". Genome Biol Evol 2018; 10:2834-2852. [PMID: 30247558 PMCID: PMC6203080 DOI: 10.1093/gbe/evy214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are single-membrane-bound organelles with a huge metabolic versatility, including the degradation of fatty acids (β-oxidation) and the detoxification of reactive oxygen species as most conserved functions. Although peroxisomes seem to be present in the majority of investigated eukaryotes, where they are responsible for many eclectic and important spatially separated metabolic reactions, knowledge about their existence in the plethora of protists (eukaryotic microorganisms) is scarce. Here, we investigated genomic data of organisms containing complex plastids with red algal ancestry (so-called “chromalveolates”) for the presence of genes encoding peroxins—factors specific for the biogenesis, maintenance, and division of peroxisomes in eukaryotic cells. Our focus was on the cryptophyte Guillardia theta, a marine microalga, which possesses two phylogenetically different nuclei of host and endosymbiont origin, respectively, thus being of enormous evolutionary significance. Besides the identification of a complete set of peroxins in G. theta, we heterologously localized selected factors as GFP fusion proteins via confocal and electron microscopy in the model diatom Phaeodactylum tricornutum. Furthermore, we show that peroxins, and thus most likely peroxisomes, are present in haptophytes as well as eustigmatophytes, brown algae, and alveolates including dinoflagellates, chromerids, and noncoccidian apicomplexans. Our results indicate that diatoms are not the only “chromalveolate” group devoid of the PTS2 receptor Pex7, and thus a PTS2-dependent peroxisomal import pathway, which seems to be absent in haptophytes (Emiliania huxleyi) as well. Moreover, important aspects of peroxisomal biosynthesis and protein import in “chromalveolates”are highlighted.
Collapse
Affiliation(s)
- Ann-Kathrin Mix
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Germany
| | - Pia Marter
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | | | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| |
Collapse
|
19
|
Redkar A, Di Pietro A. Adapt your shuttling proteins for virulence: a lesson from the corn smut fungus Ustilago maydis. THE NEW PHYTOLOGIST 2018; 220:353-356. [PMID: 30238483 DOI: 10.1111/nph.15429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Amey Redkar
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Antonio Di Pietro
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
20
|
Weill U, Yofe I, Sass E, Stynen B, Davidi D, Natarajan J, Ben-Menachem R, Avihou Z, Goldman O, Harpaz N, Chuartzman S, Kniazev K, Knoblach B, Laborenz J, Boos F, Kowarzyk J, Ben-Dor S, Zalckvar E, Herrmann JM, Rachubinski RA, Pines O, Rapaport D, Michnick SW, Levy ED, Schuldiner M. Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nat Methods 2018; 15:617-622. [PMID: 29988094 PMCID: PMC6076999 DOI: 10.1038/s41592-018-0044-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
Abstract
Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries and the type of information that can be gleaned from them, we previously devised the SWAp-Tag (SWAT) approach that enables rapid, easy and efficient creation of yeast strain collections. Here we present the construction and investigation of a full genome library of ~5500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins, as well as its use in creating six additional libraries that either restore the native regulation, create an overexpression library with a Cherry tag or enable protein complementation assays from two fragments of an enzyme or fluorophore. We show methods to utilize these SWAT collections to systematically characterize the yeast proteome on multiple levels spanning protein abundance, localization, topology and interactions. Our findings demonstrate how diverse full-genome SWAT libraries facilitate obtaining insights into numerous aspects of the proteome.
Collapse
Affiliation(s)
- Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Yofe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bram Stynen
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Dan Davidi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Janani Natarajan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Reut Ben-Menachem
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zohar Avihou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Goldman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nofar Harpaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kiril Kniazev
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara Knoblach
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Janina Laborenz
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Boos
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jacqueline Kowarzyk
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes M Herrmann
- Department of Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stephen W Michnick
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Dawidowski M, Emmanouilidis L, Kalel VC, Tripsianes K, Schorpp K, Hadian K, Kaiser M, Mäser P, Kolonko M, Tanghe S, Rodriguez A, Schliebs W, Erdmann R, Sattler M, Popowicz GM. Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. Science 2017; 355:1416-1420. [PMID: 28360328 DOI: 10.1126/science.aal1807] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
The parasitic protists of the Trypanosoma genus infect humans and domestic mammals, causing severe mortality and huge economic losses. The most threatening trypanosomiasis is Chagas disease, affecting up to 12 million people in the Americas. We report a way to selectively kill Trypanosoma by blocking glycosomal/peroxisomal import that depends on the PEX14-PEX5 protein-protein interaction. We developed small molecules that efficiently disrupt the PEX14-PEX5 interaction. This results in mislocalization of glycosomal enzymes, causing metabolic catastrophe, and it kills the parasite. High-resolution x-ray structures and nuclear magnetic resonance data enabled the efficient design of inhibitors with trypanocidal activities comparable to approved medications. These results identify PEX14 as an "Achilles' heel" of the Trypanosoma suitable for the development of new therapies against trypanosomiases and provide the structural basis for their development.
