1
|
Rinchai D, Chaussabel D. Assessing the potential relevance of CEACAM6 as a blood transcriptional biomarker. F1000Res 2024; 11:1294. [PMID: 39239252 PMCID: PMC11375406 DOI: 10.12688/f1000research.126721.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 09/07/2024] Open
Abstract
Background Changes in blood transcript abundance levels have been associated with pathogenesis in a wide range of diseases. While next generation sequencing technology can measure transcript abundance on a genome-wide scale, downstream clinical applications often require small sets of genes to be selected for inclusion in targeted panels. Here we set out to gather information from the literature and transcriptome datasets that would help researchers determine whether to include the gene CEACAM6 in such panels. Methods We employed a workflow to systematically retrieve, structure, and aggregate information derived from both the literature and public transcriptome datasets. It consisted of profiling the CEACAM6 literature to identify major diseases associated with this candidate gene and establish its relevance as a biomarker. Accessing blood transcriptome datasets identified additional instances where CEACAM6 transcript levels differ in cases vs controls. Finally, the information retrieved throughout this process was captured in a structured format and aggregated in interactive circle packing plots. Results Although it is not routinely used clinically, the relevance of CEACAM6 as a biomarker has already been well established in the cancer field, where it has invariably been found to be associated with poor prognosis. Focusing on the blood transcriptome literature, we found studies reporting elevated levels of CEACAM6 abundance across a wide range of pathologies, especially diseases where inflammation plays a dominant role, such as asthma, psoriasis, or Parkinson's disease. The screening of public blood transcriptome datasets completed this picture, showing higher abundance levels in patients with infectious diseases caused by viral and bacterial pathogens. Conclusions Targeted assays measuring CEACAM6 transcript abundance in blood may be of potential utility for the management of patients with diseases presenting with systemic inflammation and for the management of patients with cancer, where the assay could potentially be run both on blood and tumor tissues.
Collapse
Affiliation(s)
- Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, 10065, USA
| | - Damien Chaussabel
- Computer Sciences Department, The Jackson Laboratory, Farmington, CT, 06032, USA
| |
Collapse
|
2
|
Meo L, Savarese M, Munno C, Mirabelli P, Ragno P, Leone O, Alfieri M. Circulating Biomarkers for Monitoring Chemotherapy-Induced Cardiotoxicity in Children. Pharmaceutics 2023; 15:2712. [PMID: 38140053 PMCID: PMC10747387 DOI: 10.3390/pharmaceutics15122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Most commonly diagnosed cancer pathologies in the pediatric population comprise leukemias and cancers of the nervous system. The percentage of cancer survivors increased from approximatively 50% to 80% thanks to improvements in medical treatments and the introduction of new chemotherapies. However, as a consequence, heart disease has become the main cause of death in the children due to the cardiotoxicity induced by chemotherapy treatments. The use of different cardiovascular biomarkers, complementing data obtained from electrocardiogram, echocardiography cardiac imaging, and evaluation of clinical symptoms, is considered a routine in clinical diagnosis, prognosis, risk stratification, and differential diagnosis. Cardiac troponin and natriuretic peptides are the best-validated biomarkers broadly accepted in clinical practice for the diagnosis of acute coronary syndrome and heart failure, although many other biomarkers are used and several potential markers are currently under study and possibly will play a more prominent role in the future. Several studies have shown how the measurement of cardiac troponin (cTn) can be used for the early detection of heart damage in oncological patients treated with potentially cardiotoxic chemotherapeutic drugs. The advent of high sensitive methods (hs-cTnI or hs-cTnT) further improved the effectiveness of risk stratification and monitoring during treatment cycles.
Collapse
Affiliation(s)
- Luigia Meo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy; (L.M.); (P.R.)
| | - Maria Savarese
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| | - Carmen Munno
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| | - Peppino Mirabelli
- Clinical and Translational Research Unit, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy;
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy; (L.M.); (P.R.)
| | - Ornella Leone
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| |
Collapse
|
3
|
Liao W, Cao X, Yu T, Lu K, Xia H, Wang S, Sun G, Yu EY. Egg white protein hydrolysate decreased blood pressure via the competing endogenous RNA regulatory networks in female spontaneously hypertensive rats. Food Funct 2023; 14:9936-9946. [PMID: 37859609 DOI: 10.1039/d3fo02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Despite numerous studies having reported the effects and mechanisms of antihypertensive peptides including peptides derived from egg white proteins, the role of peptides in a female hypertensive animal model is unknown. On the other hand, the role of epigenetic modulation by peptide treatment has rarely been investigated. This study sought to investigate the effect of egg white protein hydrolysate (EWH) in female spontaneously hypertensive rats (SHRs) as well as to explore the underlying mechanisms from the perspectives of the transcriptome and the profiles of non-coding RNAs. Young (12-14-week-old) female SHRs were orally administered 250 mg per kg body weight (low-dose) or 1000 mg per kg body weight (high-dose) EWH daily for 10 weeks. The blood pressure of the rats was monitored weekly. The mRNA and non-coding RNAs (miRNA, lncRNA, and circRNA) in the aorta were profiled by the high-throughput RNA-seq technique. Differentially expressed (DE) RNAs in the aorta were identified for the construction of the competing endogenous RNA (ceRNA) networks and key molecules were validated by qRT-PCR. The treatment of the high-dose EWH showed a significant effect on reducing blood pressure in female SHRs. Bioinformatic analyses revealed 813, 90, 347 and 869 DE-mRNAs, DE-miRNAs, DE-lncRNAs and DE-circRNAs, respectively. The CNTN5-LncRNA-XR_001835895.1-miR-384-5p was identified as the central network which was validated in the aorta and circulation of female SHRs. The results from this study demonstrated that the treatment with EWH reduced blood pressure via regulating the ceRNA networks in female SHRs, which provided novel insights into the mechanisms of food protein-derived antihypertensive peptides.
Collapse
Affiliation(s)
- Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Tingqing Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Kun Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Evan Yiwen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China 210009
| |
Collapse
|
4
|
Singh P, Shah DA, Jouni M, Cejas RB, Crossman DK, Magdy T, Qiu S, Wang X, Zhou L, Sharafeldin N, Hageman L, McKenna DE, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ritchey AK, Ginsberg JP, Landier W, Bhatia R, Burridge PW, Bhatia S. Altered Peripheral Blood Gene Expression in Childhood Cancer Survivors With Anthracycline-Induced Cardiomyopathy - A COG-ALTE03N1 Report. J Am Heart Assoc 2023; 12:e029954. [PMID: 37750583 PMCID: PMC10727235 DOI: 10.1161/jaha.123.029954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
Background Anthracycline-induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, presenting a need to understand the underlying pathogenesis. We sought to examine differential blood-based mRNA expression profiles in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Methods and Results We designed a matched case-control study (Children's Oncology Group-ALTE03N1) with mRNA sequencing on total RNA from peripheral blood in 40 anthracycline-exposed survivors with cardiomyopathy (cases) and 64 matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional validation was performed by gene knockout in human-induced pluripotent stem cell-derived cardiomyocytes using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology. Median age at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty-six differentially expressed genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified "hepatic fibrosis" and "iron homeostasis" pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple canonical pathways. LDHA-knockout human-induced pluripotent stem cell-derived cardiomyocytes showed increased sensitivity to doxorubicin. Conclusions We identified differential mRNA expression profiles in peripheral blood of anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| | | | - Mariam Jouni
- Department of PharmacologyNorthwestern UniversityChicagoIL
| | | | - David K. Crossman
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAL
| | - Tarek Magdy
- Department of PharmacologyNorthwestern UniversityChicagoIL
- Louisiana State University Health ShreveportShreveportLA
| | - Shaowei Qiu
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Division of Hematology and OncologyUniversity of Alabama at BirminghamBirminghamAL
| | - Xuexia Wang
- Department of BiostatisticsFlorida International UniversityMiamiFL
| | - Liting Zhou
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | - Lindsey Hageman
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | | | | | - Frank M. Balis
- Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| | | | - Frank G. Keller
- Department of Pediatrics, Children’s Healthcare of AtlantaEmory UniversityAtlantaGA
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisTN
| | | | - A Kim Ritchey
- Department of PediatricsUPMC Children’s Hospital of PittsburghPAPittsburgh
| | - Jill P. Ginsberg
- Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Wendy Landier
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| | - Ravi Bhatia
- Division of Hematology and OncologyUniversity of Alabama at BirminghamBirminghamAL
| | | | - Smita Bhatia
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
5
|
Cintron SA, Pierce J, Sardiu ME, Mahoney D, Peltzer J, Gupta B, Shen Q. Differences in Leukocyte Transcriptomes of Morbidly Obese Patients With High Output Heart Failure: A Pilot Study. INTERNATIONAL JOURNAL OF HEART FAILURE 2023; 5:201-212. [PMID: 37937202 PMCID: PMC10625880 DOI: 10.36628/ijhf.2023.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 11/09/2023]
Abstract
Background and Objectives Heart failure is characterized by alterations of gene expression that provide insight into the underlying pathophysiologic mechanisms. However, obesity-related high output heart failure (HOHF) is a specific phenotype of heart failure that has not been studied using gene expression. Our aim in this study was to examine the variances in leukocyte transcriptomes of morbidly obese patients with HOHF. Methods In this cross-sectional study, we applied stranded total RNA-sequencing to six patients with morbid obesity and HOHF and 6 patients with morbid obesity and non-HOHF. Differential gene expression was calculated, and Ingenuity Pathway Analysis software was used to interpret the canonical pathways, functional changes, upstream regulators, and networks in these patients. Results We found in patients with HOHF that there were 116 differentially expressed genes with upregulation of 114 genes and downregulation of 2 genes. The differentially expressed genes were involved with cell proliferation, mitochondrial function, erythropoiesis, erythrocyte stability, and apoptosis. The top upregulated canonical pathways associated with differentially expressed genes were autophagy, adenosine monophosphate-activated protein kinase signaling, and senescence pathways. We identified GATA binding protein 1 as an upstream regulator and nuclear factor kappa-light-chain-enhancer of activated B cells associated network. Conclusions We are the first to report the differential gene expression in patients with obesity-related HOHF and reveal the various pathophysiologic mechanisms underlying the disease. Further research is needed to determine the role of cellular function and maintenance, inflammation, and iron homeostasis in obesity-related HOHF.
Collapse
Affiliation(s)
- Samantha A. Cintron
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Janet Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mihaela E. Sardiu
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Diane Mahoney
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jill Peltzer
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bhanu Gupta
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Acharya S, Lumley AI, Zhang L, Vausort M, Devaux Y. GATA3 as a Blood-Based RNA Biomarker for Idiopathic Parkinson's Disease. Int J Mol Sci 2023; 24:10040. [PMID: 37373190 DOI: 10.3390/ijms241210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Finding novel biomarkers for Parkinson's disease (PD) is crucial for early disease diagnosis, severity assessment and identifying novel disease-modifying drug targets. Our study aimed at investigating the GATA3 mRNA levels in whole blood samples of idiopathic PD (iPD) patients with different disease severities as a biomarker for iPD. The present study is a cross-sectional, case-control study, with samples obtained from the Luxembourg Parkinson's cohort (LuxPARK). iPD (N = 319) patients, along with age-matched controls without PD (non-PD; N = 319) were included in this study. Blood GATA3 mRNA expression was measured using quantitative reverse transcription PCR (RT-qPCR) assays. The capacity of GATA3 expression levels to establish the diagnosis of iPD (primary end-point) and assess disease severity (secondary end-point) was determined. The blood levels of GATA3 were significantly lower in iPD patients, compared to non-PD controls (p ≤ 0.001). Logistic regression models showed a significant association of GATA3 expression with iPD diagnosis after adjustment for the confounders (p = 0.005). Moreover, the addition of GATA3 expression to a baseline clinical model improved its iPD diagnosis capacity (p = 0.005). There was a significant association of GATA3 expression levels with the overall disease severity (p = 0.002), non-motor experiences of daily living (nm-EDL; p = 0.003) and sleep disturbances (p = 0.01). Our results suggest that GATA3 expression measured in blood may serve as a novel biomarker and may help in the diagnosis of iPD and assessment of disease severity.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Andrew I Lumley
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Lu Zhang
- Bioinformatics Platform, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Mélanie Vausort
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| |
Collapse
|
7
|
Kim YK. Circular RNAs as a promising biomarker for heart disease. Biomed Pharmacother 2022; 156:113935. [DOI: 10.1016/j.biopha.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
|
8
|
Zeng H, Hu F, Duan Y, Li H, Wang Y. Expression of lncRNA APF in Peripheral Blood of Patients with Acute Myocardial Infarction Caused by Coronary Heart Disease and its Clinical Significance. Int Heart J 2022; 63:742-748. [PMID: 35831141 DOI: 10.1536/ihj.21-434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of death from cardiovascular disease. This study investigated the expression and clinical significance of long noncoding RNA (lncRNA) autophagy promoting factor (APF) in peripheral blood of patients with acute myocardial infarction (AMI) caused by CHD. Patients with angina pectoris (AP) (n = 80) and AMI (n = 96) and other patients (n = 60) with precordial discomfort but no CHD were included. The serum levels of lncRNA APF, MIAT, MALAT1, H19, CHAST, CDR1AS, miR-188-3p, and cardiac troponin I (cTnI) /creatine kinase (CK) /creatine kinase isozymes (CK-MB) were detected using reverse transcription-quantitative polymerase chain reaction or enzyme-linked immunosorbent assay. Patients with AMI were divided into high/low expression groups based on the median level of APF, and the clinical baseline indicators of patients with AMI were compared. The correlation between lncRNA APF and cTnI/CK/CK-MB/miR-188-3p was analyzed using Pearson analysis, and the clinical value of lncRNA APF was evaluated using the receiver operating characteristic curve. The levels of lncRNA APF, MIAT, MALAT1, H19, CHAST, and CDR1AS in patients with AMI were increased, whereas there were no differences in patients with AP. The APF levels in patients with AMI were higher than MIAT, MALAT1, and CHAST, whereas there were no differences between APF and H19 and CDR1AS. In patients with AMI, the high level of lncRNA APF was correlated with the history of smoking/drinking. Moreover, lncRNA APF was positively correlated with cTnI/CK/CK-MB levels and negatively correlated with miR-188-3p. LncRNA APF has high diagnostic efficacy for AMI. Overall, lncRNA APF is highly expressed in patients with AMI caused by CHD and has high diagnostic efficacy for AMI.