Collapse
Affiliation(s)
- M Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - L Emmanouilidis
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - V C Kalel
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - K Tripsianes
- CEITEC, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - K Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - K Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - M Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - P Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - M Kolonko
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - S Tanghe
- New York University School of Medicine, Department of Microbiology, 341 East 25th Street, Room 513, New York, NY 10010, USA
| | - A Rodriguez
- New York University School of Medicine, Department of Microbiology, 341 East 25th Street, Room 513, New York, NY 10010, USA
| | - W Schliebs
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - R Erdmann
- Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany.
| | - M Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. .,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - G M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. .,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
23
|
Wang W, Subramani S. Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis. Cell Cycle 2017; 16:2037-2045. [PMID: 28933989 PMCID: PMC5731411 DOI: 10.1080/15384101.2017.1376149] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Peroxisomes are essential and dynamic organelles that allow cells to rapidly adapt and cope with changing environments and/or physiological conditions by modulation of both peroxisome biogenesis and turnover. Peroxisome biogenesis involves the assembly of peroxisome membranes and the import of peroxisomal matrix proteins. The latter depends on the receptor, PEX5, which recognizes peroxisomal matrix proteins in the cytosol directly or indirectly, and transports them to the peroxisomal lumen. In this review, we discuss the role of PEX5 ubiquitination in both peroxisome biogenesis and turnover, specifically in PEX5 receptor recycling, stability and abundance, as well as its role in pexophagy (autophagic degradation of peroxisomes).
Collapse
Affiliation(s)
- Wei Wang
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9860841. [PMID: 28811869 PMCID: PMC5546064 DOI: 10.1155/2017/9860841] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are the main intracellular sources for reactive oxygen species. At the same time, both organelles are critical for the maintenance of a healthy redox balance in the cell. Consequently, failure in the function of both organelles is causally linked to oxidative stress and accelerated aging. However, it has become clear that peroxisomes and mitochondria are much more intimately connected both physiologically and structurally. Both organelles share common fission components to dynamically respond to environmental cues, and the autophagic turnover of both peroxisomes and mitochondria is decisive for cellular homeostasis. Moreover, peroxisomes can physically associate with mitochondria via specific protein complexes. Therefore, the structural and functional connection of both organelles is a critical and dynamic feature in the regulation of oxidative metabolism, whose dynamic nature will be revealed in the future. In this review, we will focus on fundamental aspects of the peroxisome-mitochondria interplay derived from simple models such as yeast and move onto discussing the impact of an impaired peroxisomal and mitochondrial homeostasis on ROS production, aging, and disease in humans.
Collapse
|
25
|
Wang W, Xia ZJ, Farré JC, Subramani S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol 2017; 216:2843-2858. [PMID: 28724525 PMCID: PMC5584156 DOI: 10.1083/jcb.201611170] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/14/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Most proteins destined for the peroxisomal matrix depend on the peroxisomal targeting signals (PTSs), which require the PTS receptor PEX5, whose deficiency causes fatal human peroxisomal biogenesis disorders (PBDs). TRIM37 gene mutations cause muscle-liver-brain-eye (mulibrey) nanism. We found that TRIM37 localizes in peroxisomal membranes and ubiquitylates PEX5 at K464 by interacting with its C-terminal 51 amino acids (CT51), which is required for PTS protein import. PEX5 mutations (K464A or ΔCT51), or TRIM37 depletion or mutation, reduce PEX5 abundance by promoting its proteasomal degradation, thereby impairing its functions in cargo binding and PTS protein import in human cells. TRIM37 or PEX5 depletion induces apoptosis and enhances sensitivity to oxidative stress, underscoring the cellular requirement for functional peroxisomes. Therefore, TRIM37-mediated ubiquitylation stabilizes PEX5 and promotes peroxisomal matrix protein import, suggesting that mulibrey nanism is a new PBD.