Collapse
Affiliation(s)
- Haitao Zeng
- Department of Cardiology, Changsha Third Hospital
| | - Fangxing Hu
- Department of Medical Laboratory Science, Changsha Third Hospital
| | - Yong Duan
- Department of Cardiology, Changsha Third Hospital
| | - Hui Li
- Department of Cardiology, Changsha Third Hospital
| | - Yong Wang
- Department of Cardiology, Changsha Third Hospital
| |
Collapse
|
9
|
Wang S, Wu J, Wang Z, Gong Z, Liu Y, Wang Z. Emerging Roles of Circ-ZNF609 in Multiple Human Diseases. Front Genet 2022; 13:837343. [PMID: 35938040 PMCID: PMC9353708 DOI: 10.3389/fgene.2022.837343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a special type of endogenous RNAs with extensive roles in multiple human diseases. They are formed by back-splicing of partial sequences of the parental precursor mRNAs. Unlike linear RNAs, their covalently closed loop structure without a 5′ cap and a 3′ polyadenylated tail confers on them high stability and they are difficult to be digested by RNase R. Increasing evidence has proved that aberrant expressions of many circRNAs are detected and that circRNAs exert essential biological functions in disease development and progression via acting as a molecular sponge of microRNA, interacting with proteins as decoys or scaffolds, or self-encoding small peptides. Circular RNA zinc finger protein 609 (circ-ZNF609) originates from exon2 of ZNF609, which is located at chromosome 15q22.31, and it has recently been proved that it can translate into a protein. Being aberrantly upregulated in various diseases, it could promote malignant progression of human tumors, as well as tumor cell proliferation, migration, and invasion. Here in this review, we concluded the biological functions and potential mechanisms of circ-ZNF609 in multiple diseases, which could be further explored as a targetable molecule in future accurate diagnosis and prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Yiyang Liu
- *Correspondence: Yiyang Liu, ; Zengjun Wang,
| | | |
Collapse
|
10
|
Weiner CP, Weiss ML, Zhou H, Syngelaki A, Nicolaides KH, Dong Y. Detection of Embryonic Trisomy 21 in the First Trimester Using Maternal Plasma Cell-Free RNA. Diagnostics (Basel) 2022; 12:1410. [PMID: 35741220 PMCID: PMC9221829 DOI: 10.3390/diagnostics12061410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal trisomy 21 (T21) screening commonly involves testing a maternal blood sample for fetal DNA aneuploidy. It is reliable but poses a cost barrier to universal screening. We hypothesized maternal plasma RNA screening might provide similar reliability but at a lower cost. Discovery experiments used plasma cell-free RNA from 20 women 11−13 weeks tested by RNA and miRNA microarrays followed by qRT-PCR. Thirty-six mRNAs and 18 small RNAs of the discovery cDNA were identified by qPCR as potential markers of embryonic T21. The second objective was validation of the RNA predictors in 998 independent pregnancies at 11−13 weeks including 50 T21. Initial analyses identified 9−15 differentially expressed RNA with modest predictive power (AUC < 0.70). The 54 RNAs were then subjected to machine learning. Eleven algorithms were trained on one partition and tested on an independent partition. The three best algorithms were identified by Kappa score and the effects of training/testing partition size and dataset class imbalance on prediction were evaluated. Six to ten RNAs predicted T21 with AUCs up to 1.00. The findings suggest that maternal plasma collected at 11−13 weeks, tested by qRT-PCR, and classified by machine learning, may accurately predict T21 for a lower cost than plasma DNA, thus opening the door to universal screening.
Collapse
Affiliation(s)
- Carl P. Weiner
- Departments of Obstetrics and Gynecology and Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA;
- Rosetta Signaling Laboratory, Phoenix, AZ 85018, USA;
| | - Mark L. Weiss
- Departments of Anatomy and Physiology & Midwest Institute of Comparative Stem Cell Biology, Kansas State University, Manhattan, KS 66506, USA;
| | - Helen Zhou
- Departments of Obstetrics and Gynecology and Molecular and Integrative Physiology, University of Kansas School of Medicine, Kansas City, KS 66160, USA;
| | - Argyro Syngelaki
- Fetal Medicine Research Institute, King’s College Hospital, London SE5 9RS, UK; (A.S.); (K.H.N.)
| | - Kypros H. Nicolaides
- Fetal Medicine Research Institute, King’s College Hospital, London SE5 9RS, UK; (A.S.); (K.H.N.)
| | - Yafeng Dong
- Rosetta Signaling Laboratory, Phoenix, AZ 85018, USA;
| |
Collapse
|
11
|
Mubarak G, Zahir FR. Recent Major Transcriptomics and Epitranscriptomics Contributions toward Personalized and Precision Medicine. J Pers Med 2022; 12:199. [PMID: 35207687 PMCID: PMC8877836 DOI: 10.3390/jpm12020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/07/2022] Open
Abstract
With the advent of genome-wide screening methods-beginning with microarray technologies and moving onto next generation sequencing methods-the era of precision and personalized medicine was born. Genomics led the way, and its contributions are well recognized. However, "other-omics" fields have rapidly emerged and are becoming as important toward defining disease causes and exploring therapeutic benefits. In this review, we focus on the impacts of transcriptomics, and its extension-epitranscriptomics-on personalized and precision medicine efforts. There has been an explosion of transcriptomic studies particularly in the last decade, along with a growing number of recent epitranscriptomic studies in several disease areas. Here, we summarize and overview major efforts for cancer, cardiovascular disease, and neurodevelopmental disorders (including autism spectrum disorder and intellectual disability) for transcriptomics/epitranscriptomics in precision and personalized medicine. We show that leading advances are being made in both diagnostics, and in investigative and landscaping disease pathophysiological studies. As transcriptomics/epitranscriptomics screens become more widespread, it is certain that they will yield vital and transformative precision and personalized medicine contributions in ways that will significantly further genomics gains.
Collapse
Affiliation(s)
| | - Farah R. Zahir
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
12
|
Weiner CP, Dong Y, Zhou H, Cuckle H, Ramsey R, Egerman R, Buhimschi I, Buhimschi C. Early pregnancy prediction of spontaneous preterm birth before 32 completed weeks of pregnancy using plasma RNA: transcriptome discovery and initial validation of an RNA panel of markers. BJOG 2021; 128:1870-1880. [PMID: 33969600 PMCID: PMC8455415 DOI: 10.1111/1471-0528.16736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To compare the second-trimester plasma cell-free (PCF) transcriptome of women who delivered at term with that of women with spontaneous preterm birth (sPTB) at or before 32 weeks of gestation and identify/validate PCF RNA markers present by 16 weeks of gestation. DESIGN Prospective case-control study. SETTING Academic tertiary care centre. POPULATION Pregnant women with known outcomes prospectively sampled. METHODS PCF RNAs extracted from women at 22-24 weeks of gestation (five sPTB up to 32 weeks and five at term) were hybridised to gene expression arrays. Differentially regulated RNAs for sPTB up to 32 weeks were initially selected based on P value compared with control (P < 0.01) and fold change (≥1.5×). Potential markers were then reordered by narrowness of distribution. Final marker selection was made by searching the Metacore™ database to determine whether the PCF RNAs interacted with a reported set of myometrial Preterm Initiator genes. RNAs were confirmed by quantitative reverse transcription polymerase chain reaction and tested in a second group of 40 women: 20 with sPTB up to 32 weeks (mean gestation 26.5 weeks, standard deviation ±2.6 weeks), 20 with spontaneous term delivery (40.1 ± 0.9 weeks) sampled at 16-19+5 weeks of gestation. MAIN OUTCOME MEASURE Identification of PCF RNAs predictive of sPTB up to 32 weeks. RESULTS Two hundred and ninety-seven PCR RNAs were differentially expressed in sPTB up to 32 weeks of gestation. Further selection retained 99 RNAs (86 mRNAs and 13 microRNAs) and five of these interacted in silica with seven Preterm Initiator genes. Four of five RNAs were confirmed and tested on the validation group. The expression of each confirmed PCF RNA was significantly higher in sPTB up to 32 weeks of gestation. In vitro study of the four mRNAs revealed higher expression in placentas of women with sPTB up to 32 weeks and the potential to interfere with myometrial quiescence. CONCLUSIONS The PCF RNA markers are highly associated with sPTB up to 32 weeks by 16 weeks of gestation. TWEETABLE ABSTRACT Women destined for spontaneous preterm birth can be identified by 16 weeks of gestation with a panel of maternal plasma RNAs.
Collapse
Affiliation(s)
- C P Weiner
- Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA
- Rosetta Signaling Laboratory, Mission Hills, KS, USA
| | - Y Dong
- Rosetta Signaling Laboratory, Mission Hills, KS, USA
| | - H Zhou
- Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - H Cuckle
- Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - R Ramsey
- Office of Clinical Research, University of Tennessee Health Science Center in Memphis, Memphis, TN, USA
| | - R Egerman
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, FL, USA
| | - I Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois Chicago, Chicago, IL, USA
| | - C Buhimschi
- Department of Obstetrics and Gynecology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Plaza-Florido A, Altmäe S, Esteban FJ, Löf M, Radom-Aizik S, Ortega FB. Cardiorespiratory fitness in children with overweight/obesity: Insights into the molecular mechanisms. Scand J Med Sci Sports 2021; 31:2083-2091. [PMID: 34333829 DOI: 10.1111/sms.14028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES High cardiorespiratory fitness (CRF) levels reduce the risk of developing cardiovascular disease (CVD) during adulthood. However, little is known about the molecular mechanisms underlying the health benefits of high CRF levels at the early stage of life. This study aimed to analyze the whole-blood transcriptome profile of fit children with overweight/obesity (OW/OB) compared to unfit children with OW/OB. DESIGN 27 children with OW/OB (10.14 ± 1.3 years, 59% boys) from the ActiveBrains project were evaluated. VO2 peak was assessed using a gas analyzer, and participants were categorized into fit or unfit according to the CVD risk-related cut-points. Whole-blood transcriptome profile (RNA sequencing) was analyzed. Differential gene expression analysis was performed using the limma R/Bioconductor software package (analyses adjusted by sex and maturational status), and pathways' enrichment analysis was performed with DAVID. In addition, in silico validation data mining was performed using the PHENOPEDIA database. RESULTS 256 genes were differentially expressed in fit children with OW/OB compared to unfit children with OW/OB after adjusting by sex and maturational status (FDR < 0.05). Enriched pathway analysis identified gene pathways related to inflammation (eg, dopaminergic and GABAergic synapse pathways). Interestingly, in silico validation data mining detected a set of the differentially expressed genes to be related to CVD, metabolic syndrome, hypertension, inflammation, and asthma. CONCLUSION The distinct pattern of whole-blood gene expression in fit children with OW/OB reveals genes and gene pathways that might play a role in reducing CVD risk factors later in life.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS, University of Granada, Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Jaen, Spain
| | - Marie Löf
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Shlomit Radom-Aizik
- Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, Irvine, CA, USA
| | - Francisco B Ortega
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS, University of Granada, Granada, Spain.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
14
|
Wang J, Lan Y, He L, Tang R, Li Y, Huang Y, Liang S, Gao Z, Price M, Yue B, He M, Guo T, Fan Z. Sex-specific gene expression in the blood of four primates. Genomics 2021; 113:2605-2613. [PMID: 34116169 DOI: 10.1016/j.ygeno.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Blood is an important non-reproductive tissue, but little is known about the sex-specific gene expressions in the blood. Therefore, we investigated sex-specific gene expression differences in the blood tissues of four primates, rhesus macaques (Macaca mulatta), Tibetan macaques (M. thibetana), yellow baboons (Papio cynocephalus), and humans. We identified seven sex-specific differentially expressed genes (SDEGs) in each non-human primate and 31 SDEGs in humans. The four primates had only one common SDEG, MAP7D2. In humans, immune-related SDEGs were identified as up-regulated, but also down-regulated in females. We also found that most of the X-Y gene pairs had similar expression levels between species, except pair EIF1AY/EIF1AX. The expression level of X-Y gene pairs of rhesus and Tibetan macaques showed no significant differential expression levels, while humans had six significant XY-biased and three XX-biased X-Y gene pairs. Our observed sex differences in blood should increase understanding of sex differences in primate blood tissue.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lewei He
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ruixiang Tang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yuhui Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Yuan Huang
- Medical Laboratory Department of West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Shan Liang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Zhan Gao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, Sichuan, China.