Collapse
Affiliation(s)
- Wei Wang
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Zhi-Jie Xia
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
26
|
Schrader M, Pellegrini L. The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix. Cell Death Differ 2017; 24:1148-1152. [PMID: 28409773 PMCID: PMC5520164 DOI: 10.1038/cdd.2017.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 01/03/2023] Open
Abstract
A recent report from the Laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells. Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile to plasmalogen synthesis, reduction of peroxides, and the oxidation of very-long-chain fatty acids. Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes. However, unlike mitochondria, peroxisomes do not fuse; further, and perhaps most importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum. De novo peroxisome biogenesis has been extensively studied in yeast, with a major focus on the role of the ER in this process; however, in the mammalian system this field is much less explored. By exploiting patient cells lacking mature peroxisomes, the McBride laboratory now assigns a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature pre-peroxisomes occurs through the fusion of Pex3-/Pex14-containing mitochondria-derived vesicles with Pex16-containing ER-derived vesicles.
Collapse
Affiliation(s)
| | - Luca Pellegrini
- Faculty of Medicine, Department of Molecular Biology, Medical Biochemistry and Pathology, Universitè Laval, Quebec, QC, Canada
| |
Collapse
|
27
|
Cavallini G, Donati A, Taddei M, Bergamini E. Peroxisomes proliferation and pharmacological stimulation of autophagy in rat liver: evidence to support that autophagy may remove the "older" peroxisomes. Mol Cell Biochem 2017; 431:97-102. [PMID: 28255846 DOI: 10.1007/s11010-017-2979-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/24/2017] [Indexed: 01/25/2023]
Abstract
Like mitochondria, peroxisomes produce reactive oxygen species (ROS), compounds which have been implicated to play an important role in many degenerative diseases and aging itself, and an exaggerated ROS production might occur in altered or older organelles. Growing evidence shows that autophagy, a required function in cell housekeeping during fasting, can remove damaged macromolecules, organelles, and membranes selectively. Proliferation of peroxisomes can be enhanced in liver cells by perfluorooctanoic acid (PFOA), which causes a marked increase of the Acyl-CoA oxidase (ACOX) activity and no significant change in urate oxidase (UOX) activity. The administration of antilipolytic drugs to fasted animals was shown to intensify autophagy. Here we tested the hypothesis that autophagy may distinguish and remove older from younger peroxisomes in rat liver. Male Sprague-Dawley rats were given PFOA (150 mg/kg body weight) or vehicle. Animals were sacrificed at different times following PFOA administration, and 3 h after the induction of autophagy with the antilipolytic agent 3,5-dimethyl pyrazole (DMP, 12 mg/kg body weight). The levels of ACOX and UOX activity were measured in the liver tissue. Results showed that autophagy caused a parallel, significant decrease in both enzymes activity in control rats, and that in PFOA-treated rats the effects were different and changed with PFOA time administration. Changes are compatible with the hypothesis that newly formed ACOX-rich peroxisomes are resistant to pexophagy and that sensitivity to pexophagy increases with increasing peroxisomal "age." In conclusion, there is indirect evidence supporting the hypothesis that autophagy may recognize and degrade older peroxisomes.
Collapse
Affiliation(s)
- Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Alessio Donati
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Michele Taddei
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Ettore Bergamini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
28
|
Chen N, Teng XL, Xiao XG. Subcellular Localization of a Plant Catalase-Phenol Oxidase, AcCATPO, from Amaranthus and Identification of a Non-canonical Peroxisome Targeting Signal. FRONTIERS IN PLANT SCIENCE 2017; 8:1345. [PMID: 28824680 PMCID: PMC5539789 DOI: 10.3389/fpls.2017.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
AcCATPO is a plant catalase-phenol oxidase recently identified from red amaranth. Its physiological function remains unexplored. As the starting step of functional analysis, here we report its subcellular localization and a non-canonical targeting signal. Commonly used bioinformatics programs predicted a peroxisomal localization for AcCATPO, but failed in identification of canonical peroxisomal targeting signals (PTS). The C-terminal GFP tagging led the fusion protein AcCATPO-GFP to the cytosol and the nucleus, but N-terminal tagging directed the GFP-AcCATPO to peroxisomes and nuclei, in transgenic tobacco. Deleting the tripeptide (PTM) at the extreme C-terminus almost ruled out the peroxisomal localization of GFP-AcCATPOΔ3, and removing the C-terminal decapeptide completely excluded peroxisomes as the residence of GFP-AcCATPOΔ10. Furthermore, this decapeptide as a targeting signal could import GFP-10aa to the peroxisome exclusively. Taken together, these results demonstrate that AcCATPO is localized to the peroxisome and the nucleus, and its peroxisomal localization is attributed to a non-canonical PTS1, the C-terminal decapeptide which contains an internal SRL motif and a conserved tripeptide P-S/T-I/M at the extreme of C-terminus. This work may further the study as to the physiological function of AcCATPO, especially clarify its involvement in betalain biosynthesis, and provide a clue to elucidate more non-canonic PTS.
Collapse
|
29
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|