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
15
|
Pinilla L, Benitez ID, González J, Torres G, Barbé F, de Gonzalo-Calvo D. Peripheral blood microRNAs and the COVID-19 patient: methodological considerations, technical challenges and practice points. RNA Biol 2021; 18:688-695. [PMID: 33530819 PMCID: PMC8078525 DOI: 10.1080/15476286.2021.1885188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/30/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 emergency pandemic resulting from infection with SARS-CoV-2 represents a major threat to public health worldwide. There is an urgent clinical demand for easily accessible tools to address weaknesses and gaps in the management of COVID-19 patients. In this context, transcriptomic profiling of liquid biopsies, especially microRNAs (miRNAs), has recently emerged as a robust source of potential clinical indicators for medical decision-making. Nevertheless, the analysis of the circulating miRNA signature and its translation to clinical practice requires strict control of a wide array of methodological details. In this review, we indicate the main methodological aspects that should be addressed when evaluating the circulating miRNA profiles in COVID-19 patients, from preanalytical and analytical variables to the experimental design, impact of confounding, analysis of the data and interpretation of the findings, among others. Additionally, we provide practice points to ensure the rigour and reproducibility of miRNA-based biomarker investigations of this condition.Abbreviations: ACE: angiotensin-converting enzyme; ARDS: acute respiratory distress syndrome; COVID-19: coronavirus disease 2019; ERDN: early Detection Research Network; LMWH: low molecular weight heparin; miRNA: microRNA; ncRNA: noncoding RNA; SARS-CoV-2: severe acute respiratory syndrome coronavirus-2; SOP: standard operating procedure.
Collapse
Affiliation(s)
- Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ivan D. Benitez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Respiratory Department, University Hospital Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, IRBLleida, University of Lleida, Lleida, Spain
| | - Gerard Torres
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- Respiratory Department, University Hospital Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, IRBLleida, University of Lleida, Lleida, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Respiratory Department, University Hospital Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, IRBLleida, University of Lleida, Lleida, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Jiang Y, Sun-Waterhouse D, Chen Y, Li F, Li D. Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr 2021; 62:3855-3872. [PMID: 33427492 DOI: 10.1080/10408398.2020.1870926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) rank as the first leading cause of death globally. High dietary polyphenol (especially flavonoids) intake has strongly been associated with low incidence of the primary outcome, overall mortality, blood pressure, inflammatory biomarkers, onset of new-onset type 2 diabetes mellitus (T2DM), and obesity. Phytogenic flavonoids affect the physiological and pathological processes of CVDs by modulating various biochemical signaling pathways. Non-coding RNAs (ncRNAs) have attracted increasing attention as fundamental regulator of gene expression involved in CVDs. Among the different ncRNA subgroups, long ncRNAs (lncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. lncRNAs may be associated with the initiation, development and progression of CVDs by modulating acute and chronic inflammation, adipogenesis and lipid metabolism, and cellular physiology. This review summarizes this research on the modulatory effects of lncRNAs and their roles in mediating cellular processes. The mechanisms of action of flavonoids underlying their therapeutic effects on CVDs are also discussed. Based on our review, flavonoids might facilitate a significant epigenetic modification as part (if not full) of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain lncRNAs might be the target of specific flavonoids, and some critical signaling processes involved in the intervention of CVDs might mediate the therapeutic roles of flavonoids.
Collapse
Affiliation(s)
- Yang Jiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | | | - Yilun Chen
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
17
|
Extracellular Vesicle-Mediated Vascular Cell Communications in Hypertension: Mechanism Insights and Therapeutic Potential of ncRNAs. Cardiovasc Drugs Ther 2020; 36:157-172. [PMID: 32964302 DOI: 10.1007/s10557-020-07080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/12/2022]
Abstract
Hypertension, a chronic and progressive disease, is an outstanding public health issue that affects nearly 40% of the adults worldwide. The increasing prevalence of hypertension is one of the leading causes of cardiovascular morbidity and mortality. Despite of the available treatment medications, an increasing number of hypertensive individuals continues to have uncontrolled blood pressure. In the vasculature, endothelial cells, vascular smooth muscle cells (VSMCs), and adventitial fibroblasts play a fundamental role in vascular homeostasis. The aberrant interactions between vascular cells might lead to hypertension and vascular remodeling. Identification of the precise mechanisms of vascular remodeling may be highly required to develop effective therapeutic approaches for hypertension. Recently, extracellular vesicle-mediated transfer of proteins or noncoding RNAs (ncRNAs) between vascular cells holds promise for the treatment of hypertension. Especially, extracellular vesicle-packaging ncRNAs have gained enormous attention of basic and clinical scientists because of their tremendous potential to act as novel clinical biomarkers and therapeutic targets of hypertension. Here we will discuss the current findings focusing on the emerging roles of extracellular vesicle-carrying ncRNAs in the pathologies of hypertension and its associated vascular remodeling. Furthermore, we will highlight the potential of extracellular vesicles and ncRNAs as biomarkers and therapeutic targets for hypertension. The future research directions on the challenges and perspectives of extracellular vesicles and ncRNAs in hypertensive vascular remodeling are also proposed.
Collapse
|
18
|
Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson's Disease. Int J Mol Sci 2020; 21:E6513. [PMID: 32899928 PMCID: PMC7555192 DOI: 10.3390/ijms21186513] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex and heterogeneous disorder involving multiple genetic and environmental influences. Although a wide range of PD risk factors and clinical markers for the symptomatic motor stage of the disease have been identified, there are still no reliable biomarkers available for the early pre-motor phase of PD and for predicting disease progression. High-throughput RNA-based biomarker profiling and modeling may provide a means to exploit the joint information content from a multitude of markers to derive diagnostic and prognostic signatures. In the field of PD biomarker research, currently, no clinically validated RNA-based biomarker models are available, but previous studies reported several significantly disease-associated changes in RNA abundances and activities in multiple human tissues and body fluids. Here, we review the current knowledge of the regulation and function of non-coding RNAs in PD, focusing on microRNAs, long non-coding RNAs, and circular RNAs. Since there is growing evidence for functional interactions between the heart and the brain, we discuss the benefits of studying the role of non-coding RNAs in organ interactions when deciphering the complex regulatory networks involved in PD progression. We finally review important concepts of harmonization and curation of high throughput datasets, and we discuss the potential of systems biomedicine to derive and evaluate RNA biomarker signatures from high-throughput expression data.
Collapse
Affiliation(s)
- Shubhra Acharya
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Antonio Salgado-Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Francesca Maria Stefanizzi
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Andrew I. Lumley
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Lu Zhang
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (E.G.); (P.M.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (S.A.); (A.S.-S.); (F.M.S.); (A.I.L.); (L.Z.)
| |
Collapse
|
19
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
20
|
Zheng F, Zhou YT, Zeng YF, Liu T, Yang ZY, Tang T, Luo JK, Wang Y. Proteomics Analysis of Brain Tissue in a Rat Model of Ischemic Stroke in the Acute Phase. Front Mol Neurosci 2020; 13:27. [PMID: 32174813 PMCID: PMC7057045 DOI: 10.3389/fnmol.2020.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Stroke is a leading health issue, with high morbidity and mortality rates worldwide. Of all strokes, approximately 80% of cases are ischemic stroke (IS). However, the underlying mechanisms of the occurrence of acute IS remain poorly understood because of heterogeneous and multiple factors. More potential biomarkers are urgently needed to reveal the deeper pathogenesis of IS. Methods: We identified potential biomarkers in rat brain tissues of IS using an iTRAQ labeling approach coupled with LC-MS/MS. Furthermore, bioinformatrics analyses including GO, KEGG, DAVID, and Cytoscape were used to present proteomic profiles and to explore the disease mechanisms. Additionally, Western blotting for target proteins was conducted for further verification. Results: We identified 4,578 proteins using the iTRAQ-based proteomics method. Of these proteins, 282 differentiated proteins, comprising 73 upregulated and 209 downregulated proteins, were observed. Further bioinformatics analysis suggested that the candidate proteins were mainly involved in energy liberation, intracellular protein transport, and synaptic plasticity regulation during the acute period. KEGG pathway enrichment analysis indicated a series of representative pathological pathways, including energy metabolite, long-term potentiation (LTP), and neurodegenerative disease-related pathways. Moreover, Western blotting confirmed the associated candidate proteins, which refer to oxidative responses and synaptic plasticity. Conclusions: Our findings highlight the identification of candidate protein biomarkers and provide insight into the biological processes involved in acute IS.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yi-Fu Zeng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Tao Liu
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yu Yang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Affiliation(s)
- Amela Jusic
- From the Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Bosnia and Herzegovina (A.J.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health (Y.D.)
| | | |
Collapse
|
22
|
Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Noncoding RNA 2019; 5:ncrna5020031. [PMID: 30934986 PMCID: PMC6630366 DOI: 10.3390/ncrna5020031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).
Collapse
|
23
|
Lalem T, Zhang L, Scholz M, Burkhardt R, Saccheti V, Teren A, Thiery J, Devaux Y. Cyclin dependent kinase inhibitor 1 C is a female-specific marker of left ventricular function after acute myocardial infarction. Int J Cardiol 2019; 274:319-325. [DOI: 10.1016/j.ijcard.2018.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
|
24
|
Abstract
BACKGROUND Many evidences have demonstrated that circRNAs (circular RNA) play important roles in controlling gene expression of human, mouse and nematode. More importantly, circRNAs are also involved in many diseases through fine tuning of post-transcriptional gene expression by sequestering the miRNAs which associate with diseases. Therefore, identifying the circRNA-disease associations is very appealing to comprehensively understand the mechanism, treatment and diagnose of diseases, yet challenging. As the complex mechanism between circRNAs and diseases, wet-lab experiments are expensive and time-consuming to discover novel circRNA-disease associations. Therefore, it is of dire need to employ the computational methods to discover novel circRNA-disease associations. RESULT In this study, we develop a method (DWNN-RLS) to predict circRNA-disease associations based on Regularized Least Squares of Kronecker product kernel. The similarity of circRNAs is computed from the Gaussian Interaction Profile(GIP) based on known circRNA-disease associations. In addition, the similarity of diseases is integrated by the mean of GIP similarity and sematic similarity which is computed by the direct acyclic graph (DAG) representation of diseases. The kernels of circRNA-disease pairs are constructed from the Kronecker product of the kernels of circRNAs and diseases. DWNN (decreasing weight k-nearest neighbor) method is adopted to calculate the initial relational score for new circRNAs and diseases. The Kronecker product kernel based regularised least squares approach is used to predict new circRNA-disease associations. We adopt 5-fold cross validation (5CV), 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) to assess the prediction performance of our method, and compare it with other six competing methods (RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP). CONLUSION The experiment results show that DWNN-RLS reaches the AUC values of 0.8854, 0.9205 and 0.9701 in 5CV, 10CV and LOOCV, respectively, which illustrates that DWNN-RLS is superior to the competing methods RLS-avg, RLS-Kron, NetLapRLS, KATZ, NBI, WP. In addition, case studies also show that DWNN-RLS is an effective method to predict new circRNA-disease associations.
Collapse
Affiliation(s)
- Cheng Yan
- School of Information Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
- School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000 China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083 China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9 Canada
| |
Collapse
|
25
|
Kontaraki JE, Marketou ME, Kochiadakis GE, Maragkoudakis S, Konstantinou J, Vardas PE, Parthenakis FI. The long non-coding RNAs MHRT
,FENDRR
and CARMEN
, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin Exp Pharmacol Physiol 2018; 45:1213-1217. [DOI: 10.1111/1440-1681.12997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna E. Kontaraki
- Molecular Cardiology Laboratory; School of Medicine; University of Crete; Heraklion Greece
| | - Maria E. Marketou
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | | | | | - John Konstantinou
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | - Panos E. Vardas
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | | |
Collapse
|
26
|
Abstract
SIGNIFICANCE To maintain homeostasis, gene expression has to be tightly regulated by complex and multiple mechanisms occurring at the epigenetic, transcriptional, and post-transcriptional levels. One crucial regulatory component is represented by long noncoding RNAs (lncRNAs), nonprotein-coding RNA species implicated in all of these levels. Thus, lncRNAs have been associated with any given process or pathway of interest in a variety of systems, including the heart. Recent Advances: Mounting evidence implicates lncRNAs in cardiovascular diseases (CVD) and progression and their presence in the blood of heart disease patients indicates that they are attractive potential biomarkers. CRITICAL ISSUES Our understanding of the regulation and molecular mechanisms of action of most lncRNAs remains rudimentary. A challenge is represented by their often low evolutionary sequence conservation that limits the use of animal models for preclinical studies. Nevertheless, a growing number of lncRNAs with an impact on heart function is rapidly accumulating. In this study, we will discuss (i) lncRNAs that control heart homeostasis and disease; (ii) concepts, approaches, and methodologies necessary to study lncRNAs in the heart; and (iii) challenges posed and opportunities presented by lncRNAs as potential therapeutic targets and biomarkers. FUTURE DIRECTIONS A deeper knowledge of the molecular mechanisms underpinning CVDs is necessary to develop more effective treatments. Further studies are needed to clarify the regulation and function of lncRNAs in the heart before they can be considered as therapeutic targets and disease biomarkers. Antioxid. Redox Signal. 29, 880-901.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory, IRCCS Policlinico San Donato , Milan, Italy
| | - Antonio Salgado Somoza
- 2 Cardiovascular Research Unit, Luxembourg Institute of Health (LIH) , Luxembourg, Luxembourg
| | - Yvan Devaux
- 2 Cardiovascular Research Unit, Luxembourg Institute of Health (LIH) , Luxembourg, Luxembourg
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS Policlinico San Donato , Milan, Italy
| |
Collapse
|
27
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
28
|
Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy. J Mol Med (Berl) 2018; 96:845-856. [PMID: 30008018 DOI: 10.1007/s00109-018-1666-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
|
29
|
Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system. Clin Sci (Lond) 2018; 132:925-942. [DOI: 10.1042/cs20171463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
There is overwhelming evidence that regular exercise training is protective against cardiovascular disease (CVD), the main cause of death worldwide. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Non-coding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Revealing the molecular components and mechanisms of the link between exercise and health outcomes will catalyse discoveries of new biomarkers and therapeutic targets. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for CVD. Finally, considerations and perspectives for future studies will be proposed.
Collapse
|
30
|
Boileau A, Lindsay ME, Michel JB, Devaux Y. Epigenetics in Ascending Thoracic Aortic Aneurysm and Dissection. AORTA (STAMFORD, CONN.) 2018; 6:1-12. [PMID: 30079931 PMCID: PMC6136679 DOI: 10.1055/s-0038-1639610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thoracic aortic aneurysm (TAA) is an asymptomatic and progressive dilatation of the thoracic aorta. Ascending aortic dissection (AAD) is an acute intraparietal tear, occurring or not on a pre-existing dilatation. AAD is a condition associated with a poor prognosis and a high mortality rate. TAA and AAD share common etiology as monogenic diseases linked to transforming growth factor β signaling pathway, extracellular matrix defect, or smooth muscle cell protein mutations. They feature a complex pathogenesis including loss of smooth muscle cells, altered phenotype, and extracellular matrix degradation in aortic media layer. A better knowledge of the mechanisms responsible for TAA progression and AAD occurrence is needed to improve healthcare, nowadays mainly consisting of aortic open surgery or endovascular replacement. Recent breakthrough discoveries allowed a deeper characterization of the mechanisms of gene regulation. Since alteration in gene expression has been linked to TAA and AAD, it is conceivable that a better knowledge of the causes of this alteration may lead to novel theranostic approaches. In this review article, the authors will focus on epigenetic regulation of gene expression, including the role of histone methylation and acetylation, deoxyribonucleic acid methylation, and noncoding ribonucleic acids in the pathogenesis of TAA and AAD. They will provide a translational perspective, presenting recent data that motivate the evaluation of the potential of epigenetics to diagnose TAA and prevent AAD.
Collapse
Affiliation(s)
- Adeline Boileau
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Mark E. Lindsay
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jean-Baptiste Michel
- UMRS 1148, INSERM, Paris 7-Denis Diderot University, Hôpital Xavier Bichat, Paris, France
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
31
|
A 3-gene panel improves the prediction of left ventricular dysfunction after acute myocardial infarction. Int J Cardiol 2018; 254:28-35. [PMID: 29407108 DOI: 10.1016/j.ijcard.2017.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identification of patients at risk of poor outcome after acute myocardial infarction (MI) would allow tailoring healthcare to each individual. However, lack of prognostication tools renders this task challenging. Previous investigations suggested that blood transcriptome analysis may inform about prognosis after MI. We aim to independently confirm the value of gene expression profiles in the blood to predict left ventricular (LV) dysfunction after MI. METHODS AND RESULTS Five genes (LMNB1, MMP9, TGFBR1, LTBP4 and TNXB) selected from previous studies were measured in peripheral blood samples obtained at reperfusion in 449 MI patients. 79 patients had LV dysfunction as attested by an ejection fraction (EF) ≤40% at 4-month follow-up and 370 patients had a preserved LV function (EF>40%). LMNB1, MMP9 and TGFBR1 were up-regulated in patients with LV dysfunction and LTBP4 was down-regulated, as compared with patients with preserved LV function. The 5 genes were significant univariate predictors of LV dysfunction. In multivariable analyses adjusted with traditional risk factors and corrected for model overfitting, a panel of 3 genes - TNXB, TGFBR1 and LTBP4 - improved the prediction of a clinical model (p=0.00008) and provided a net reclassification index of 0.45 [0.23-0.69], p=0.0002 and an integrated discrimination improvement of 0.05 [0.02-0.09], p=0.001. Bootstrap internal validation confirmed the incremental predictive value of the 3-gene panel. CONCLUSION A 3-gene panel can aid to predict LV dysfunction after MI. Further independent validation is required before considering these findings for molecular diagnostic assay development.
Collapse
|
32
|
Vea A, Llorente-Cortes V, de Gonzalo-Calvo D. Circular RNAs in Blood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:119-130. [PMID: 30259362 DOI: 10.1007/978-981-13-1426-1_10] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in RNA sequencing and bioinformatic analysis have allowed the development of a new research field: circular RNAs (circRNAs). These members of the non-coding transcriptome are generated by backsplicing, which results in a covalently closed, single-stranded RNA molecule. To date, thousands of circRNAs have been identified in different human cell types. CircRNAs are evolutionarily conserved, highly stable, cell-/developmental stage-specific and have longer half-lives compared with linear RNAs. Interestingly, different studies have demonstrated that circRNAs are abundantly expressed in the bloodstream. In this chapter, we review the current knowledge of circRNA biology in blood cells and the cell-free compartment, including extracellular vesicles. The potential clinical application of blood circRNAs in the biomarker and therapy fields is also discussed. Finally, perspectives for future studies are proposed.
Collapse
Affiliation(s)
- Angela Vea
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Vicenta Llorente-Cortes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain. .,Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain. .,CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
The circular RNA MICRA for risk stratification after myocardial infarction. IJC HEART & VASCULATURE 2017; 17:33-36. [PMID: 29159270 PMCID: PMC5684093 DOI: 10.1016/j.ijcha.2017.11.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022]
Abstract
Background A significant proportion of patients develop heart failure (HF) after acute myocardial infarction (MI). Predicting this development with novel biomarkers would allow tailoring healthcare to each individual. We recently identified a circular RNA called MICRA which was associated with HF development after MI. Here, we tested whether MICRA was able to risk stratify MI patients. Methods MICRA was assessed in whole blood samples collected at reperfusion in 472 patients with acute MI. Left ventricular ejection fraction (EF) was evaluated by echocardiography at 4 months. Multivariable analyses with ordinal regression were conducted to determine the ability of MICRA to classify patients into 3 EF groups: reduced EF (≤ 40%), mid-range EF (4149%) and preserved EF (≥ 50%). Results Eighty seven patients (18%) had a reduced EF, 106 (22%) had a mid-range EF and 279 (59%) had a preserved EF at 4 months. MICRA classified patients into EF groups with an adjusted odds ratio [95% confidence interval] of 0.78 [0.64-0.95]. MICRA improved the predictive value of a multivariable clinical model as attested by a decrease of the Akaike Information Criteria (p = 0.012). Bootstrap internal validation confirmed the incremental prognostic value of MICRA. Conclusion We report that the circRNA MICRA improves risk classification after MI, supporting the added value of this novel biomarker in future prognostication strategies.
Collapse
|
34
|
Arslan S, Berkan Ö, Lalem T, Özbilüm N, Göksel S, Korkmaz Ö, Çetin N, Devaux Y. Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis 2017; 266:176-181. [PMID: 29035780 DOI: 10.1016/j.atherosclerosis.2017.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Genetic and environmental factors are important components of the development of atherosclerosis. Long non-coding RNA (lncRNAs) have emerged as regulators of multiple pathophysiological pathways in the cardiovascular system. Here, we investigated potential associations between lncRNAs and atherosclerosis. METHODS Tissue samples from atherosclerotic coronary artery plaques and non-atherosclerotic internal mammary artery were obtained from 20 patients during coronary artery bypass surgery. Expression levels of five lncRNAs known to be associated with coronary artery disease were measured using quantitative PCR. RESULTS Cyclin-dependent kinase inhibitor 2B antisense RNA 1 (ANRIL) and myocardial infarction-associated transcript (MIAT) were more expressed in the atherosclerotic arteries compared to the non-atherosclerotic arteries. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was less expressed in the atherosclerotic plaques. Expression levels of potassium voltage-gated channel, KQT-like subfamily, member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) and hypoxia inducible factor 1A antisense RNA 2 (aHIF) were comparable between atherosclerotic and non-atherosclerotic arteries. In the atherosclerotic plaque, expression levels of MALAT1, MIAT, KCNQ1OT1 and aHIF were inversely correlated with age. CONCLUSIONS We report significant associations between lncRNAs and atherosclerosis. These findings support a role for lncRNAs in coronary artery disease development.
Collapse
Affiliation(s)
- Serdal Arslan
- Department of Medical Biology, Faculty of Medicine, Sivas, Turkey
| | - Öcal Berkan
- Department of Cardiovascular Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Torkia Lalem
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Nil Özbilüm
- Department of Molecular Biology and Genetics, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| | - Sabahattin Göksel
- Department of Cardiovascular Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Özge Korkmaz
- Department of Cardiovascular Surgery, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Nilgün Çetin
- Department of Medical Biology, Faculty of Medicine, Sivas, Turkey
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | | |
Collapse
|
35
|
Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:494-507. [PMID: 28918050 PMCID: PMC5565632 DOI: 10.1016/j.omtn.2017.07.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 02/09/2023]
Abstract
The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.
Collapse
Affiliation(s)
- Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Helen Spencer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Kerrie L Ford
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK
| | - Lauriane Y M Michel
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jean-Luc Balligand
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
| | | |
Collapse
|
36
|
Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, Dimmeler S, Squire I. Circular RNAs in heart failure. Eur J Heart Fail 2017; 19:701-709. [DOI: 10.1002/ejhf.801] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yvan Devaux
- Cardiovascular Research Unit; Luxembourg Institute of Health; Luxembourg Luxembourg
| | - Esther E. Creemers
- Experimental Cardiology; Academic Medical Center; Amsterdam The Netherlands
| | - Reinier A. Boon
- Institute of Cardiovascular Regeneration; Goethe-University; Frankfurt Germany
- Department of Physiology; VU University Medical Center; Amsterdam The Netherlands
| | - Stanislas Werfel
- Institute of Pharmacology and Toxicology; Technical University Munich; Munich Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies; Hannover Medical School; Hannover Germany
- National Heart and Lung Institute; Imperial College London; London UK
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology; Technical University Munich; Munich Germany
- German Center for Cardiovascular Research; partner site Munich Heart Alliance; Munich Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration; Goethe-University; Frankfurt Germany
| | - Iain Squire
- Department of Cardiovascular Sciences; University of Leicester; Leicester UK
| | | |
Collapse
|